
Received September 9, 2019, accepted September 25, 2019, date of publication October 17, 2019,
date of current version November 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2948059

Fault and Noise Tolerance in the Incremental
Extreme Learning Machine
HO CHUN LEUNG , CHI SING LEUNG , (Senior Member, IEEE),
AND ERIC WING MING WONG, (Senior Member, IEEE)
Department of Electronic Engineering, City University of Hong Kong, Hong Kong

Corresponding author: Chi Sing Leung (eeleungc@cityu.edu.hk)

This work was supported by the City University of Hong Kong under Grant 7005063 and Grant 9610431.

ABSTRACT The extreme learning machine (ELM) is an efficient way to build single-hidden-layer feedfor-
ward networks (SLFNs). However, its fault tolerant ability is very weak. When node noise or node failure
exist in a network trained by the ELM concept, the performance of the network is greatly degraded if a
countermeasure is not taken. However, this kind of countermeasure for the ELM or incremental learning is
seldom reported. This paper considers the situation that a trained SLFN suffers from the coexistence of node
fault and node noise. We develop two fault tolerant incremental ELM algorithms for the regression problem,
namely node fault tolerant incremental ELM (NFTI-ELM) and node fault tolerant convex incremental ELM
(NFTCI-ELM). The NFTI-ELM determines the output weight of the newly inserted node only. We prove
that in terms of the training set mean squared error (MSE) of faulty SLFNs, the NFTI-ELM converges.
Our numerical results show that the NFTI-ELM is superior to the conventional ELM and incremental
ELM algorithms under faulty situations. To further improve the performance, we propose the NFTCI-ELM
algorithm. It not only determines the output weight of the newly inserted node, but also updates all previously
trained output weights. In terms of training set MSE of faulty SLFNs, the NFTCI-ELM converges, and it is
superior to the NFTI-ELM.

INDEX TERMS Single hidden layer network, incremental learning, extreme learning machine, multiplica-
tive noise, open fault.

I. INTRODUCTION
A single-hidden-layer feedforward network (SLFN) [1], [2] is
able to act as a universal approximator. In the traditional train-
ing approach [3], [4], we need to determine all the connection
weights, including the input biases, the input weights, and the
output weights of hidden nodes. The traditional approachmay
trigger some well-known problems. For example, when there
are many hidden nodes, the computational complexity is very
high.

Instead of training all the weights, Huang et al. [5],
[6] proposed the extreme learning machine (ELM) concept,
in which the parameters of hidden nodes were generated
randomly. For the SLFN case, only the output weights were
required to be trained. In [5], Huang et al. formally proved
that a SLFN with randomly generated hidden nodes could
act as a universal approximator too. Recently, a number of

The associate editor coordinating the review of this manuscript and

approving it for publication was Xi Peng .

studies on the ELM abilities were reported [7]–[9]. Also,
many applications make use of the ELM concept. For
instance, Pan et al. [10] proposed an ELMmodel for simulat-
ing a visual neuron system and for extracting the leukocyte
from images. Minhas et al. [11] developed a human action
recognition framework to assign the action label for the video
based on the ELM concept. Wang et al. [12] combined the
ELM mapping with a multi-view framework to extract some
features with good representation for training, which could
be feasible to a multi-view discriminant analysis [13] too.
The ELM concept [14] could work with an autoencoder for
clustering and subspace clustering [15]. In [16]–[18], other
ELM applications were described in details. However, ELM
algorithms used in these applications require to fix the size of
hidden layer during training. Hence, it is less flexible than an
incremental algorithm, which adds hidden nodes incremen-
tally into a neural network during training.

In [5], [19], Huang et al. proposed two incremental ELM
algorithms for the SLFN model, namely incremental ELM

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 155171

https://orcid.org/0000-0002-7332-9988
https://orcid.org/0000-0003-0962-6723
https://orcid.org/0000-0002-5727-2790


H. C. Leung et al.: Fault and Noise Tolerance in the Incremental ELM

(I-ELM) and convex incremental ELM (CI-ELM). The con-
cept of the incremental learning is that we add hidden nodes
incrementally into an existing network until the predefined
condition reaches. They also mentioned that some weights
between the input nodes and hidden nodes in the ELM could
be disconnected in some situations [20]. If the disconnection
occurred in an uncontrolled manner, it could be described as
a faulty situation. However, these two incremental algorithms
were designed for fault-free situations only. We believed
that fault and noise could greatly degrade the performance
for the I-ELM and CI-ELM, if special procedures were not
considered [21], [22].

In the realization of a neural network, fault and noise are
unavoidable due to some practical issues. For instance, in the
hardware implementation of neural network [23], various
kinds of fault may happen [24], [25], such as fault in weights
and fault in an activation function. If fault happens in the
activation functions, we can model it as node fault [26]–[28].
Moreover, noise may happen in either a digital or analog
implementation. For the digital implementation, when the
floating format is used, the round-off error of a number is
proportional to its magnitude. Hence, we can use the multi-
plicative noise model [29], [30] to describe the error. For the
analog implementation, noise always exists in the amplifier
output [31]. In addition, transient noise and fault may happen
when the implementation is at nanoscale [32].

In the last decades, many fault tolerant approaches for
neural networks were developed. For instance, the authors
in [28], [33]–[36] proposed a failure/chaos injection
approach, which was suitable for online mode training. How-
ever, this approach is unable to capture the failure behav-
ior when the training iterations are not sufficient. Another
approach is to formulate the training process as a constrained
optimization [37]–[39], in which the constraints are defined
by the fault tolerant level. Apparently, this approach does not
guarantee to have a feasible solution if the constraints are
too strict. The above approaches are not suitable for the
incremental learning mode.

The weight decay concept could improve the fault tolerant
ability [40], [41]. However, the objective function of the
weight decay concept is not identical to the training set error
of faulty networks. Hence, even for fault tolerant radial basis
function (RBF) networks [22], [42], an optimal fault tolerant
solution cannot be obtained, regardless of how the weight
decay parameter is tuned. To the best of our knowledge,
only few results in the fault tolerant incremental learning
were reported [43].

This paper focuses on regression problem and the incre-
mental learning mode, in which we incrementally insert hid-
den nodes in an SLFN. We propose two ELM based fault tol-
erant incremental learning algorithms. They are called node
fault tolerant I-ELM (NFTI-ELM) and node fault tolerant
CI-ELM (NFTCI-ELM), respectively. They are able to handle
the coexistence of node fault and multiplicative node noise.
We first define a fault tolerant objective function for SLFNs.
By considering the change of the fault tolerant objective

values, we derive the way to determine the output weight of
the newly inserted hidden node. For the NFTI-ELM, the pre-
viously trained output weights remain unchanged. Simula-
tion results confirm that the fault tolerant performance of
the NFTI-ELM are better than those of the CI-ELM and
I-ELM. To boost up the fault tolerant ability, the NFTCI-
ELM is developed based on the CI-ELM concept. Unlike the
NFTI-ELM, the NFTCI-ELM updates all previously trained
output weights after determining the output weight of the
newly inserted node. We prove that in terms of the faulty
training set MSE, the two proposed algorithms converge.
Simulation results show that the fault tolerant performance
of the NFTCI-ELM is the best among all the compared
algorithms. The compared algorithms include the I-ELM,
the CI-ELM and the batch mode ELM. The batch mode
ELM gives us a baseline since it is the best under fault-free
situations. We use the well-known statistical significance test
to verify the improvement for our proposed algorithms is
statistically significant. Also, even the incorrect fault level
is used for training, the performance of the NFTI-ELM and
NFTCI-ELM are still better than that of the I-ELM and CI-
ELM.

Our major contributions are summarized as follows.
• Two fault tolerant incremental learning algorithms are
proposed, namely the NFTI-ELM and NFTCI-ELM, for
SLFNs.

• The convergences of the two algorithms are proved in
terms of the training set MSE.

The rest of this paper is organized as follows. Section II
provides the background on the basic ELMmodel. The effect
of node failure and node noise on the SLFN model is pre-
sented in Section III. Section IV describes the details of the
two proposed algorithms. Section V presents the simulation
results. Section VI concludes the paper.

II. ELM AND INCREMENTAL LEARNING
This paper considers to use SLFNs for nonlinear regression.
The training set is denoted as Dt =

{
(xl, yl) : l = 1, ...,N

}
,

where xl ∈ Rd is the l-th training input vector, d is the
dimensions of data, and yl ∈ R is its associated training
output. Similarly, the test set is denoted as Df =

{
(x′l′ , y

′

l′ ) :
l ′ = 1, ...,N ′

}
, where x′l′ ∈ Rd is the input vector of the l ′−th

test sample, and y′l′ ∈ R is its associated output.
The output of an SLFN [1], [2], [44] is expressed as

fn(x) =
n∑
i=1

βihi (x) , (1)

where n is the number of hidden nodes, hi(x) is the output
of the i-th hidden node, and βi is the output weight of the i-
th hidden node. In this paper, we use a sigmoid function as
the activation function. The output of the i-th hidden node is
given by

hi(x) =
1

1+ exp
(
− (wT

i x+ bi)
) , (2)

155172 VOLUME 7, 2019



H. C. Leung et al.: Fault and Noise Tolerance in the Incremental ELM

TABLE 1. Computational complexities.

where wi and bi are denoted as the input weight vector and
input bias term of the i-th hidden node, respectively. It should
be noticed that other activation functions [5], [19] are also
applicable to our proposed algorithms.

In the ELM model, the values of wi and bi are selected
randomly. Under fault-free situations, the training set error
is given by

E =
N∑
l=1

(
yl −

n∑
i=1

βihi(xl)
)2
=

∥∥∥∥∥y−
n∑
i=1

βihi

∥∥∥∥∥
2

2

, (3)

where hi =
[
hi(x1), ..., hi(xN )

]T
is the collection of outputs

of the i−th hidden node for all training samples, and y =[
y1, ..., yN

]T
is the collection of its training outputs. In [45],

based on (3), a batch mode ELM algorithm was proposed. By
minimizing E , the optimal output weights of hidden nodes β∗

can be obtained by

β∗ = (HTH)−1HT y, (4)

where β∗ =
[
β1, ..., βn

]T
is the collection of the output

weights of hidden nodes, and H =
[
h1, ...,hn

]
is the output

matrix of the hidden layer. In Table 1, the total complexity for
the batch mode ELM is O(n× d ×N )+O(n2×N )+O(n3).
In [5], [19], two incremental training algorithms were

developed, i.e., the I-ELM and the CI-ELM. For the I-ELM,
a randomly generated hidden node is inserted into the network
at each training iteration. It is noticed that only the output
weight of the newly inserted node is tuned, while the previ-
ously trained weights remain unchanged. The CI-ELM uses a
similar training scheme, except that it uses a simple rule stated
in (26) to update the previously trained weights. Therefore,
the computational complexities of these two algorithms are
significantly low. In Table 1, the total complexity of adding
n hidden nodes for the I-ELM is O(n × d × N ). For the
CI-ELM, the total complexity of adding n hidden nodes is
O(n× d ×N )+O(n2). The experimental results showed that
both I-ELM and CI-ELM have a nice performance [5], [19]
under fault-free situations. However, under faulty situations,
the I-ELM and CI-ELM result in poor performance, as (3)
does not encounter the fault tolerant ability.

III. FAULTY SLFNS
A. NODE NOISE AND NODE FAULT
When we use finite precision technology [29], [30] to imple-
ment hidden nodes, the hidden node outputsmay deviate from
their original values. The deviations are usually proportional
to the magnitude of their original output values [29], [30].

In addition, in analog circuits, the deviations from the orig-
inal output values are usually specified in terms of percent-
age error. The deviations can be modelled as multiplicative
noise [29], [46]. In the multiplicative noise model, the hidden
node outputs are described as

h̃i(x) = (1+ δi)hi(x), ∀i = 1, · · · , n, (5)

where δi’s are the normalized noise factors. This paper
assumes that the normalized noise factors are identically
independently distributed random variables. Their mean are
equal to zero, and their variance are equal to σ 2.

In some situations, physical fault may happen. For exam-
ple, when a communication link between a hidden node and
an output node is broken, the output signal of the hidden node
cannot be transmitted to the output node. In this case, we use
the open node fault model to describe the outputs [21], [28],
[47]. The hidden node outputs are given by

h̃i(x) = αihi(x), ∀i = 1, · · · , n, (6)

where αi’s are fault factors. They express whether the outputs
of hidden nodes are tied to zero or not. When αi = 0,
the output of the i−th node is tied to zero. Otherwise, the i−th
hidden node operates correctly. This paper assumes that the
fault factors αi’s are the identically independently distributed
binary random variables. The probability mass function of αi
is given by

Prob
{
αi = 0

}
= p, and Prob

{
αi = 1

}
= 1− p. (7)

When multiplicative node noise and open node fault coex-
ist, the hidden node outputs are given by

h̃i(x) = (1+ δi)αihi(x), ∀i = 1, · · · , n. (8)

In (8), once a hidden node is opened, its output is tied to
zero, regardless of the multiplicative noise level. When a
hidden node is not opened, its output is then influenced by
the multiplicative noise only.

From the statistical properties of αi and δi, we obtain the
following statistical properties of the hidden node outputs:〈

h̃i(x)
〉
= (1− p)hi(x) (9a)〈

h̃i(x)h̃j(x)
〉
= (1− p)2hi(x)hj(x), for i 6= j (9b)〈

h̃2i (x)
〉
= (1− p)(1+ σ 2)h2i (x) (9c)

where 〈·〉 is the expectation operator over αi and δi.

B. TRAINING SET ERROR AND TRAINING OBJECTIVE
For a faulty network, the training set error for a particular fault
pattern is given by

Ẽ =
N∑
l=1

(
yl −

n∑
i=1

βih̃i(xl)

)2

. (10)

From (9)–(10), the average training set MSE over all possible
fault patterns can be expressed as:

Ē =
N∑
l=1

(
y2l − 2(1− p)yl

n∑
i=1

βihi(xl)

VOLUME 7, 2019 155173



H. C. Leung et al.: Fault and Noise Tolerance in the Incremental ELM

+(1− p)2
n∑
i=1

n∑
i6=j

βihi(xl)βjhj(xl)

+(1− p)(1+ σ 2)
n∑
i=1

β2i h
2
i (xl)

)
. (11)

Defining

y=
[
y1, · · · , yN

]T
and hi=

[
hi(x1), · · · , hi(xN )

]T
, (12)

we can rewrite (11) as

Ē = p ‖y‖22 + (1− p)

∥∥∥∥∥y−
n∑
i=1

βihi

∥∥∥∥∥
2

2

+(1− p)(p+ σ 2)
n∑
i=1

β2i ‖hi‖
2
2

−(1− p)p

∥∥∥∥∥
n∑
i=1

βihi

∥∥∥∥∥
2

2

. (13)

The expression stated in (13) gives us a direct way to com-
pute the training set MSE of faulty SLFNs, which is lower
bounded by zero. The advantage of using (13) is that we do
not need to generate a large number of faulty networks. Since
the term p ‖y‖22 in (13) is not a function of βi’s and the term
(1− p) is a constant, the training objective can be simplified
to

L =

∥∥∥∥∥y−
n∑
i=1

βihi

∥∥∥∥∥
2

2

+ (p+ σ 2)
n∑
i=1

β2i ‖hi‖
2
2

−p

∥∥∥∥∥
n∑
i=1

βihi

∥∥∥∥∥
2

2

. (14)

As the training objective in (14) is derived from the training
set MSE in (13), the training objective is lower bounded by
−p ‖y‖22 /(1 − p). Based on (14), we can develop the fault
tolerant incremental algorithms for SLFNs.

IV. FAULT TOLERANT ELM ALGORITHMS
The concept of the incremental learning is that we add hidden
nodes one-by-one to the network. For ease of the description,
we define some notations for the incremental learning, given
by

f n =
n∑
i=1

βihi, (15)

en = y− f n, (16)

vn =
n∑
i=1

β2i ‖hi‖
2
2 . (17)

The vector f n represents the collection of the network out-
puts for all training samples when n hidden nodes are used.
The vector en represents the collection of the errors for all
training samples when n hidden nodes are used. The value vn
represents the regularizer term. With (15), (16) and (17), for

an SLFN with n hidden nodes, the objective function is given
by

Ln = ‖en‖22 + (p+ σ 2)vn − p
∥∥f n∥∥22 . (18)

In (18), the term ‘‘(p+ σ 2)vn − p
∥∥f n∥∥22’’ is the effect of the

node fault and node noise.

A. NODE FAULT TOLERANT I-ELM
1) ALGORITHM
In the NFTI-ELM, when a node is newly inserted to the
network at the n-th iteration, we determine the output weight
of the newly inserted node and keep all previously trained
weights {β1, · · · , βn−1} unchanged.
At the n-th iteration, the objective function, stated in (18),

can be expressed as

Ln = ‖en‖22 + (p+ σ 2)vn − p
∥∥f n∥∥22 (19)

= ‖en−1‖22 − 2βneTn−1hn + β
2
n ‖hn‖

2
2

+(p+ σ 2)vn−1 + (p+ σ 2)β2n ‖hn‖
2
2

−p
∥∥f n−1∥∥22 − 2pβnf Tn−1hn − pβ

2
n ‖hn‖

2
2 . (20)

The change of the objective values between two consecutive
iterations is given by

4n = Ln − Ln−1 (21)

= −2βn(en−1 + pf n−1)
Thn

+(1+ σ 2)β2n ‖hn‖
2
2 . (22)

It should be noticed that 4n is a quadratic function of βn
with a minimum value equal to a negative value. Tomaximize
the reduction of the objective value, we consider the partial
derivative of 4n, given by

∂4n

∂βn
= −2(en−1 + pf n−1)

Thn + 2βn(1+ σ 2) ‖hn‖22 . (23)

By setting ∂4n/∂βn = 0, we obtain

βn = β
∗
=

(en−1 + pf n−1)
Thn

(1+ σ 2) ‖hn‖22
. (24)

2) CONVERGENCE AND COMPLEXITY
By substituting the optimal βn into (22), the change of the
objective value 4n becomes

4n|βn=β∗ = −

(
(en−1 + pf n−1)

Thn
)2

(1+ σ 2) ‖hn‖22
. (25)

Apparently, 4n in (25) is negative, which means Ln ≤
Ln−1. In other words, when a hidden node is inserted to
the SLFN, the sequence of objective values {L1,L2, ...,Ln}
is decreasing. As mentioned, the training set MSE (13) is
lower bounded by zero, and the objective value is derived
from the training set MSE. Hence, the objective value is
lower bounded too. As the training objective L is decreasing
and lower bounded, we notice that our proposed NFTI-ELM,
in terms of L, converges.

155174 VOLUME 7, 2019



H. C. Leung et al.: Fault and Noise Tolerance in the Incremental ELM

Algorithm 1 summarizes the proposed NFTI-ELM. It can
be seen that the computational complexity for Steps (7)-(10)
at each iteration is O(d ×N ). Hence, the total complexity for
adding n nodes is equal toO(n×d×N ), as shown in Table 1.
It should be noticed that the computational complexity of the
I-ELM at each iteration is equal to O(d × N ) too.

Algorithm 1 NFTI-ELM
1: Set n equal to zero, n = 0.
2: Set the initial residue error to y, e0 = y.
3: Set the initial network output to a zero vector, f 0 = 0.
4: while n ≤ nmax do
5: Increment n by 1.
6: Insert a new node to the SLFN. Its input bias bn and

input weights an are randomly generated.
7: Compute the corresponding output vector hn of this

hidden node.
8: Compute the output weight of the newly inserted

node:

βn =
(en−1 + pf n−1)

Thn
(1+ σ 2) ‖hn‖22

.

9: f n = f n−1 + βnhn.
10: en = y− f n.
11: end while

B. NODE FAULT TOLERANT CI-ELM
1) ALGORITHM
Under the fault-free situation [19], when we are allowed to
update the previously trained weights, the performance can
be enhanced. However, as shown in Fig. 1(a)-(i), the origi-
nal CI-ELM cannot handle the faulty situation. Hence, it is
necessary to develop a fault tolerant version for the CI-ELM.

At the n-th iteration, after we determine the output weight
βn of the newly inserted node, we update all previously
trained weights by

βnewi = (1− βn)βi, (26)

for i = 1 to n − 1. With this new update scheme in βi’s, the
recursive definitions for f n, en and vn become

f n = (1− βn)f n−1 + βnhn (27)

en = y− f n, (28)

vn = (1− βn)2vn−1 + β2n ‖hn‖
2
2 , (29)

where f 0 = 0, e0 = y and v0 = 0.
From (26)–(29), the objective value at the n-th iteration can

be expressed as

Ln = ‖en−1‖22 − 2βneTn−1(hn − f n−1)

+β2n

∥∥hn − f n−1∥∥22 + (p+ σ 2)vn−1

−2βn(p+ σ 2)vn−1 + β2n (p+ σ
2)vn−1

+β2n (p+ σ
2)‖hn‖22

Algorithm 2 NFTCI-ELM
1: Set n equal to zero, n = 0.
2: Set the initial residue error to y, e0 = y.
3: Set the initial network output to a zero vector, f 0 = 0.
4: Set v0 = 0, r0 = 0.
5: while n ≤ nmax do
6: Increment n by 1.
7: Insert a new hidden node to the SLFN. Its input bias
bn and input weights an are randomly generated.

8: Compute the corresponding output vector hn of this
hidden node.

9: Compute rn = hn − f n−1.
10: Compute the new weight:

βn =

(
(en−1 + pf n−1)

T(rn)+ (p+ σ 2)vn−1
)

(1− p) ‖rn‖22 + (p+ σ 2)(vn−1 + ‖hn‖22)
.

11: f n = (1− βn)f n−1 + βnhn.
12: en = y− f n.
13: vn = (1− βn)2 vn−1 + β2n‖gn‖

2
2.

14: βi = (1− βn)βi, for all i = 1, · · · , n− 1.
15: end while

−p
∥∥f n−1∥∥22 − 2βnpf Tn−1(hn − f n−1)

−β2np
∥∥hn − f n−1∥∥22 . (30)

The change of the objective value between two consecutive
iterations is then given by

4n=Ln − Ln−1 (31)

=−2βn
(
(en−1 + pf n−1)

Trn + (p+ σ 2)vn−1
)

+β2n

(
(1−p) ‖rn‖22+(p+σ

2)(vn−1+‖hn‖22)
)
, (32)

where

rn = hn − f n−1. (33)

Again, for the NFTCI-ELM, 4n is a quadratic function of
βn with a minimum value equal to a negative value. To
maximize the reduction of the objective value, we should
set

βn = β
∗
=

(en−1+pf n−1)
T(rn)+(p+σ 2)vn−1

(1−p) ‖rn‖22 + (p+σ 2)(vn−1+‖hn‖22)
. (34)

2) CONVERGENCE AND COMPLEXITY
By substituting the optimal βn into (32), the change of the
objective value 4n becomes

4n|βn=β∗= −

(
(en−1+pf n−1)

T(rn)+(p+σ 2)vn−1
)2

(1−p) ‖rn‖22+(p+σ
2)(vn−1+‖hn‖22)

. (35)

Again, 4n in (35) is negative, which means Ln ≤ Ln−1.
The sequence of objective values {L1,L2, ...,Ln} is decreas-
ing when a hidden node is inserted to the SLFN. As the
objective value is derived from the training set MSE, which

VOLUME 7, 2019 155175



H. C. Leung et al.: Fault and Noise Tolerance in the Incremental ELM

FIGURE 1. The performance of algorithms versus the number of additive nodes. The multiplicative noise and probability of open
fault intensity levels are σ2 and p. The datasets are Abalone, Concrete, and boston housing.

is lower bounded by zero, the objective value is also lower
bounded. Since the training objective L is decreasing and
lower bounded, we notice that the proposed NFTCI-ELM,
in terms of L, converges.
The procedures of the NFTCI-ELM are summarized in

Algorithm 2. At the n-th iteration, the computational com-
plexity is O(d × N ) + O(n). Hence, the total complexity of
adding n hidden nodes is given by O(n × d × N ) + O(n2),
as shown in Table 1. Comparing to the NFTI-ELM, the update
of βi’s in the NFTCI-ELM increases the computational com-
plexity.

V. SIMULATION RESULTS
The performance of the proposed NFTI-ELM and NFTCI-
ELM are verified by comparing it against other ELM algo-
rithms, i.e., the I-ELM, the CI-ELM and the batch mode
ELM, under faulty situations. For the batch mode ELM,
the output weights of hidden nodes β can be obtained by the
least square solution of SLFN, i.e., β = (HTH)−1HT y. It
gives us a baseline for comparison since given a set of hidden
nodes it provides the best solution under fault-free situations.

TABLE 2. Properties of the ten data sets.

For the simulation, ten well-known benchmark datasets in the
field of regression problem are used.

A. DATASETS AND SETTINGS
Ten commonly used datasets for regression problem are
selected from the UCI1 and KEEL2 dataset

1https://archive.ics.uci.edu/ml/datasets.html
2https://sci2s.ugr.es/keel/category.php?cat=reg

155176 VOLUME 7, 2019



H. C. Leung et al.: Fault and Noise Tolerance in the Incremental ELM

TABLE 3. Concurrent fault situations: Average Test set MSE of the ELM, I-ELM, CI-ELM, NFTI-ELM and NFTCI-ELM over 400 trials.

repositories [48]–[57]. Table 2 summarizes the properties of
the ten datasets. Abalone [49] aims at predicting the age of
abalones by using 8 features as input. Concrete [50] aims
at predicting the concrete compressive strength by using
8 features as input. Boston Housing [51] aims at predicting
the housing value in Boston by using 13 features as input.
Wine Quality [52] aims at predicting the quality of wine with
a score between 0 and 10 by using 11 features as input. Airfoil
Self-Noise (ASN) [53] aims at predicting the sound pressure
level in an anechoic wind tunnel by using 5 features as
input.

Auto MPG [54] aims at predicting the fuel consumption
for cars in miles per gallon by using 7 features as input.
Mortgage [55] aims at predicting the 30 Year-Conventional
Mortgage Rate in the USA by using 15 features as input.
Weather Ankara [57] aims at predicting the mean temperature
in Ankara by using 9 features as input. Parkinsons Telemoni-
toring [56] aims at predicting the clinician’s Parkinson’s dis-
ease symptom score on the UPDRS scale by using 20 features
as input. Computer Activity aims at predicting the portion
of time that CPUs run in user mode by using 21 features as
input.

We adopt the validation method mentioned in [5] with
these 10 datasets. For each dataset, the samples are randomly
split for the training and test sets for 20 trials; hence, we have
20 partitions. For each partition, we run the simulation with
20 sets of random hidden nodes. Therefore, the total number

of trails is 400. The training inputs and outputs are normalized
to the range of [−1, 1] and [0, 1], respectively.

B. TEST SET MSE VERSUS NUMBER OF HIDDEN NODES
We demonstrate how the test set MSE changes with respect
to the various numbers of hidden nodes using three datasets.
The datasets are Abalone [49], Concrete [50], and Boston
Housing [51]. We consider three different fault levels. They
are {p = 0.01 σ 2

= 0.04}, {p = 0.05 σ 2
= 0.09} and

{p = 0.1 σ 2
= 0.16}.

Fig. 1 shows the test set MSE versus the number of
nodes under faulty situations. It is noticed that the test set
MSE values of the CI-ELM and batch mode ELM are much
higher than those of the other three algorithms. In other
words, the fault tolerant ability of the CI-ELM and batch
mode ELM is very weak. For the I-ELM, NFTI-ELM and
NFTCI-ELM, when the number of hidden nodes is more than
500, the decreasing rate of the test set MSE becomes slow and
reaches a plateau.

As shown in Fig. 1(c),(f),(i), the improvements for the
NFTI-ELMandNFTCI-ELMaremore significant under high
fault levels. For instance, in the Abalone dataset, when the
fault level {p = 0.01, σ 2

= 0.04} and 500 hidden nodes
are considered, the test set MSE values of the CI-ELM
and the batch mode ELM are very large. When we use
the I-ELM, the MSE value is equal to 0.01480. For
the NFTI-ELM, the MSE value is equal to 0.01437.

VOLUME 7, 2019 155177



H. C. Leung et al.: Fault and Noise Tolerance in the Incremental ELM

TABLE 4. Paired t-test between I-ELM and NFTI-ELM. The number of trails is 400.

TABLE 5. Paired t-test between I-ELM and NFTCI-ELM. The number of trails is 400.

155178 VOLUME 7, 2019



H. C. Leung et al.: Fault and Noise Tolerance in the Incremental ELM

FIGURE 2. The performance of NFTI-ELM and NFTCI-ELM under true fault
level {p = 0.05, σ2 = 0.09} trained in different fault levels, i.e., {p = 0.01,
σ2 = 0.04}, {p = 0.05, σ2 = 0.09} and {p = 0.1, σ2 = 0.16}.

Compared to the I-ELM, the improvement for the
NFTI-ELM is 0.00043. For the CI-ELM, the MSE value is
equal to 0.00822. Compared to the I-ELM, the improve-
ment for the NFTCI-ELM is 0.00658.

When the fault level raises to {p = 0.1, σ 2
= 0.16},

the MSE value of the I-ELM is equal to 0.03577. For the
NFTI-ELM, the MSE value is reduced to 0.02908. Com-
pared to the I-ELM, the improvement for the NFTI-ELM
is 0.00669. For the NFTCI-ELM, the MSE value is further
reduced to 0.00911.Compared to the I-ELM, the improve-
ment for the NFTCI-ELM is 0.02666.

C. COMPARISON WITH THE I-ELM, CI-ELM AND BATCH
MODE ELM
We compare the performance of our NFTI-ELM and
NTCI-ELM with the I-ELM, CI-ELM and batch mode ELM
in terms of test setMSE using 500 hidden nodes.Weconsider
three different fault levels. They are {p = 0.01 σ 2

= 0.04},
{p = 0.05, σ 2

= 0.09} and {p = 0.1, σ 2
= 0.16}. As men-

tioned, we partition the dataset into the training set and
test set 20 times. For each partition, we generate 20 sets
of random hidden nodes. Hence, we run the simulation
400 times for each dataset and each fault level.

FIGURE 3. The performance of NFTI-ELM and NFTCI-ELM under true fault
level {p = 0, σ2 = 0} (fault-free situation) trained in different fault levels,
i.e., {p = 0.01, σ2 = 0.04} and {p = 0.05, σ2 = 0.09}.

Table 3 shows the average test set MSE values of the
algorithms for 400 trails under the three fault levels. The
results indicate that the performance of our NFTI-ELM and
NFTCI-ELM are much better than those of the other algo-
rithms. For instance, in Abalone dataset with the fault level
{p = 0.05, σ = 0.09}, the MSE values of the batch
mode ELM, I-ELM and CI-ELM are 0.65088, 0.02291 and
0.16337, respectively. On the other hand, the MSE values of
our NFTI-ELM and NFTCI-ELM are 0.02063 and 0.00852,
respectively. We notice that the NFTCI-ELM has the best
performance, which has the lowest MSE values among the
other algorithms.

Moreover, compared to other algorithms, the NFTCI-ELM
are relatively insensitive to the fault level. For instance,
in Abalone dataset, when the fault level is equal to {p =
0.01, σ = 0.04}, the MSE value of the NFTI-ELM is
0.01336 from Table 3. When the fault level is equal to {p =
0.1, σ = 0.16}, the MSE value of the NFTI-ELM increases
to 0.02806. For the NTCI-ELM, when the fault level is equal
to {p = 0.01, σ = 0.04}, the MSE value is 0.00795. Even
we greatly increase the fault level to {p = 0.1, σ = 0.16},
the MSE value slightly increases to 0.00887 only. This phe-
nomenon also happens in other datasets.

VOLUME 7, 2019 155179



H. C. Leung et al.: Fault and Noise Tolerance in the Incremental ELM

FIGURE 4. The histogram of β’s, which is normalized frequency versus weight magnitude. The fault rate are p = 0.1 and σ2 = 0.16. The
datasets are Abalone, Concrete, boston housing, Wine quality and ASN.

D. STATISTICAL TEST ANALYSIS
To verify the superiority of our algorithms, we run the statisti-
cal test, i.e., paired t-test. The paired t-test illustrates whether
the improvements for our algorithms are statistically signif-
icant or not. As the fault tolerant performance of the batch
mode ELM and CI-ELM are poor, we only run the t-test for
the NFTI-ELM against I-ELM and the NFTCI-ELM against
I-ELM in Table 4 and Table 5, respectively. For the paired
t-test with 400 trials and 95% confidence level, the critical
t-value is 1.6486.

In Table 4, all obtained t-values are far beyond the crit-
ical t-value, i.e., 1.6486. Also, all confidence intervals of
the improvements exclude zero. For instance, in Abalone
dataset with the fault level {p = 0.01, σ 2

= 0.04},
the obtained t-value is 346.10792, and the confidence interval
is [0.000378, 0.000382]. Similarly, all obtained t-values are
much greater than the critical t-value in Table 5. Both paired
t-tests conclude that the improvement for our NFTI-ELM and
NFTCI-ELM are statistically significant.

E. INCONSISTENCE IN FAULT LEVEL BETWEEN
OPERATION AND TRAINING
In our proposed algorithms, we assume that the fault level
{p, σ 2

}, which is the true fault level during operation, is used
for training. However, this true fault level may be unknown
in some cases. In other words, the fault level used for

training may different from the true fault level during oper-
ation. Hence, we investigate the situation that we use an
incorrect fault level for training. Fig. 2 and Fig. 3 illustrate the
impact of using an incorrect fault level on the performance of
our algorithms. Given the true fault level {p = 0.05, σ 2

=

0.09}, the performance of the NFTI-ELM and NFTCI-ELM
with different training fault levels, i.e., {p = 0.01, σ 2

=

0.04}, {p = 0.05, σ 2
= 0.09} and {p = 0.1, σ 2

= 0.16},
are shown in Fig. 2.

Fig. 2(a)-(c) shows the performance of the NFTI-ELM.
We notice that even the incorrect fault level for training is
used, the performance of the NFTI-ELM is still better than
that of the I-ELM. For instance, in Abalone dataset, the MSE
values of the NFTI-ELM with three training fault levels,
i.e., {p = 0.01, σ 2

= 0.04}, {p = 0.05, σ 2
= 0.09} and

{p = 0.1, σ 2
= 0.16}, are 0.02171, 0.02045 and 0.01963,

respectively. Apparently, these MSE values are all smaller
than the MSE value of the I-ELM, i.e., 0.02286.

Fig. 2(d)-(f) shows the performance of the NFTCI-ELM.
Similarly, the performance of the NFTCI-ELM is much better
than that of the CI-ELM when the incorrect fault level for
training is used. For instance, in Abalone dataset, the MSE
values of the NFTCI-ELM with three training fault levels,
i.e., {p = 0.01, σ 2

= 0.04}, {p = 0.05, σ 2
= 0.09}

and {p = 0.1, σ 2
= 0.16}, are 0.008093, 0.007507 and

0.007793, respectively. Again, these MSE values are much

155180 VOLUME 7, 2019



H. C. Leung et al.: Fault and Noise Tolerance in the Incremental ELM

smaller than the MSE value of the CI-ELM, i.e., 0.179. Also,
it is noticed that the NFTCI-ELM achieves the smallest MSE
value, i.e., 0.007507, when the correct training fault level
{p = 0.05, σ 2

= 0.09} is used. This phenomenon also
happens in Concrete and Boston Housing datasets.

Moreover, given the fault-free situation, i.e., true fault level
{p = 0, σ 2

= 0}, the performance of the NFTI-ELM
and NFTCI-ELM with different training fault levels are
shown in Fig. 3. Fig. 3(a)-(c) shows the performance of the
NFTI-ELM. We notice that even the NFTI-ELM is used
in the fault-free situation, the NFTI-ELM performs as well
as the I-ELM. For instance, in Abalone dataset, the MSE
values of the NFTI-ELM with different training fault levels,
i.e., {p = 0.01, σ 2

= 0.04} and {p = 0.05, σ 2
= 0.09},

are 0.007992 and 0.008222, respectively. These MSE val-
ues are similar to that of the I-ELM, i.e., 0.007977. Mean-
while, the NFTCI-ELM has similar phenomenon, as shown
in Fig. 3(d)-(f). Therefore, our NFTI-ELM and NFTCI-ELM
still perform excellently even though the true fault level is
unknown, and the incorrect fault level is used for training.

F. DISTRIBUTION ANALYSIS OF β
The CI-ELM performs poorly under faulty situations. We
believe that this behaviour is related to the distribution of the
trained output weights β’s. When the weights’ magnitudes
are large, the network output is very sensitive to the weight
perturbation, i.e., fault and noise. This results in the poor
performance of the CI-ELM under faulty situations.

Fig. 4(a)-(m) shows the histograms of the output weights’
magnitudes, which are the normalized frequencies versus
the weight magnitudes. The results from the three datasets
with the fault level {p = 0.1, σ 2

= 0.16} are dis-
played. In Fig. 4(h)-(j), the CI-ELM contains many weights
in large magnitudes. Thus, the trained networks of the
CI-ELM are sensitive to fault and noise. This behaviour
results in poor fault tolerant performance. On the other
hand, the NFTCI-ELM has few weights in large magnitudes,
as shown in Fig. 4(k)-(m). Hence, the trained networks of the
NFTCI-ELM are insensitive to fault and noise.

VI. CONCLUSION
In this paper, we propose two node fault tolerant incremental
algorithms for SLFNs, namelyNFTI-ELMandNFTCI-ELM.
The two proposed algorithms aim to maximize the reduction
of the training set MSE of faulty networks between two
incremental steps.

For theNFTI-ELM,we train the output weight of the newly
inserted node, whereas the weights in other nodes remain
unchanged. The simulation results show that the fault tolerant
performance of the NFTI-ELM is better than that of other
ELM algorithms, including I-ELM, CI-ELM and batch mode
ELM. In order to boost the performance, the NFTCI-ELM
is then developed. The idea is to train the output weight of
the newly inserted node, and to update the previously trained
weights. The simulation results show that the performance of
the NFTCI-ELM is better than that of the NFTI-ELM.

Meanwhile, the statistical test confirms our NFTI-ELM
and NFTCI-ELM have a statistically significant improve-
ment under faulty situations. Since the results show that
the NFTCI-ELM is the best among other algorithms, one
may argue that we do not need to consider the NFTI-ELM.
However, the computational complexity of the NFTI-ELM is
lower than that of the NFTCI-ELM. For someone concerning
training speed, the NFTI-ELM might be another choice. In
general, we believe that the NFTI-ELM and NFTCI-ELM
should have certain potential to be applied to the hardware
implementation of neural networks in the future.

This paper focuses on regression problems. Our fault toler-
ant incremental algorithms, as well as the original I-ELM and
CI-ELM, aim at minimizing the reduction in MSE between
two consecutively incremental steps. As classification prob-
lems focus on the recognition error, it may not be appropriate
to directly extend our algorithms for classification problems.
Hence, one of the future works is to develop fault tolerant
incremental algorithms for classification problems.

REFERENCES
[1] K. Hornik, M. Stinchcombe, and H. White, ‘‘Multilayer feedforward

networks are universal approximators,’’ Neural Netw., vol. 2, no. 5,
pp. 359–366, 1989.

[2] K. Hornik, ‘‘Approximation capabilities of multilayer feedforward net-
works,’’ Neural Netw., vol. 4, no. 2, pp. 251–257, 1991.

[3] W.Wei, G. Feng, Z. Li, andY. Xu, ‘‘Deterministic convergence of an online
gradient method for BP neural networks,’’ IEEE Trans. Neural Netw.,
vol. 16, no. 3, pp. 533–540, May 2005.

[4] C. Chen and X. Yan, ‘‘Optimization of a multilayer neural network by
using minimal redundancy maximal relevance-partial mutual information
clustering with least square regression,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 26, no. 6, pp. 1177–1187, Jun. 2015.

[5] G.-B. Huang, L. Chen, and C.-K. Siew, ‘‘Universal approximation
using incremental constructive feedforward networks with random hidden
nodes,’’ IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879–892, Jul. 2006.

[6] J. Tang, C. Deng, and G.-B. Huang, ‘‘Extreme learning machine for
multilayer perceptron,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 27,
no. 4, pp. 809–821, Apr. 2016.

[7] J. Xin, Z.Wang, L. Qu, G. Yu, and Y. Kang, ‘‘A-ELM: Adaptive distributed
extreme learning machine with MapReduce,’’ Neurocomputing, vol. 174,
pp. 368–374, Jan. 2016.

[8] X. Liu, S. Lin, J. Fang, and Z. Xu, ‘‘Is extreme learning machine feasible?
A theoretical assessment (Part I),’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 26, no. 1, pp. 7–20, Jan. 2015.

[9] S. Lin, X. Liu, J. Fang, and Z. Xu, ‘‘Is extreme learning machine feasible?
A theoretical assessment (Part II),’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 26, no. 1, pp. 21–34, Jan. 2015.

[10] C. Pan, D. S. Park, Y. Yang, and H. M. Yoo, ‘‘Leukocyte image segmen-
tation by visual attention and extreme learning machine,’’ Neural Comput.
Appl., vol. 21, no. 6, pp. 1217–1227, 2012.

[11] R. Minhas, A. Baradarani, S. Seifzadeh, and Q. M. J. Wu, ‘‘Human action
recognition using extreme learningmachine based on visual vocabularies,’’
Neurocomputing, vol. 73, nos. 10–12, pp. 1906–1917, 2010.

[12] Q. Wang, Y. Dou, X. Liu, Q. Lv, and S. Li, ‘‘Multi-view clustering
with extreme learning machine,’’ Neurocomputing, vol. 214, pp. 483–494,
Nov. 2016.

[13] P. Hu, D. Peng, Y. Sang, and Y. Xiang, ‘‘Multi-view linear discrimi-
nant analysis network,’’ IEEE Trans. Image Process., vol. 28, no. 11,
pp. 5352–5365, Nov. 2019.

[14] C. K. L. Lekamalage, T. Liu, Y. Yang, Z. Lin, and G.-B. Huang, ‘‘Extreme
learning machine for clustering,’’ in Proc. ELM, Cham, Switzerland,
Springer, vol. 1, 2015, pp. 435–444.

[15] X. Peng, J. Feng, S. Xiao, W.-Y. Yau, J. T. Zhou, and S. Yang, ‘‘Struc-
tured autoencoders for subspace clustering,’’ IEEE Trans. Image Process.,
vol. 27, no. 10, pp. 5076–5086, Oct. 2018.

VOLUME 7, 2019 155181



H. C. Leung et al.: Fault and Noise Tolerance in the Incremental ELM

[16] E. Cambria et al., ‘‘Extreme learning machines [trends & controversies],’’
IEEE Intell. Syst., vol. 28, no. 6, pp. 30–59, Nov./Dec. 2013.

[17] S. Ding, H. Zhao, Y. Zhang, X. Xu, and R. Nie, ‘‘Extreme learning
machine: Algorithm, theory and applications,’’ Artif. Intell. Rev., vol. 44,
no. 1, pp. 103–115, 2015.

[18] X. Li, W. Mao, and W. Jiang, ‘‘Extreme learning machine based trans-
fer learning for data classification,’’ Neurocomputing, vol. 174, no. 1,
pp. 203–210, 2016.

[19] G.-B. Huang and L. Chen, ‘‘Convex incremental extreme learning
machine,’’ Neurocomputing, vol. 70, nos. 16–18, pp. 3056–3062, 2007.

[20] G.-B. Huang, Z. Bai, L. L. C. Kasun, and C. M. Vong, ‘‘Local recep-
tive fields based extreme learning machine,’’ IEEE Comput. Intell. Mag.,
vol. 10, no. 2, pp. 18–29, May 2015.

[21] R. A. Nawrocki and R. M. Voyles, ‘‘Artificial neural network performance
degradation under network damage: Stuck-at faults,’’ in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), San Jose, CA, USA, Jul. 2011, pp. 442–449.

[22] C.-S. Leung, W. Y. Wan, and R. Feng, ‘‘A regularizer approach for RBF
networks under the concurrent weight failure situation,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 6, pp. 1360–1372, Jun. 2017.

[23] J. B. Burr, ‘‘Digital neural network implementations,’’ inNeural Networks,
Concepts, Applications, and Implementations, vol. 3. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1995, pp. 237–285.

[24] V. Piuri, M. Sami, and R. Stefanelli, ‘‘Fault tolerance in neural networks:
Theoretical analysis and simulation results,’’ in Proc. 5th Annu. Eur. Com-
put. Conf., Adv. Comput. Technol., Rel. Syst. Appl.,May 1991, pp. 429–436.

[25] F. M. Dias and A. Antunes, ‘‘Fault tolerance of artificial neural networks:
An open discussion for a global model,’’ Int. J. Circuits, Syst. Signal
Process., vol. 4, no. 1, pp. 9–16, Aug. 2010.

[26] R. Eickhoff and U. Rückert, ‘‘Tolerance of radial basis functions against
stuck-at-faults,’’ in Artificial Neural Networks: Formal Models and Their
Applications—ICANN (Lecture Notes in Computer Science), vol. 3697,
W. Duch, J. Kacprzyk, E. Oja, and S. Zadrożny, Eds. Berlin, Germany:
Springer, 2005, pp. 1003–1008.

[27] R. Eickhoff and U. Rückert, ‘‘Robustness of radial basis functions,’’ Neu-
rocomputing, vol. 70, nos. 16–18, pp. 2758–2767, Oct. 2007.

[28] K. I.-J. Ho, C.-S. Leung, and J. Sum, ‘‘Convergence and objective
functions of some fault/noise-injection-based online learning algorithms
for RBF networks,’’ IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 938–947,
Jun. 2010.

[29] B. Liu and T. Kaneko, ‘‘Error analysis of digital filters realized with
floating-point arithmetic,’’ Proc. IEEE, vol. 57, no. 10, pp. 1735–1747,
Oct. 1969.

[30] J. L. Holi and J.-N. Hwang, ‘‘Finite precision error analysis of neural
network hardware implementations,’’ IEEE Trans. Comput., vol. 42, no. 3,
pp. 281–290, Mar. 1993.

[31] G. Carvajal and M. Figueroa, ‘‘Model, analysis, and evaluation of the
effects of analog VLSI arithmetic on linear subspace-based image recog-
nition,’’ Neural Netw., vol. 55, pp. 72–82, Jul. 2014.

[32] H. R. Mahdiani, S. M. Fakhraie, and C. Lucas, ‘‘Relaxed fault-tolerant
hardware implementation of neural networks in the presence of multiple
transient errors,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 8,
pp. 1215–1228, Aug. 2012.

[33] A. P. Piotrowski, P. M. Rowinski, and J. J. Napiorkowski, ‘‘Comparison
of evolutionary computation techniques for noise injected neural network
training to estimate longitudinal dispersion coefficients in rivers,’’ Expert
Syst. Appl., vol. 39, no. 1, pp. 1354–1361, 2012.

[34] T. Cho, K. Katahira, K. Okanoya, andM.Okada, ‘‘Node perturbation learn-
ing without noiseless baseline,’’ Neural Netw., vol. 24, no. 3, pp. 267–272,
2011.

[35] S. U. Ahmed, M. Shahjahan, and K. Murase, ‘‘Injecting chaos in feedfor-
ward neural networks,’’ Neural Process. Lett., vol. 34, no. 1, pp. 87–100,
2011.

[36] O. Osoba and B. Kosko, ‘‘Noise-enhanced clustering and competitive
learning algorithms,’’ Neural Netw., vol. 37, pp. 132–140, Jan. 2013.

[37] D. Deodhare, M. Vidyasagar, and S. S. Keethi, ‘‘Synthesis of fault-tolerant
feedforward neural networks using minimax optimization,’’ IEEE Trans.
Neural Netw., vol. 9, no. 5, pp. 891–900, Sep. 1998.

[38] C. Neti, M. H. Schneider, and E. D. Young, ‘‘Maximally fault-tolerant
neural networks and nonlinear programming,’’ in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), vol. 2, Jun. 1990, pp. 483–496.

[39] T. Horita and I. Takanami, ‘‘An FPGA-based multiple-weight-and-neuron-
fault tolerant digital multilayer perceptron,’’ Neurocomputing, vol. 99,
pp. 570–574, Jan. 2013.

[40] J. L. Bernier, J. Ortega, E. Ros, I. Rojas, and A. Prieto, ‘‘A quantitative
study of fault tolerance, noise immunity, and generalization ability of
MLPs,’’ Neural Comput., vol. 12, no. 12, pp. 2941–2964, 2000.

[41] M. Conti, S. Orcioni, and C. Turchetti, ‘‘Training neural networks to be
insensitive to weight random variations,’’ Neural Netw., vol. 13, no. 1,
pp. 125–132, 2000.

[42] Y. Xiao, R.-B. Feng, C.-S. Leung, and J. Sum, ‘‘Objective function and
learning algorithm for the general node fault situation,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 27, no. 4, pp. 863–874, Apr. 2016.

[43] H.-C. Leung, C.-S. Leung, and E.W.M.Wong, ‘‘Fault-tolerant incremental
learning for extreme learning machines,’’ in Proc. 23rd Int. Conf. Neural
Inf. Process. (ICONIP), A. Hirose, S. Ozawa, K. Doya, K. Ikeda, M. Lee,
and D. Liu, Eds. Kyoto, Japan: Springer, 2016, pp. 168–176.

[44] A. R. Barron, ‘‘Universal approximation bounds for superpositions of a
sigmoidal function,’’ IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 930–945,
May 1993.

[45] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, ‘‘Extreme learning machine:
A new learning scheme of feedforward neural networks,’’ Neural Netw.,
vol. 2, pp. 985–990, Jul. 2004.

[46] J. L. Bernier, J. Ortega, I. Rojas, E. Ros, and A. Prieto, ‘‘Obtaining fault
tolerant multilayer perceptrons using an explicit regularization,’’ Neural
Process. Lett., vol. 12, no. 2, pp. 107–113, Oct. 2000.

[47] A. Hashmi, H. Berry, O. Temam, and M. Lipasti, ‘‘Automatic abstraction
and fault tolerance in cortical microachitectures,’’ ACM SIGARCH Com-
put. Archit. News, vol. 39, no. 3, pp. 1–10, Jun. 2011.

[48] M. Lichman. (2013). UCI Machine Learning Repository.
[Online]. Available: http://archive.ics.uci.edu/ml

[49] M. Sugiyama and H. Ogawa, ‘‘Optimal design of regularization term and
regularization parameter by subspace information criterion,’’Neural Netw.,
vol. 15, no. 3, pp. 349–361, 2002.

[50] D. L. Ly and H. Lipson, ‘‘Optimal experiment design for coevolutionary
active learning,’’ IEEE Trans. Evol. Comput., vol. 18, no. 3, pp. 394–404,
Jun. 2014.

[51] Q. Zhang, X. Hu, and B. Zhang, ‘‘Comparison of `1-norm SVR and sparse
coding algorithms for linear regression,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 26, no. 8, pp. 1828–1833, Aug. 2015.

[52] R. Ekambaram, S. Fefilatyev, M. Shreve, K. Kramer, L. O. Hall,
D. B. Goldgof, and R. Kasturi, ‘‘Active cleaning of label noise,’’ Pattern
Recognit., vol. 51, pp. 463–480, Mar. 2016.

[53] S. Li, Z.-H. You, H. Guo, X. Luo, and Z.-Q. Zhao, ‘‘Inverse-free
extreme learning machine with optimal information updating,’’ IEEE
Trans. Cybern., vol. 46, no. 5, pp. 1229–1241, May 2016.

[54] S. Wager, T. Hastie, and B. Efron, ‘‘Confidence intervals for random
forests: The jackknife and the infinitesimal jackknife,’’ J. Mach. Learn.
Res., vol. 15, no. 1, pp. 1625–1651, May 2014.

[55] M. Graczyk, T. Lasota, Z. Telec, and B. Trawiński, ‘‘Nonparametric sta-
tistical analysis of machine learning algorithms for regression problems,’’
in Knowledge-Based and Intelligent Information and Engineering Systems
KES (LectureNotes in Computer Science), vol 6276, R. Setchi, I. Jordanov,
R. J. Howlett, and L. C. Jain, Eds. Berlin, Germany: Springer, 2010,
pp. 111–120.

[56] M. A. Little, P. E. McSharry, E. J. Hunter, J. Spielman, and L. O. Ramig,
‘‘Suitability of dysphonia measurements for telemonitoring of Parkinson’s
disease,’’ IEEE Trans. Bio-Med. Eng., vol. 56, no. 4, pp. 1015–1022,
Apr. 2009.

[57] I. A. Hodashinsky, K. S. Sarin, and D. D. Zykov, ‘‘Takagi-Sugeno fuzzy
systems structure identification based on piecewise linear initialization,’’ in
Proc. Int. Siberian Conf. Control Commun. (SIBCON), May 2015, pp. 1–4.

HO CHUN LEUNG received the B.Eng. degree
in information engineering from the City Univer-
sity of Hong Kong, Hong Kong, in 2015, where
he is currently pursuing the Ph.D. degree with
the Department of Electronic Engineering. His
research interests include machine learning, neural
networks, computer graphic, and telecommunica-
tion.

155182 VOLUME 7, 2019



H. C. Leung et al.: Fault and Noise Tolerance in the Incremental ELM

CHI SING LEUNG (M’05–SM’15) received the
Ph.D. degree in computer science from The
Chinese University of Hong Kong, in 1995. He is
currently a Professor with the Department of Elec-
tronic Engineering, City University of HongKong.
He has published over 120 journal articles in the
areas of digital signal processing, neural networks,
and computer graphics. His research interests
include neural computing and computer graphics.
He was a member of Organizing Committee of

ICONIP2006. He is a governing board member and the Vice President of
the Asian Pacific Neural Network Assembly (APNNA). In 2005, he received
the 2005 IEEE Transactions on Multimedia Prize Paper Award for his article
titled The Plenoptic Illumination Function. He was the Program Chair of
ICONIP2009 and ICONIP2012. He is/was a Guest Editor of several journals,
includingNeural Computing and Applications,Neurocomputing, andNeural
Processing Letters.

ERIC WING MING WONG (S’87–M’90–
SM’00) received the B.Sc. and M.Phil. degrees in
electronic engineering from the Chinese Univer-
sity of Hong Kong, Hong Kong, in 1988 and 1990,
respectively, and the Ph.D. degree in electrical
and computer engineering from the University of
Massachusetts, Amherst, MA, USA, in 1994. He is
currently an Associate Professor with the Depart-
ment of Electronic Engineering, City University
of Hong Kong, Hong Kong. His research interests

include analysis and design of telecommunications and computer networks,
energy-efficient data center design, green cellular networks, and optical
networking.

VOLUME 7, 2019 155183


