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ABSTRACT
In a previous work, we proposed a neural network approach to estimate the blocking probability of optical
networks with fixed routing. The neural network was implemented by the extreme learning machine (ELM)
framework, in which the training inputs were the optical network parameters, and the output was the overall
blocking probability. Numerical results showed that the neural-network-based estimation was accurate and
thousands of times faster than computer simulation. In this paper, we apply the neural network approach
to optical circuit switching (OCS) networks with fixed-alternate routing and improve the training method
by using an enhancement of ELM framework. Unlike the previous ELM framework, the enhancement of
ELM framework provides a random-search based selection phase for the hidden nodes during the training
step. As a result, similar performance can be achieved using fewer hidden nodes than the previous ELM
framework. Numerical results show that the new enhancement of ELM training algorithm provides more
accurate blocking probability estimates while reducing the required number of hidden nodes by a third
compared to the previous ELM training algorithm. Furthermore, for some light traffic loading situations,
our new training algorithm is hundreds of times more accurate than the existing well-know analytical
approximation method.

INDEX TERMS Artificial Neural Network; Blocking Probability; Optical Circuit Switching Network;
Fixed-Alternate Routing.

I. INTRODUCTION

Circuit switching is widely used in telephony, and has played
an important role in optical networks. For an optical circuit
switching (OCS) network, an end-to-end lightpath must be
established before transmitting the data; otherwise, the con-
nection request will be blocked. To reduce the occurrence
of blocking, various approaches for alternate routing were
developed [1]–[3]. For instance, fixed-alternate routing pro-
posed in [1] allowed a connection request that was blocked on
its desired route to overflow to an alternate route according
to the predefined order of a list of alternate routes. In fact,
evaluating the blocking probability helps network engineers

to conduct load balancing and congestion control [4]. A
common way of estimating the blocking probability is by
computer simulations [2], [5], [6]. However, simulations
are time-consuming, especially for large optical networks.
Another evaluation approach is analytical approximation,
such as the well-known Erlang Fixed Point Approximation
(EFPA) [7]. The EFPA can estimate the blocking probability
in an efficient manner due to its simple model structure but
the simplifying assumptions result in reduced accuracy of the
approximation.

On the other hand, we propose to use a neural network
for learning the mapping from the parameters of an optical
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network to the blocking probability. This method allows us
to estimate the blocking probability in a second, which is
thousand times faster than that of computer simulations. With
this advantage, this method can be applied in the network
design phase and in a dynamic scenario. In the dynamic
scenario, the network needs to change the routing table in real
time, and several routing tables may be provided by different
routing and wavelength assignment algorithms. Our method
rapidly estimates the blocking probability for all options, and
recommends the best one with the lowest blocking probabil-
ity to the network management system.

In this paper, we propose to use the enhancement of ELM
framework instead of the ELM framework. Under this frame-
work, where the hidden nodes were randomly generated, the
universal approximation ability was demonstrated in [8]–
[10]. The enhancement of error minimized ELM (EEM-
ELM) algorithm [11] is used to train a single-hidden-layer
feedforward network (SLFN) model with the training ob-
jective of minimizing the mean square error (MSE) of the
logarithm of the blocking probability. Indeed, the incremental
ELM (I-ELM) algorithm used in our previous paper [12],
which adds the hidden nodes without selection, results in
a large neural network with many redundant hidden nodes.
This decreases the efficiency and accuracy of the neural
network.

However, the EEM-ELM algorithm does not contain the
above drawbacks due to a random-search based selection
process in each incremental stage for the addition of new
hidden nodes. This approach allows us to select the hidden
nodes that most significantly reduces the estimation error,
and hence reduces the required number of hidden nodes while
increasing the accuracy of the estimation. After that, the
alternating direction method of multipliers (ADMM) [13],
[14] is used to further remove the remaining unimportant
nodes. The contributions of this paper are summarized as
follows.

• For the first time, a neural network approach is applied
to estimate blocking probability in an OCS network with
fixed-alternate routing.

• The EEM-ELM is adopted to improve the accuracy of
the estimation and reduce the required number of hidden
nodes.

• Numerical results demonstrate that our training algo-
rithm provides accurate blocking probability estimates
while reducing the required number of hidden nodes by
a third compared to the algorithm in our previous paper.

• For a lightly-loaded traffic network with fixed-alternate
routing, the estimated blocking probability from our
algorithm can be hundreds of times more accurate than
that of EFPA.

The remainder of the paper is organized as follows. Sec-
tion II briefly reviews the related work. Section III introduces
our proposed training model. Section IV describes the sim-
ulation setup. Section V describes the ELM training process
and the results from the experiments. Finally, conclusions are

given in Section VI.

II. RELATED WORK
A. OCS NETWORKS WITH FIXED-ALTERNATE ROUTING
In an OCS network, a lightpath between the source destina-
tion (S-D) pair is required to be established for a connection
before transmitting the data. To establish a lightpath, a wave-
length needs to be reserved on each of the intermediate links
along the path. For each connection request, the source node
sends a control packet through the primary path to reserve the
wavelength. When the wavelength is successfully reserved on
all links in the lightpath, the lightpath is established and the
data can be transmitted, otherwise, the connection is blocked
by the primary path.

If fixed-alternate routing is used, the OCS network is
considered as a layered structure, where the Layer 1 (primary
layer) contains the primary paths of all S-D pairs, Layer 2
(the first overflow layer) contains the secondary paths of all
S-D pairs, and so on. If the connection request is blocked
by Layer 1, the source node tries to overflow the connection
request to Layer 2, i.e. by establishing a lightpath through
the secondary path [5], [15]. This process repeats until the
lightpath is established, or the number of allowable paths is
reached. In the latter case, since no available lightpath can
be established, the connection request is blocked and cleared
from the OCS network. For simplicity, we assume that the
network is purely all-optical, such that the same wavelength
is used along the entire end-to-end path.

B. NETWORKING APPLICATION OF NEURAL
NETWORKS
Nowadays, many neural network approaches are applied to
solve networking problems. For example, an neural network
approach was proposed for the optical fiber channel mod-
elling in an optical network by embedding a deep fully-
connected feed-forward neural network [16]. A significant
improvement was observed in the intensity modulation direct
detection (IM-DD) system. Merayo et al. [17] proposed a
neural network approach to adjust the proportional-integral-
derivative (PID) controller for the bandwidth allocation in
a passive optical network. Mo et al. [18] implemented a
deep-neural-network-based method to estimate the power
dynamics of a reconfigurable optical add-drop multiplexer
(ROADM) system, and assign the wavelength for switching
with least power consumption in an optical network.

Moreover, neural network can also be applied to the block-
ing probability estimation. Araujo et al. [19] introduced a
multilayer perceptron (MLP) model, a classic neural network
approach, to estimate the blocking probability of an OCS
network. In our previous paper [12], we proposed to use the
ELM framework to estimate the blocking probability of the
optical burst switching (OBS) or optical packet switching
(OPS) network with fixed routing, using the logarithm of the
blocking probability for better performance of the neural net-
work. We trained the neural network with our ADMM-Log-I-
ELM algorithm, and the estimation results were shown to be
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accurate. However, the algorithm inherits a drawback from
the I-ELM algorithm, which adds the hidden nodes without
selection. This results in a large number of hidden nodes
required to conduct the estimation and hence the efficiency
of the algorithm might be affected. To tackle this issue, this
paper proposes to use EEM-ELM instead of I-ELM.

C. ELM AND ITS ENHANCEMENTS

In the ELM framework, we consider an SLFN model for the
function approximation problem. The training set is denoted
as Dt =

{
(xl, pl) : xl ∈ Rd, pl ∈ R, l = 1, · · · , N

}
, where

xl and pl are the input vector and target output of the l-th
sample, respectively. In [20]–[22], the network output of the
SLFN approach is expressed as

fn(x) =

n∑
i=1

βigi (x) (1)

where gi(x) is the output of the ith hidden node, and βi is the
weight between the ith hidden node and the output node.

For the hidden nodes in the ELM, the activation functions
are defined as sigmoid functions [23]–[25]. In other words,
the output of the ith hidden node is expressed as

gi(x) =
1

1 + exp{−(aT
i x+ bi)}

, (2)

where ai is the input weight vector of the ith hidden node,
and bi is the bias term of the ith hidden node. For the bias
terms bi’s and the input weights ai’s, they are generated
randomly with the concept of ELM [8], [9]. When n hidden
nodes are used for approximation, the MSE is expressed as

E =

N∑
l=1

(pl −
n∑
i=1

βigi(xl))
2 =

∥∥∥∥∥p−
n∑
i=1

βigi

∥∥∥∥∥
2

2

, (3)

where p = [p1, · · · , pN ]T, and gi = [gi(x1), · · · , gi(xN )]T.
In [26], Feng et al. proposed an error minimized ELM

(EM-ELM) algorithm. The idea of EM-ELM algorithm is
an iterative process in which a certain number of hidden
nodes is added in each iteration. For each iteration, when
the new hidden nodes are inserted, the output weights are
updated recursively without retraining the entire network.
This reduces the complexity and running time of the training
process. The training objective is expressed as follows:

En = ‖p−Φnβ‖22 , (4)

Φn =


g1(x1) · · · · · · gn(x1)

g1(x2)
. . . · · · gn(x2)

...
...

. . .
...

g1(xN ) · · · · · · gn(xN )

 (5)

The hidden layer matrix Φn+1 can be further expressed as
Φn+1 = [Φn, δΦn].

At the nth incremental learning step, a group of new nodes
δΦn is generated randomly, and added into the network.
For the newly added nodes, we need to update the output

weights βn. The calculation of output weights is formulated
as follows:

Qn = ((I −ΦnΦ†n)δΦn)† (6)
T n = Φ†n(I − δΦnQn) (7)

βn+1 =

[
T n
Qn

]
p (8)

where † denotes the Moore-Penrose inverse.
Hereafter, Lan et at. [11] introduced the Enhancement of

EM-ELM (EEM-ELM). The EEM-ELM modifies the EM-
ELM by adding a random-search based selection phase. For
the EEM-ELM algorithm, at each incremental learning step,
j candidate sets of hidden nodes are randomly generated, and
the output weights and the approximation error are calculated
using the EM-ELM algorithm. From the j candidate sets of
hidden nodes, the set yielding the smallest approximation
error is added to the neural network.

D. ADMM
In [13], [14], the authors proposed the ADMM framework
to solve the convex optimization problem using an iterative
approach. The constraint optimization problem is shown as
follows:

min
β,u

: ψ (β) + φ (u)

s.t. Cβ +Du = v, (9)

where ψ and φ are the cost terms in the objective function,
and β and u are decision variable vectors in the optimization.

In the ADMM, an augmented Lagrangian is constructed,
given by

L (β,u,γ) = ψ (β) + φ (u) + γT (Cβ +Du− v)

+
ρ

2
‖Cβ +Du− v‖22 , (10)

where ρ is a positive penalty parameter, and γ is the La-
grangian vector. Hence, the iterative process for {β,u,γ}
is given by

βk+1 = arg min
β
L(β,uk,γk), (11a)

uk+1 = arg min
u
L(βk+1,u,γk), (11b)

γk+1 = γk + ρ
(
Cβk+1 +Duk+1 − v

)
. (11c)

E. EFPA FOR OCS NETWORKS
In addition to simulation and neural network approaches,
one traditional way of blocking probability evaluation in
OCS networks is analytical approximation, e.g. EFPA. EFPA
was originally developed for the blocking probability estima-
tion in circuit-switched telephone networks by Cooper and
Katz [27]. In [5], Wang et al. used EFPA to estimate the
blocking probability in an OCS network with fixed-alternate
routing.

The concept of EFPA is to decompose the network into
independent links, and to assume that the arrival traffic to
each link follows a Poisson process. This results in a fixed
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point iterative solution for obtaining the blocking probability
of each link. With this simple structure, EFPA can estimate
the blocking probability of the network in a very fast manner.
However, it was observed in [28], [29] that EFPA might
introduce significant errors due to the assumptions of in-
dependent links and a Poisson arrival process to each link.
Moreover, the convergence and uniqueness of solutions of
EFPA are not always guaranteed [7], [30]. Hence, EFPA may
not provide an accurate estimation of blocking probability for
OCS networks with fixed-alternate routing.

III. OUR PROPOSED TRAINING MODEL
A. METHODOLOGY
In general, for an OCS network topology with some network
parameters {xl : xl ∈ Rd}, the corresponding blocking
probability {pl : pl ∈ R>0} can be obtained via computer
simulation. In this paper, we use these d network parameters
as input to represent the OCS network conditions and train
an SLFN to learn the mapping from the network conditions
to the target output, i.e. the blocking probability.

However, for an OCS network with different network pa-
rameters, the range of blocking probability can be large, e.g.
[10−5, 10−1], depending on network load, network topology,
routing strategy and wavelength-assignment strategy. This
may lead to large approximation errors for small blocking
probability values if the unscaled blocking probability values
(as generated by simulation) are used as the target output
of the SLFN directly. The results of the ADMM-I-ELM
algorithm in our previous paper [12] illustrates this problem.
Therefore, in [12], we proposed to train our SLFN using the
logarithm of the blocking probability, {p̃l = log pl}, instead
of p. The new training set is denoted as:

D̃t =
{

(xl, p̃l = log pl) : xl ∈ Rd, p̃l ∈ R<0, l = 1, · · · , N
}
.

(12)
The training objective becomes

Ẽ = ‖p̃−Φβ‖22 , (13)

where p̃ = [p̃1, · · · , p̃N ]T.
Based on the EEM-ELM, we develop a new ELM algo-

rithm, namely Log-EEM-ELM. For minimizing the objective
function Ẽ , the Log-EEM-ELM continuously inserts the hid-
den nodes into the SLFN until the target error is achieved.
Algorithm 1 summarizes the steps of our proposed algorithm.

The Log-EEM-ELM algorithm eventually gives us ne
hidden nodes i.e. {g1(x), · · · , gne(x)}. As the Log-EEM-
ELM algorithm contains a selection phase for adding hid-
den nodes, this can guarantee that the selected nodes have
a good error reduction ability. Nevertheless, some hidden
nodes may be relatively unimportant. The ADMM approach
is used to remove these unimportant nodes. Incorporating
ADMM into our framework produces a new algorithm,
namely ADMM-Log-EEM-ELM. The ADMM-Log-EEM-
ELM algorithm first trains the SLFN using the Log-EEM-
ELM and then uses the ADMM framework to remove the
unimportant nodes. When the ne hidden nodes are consid-

Algorithm 1 Log-EEM-ELM

1: Initialization: Let L0 demotes the initial number of hid-
den nodes.

2: Define the termination condition ε.
3: Compute the initial hidden layer output matrix Φ0.
4: Compute the initial output weights β0 : β0 = Φ†0p̃,

where p̃ = [p̃1, · · · , p̃N ]T .
5: Let n = 0, and compute the approximation error εn.
6: while Ln < Lmax and ε < εn do
7: for i=1:j do
8: Construct a set of δLn hidden nodes to the net-

work, so that the total number of hidden nodes becomes
Ln+1 = Ln + δLn. Hence, the hidden layer matrix
becomes Φi

n+1 = [Φn, δΦ
i
n]

9: Compute the new output weights as follows:
Qi
n = ((I −ΦnΦ†n)δΦi

n)†

T in = Φ†n(I − δΦi
nQ

i
n)

βin+1 =

[
T in
Qi
n

]
p̃

10: Compute the approximation error εin+1.
11: end for
12: n = n+ 1.
13: Select a set of hidden nodes j yielding the smallest

approximation error, and Φn = Φj
n, βn = βjn, and εn =

εjn
14: end while

ered, the approximation error is denoted as

Ẽ =

∥∥∥∥∥p̃−
ne∑
i=1

βigi

∥∥∥∥∥
2

2

. (14)

where p̃ = [p̃1, · · · , p̃N ]T.
To remove the unimportant nodes, an `1 norm penalty term

is required in the objective function. The modified objective
function is denoted as

J̃ =
1

2
‖p̃−Φβ‖22 + λ‖β‖1, (15)

where λ is a tradeoff parameter between the number of se-
lected nodes and the approximation error of the log blocking
probability. λ can be tuned to trade off the number of hidden
nodes with the approximation accuracy. When λ is large,
the SLFN contains fewer hidden nodes. When λ is small,
the SLFN has greater approximation accuracy. Due to the
presence of the penalty term, the output weights for the
unimportant nodes are reduced to zero. In other words, the
influence of these nodes disappears and they can be removed
afterwards.

The ADMM framework can be used to solve the un-
constrained optimization in (15). A dummy variable u is
introduced, such that the optimization problem becomes a
constrained one. The formulation of the problem becomes

min
β,u

1
2 ‖p̃−Φβ‖22 + λ‖u‖1,

s.t. : u = β.
(16)
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The augmented Lagrangian of (16) is denoted as

L(β,u,γ) =
1

2
‖p̃−Φβ‖22 + λ‖u‖1

+γT (u− β) +
ρ

2
‖u− β‖22. (17)

Hence, the corresponding ADMM update of β, u and γ are
respectively given by (19), (21) and (23), as derived below.

Computing βk+1:
By fixing u as uk and γ as γk in (17), βk+1 can be updated
by

βk+1 = arg min
w
L(β,uk,γk)

= arg min
β

1

2
‖p̃−Φβ‖22 + γk

T
(uk − β)

+
ρ

2
‖uk − β‖22

= arg min
β

1

2
‖p̃−Φβ‖22+

ρ

2
‖uk−β+

1

ρ
γk‖22.(18)

From (18), we obtain

βk+1 =
[
ΦTΦ + ρI

]−1 [
ΦTp̃+ ρuk + γk

]
, (19)

where I is an identity matrix.
Computing uk+1:

By fixing β as βk+1 and γ as γk in (17), uk+1 can be
updated by

uk+1 = arg min
u
λ‖u‖1 +

ρ

2
‖u− βk+1 +

1

ρ
γk‖22. (20)

The term λ‖u‖1 in (20) is non-differentiable; however,
the closed-form solution can be obtained by using sub-
differential calculus [14]. The formulation is denoted as

uk+1 = Sλ/ρ
(
βk+1 − 1

ρ
γk
)
. (21)

where Sζ(·) is a soft-threshold operator [14], given by

Sζ(θ) = sgn(θ) · (|θ| − ζ) . (22)

Note that the soft-threshold operator is an elementwise oper-
ator.

Computing γk+1:

γk+1 = γk + ρ
(
uk+1 − βk+1

)
. (23)

In short, we notice that the computational complexity of
ADMM-Log-EEM-ELM for each iteration is O(n2N) +
O(n2).

B. SIMULATION AND TRAINING PARAMETERS
For the neural network training inputs, we consider seven
parameters for an OCS network, as defined in Table I. They
are similar to our previous paper [12], except for the addition
of P , and the renaming of C as F . The seven parameters are
all independent parameters and represent the properties of the
network input traffic load (i.e.E andD), the optical links (i.e.
W and F ), and the routing scheme (i.e. P , APL and CR)

respectively. As the fixed-alternate routing is considered in
this paper, the parametersAPL and CR are transformed into
vector form, i.e. APL and CR. The detailed explanation for
the seven parameters is as follows.

First, E denotes the mean traffic load per S-D pair, mea-
sured in Erlangs, and is the most important factor to to deter-
mine the blocking probability, as blocking increases with E.
Second, D denotes the difference between the maximum and
the minimum offered load to each S-D pair. We assume the
offered load to each S-D pair is uniformly distributed within
the interval [E−D/2, E+D/2]. Note that increasingD with
E fixed, the blocking probability of the network increases.

Third and fourth, F and W denote the number of fiber
pairs on each link and the number of wavelengths per fiber,
respectively. Each fiber has the same set of W wavelengths;
hence, the number of wavelength in each fiber is W . Note
that increasing W with other parameters fixed, the blocking
probability of the network decreases, as does increasing F
with other parameters fixed.

Fifth and sixth, APL and CR are vectors denoting the
average path length and concentration of routes, respec-
tively. As we consider OCS networks with one primary
layer and two overflow layers, the two vectors become
{APL1, APL2, APL3} and {CR1, CR2, CR3}. The value
APLi denotes the average path length in hops for Layer i
paths between the S-D pairs, which is computed based on the
routing table. Note that increasing APLi typically increases
the blocking probability [31]. The value CRi, as defined in
Araujo et al. [19], relates to the maximum distance among a
set of nonzero values, which are the number of Layer i paths
passing through a link (zero values are excluded from the
set). It reflects the load balancing of the traffic in the network,
which helps to reduce the blocking probability. Therefore, a
lower CRi value corresponds to better load balancing, and
results in lower blocking probability.

Seventh, P represents the number of allowable paths. P is
related to the number of the allowable overflows. For a given

TABLE 1: Independent Input Parameters

Parameter Definition
E Mean traffic load per S-

D pair (Erlang)
D Difference between max

and min traffic load per
S-D pair

W No. of wavelengths per
fiber

F No. of fiber pairs per
link

APL :
{APL1,
APL2, APL3}

Average path length in
the three layers

CR : {CR1,
CR2, CR3}

Concentration of route
in the three layers

P No. of allowable paths
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TABLE 2: Trained models with various parameters

Input Parameters MSE
E, D, W, F, {CR1},
{APL1}

1.491 ×
10−3

E, D, W, F, P, {CR1},
{APL1}

6.743 ×
10−4

E, D, W, F, P, {CR1, CR2},
{APL1, APL2}

5.879 ×
10−4

E, D, W, F, P,
{CR1, CR2, CR3},
{APL1, APL2, APL3}

4.664 ×
10−4

P , a network allows a connection request to overflow P − 1
times. In fact, an S-D pair can use min(P,Rm) paths, where
Rm denotes the maximum number of available paths for S-
D pair m. For a network with light traffic load, increasing
P value provides more chances for a request to establish a
lightpath, thus reducing the blocking probability. However, if
the traffic load E is high and APL3 > APL2 > APL1,
increasing P might force the overflowed connection requests
to use longer paths, hence the blocking probability would be
increased.

In our previous work [12], the significance of E, D, W ,
F (the same meaning as C in [12]), APL and CR were
justified by the MSE changes with respect to the changes in
number of parameters. All six parameters were significant
to our training model. In this paper, which considers the
fixed-alternate routing, the number of allowable paths P is
introduced, and APL and CR are transformed into vector
form {APL1, APL2, APL3} and {CR1, CR2, CR3}.

The significance of these new input parameters is shown
in Table 2. It shows that by including P , the MSE has a
significant reduction, which decreases from 1.491 × 10−3

to 6.743 × 10−4. With the additional layer information for
APL2 and CR2, the MSE further reduces to 5.879 × 10−4.
With additional information for APL3 and CR3, the MSE
further reduces to 4.664 × 10−4. These results demonstrate
that these new input parameters are essential for our training
model to provide an accurate estimation of blocking proba-
bility.

IV. SIMULATION SET-UP AND NEURAL NETWORK
TRAINING
A. OCS NETWORK SIMULATIONS
For the simulation, we implemented a Markov-chain simu-
lation model. In the simulation, the arrival process and the
request duration are assumed to be Poisson and exponentially
distributed, respectively. Also, we assume all paths are all-
optical end-to-end, which means no wavelength regenera-
tion. Therefore, the wavelength continuity must be main-
tained [32], [33], i.e. the same wavelength is used for all links
along the path. This assumption may not be realistic in a net-
work of large geographic extent, but it allows us to simplify
the problem. When establishing a lightpath, the wavelength
is chosen randomly from the set of available wavelengths.

FIGURE 1: 14-node NSFNET Topology

FIGURE 2: 10-node Circular Lattice Network Topology

Meanwhile, the special case of W = 1, which is equivalent
to the full wavelength conversion, is also considered.

In this paper, we consider two topologies for the OCS net-
work simulation, i.e. 14-node NSFNET and 10-node circular
lattice network. Fig. 1 displays the NSFNET topology with
14 nodes and 21 optical links installed. In total, there are 91
S-D pairs in the network, which are bi-directional. Also, 14
routing tables are prepared for the topology. Fig. 2 shows
the circular lattice network topology with 10 nodes and 20
optical links installed. 45 S-D pairs exist in the network. We
prepare a routing table for this topology.

To construct the routing tables, we adopt a shortest path
algorithm and a random approach. For the shortest path
algorithm, it helps to generate the route for each S-D pairs.
For the random approach, one available route is randomly
generated as first path. After that, all links involved in the first
path are excluded from the network, and another available
route is generated as second path using the remaining links.
The above process is repeated until the maximum number
of available paths is reached. For the 14-node NSFNET, 25
S-D pairs have two link-disjoint paths, 65 S-D pairs have
three link-disjoint paths and 1 S-D pair has four link-disjoint
paths. For the 10-node circular lattice network, 45 S-D pairs
have four link-disjoint paths. For simplicity, we only choose
link-disjoint paths for each S-D pair; however, this is not
necessary to achieve good load balancing.

As mentioned in Section III, seven parameters are used for
the simulation and the training model. These parameters are
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TABLE 3: Range of the parameters

Range of the parameters
14-node NSFNET 10-node circular

lattice network
E [0.1-3.5] [12-82]
D [0-1] [0-10]
W [1-5] [80-110]
F [5-10] [1-4]

APL [2.14-5.08] [3.28-4.67]
CR [0.33-1.86] [0.33-0.76]

P [1-3] [3]

tuned to generate the datasets corresponding to our interested
range of blocking probability, i.e. [10−5 − 10−1]. Table 3
displays the specific ranges for the parameters.

First, the values of P is in the range of [1− 3]. This is due
to the fact that the number of possible S-D pairs between two
nodes is bounded by the topology. In our topologies, since
more than half of the S-D pairs have three paths, we consider
that the value of P is bounded above by three. Second, the
ranges for E and D are the empirical settings so that the
dataset has our blocking probability range of interest. Third,
the values of W and F are set based on the scale of the
network. Finally, the values of APL and CR are calculated
based on the routing tables.

B. DATASET PRE-PROCESSING AND TRAINING
SETTINGS
In general, pre-processing of the dataset is required before the
training stage. In this section, we shall use the term attribute
to refer to the input parameters. To avoid the occurrence of
outliers, each attribute is normalized by standard deviation.
Afterwards, we separate the dataset into three classes based
on the blocking probability as shown in Table 4. For the
14-node NSFNET topology, 10000 data entries are selected
for the training set and test set in accordance with Table 4.
For the 10-node circular lattices network topology, 1000
data entries are provided for the training set and test set as
shown in Table 4. This approach is intended to ensure good
approximation ability of the neural network across a wide
range of blocking probability.

In the training stage, the Log-EEM-ELM algorithm in Sec-
tion III is used to train the neural network. For the Log-EEM-
ELM empirical setting, the parameter j is set to 5, and the
parameter δLn is set to 10. It means that five candidate sets of
ten hidden nodes are provided in the selection phase for each
learning step. While j = 10 is also considered, the resulting
neural network does not show a significant reduction in
MSE despite the approximate doubling of the training time
required. When the Log-EEM-ELM algorithm is completed,
a number of hidden nodes with the trained output weights are
generated. We then use the ADMM optimization to further
remove some unimportant nodes. For the ADMM empirical
setting, the parameter ρ is set to 2, and the parameter λ is in
the range [10−4 − 10−1]. The chosen range for λ can cover

many possible solutions for the optimization.
Furthermore, two metrics are used to measure the per-

formance of the algorithm. The first one is the MSE of the
blocking probability, denoted as

MSE =
1

N

N∑
k=1

(pk − p̂k)2, (24)

where p̂k’s and pk’s are the estimated probability values
and the true probability values, respectively. Due to the
wide dynamic range for blocking probability, as mentioned
in [12], the MSE might not be a good measurement for the
approximation of probability values. Hence, we also consider
the relative error, denoted as

relative error =
1

N

N∑
k=1

|pk − p̂k|
pk

. (25)

Hence, we conduct an all-rounded analysis for the perfor-
mance of our algorithm.

V. RESULTS AND ANALYSIS
A. COMPARISON BETWEEN LOG-I-ELM AND
LOG-EEM-ELM
To provide a detailed analysis, we compare the performance
of our proposed Log-EEM-ELM algorithm to that of the Log-
I-ELM algorithm in [12]. The results obtained in different
stages will be presented and explained in the following
subsections.

To start with, the two algorithms (i.e. Log-I-ELM and Log-
EEM-ELM) are used to build two SLFNs for estimating the
blocking probability. Fig. 3 shows the MSE of the estimated
blocking probability for the test set versus the number of
hidden nodes. The Log-I-ELM algorithm gives an MSE of
0.09866 using 2951 hidden nodes, while the Log-EEM-ELM
algorithm gives an MSE of 0.0006198 using 2570 hidden
nodes. In other words, the test set MSE of Log-EEM-ELM
is over 100 times smaller than that of Log-EEM-ELM while
using 13% fewer hidden nodes.

In addition, Fig. 4 shows the relative errors of the estimated
blocking probability for test set versus the number of hid-
den nodes. The relative error of Log-I-ELM is 5.637 when
2951 hidden nodes are used. It is over 10 times larger than
that of Log-EEM-ELM, which is 0.2661 when 2570 hidden
nodes are used. Considering both metrics, the Log-EEM-
ELM algorithm uses fewer hidden nodes to produce more
accurate results compared to the Log-I-ELM algorithm. This
phenomenon is due to the selection process of hidden nodes
and the updating of existing output weights in the Log-EEM-
ELM algorithm. These properties ensure that the selected
hidden nodes contribute to the greatest reduction of error at
each incremental stage, whereas the Log-I-ELM algorithm
does not incorporate this feature.

In summary, the approximation ability of the Log-EEM-
ELM algorithm is stronger than that of the Log-I-ELM
algorithm. In the next section, we use the ADMM framework
to remove some unimportant nodes in the two trained SLFNs.
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TABLE 4: CLASSES OF DATASET

Classes
1E-5-1E-3 1E-3-1E-1 1E-1-0.3

14-node
NSFNET

# Entries for training 2000 5000 3000
# Entries for test 2000 5000 3000

10-node circular
lattice network

# Entries for training 0 1000 0
# Entries for test 0 1000 0
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FIGURE 3: Test set MSE versus number of hidden nodes of Log-I-ELM
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FIGURE 4: Test set relative error versus no. of hidden nodes of Log-I-
ELM and Log-EEM-ELM

B. COMPARISON BETWEEN ADMM-LOG-I-ELM AND
ADMM-LOG-EEM-ELM
During the ADMM optimization, we can control the number
of hidden nodes by varying the weighting factor λ. Fig. 5
presents the test set MSE versus the number of hidden
nodes for the ADMM-Log-I-ELM and the ADMM-Log-
EEM-ELM algorithms. For the ADMM-Log-I-ELM algo-
rithm, 2880 hidden nodes are required to achieve the mini-
mum test set MSE of 0.0005185. For the ADMM-Log-EEM-
ELM algorithm, 1957 hidden nodes are needed to achieve the
minimum test set MSE of 0.0004664. Note that the ADMM
reduces both the MSE and number of hidden nodes com-
pared to the Log-EEM-ELM and Log-I-ELM algorithms.
Again, the ADMM-Log-EEM-ELM algorithm achieves a
smaller MSE value and requires fewer hidden nodes than the
ADMM-Log-I-ELM algorithm.

Besides that, the relative errors for both algorithms are
presented in Fig. 6. The ADMM-Log-I-ELM algorithm uses
2880 hidden nodes to achieve the minimum relative error of
0.2504. Note that, compared to the Log-I-ELM, the relative
error of the ADMM-Log-I-ELM algorithm drops from 5.637
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FIGURE 5: MSE versus number of hidden nodes of ADMM-Log-I-ELM
and ADMM-Log-EEM-ELM
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FIGURE 6: Relative error versus number of hidden nodes of ADMM-
Log-I-ELM and ADMM-Log-EEM-ELM

to 0.2504, and the required number of hidden nodes is
reduced from 2951 to 2880. In addition, the ADMM-Log-
EEM-ELM algorithm uses 1957 hidden nodes to achieve
the minimum relative error of 0.2468. Compared to the
ADMM-Log-I-ELM, the ADMM-Log-EEM-ELM algorithm
produces a lower relative error while using a third fewer
hidden nodes.

On the other hand, the computational complexity for
each iteration of the ADMM-Log-EEM-ELM algorithm, i.e.
O(n2N) + O(n2), is higher than that of the ADMM-Log-
I-ELM algorithm, i.e. O(N) + O(n2). However, as the
ADMM-Log-EEM-ELM algorithm uses fewer hidden nodes
(n), the actual complexity is reduced. Also, the training
time for the ADMM-Log-EEM-ELM and the ADMM-Log-
I-ELM algorithms are 273 and 206 min, respectively. Like
the other neural network approach, the estimation of blocking
probability takes only a second to complete. In the ADMM-
Log-EEM-ELM algorithm, the benefit of reducing the rela-
tive error and the required number of hidden nodes should
outweigh the raise of the complexity and the training time.

In short, the ADMM-Log-EEM-ELM algorithm reduces
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MSE, relative error, and the required number of hidden
nodes, compared to the ADMM-Log-I-ELM. In other words,
the ADMM-Log-EEM-ELM algorithm is more suitable for
the estimation of blocking probability in OCS networks.

C. ESTIMATION OF BLOCKING PROBABILITY
With the ADMM optimization, the trained SLFNs can be
used for estimating the blocking probability. We test the
accuracy of our algorithm with respect to certain input pa-
rameters. In particular, the chosen input parameters provide
a wide range of blocking probability estimation for OCS
networks with fixed-alternate routing, i.e. [10−5 − 10−1].

Fig. 7 shows the estimated blocking probability versus the
traffic load E for the 14-node NSFNET topology. Under this
setting, the traffic load E is within [0.45 − 1.4]. Meanwhile,
the other six inputs are constant, with D = 0.2, W = 4,
C = 5, P = 2, APL = {3.76, 2.15, 0} and CR =
{0.714, 0.476, 0}. As shown in Fig. 7, most of the blocking
probability estimates produced by our ADMM-Log-EEM-
ELM algorithm are within the 95% confidence interval of
simulation. For instance, when E is 0.45 Erlang per S-D
pair, the estimate 1.788× 10−5 is within the 95% confidence
interval of simulation, i.e. [1.426 × 10−5-1.908 × 10−5].
Similar results are obtained in Fig. 8 - Fig. 11.

Fig. 12 shows the estimated blocking probability versus
the traffic load E for the 10-node circular lattice network
topology. The traffic load E is in the range of [41 − 63]
with D = 2, W = 90, F = 3, P = 3, APL =
{3.33, 4.67, 3.27} and CR = {0.429, 0.333, 0.762}. Many
blocking probability estimates produced by the ADMM-Log-
EEM-ELM algorithm are within the 95% confidence interval
of simulation. In particular, when E =41 Erlang per S-D
pair, the estimate 8.403× 10−5 is within the 95% confidence
interval of simulation, i.e. [4.995 × 10−5-8.506 × 10−5].
Similar results are obtained in Fig. 13- Fig. 14.

In general, the ADMM-Log-EEM-ELM algorithm outper-
forms the ADMM-Log-I-ELM algorithm using fewer hidden
nodes, due to the benefits from the selection process for
candidate nodes during training.

D. COMPARISON WITH EFPA
As mentioned, the EFPA is a well-known approximation
method for estimating the blocking probability in a network.
In Fig. 7 - Fig. 14, we compare our ADMM-Log-EEM-ELM
algorithm with the EFPA.

As the results shown, the EFPA overestimates the blocking
probability of OCS networks by hundreds of times compared
to the simulated results, and consistently overestimates the
blocking probability across the entire range of offered loads
under consideration. For instance, in Fig. 9, when E =1.5
Erlang per S-D pair, the blocking probability estimated by the
EFPA is 0.00741, whereas the blocking probability estimated
by the ADMM-Log-EEM-ELM is 2.821 × 10−6, which is
within the 95% confidence interval of simulation.

As mentioned in Section II, the EFPA includes simplifying
assumptions, which may result in significant errors. For the
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D=0.2, W=4, F=5, P=2, APL={3.76, 2.15, 0}, CR={0.714, 0.476, 0}

Traffic Load (Erlang per S-D pair)

1.5 2 2.5 3 3.5

B
lo

ck
in

g
 P

ro
b

a
b

ili
ty

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

EFPA

Simulation

ADMM-Log-I-ELM

ADMM-Log-EEM-ELM

X: 1.2

Y: 1.058E-06

LB: 7.066E-07

UB: 1.409E-06

X: 1.2

Y: 0.000242

FIGURE 8: 14-node NSFNET blocking probability estimation by
ADMM-Log-EEM-ELM, ADMM-Log-I-ELM and EFPA with setting
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0.00119}

EFPA as applied to an OCS network, a new connection
request is assumed to randomly choose a wavelength for
the transmission. If the chosen wavelength is not free in the
intermediate nodes, even if there are other free wavelengths,
the request will be blocked. This differs from the actual
behavior of OCS networks, in which the request may use any
free wavelength instead. Due to this assumption, the EFPA
overestimates the blocking probability of OCS networks with
fixed-alternate routing.

Moreover, the computational complexity of the EFPA is
O(ΨWẼF ) for each iteration, where Ψ and Ẽ are the num-
ber of links in the topology and the mean traffic load for all
S-D pairs, respectively. Although the complexity of EFPA is
simpler than that of our proposed algorithms, the accuracy
and the convergence of EFPA are not guaranteed, as shown
in Fig. 7 - Fig. 14. This explains that the ADMM-Log-EEM-
ELM algorithm is more suitable for estimating the blocking
probability in the OCS networks with fixed-alternate routing.
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ADMM-Log-EEM-ELM, ADMM-Log-I-ELM and EFPA with setting
D=0.1, W=5, F=10, P=1, APL={2.25, 0, 0}, CR={0.571, 0, 0}
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VI. CONCLUSION
In this paper, we propose an enhancement of ELM model,
namely ADMM-Log-EEM-ELM, to estimate the blocking
probability in OCS networks with fixed-alternate routing.
For the ADMM-Log-EEM-ELM algorithm, the EEM-ELM
is used to train a neural network, using the logarithm of the
blocking probability as the target outputs, before the ADMM
optimization is applied to reduce the required number of
nodes in the network. To demonstrate the performance of our
algorithm, we compare it to the ADMM-Log-I-ELM algo-
rithm, which was proposed in our previous paper. Numer-
ical results demonstrate that our ADMM-Log-EEM-ELM
algorithm outperforms the ADMM-Log-I-ELM algorithm in
terms of MSE, relative error and the required number of
hidden nodes. The estimation times for our algorithm are
within a second, which is faster than the 20 minutes run-
time required by computer simulation. Finally, we compare
the performance of the ADMM-Log-EEM-ELM algorithm
to that of the well-known analytical approximation EFPA.
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FIGURE 11: 14-node NSFNET blocking probability estimation by
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Numerical results demonstrate that our ADMM-Log-I-ELM
algorithm is hundreds of times more accurate than the EFPA.
In summary, we demonstrate the feasibility of enhancement
of ELM approach on blocking probability estimation for
OCS networks under fixed-alternate routing scheme. We are
confident that our enhancement of ELM framework can also
be applied to other kinds of networks with different routing
schemes, which will be our future work.
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