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Abstract—Mobile network operators usually consider power
consumption and Grade of Service (GoS) as two important
aspects in the design and planning of modern cellular networks.
Base station (BS) sleeping is an effective approach to reduce
the power consumption of the network, by switching some of
the BSs to a low-power “sleep mode” during off-peak traffic
hours. In this paper, we model each BS with sleeping mechanism
as an M/G/1/K queue with vacations, and the entire cellular
network as a network of such queues, to incorporate practical
factors in BS sleeping, such as close-down and startup periods
and additional power consumption for activating a sleeping BS.
We investigate the power consumption and GoS under three
BS sleeping schemes: (1) the isolated scheme, in which each BS
switches between active and sleep modes based on its own real-
time traffic load, (2) the cooperative scheme, in which selective
BSs are switched to long-term sleep and traffic is allowed to
overflow from sleeping BSs to nearby active BSs, and (3) the
hybrid scheme, in which some BSs are switched to long-term sleep
and other BSs switch modes according to their real-time traffic
load. A robust, scalable and computationally efficient analytical
method is proposed to evaluate GoS metrics, including mean
delay and blocking probability, and power consumption under
each scheme. We validate the accuracy of the proposed method,
demonstrate the trade-off among power consumption, blocking
probability and mean delay, and compare the performance of the
three schemes via extensive and statistically reliable numerical
experiments.

Index Terms—Base station sleeping, performance analysis,
teletraffic model, power-performance tradeoff

I. INTRODUCTION

Recently, base station (BS) sleeping has emerged as an
effective approach to reduce power consumption in cellular
mobile networks [1]. Energy saving is achieved by switch-
ing BSs (or certain components of them) to a low power-
consuming mode called “sleep mode” during non-busy hours
when traffic in the network is relatively low. As BSs consume
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up to 80% of energy in cellular networks, BS sleeping may
reduce a considerable amount of power consumption [2].

BS sleeping belongs to a broad family of approaches aiming
at improving the energy efficiency of cellular networks by
adjusting the transmitting power of BSs [3]. A BS selected
to sleep reduces its transmit power to zero while neigh-
boring active BSs increase their transmit power to maintain
coverage. Compared to other power-saving approaches for
green cellular networks, including applying renewable energy
solutions or upgrading hardware components, BS sleeping
can be implemented in existing network infrastructure and is
thus considered more cost-effective [2]. On the other hand,
switching some BSs to sleep mode leads to a reduction
in the network capacity. Therefore, network operators must
accurately evaluate the Grade of Service (GoS) metrics and
investigate the impact of different BS sleeping strategies on
the GoS [2], [4]. In this paper, we provide new methods to
evaluate GoS measures such as blocking probability and mean
delay. Such methods can be used to obtain accurate numerical
values for such measures under various BS sleeping schemes
that help us assess the trade-off between power consumption
and GoS metrics.

In particular, we consider a cellular network, where each
BS is modeled as a single-server queue, fed by arrivals that
follow a Poisson process, with a finite buffer size of K and
generally distributed service times. This queueing model is
known as the M/G/1/K queue. The assumption of Poisson
arrivals has been applied for modeling the Busy Hour Traffic,
which refers to network traffic load during the busiest hour, in
existing research on teletraffic models [5]. We will demonstrate
that our proposed method can still obtain accurate evaluations
when this assumption is relaxed in Section V. The generally
distributed service time addresses various factors that may
affect the service time of a user request in a cellular network,
such as the application type, the amount of data to transmit
and the channel condition. We refer to the parameter K, which
represents the maximum number of requests that a BS can
serve concurrently, as the capacity of the BS. We further
consider vacations with startup and close-down times in the
queue to model the operation of BS sleeping [6]. Henceforth,
we will use the notation M/G/1/K queue to represent the
general case of this queue with or without a range of modeling
extensions, including vacations, startup and close-down times.
In cases where reference to a specific case is important for
clarity, we will specify the particular modeling extension that
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we consider.
Another key justification of the application of the M/G/1/K

queue as the model of each BS is that many popular multime-
dia mobile services are highly delay-sensitive. Accordingly, a
minimum data rate needs to be guaranteed for traffic generated
by such services [7]. To ensure that such delay and data rate
requirements are satisfied for all admitted user requests, an
upper limit should be set on the number of requests allowed
to be served by each BS concurrently. For this case, it is
important to evaluate accurately both the blocking probability
and the mean delay to be able to avoid violation of GoS
requirements using the finite-buffer model. In this paper, we
define the GoS metric “mean delay” as the average time spent
in the network by an admitted user task from the moment when
the connection between the user and a BS is established to the
moment when the requested service is completed. Therefore,
the delay of a task is composed of the service time required
by the task, and the waiting time that the task spends in the
queue.

There are two broad types of BS sleeping schemes. One
is to implement the sleep mode separately and independently
in each BS (isolated scheme), where a BS is switched to the
sleep mode when it experiences an idle period of a certain
length [8], [9]. The other is to consider the long-term traffic
among multiple nearby BSs (cooperative scheme) [10]–[12].
In the latter case, traffic in the service areas of sleeping BSs
is distributed to nearby active BSs through cell breathing or
beamforming techniques [10], and the network of BSs can
be considered as a network of queues. The selection of BSs
to sleep is made either according to fixed switching patterns
derived from historical traffic analysis and prediction [11],
[12], or dynamically based on the real-time impact of each
BS to the network [10].

Standard approaches for evaluation of network performance
measures such as delay and blocking probability based on
simulations or numerical brute force solutions of Markov
chains are not scalable to realistically sized networks, es-
pecially in cooperative schemes where the traffic loads in
different BSs are dependent. Therefore, for applications such
as network dimensioning, where computational scalability is
key for obtaining high-quality optimal solutions, it is prefer-
able to evaluate GoS metrics by numerical approximations of
acceptable accuracy.

In this paper, we propose analytical approximation methods
based on teletraffic theory and the recently established In-
formation Exchange Surrogate Approximation (IESA) frame-
work [13]–[16] to obtain the mean delay and blocking proba-
bility in a cellular network, and analyse the trade-off between
power consumption and GoS under the isolated, cooperative
and hybrid (a joint application of isolated and cooperative)
BS sleeping schemes. This paper is a significant extension
of its conference version [16], where simplified assumptions
of exponentially distributed service times and deterministic
close-down times were made. Also, BS startup times and the
additional power consumption for switching on a sleeping BS
were not considered in [16]. The main contributions of this
paper are summarized as follows:
• We model a cellular network with sleeping mechanism

as a network of M/G/1/K queues with vacations, where
each BS is considered as a single-server queue. The
finite-buffer queuing model addresses the importance of
blocking probability due to violation of the data rate
requirement for requests generated by multimedia mobile
applications. We also consider BS close-down and startup
times, which are consistent with real BS operations. To
the best of our knowledge, this is the first work to evaluate
mean delay, blocking probability, and power consumption
of a cellular network at the same time. In addition,
our model can be applied to a wide variety of cellular
network standards, including 4G and 5G networks, as the
M/G/1/K queue has been demonstrated to be suitable for
modelling base stations in these networks [8], [17].

• We propose the hybrid BS sleeping scheme which makes
decisions based on both real time traffic load at each BS
and long-term traffic trends, with the objective of further
improving energy saving as compared to existing isolated
and cooperative schemes in a multi-BS cellular network.

• We propose new robust, accurate, scalable and compu-
tationally efficient analytical approximation methods to
evaluate GoS metrics, including blocking probability and
mean delay, in cellular networks with isolated, coopera-
tive and hybrid BS sleeping schemes.

• We numerically verify that our approximation results
of mean delay and blocking probability are accurate
under different network conditions, in Section V. In
addition, we numerically demonstrate that our method
also provides reasonably accurate estimates for networks
with more bursty arrivals, which can be modelled as a
Markov Modulated Poisson Process (MMPP).

• We apply the proposed methods to compare the perfor-
mance of isolated, cooperative and hybrid BS sleeping
schemes under different network conditions, in terms of
the tradeoff among power consumption, blocking proba-
bility, and mean delay.

The remainder of this paper is organized as follows:
Section II reviews recent research on different BS sleeping
schemes, as well as existing methods to evaluate GoS in
cellular networks. Section III introduces three BS sleeping
schemes and power consumption models. Section IV describes
our proposed methods to evaluate blocking probability, mean
delay and power consumption under each BS sleeping scheme
in detail. We compare the analytical and simulation results
to verify the accuracy and robustness of our proposed meth-
ods, and demonstrate the tradeoff among power consumption,
blocking probability, and mean delay in Section V. Finally, in
Section VI, we present concluding remarks.

II. RELATED WORK

The single-server queuing model has been widely used to
model traffic variations through a single access point, such
as a cellular BS [18]. A particularly popular queuing model
for BS sleeping is the M/G/1 queue with vacations, which
has been applied to obtain closed-form expressions of power
consumption and delay under different variants of isolated BS
sleeping schemes [8], calculate the system parameters to attain
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the optimal tradeoff between power consumption and delay
under a joint BS sleeping and power matching scheme [9],
or identify the optimal sleeping policy by formulating the
problem as a partially observable Markov Chain [19]. Notably,
in [8] and [9], the authors stated that the N -policy sleeping
scheme has better performance in terms of the power-delay
tradeoff than other isolated schemes.

A major limitation of the single BS model is that it does
not address the impact of cell breathing and beamforming
techniques, which enable active BSs to increase their transmis-
sion power and extend coverage to serve users whose closest
BS has switched to sleep. Tabassum et al. [12] proposed a
dynamic user association scheme where users arriving at a
sleeping BS are reassigned to the active BS with the greatest
mean channel access probability. The authors demonstrated
that the proposed scheme can improve spectral efficiency and
minimize outage probability. Multi-cell cooperative sleeping
algorithms in heterogeneous networks have also been studied
to improve grid energy savings where hybrid energy sources
are available [20], or reduce the power consumption while
guaranteeing the minimum BS coverage requirement [21].
Kong et al. [22] modelled a heterogeneous network as multiple
interacting queues to demonstrate a potential tradeoff between
delay and signal-to-interference ratio. Renga et al. [23] investi-
gated the integration of demand-based cooperative BS sleeping
with harvesting of renewable energy through a Markovian
model, and demonstrated that large potential savings can be
achieved by the integrated techniques.

One important issue that has been largely ignored in existing
research is the dependency of the traffic loads at nearby BSs,
which may be caused by the movement of mobile users or
resource sharing among nearby BSs. Kelly [24] suggested
that cellular networks with channel borrowing capabilities,
a classical resource sharing mode in first-generation mobile
networks, can be considered as overflow loss systems. In such
systems, a user request can overflow to an alternative server
(BS) if the first server it attempts is unavailable, and will be
blocked only if all alternative servers are unavailable. Dynamic
user association schemes in modern cellular networks resem-
ble channel borrowing in some way, as the reassociation of
users from a sleeping BS to an active BS is analogous to the
sleeping BS “borrowing” a channel from the active BS.

The Erlang Fixed-Point Approximation (EFPA) [25] has
been the classical approximation method of choice for evalu-
ating blocking probability in overflow loss systems. The key
idea of EFPA is to decompose the system into independent
Erlang B subsystems to reduce the computational complexity.
However, EFPA is known to be very inaccurate for systems
with mutual overflow effects [13], [26]. The IESA framework,
which has its roots in the EFPA but applies the decomposition-
based approach on a surrogate system rather than the original
system, was proposed in order to improve the accuracy of
the approximation [13]. The framework was further improved
by integrating with other approximation techniques such as
moment matching [14].

Previously, we have considered a cellular network model
with dynamic user association capabilities and cooperative BS
sleeping with fixed switching patterns [15]. By decomposing

the network into independent BSs loaded with Poisson traffic,
we verified that IESA had significant improvement over EFPA
on the accuracy of estimating the blocking probability. In the
conference version of this paper [16], we have demonstrated
the accuracy of IESA in estimating blocking probability and
mean delay in a delay-loss system with exponential service
time distribution. This paper is based on the more realistic
and general model for each BS of a mobile cellular network,
namely, an M/G/1/K queue with vacations, close-down and
startup times, and measures GoS and power consumption
under isolated, cooperative and hybrid BS sleeping schemes
in cellular networks.

III. NETWORK MODEL

A. BS sleeping schemes

For tractability, we consider each BS as a finite-buffer
single-server queue, with vacations. New user requests arrive
at each BS according to a Poisson process, with rate λ. Each
user request has a service time requirement of R which is
i.i.d. (independently and identically distributed) and follows
a general distribution. The service time is determined by the
amount of data required to be transmitted by the user request,
and the transmission rate offered by the wireless connection.
Note that the assumption of i.i.d. service time distribution of
various tasks does not rule out long range dependence (LRD)
in the aggregate traffic, which is commonly observed in traffic
generated by multimedia mobile applications. LRD may result
if the variance of these time durations is very high (e.g. if they
are Pareto distributed with certain parameter values) [27]. Un-
less otherwise specified, we assume that each BS is identical
in operations with the First-Come First-Served (FCFS) service
discipline. We will derive the blocking probability, mean delay
and power consumption under this assumption.

When a BS has K requests in service, it will not admit any
more incoming requests until one of the in-service requests
completes its service and leaves the BS. The value of K,
referred as the capacity of the BS, can be adjusted for the
requirements of specific applications. When K increases, more
requests may be admitted simultaneously and thus admitted
requests perceive a longer mean waiting time under high
traffic scenarios. The finite capacity of K addresses the latency
(delay) requirement of many tasks in modern and future
cellular networks. If an incoming user request sees too many
(i.e. K) other requests queuing for service at a BS upon its
arrival, which indicates a long waiting time that will violate its
latency requirement based on the FCFS discipline, it will leave
the congested BS to attempt other BSs. If all BSs covering the
user’s location are not available, the request will not be served,
which can be regarded as a cancellation of the request due to
violation of the latency requirement.

We describe in detail the three BS sleeping schemes con-
sidered in this paper as follows.
• Isolated (N -policy) scheme: as described in [8], [9], a

BS will enter a close-down period of C at the departure
of its last serving request, and switch to sleep if no new
requests arrive during this period. We will refer this kind
of sleep mode as short-term sleep in the rest of the paper.

3



This scheme is appropriate for femto BSs which allow
frequent mode changes. A sleeping BS will reactivate
when N or more users have arrived since the beginning
of the last sleep period. A BS reactivating from sleep
needs a startup period of S to warm up before starting to
serve users. Under this scheme, each BS can be modelled
as an independent M/G/1/K queue with vacations, close-
down times, and startup times.

• Cooperative scheme: as described in [12], [15], selective
BSs in the network switch to sleep during low-traffic
hours. We will refer this kind of sleep mode as long-term
sleep in the rest of the paper. The selection of sleeping
BSs and the duration of the sleep periods can be deter-
mined by traffic analysis and prediction techniques [28].
This scheme is appropriate for traditional macro BSs
which only allow one or two switches per day. The
startup time and close-down time can be ignored in the
cooperative scheme, as switching of modes is infrequent.
Under this scheme, active BSs can extend coverage to
serve users originally covered by BSs switched to sleep
or with no idle capacity, resulting in dependency among
states of different BSs. We will apply the decomposition-
based IESA approach to evaluate blocking probability,
mean delay and power consumption as exact analytical
evaluations are computationally prohibitive.

• Hybrid scheme: as described in [16], after selected BSs
are switched to long-term sleep as in the cooperative
scheme, the remaining BSs are allowed to enter short-
term sleep based on the N -policy. This scheme is
appropriate for heterogeneous cellular networks, where
marco BSs (following the cooperative scheme for long-
term sleep) and femto BSs (following the N -policy for
short-term sleep) co-exist. As in the cooperative scheme,
dependency among BSs exists as the traffic load has to be
redistributed to active BSs. Meanwhile, the startup times
and close-down times of BSs following the N -policy need
to be taken into account.

To clarify, in this paper we use “BS sleeping” to mean that
some of the radio transceivers in BSs are placed in a halt
state in which the power consumption of these transceivers
are reduced. This is consistent with our experiments on a real
BS site in Hong Kong, which we will describe in more detail
in Section V. In addition, there is minimal re-association or
migration cost for users in service under the three schemes
considered in this paper. Under the isolated scheme (or the
isolated component of the hybrid scheme), the BS enters sleep
mode only after a close-down period in which no user is served
by the BS. For the cooperative scheme (or the cooperative
component of the hybrid scheme), switching of modes is
infrequent and thus the re-association or migration effect is
negligible.

B. Power consumption

We consider three major sources of power consumption in
a BS. The first one is transmission power, mostly consumed
by power amplifiers when the BS is transmitting to/from
mobile users. The amount of transmission power consumed

in a BS is dependent on its carried traffic. The second source
is static power for air conditioning and signal processing,
which does not change with carried traffic. An idle active BS
still consumes a considerable amount of static power, while a
sleeping BS consumes much less [29], [30]. The final source of
power consumption is the extra power needed each time when
the BS is reactivated from sleep (referred to as “switching
cost” in some literature).

We denote PSL, PST, and PID as the power consumption
of a BS in the sleeping, startup, and idle (active but serving
no users) phases, respectively. For simplicity, we assume that
a sleeping BS has a power consumption of PSL regardless
of whether it is in short-term or long-term sleep. The value
of PSL accounts for the extra power consumption required
for operations supporting BS sleeping, such as monitoring the
number of requests accumulated for BSs in short-term sleep
and coverage extension by neighboring active BSs for BSs in
long-term sleep to resolve the hidden node problem. Beam-
forming can be applied to mitigate the interference and thus
maintain a certain level of signal-to-noise-plus-interference-
ratio (SINR) for reliable transmissions. As discussed in the
previous paragraph, we have PSL < PID. Also, we assume
that PID < PST to account for the switching cost during a
startup. For an active BS, we consider a linear power con-
sumption model where the instantaneous power consumption
is PA = PID + A

KPTR, where A is the instantaneous carried
traffic of the BS, K is the maximum number of requests that
a BS can serve at the same time, and PTR is the maximum
transmission power. Note that for a BS during the close-down
period, the power consumption is still PI as the BS remains
active with no users in service.

IV. ANALYSIS OF POWER CONSUMPTION AND GOS
METRICS

We now introduce analytical methods to evaluate power
consumption, mean delay, and blocking probability for each
sleeping scheme. For a random variable Y , we let Y (x) be
its cumulative distribution function (CDF), and E[Y ] be its
expectation.

A. Power consumption

As the power consumption of a BS depends on its mode of
operation, it is reasonable to consider the long-term average
power consumption. The phases of a BS under the isolated
scheme is a regenerative process that has a regeneration cycle
which consists of the active, close-down, sleep, and startup
phases in sequence, as shown in Fig. 1.

The lengths of these periods have been shown to be
statistically the same in different regeneration cycles [31].
Therefore, if we denote by LA, LCD, LSL and LST as the
lengths of active, close-down, sleep, and startup phases in a
single regeneration cycle respectively, then the average power
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Fig. 1. The regeneration cycle of BS phases under the isolated scheme.

consumption of a BS under the isolated scheme is the weighted
average of power consumption in the different phases, namely,

E[P I] =

(E[LA]E[PA] + E[LCD]PID + E[LSL]PSL + E[LST]PST) /

(E[LA] + E[LCD] + E[LSL] + E[LST]) ,
(1)

where E[PA] = PID+ E[A]
K PTR and E[A] is the average carried

traffic of the BS. Note that in (1), E[LA]E[PA] = E[LAPA] as
LA and PA are uncorrelated, as LA depends on the specific
BS sleeping scheme adopted and corresponding parameters
(such as N and E[C]) under the selected scheme, while PA
only depends on the specifications of hardware components in
BSs, e.g., power efficiency of power amplifiers.

Under the cooperative scheme, switches of BS states are
relatively infrequent. If we focus on the power consumption
(and saving) during low-traffic periods when some of the BSs
are in sleep, the power consumption of a BS depends only on
the binary states of active or long-term sleep, that is,

E[PC] =

{
PSL if the BS is selected to sleep,
E[PA] if the BS remains active. (2)

Under the hybrid scheme, the BSs that are selected to long-
term sleep will always have a power consumption of PSL,
while those following the N -policy will have the same power
consumption as in (1). That is,

E[PH] =


PSL if the BS is selected to

long-term sleep,
E[P I] if the BS is selected to

follow the N -policy.

(3)

For all three schemes, the power consumption of the net-
work is the sum of power consumptions of all BSs.

B. Isolated scheme

We now derive the state probability equations for a BS under
the isolated scheme. We begin by denoting R as the service
time of a user, and C and S as the close-down time and startup
time of a BS, respectively.

An active BS will enter short-term sleep if no user arrives
for a period of C after the BS becomes idle. Under the

assumption of Poisson arrivals, the probability ps of no user
arrivals for a period of C is given by:

ps = E[e−λC ]. (4)

We then derive the expectation of LA, LCD, LSL and LST

for a BS under the isolated scheme as in (1). The average
length of a close-down period is E[C] if no users arrive during
the period (with a probability of ps), after which the BS enters
short-term sleep, and 1/λ if there is any user arrival before
the period ends (with a probability of 1− ps), after which the
BS immediately returns to the active phase. Therefore,

E[LCD] =
1− ps
λ

+ psE[C]. (5)

The purpose of the close-down phase is to avoid frequent
switching of BS states.

The long-term average proportion of time that a BS, mod-
elled as an M/G/1/K queue following the N -policy, is active
(busy serving users) in a regeneration cycle as in Fig. 1 is

E[LA] =
E[A]

1− E[A]
(E[LCD] + E[LSL] + E[LST]). (6)

Note that as the M/G/1/K queue has a finite state-space, its
stability is always guaranteed. The carried traffic E[A] is less
than 1 even when the offered traffic λE[R] exceeds 1.

Finally, since the probability that a regeneration cycle in-
volves sleeping and startup phases is equal to ps,

E[LSL] = ps
N

λ
, (7)

and
E[LST] = psE[S]. (8)

We next consider the set of embedded Markov points at
which either a startup or a service is completed. We define
the state of a BS at the end of the n-th embedded Markov
point by

ξn =

{
0 startup completion;
1 service completion. (9)

Let Qn denote the number of users immediately after the n-
th embedded Markov point. Let k be a non-negative integer,
we define {qk} as the steady state probability for a BS to
have k users waiting after a startup completion, and {πk} as
the steady state probability for a BS to have k users in service
after a service completion, that is

qk = lim
n→∞

P [ξn = 0, Qn = k], 0 ≤ k ≤ K, (10)

πk = lim
n→∞

P [ξn = 1, Qn = k], 0 ≤ k ≤ K − 1. (11)

Denote

sk =

∫ ∞
0

(λx)k

k!
e−λxdS(x) (12)

as the probability that k users arrive during a startup time, and

rk =

∫ ∞
0

(λx)k

k!
e−λxdR(x) (13)
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as the probability that k users arrive during a service time,
where the integrand is the probability that k users arrive in x
units of time, times the probability of a startup/service lasting
x units of time. We define rcj =

∑∞
k=j rk and scj =

∑∞
k=j sk.

The {qk} and {πk} terms satisfy the following equations:

qk = 0, k ≤ N − 1, (14a)
qk = π0pssk−N , N ≤ k ≤ K − 1, (14b)
qK = π0pss

c
K−N , (14c)

πk =

k+1∑
j=1

(qj + πj)rk−j+1 + π0(1− ps)rk, k ≤ K − 2,

(14d)

πK−1 =

K−1∑
j=1

(qj + πj)r
c
K−j + qK + π0(1− ps)rcK−1,

(14e)
K∑
k=N

qk +
K−1∑
k=0

πk = 1. (14f)

From (14a), (14b) and (14c), we can further derive that the
probability that an arbitrary embedded Markov point is the
completion of a startup is

psπ0 =

K∑
k=N

qk. (15)

Therefore, the probability that an arbitrary embedded Markov
point is the completion of a service is 1− psπ0.

We now consider the mean length of the interval between
two successive Markov points in order to calculate the block-
ing probability and the mean delay. For a Markov point with
ξn = 1 and Qn = 0 (comprising π0 of all Markov points), if
the BS goes to sleep after the Markov point (with a probability
of ps), then the mean length of the interval right after the
Markov point is the sum of the mean lengths of a vacation
period that consists of N inter-arrival times and a startup time,
namely N/λ+E[S]; conversely if the BS does not go to sleep
(with a probability of 1− ps), then the length of the interval
right after is one inter-arrival time plus one service time, with a
mean of 1/λ+E[R]. For any other Markov points, the length
of the interval right after is always one service time, with
a mean of E[R]. The mean interval between two successive
Markov points, denoted by η, is thus

η = psπ0

(
N

λ
+ E[S]

)
+

(1− ps)π0

λ
+(1−psπ0)E[R]. (16)

The average carried traffic E[A] is given by the fraction of
the time that the BS is busy serving users, which is the ratio
of the last term in (16) to η [32], namely,

E[A] =
(1− psπ0)E[R]

η
. (17)

The blocking probability under the isolated scheme, P (BI),
is then

P (BI) = 1− E[A]

ρ
, (18)

and thus the throughput γI is

γI = λ(1− P (BI)) =
E[A]

E[R]
=

1− (1− ps)π0

η
. (19)

The mean queue size is the expectation of the number of
requests in the queue at an arbitrary moment, which is

E[QI] =
1

λη

K−1∑
k=1

kπk +K

(
1− E[A]

ρ

)
. (20)

Finally, by (20) and Little’s Theorem, the mean delay of users
under the isolated scheme is

E[W I] =
E[QI]

γI
=

E[R]

λE[A]η

K−1∑
k=1

kπk +
K

λ

(
E[A]

ρ
− 1

)
.

(21)
Note that although our analysis is based on the FCFS

discipline, it can be extended to more general situations.
Particularly, the power consumption is the same for both the
FCFS discipline and the Processor Sharing (PS) discipline,
where the bandwidth of a BS is divided equally to all admitted
customers [8], [9]. For the blocking probability and mean
delay, the results are applicable to the PS discipline with
exponential service time distribution [33]1. Also, the results
for blocking probability and mean delay are insensitive to the
distribution of the close-down time beyond its mean [6], [32].

C. Cooperative scheme

In the cooperative scheme, as we need to analyze a multi-BS
system where the states of BSs are interdependent, obtaining
exact solutions for GoS metrics is computationally prohibitive
(mostly due to the curse of dimensionality) [34]. Instead, we
will apply the IESA framework to obtain approximations of the
GoS metrics and power consumption with satisfactory levels
of both accuracy and computational efficiency.

Due to the limited space, we only describe IESA with
the necessary information needed for this paper and refer
the readers to [13]–[15] for more detailed explanations on
IESA. The key idea of IESA is to apply decomposition-based
approximation methods to a surrogate system instead of the
real system. Traditional decomposition-based approaches, such
as EFPA, significantly underestimate blocking probability in
systems with a mutual overflow effect due to two inherent
simplifying assumptions during the decomposition process,
namely the Poisson assumption that assumes that all traffic
streams follow the Poisson process, and the independence
assumption under which all subsystems are independent. In
fact, overflow traffic is known to be non-Poisson even if the
new traffic is Poisson, and states of the BSs are statistically
dependent on each other due to mutual overflow. In cellular
networks, overflow traffic is generated when user requests are
rejected by the BS that they attempt, due to either the capacity
limit or sleeping operation.

The surrogate system for IESA is specially designed with an
information exchange mechanism to increase the proportion of

1The blocking probability and mean delay of M/G/1/K-PS queue without
vacations are insensitive to the service time distribution beyond the mean, but
this insensitivity property does not hold for the blocking probability and mean
delay of M/G/1/K-PS queue with vacations [32], [33].
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new traffic as compared to the real system. This increases the
validity of both the Poisson and the independence assumptions.
Therefore, when the decomposition-based approximation is
applied to the surrogate model, the errors caused by the two
simplifying assumptions are reduced.

To facilitate the information exchange mechanism, each user
request is assigned two attributes in the surrogate system.
The first attribute is overflow record of the request, denoted
by ∆, which contains the set of BSs that have rejected the
request for admission due to capacity limit or sleep. The
second attribute, denoted by Ω, is a counter on the number of
overflows experienced by the request itself or other requests
being served and is an estimate of the number of unavailable
BSs due to either sleeping or capacity limit in the network.

In cellular networks, a request can only be served by nearby
BSs that provide coverage to the mobile user initiating the
request. Therefore, for simplicity, we consider the first BS
(which could be the closest BS to the user) that a request
attempts, determines the set of BSs that the request can
overflow to. We say that a request originates from the first
BS that it attempts, and let Γi denote the set of BSs that a
request originated from BS i is allowed to overflow.

A new request starts with ∆ = ∅ and Ω = 0 at its initiation.
When a request x, originated from BS i0, arrives at BS i ∈ Γi0
with attributes (∆x,Ωx), it will be admitted if BS i is active
and has not reached its capacity. Otherwise, it will be rejected
and will overflow to one of the BSs in Γi0 \ (∆x ∪ i). In
this latter case, we consider the request with the highest Ω
being served by i at the moment of x’s rejection. We denote
such a request by y with attributes (∆y,Ωy). If Ωx ≥ Ωy ,
x will update its attributes to {∆x ∪ i,Ωx + 1}. However, if
Ωy > Ωx, x will exchange its second attribute with y and then
overflow with attributes {∆x∪ i,Ωy + 1}, while y will update
its attributes to {∆y,Ωx}.

To avoid confusion, we emphasize that the surrogate model
described here is solely for the purpose of performance evalua-
tion in this paper. We do not assign the above attributes or im-
plement the above information exchange process for requests
in the real network. Instead, the information exchange process
helps to estimate whether all unattempted BSs are available
or not for an overflow request, based on its attributes ∆ and
Ω. If all unattempted BSs are presumed to be unavailable,
the request will leave the system immediately and be counted
as a blocked request, without trying to access any of the
unattempted BSs. As in [13]–[15], we denote p(Ω∗, |∆|,Ωx)
as the probability that a request with attributes {∆,Ωx} is
blocked immediately, where Ω∗ is a parameter of the surrogate
model representing the maximum limit on the value of Ω for
any request.

Specifically, p(Ω∗, |∆|,Ω) for a request originated from BS
i is evaluated as:

p(Ω∗, |∆|,Ω) =


0 if Ω < ni,(

Ω−|∆|
ni−|∆|

)(
Ω∗−|∆|
ni−|∆|

) if Ω ≥ ni,
(22)

where |∆| ≤ ni ≤ Ω∗, and ni = |Γi|.

The value of Ω∗ depends on the level of dependency in the
real system, which in turn is related to parameters such as
the total number of servers (BSs) and the number of servers
(BSs) that a certain user has access to [13], [15]. In [15], we
proposed a regression method to obtain a quasi-optimal value
of Ω∗ that can give reasonably accurate approximations for
a certain system. Specifically, we first consider a small set
of independent cases with different system parameters as the
training set, and evaluate the approximation accuracy in each
case with different values of Ω∗. Then, the Ω∗ values with the
smallest approximation error are recorded and a regression
function is constructed with relevant system parameters as
explanatory variables and Ω∗ as the response variable. The
regression function is then used to predict the value of Ω∗ in
different system settings.

According to (22), there is a positive probability for a
request to be blocked before it attempts all BSs in Γi. The
probability is higher for requests with higher values of Ω,
which indicates that the system is more congested. Also,
p(Ω∗, |∆|,Ω) = 1 if |∆| = ni (which is consistent with the
behavior in the real system) or Ω = Ω∗.

We further define the following:
• λi,o,n,s,j : Arrival rate for traffic to BS i originated from

BS o with ∆ = s = {s1, ..., sn} (s1 = o, i /∈ s), |∆| = n
and Ω = j;

• λi,n,j =
∑

s λi,o,n,s,j : Total effective arrival rate to BS
i with |∆| = n and Ω = j, summing over all possible
origins and overflow sequences;

• λi,j =
m∑
l=0

j∑
m=0

λi,l,m: Total combined arrival rate to i

with Ω ≤ j;
• vi,o,n,s,j : Overflow traffic from BS i, originated from BS
o, with ∆ = s = {s1, ..., sn} with s1 = o, sn = i,
|∆| = n, and Ω = j;

• Bi,j : Blocking probability of for requests with Ω = j at
BS i.

The surrogate is in fact a hierarchical system based on the
value of Ω, where traffic with higher values of Ω is considered
to be on “higher” levels. This traffic hierarchy, along with
the information exchange and immediate blocking mechanisms
in (22), helps to capture the state dependencies among different
BSs. The blocking probability of traffic with a lower Ω is not
affected by traffic with higher values of Ω. Therefore, denoting
Pb(λ,R,K) as the blocking probability of an M/G/1/K queue
(without vacations as we do not consider short-term sleep
in the cooperative scheme) with arrival rate λ and service
time requirement R, the relationship between the blocking
probability Bi,j and λi,j at level j for BS i is

Bi,j =

{
Pb(λi,j , R,K) if BS i is active;
1 if BS i is in long-term sleeping,

(23)
where 0 ≤ j ≤ Ω∗. One way to calculate the value of
Pb(λi,j , R,K) is by referring to (4) to (18), with E[C]→∞
as the BS will not enter short-term sleep in the cooperative
scheme.

For each BS i ∈ U , we start with the initial value λi,0 =
λi,0,0 = λi, which represents the arrival rate of new requests
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to BS i.
Overflow traffic vi,o,n,s,j can be evaluated as

vi,o,n,s,j = E[R](
j−2∑

`=n−1

λi,o,n−1,s,`(Bi,j−1 −Bi,j−2)+

λi,o,n−1,s,j−1Bi,j−1

)
,

(24)

where the first term in the bracket represents overflow when
an incoming request with |∆| = n − 1 and Ω ≤ j − 2 finds
BS i fully occupied with the highest Ω of the requests in
service equal to j− 1 (with probability Bi,j−1−Bi,j−2). The
second term represents overflow when an incoming request
with |∆| = n − 1 and Ω = j − 1 finds BS i fully occupied
with Ω ≤ j − 1 for all requests in service (with probability
Bi,j−1) [15].

The overflow traffic vi,o,n,s,j will then be randomly offered
to one of the |Γs1 − n| unattempted BSs in Γs1 with equal
probability, namely (1− p (Ω∗, n, j)) / (|Γs1 | − n), or give up
attempting and exit the network with probability p (Ω∗, n, j).
Thus, for any BS i,

λi,o,n,s,j =
1− p(Ω∗, n, j)
E[R](|Γs1 | − n)

vsn,n,s,j . (25)

We can then iteratively repeat (24) and (25) to calculate
the overflow traffic and arrival rate for each level j ≤ Ω.
Traffic with Ω = Ω∗ − 1, namely those offered to the
highest level, includes all lower levels and is equal to the total
offered traffic to a BS. Subsequently, traffic carried by BS i is
λi,Ω∗−1E[R](1−Bi,Ω∗−1). The network blocking probability
under the cooperative scheme is

P (BC) = 1−
∑
i∈U λi,Ω∗−1(1−Bi,Ω∗−1)∑

i∈U λi
, (26)

where U is the set of all BSs in the network and∑
i∈U λi,Ω∗−1(1 − Bi,Ω∗−1) is the sum of carried traffic by

all BSs.
As IESA decomposes the network into independent subsys-

tems (individual BSs), we can refer to our previous analysis
for the isolated scheme to calculate the mean delay for each
BS. By replacing λ with λi,Ω∗−1 for each BS i ∈ U and
setting E[C] → ∞ (so that the BSs do not enter short-term
sleep), the mean delay E[WC

i ] for each BS can be obtained
following the same analysis as in (4) to (17), (20) and (21).
For BSs selected for long-term sleeping, we set K = 0 such
that no requests would be admitted in such BSs. The mean
delay of all requests is the weighted average of mean delay of
each BS, namely,

E[WC] =

∑
i∈U

λiE[WC
i ]∑

i∈U
λi

. (27)

With the assumption of random routing of overflow traffic,
the IESA algorithm described above has a polynomial time
complexity of O(|U |n∗Ω∗), where |U | is the total number of

BSs in the network and n∗ = maxi∈U ni is the maximum
number of neighbors that any BS in the network has. As we
have |U | ≥ Ω∗ ≥ n∗ by nature of the IESA algorithm [13],
[15], the worst-case of time complexity is O(|U |3). We will
verify the time complexity numerically later in Section V.

D. Hybrid scheme

As mentioned in Section III, the hybrid scheme is a joint
application of the isolated and cooperative schemes, where
some BSs are selected to enter long-term sleep, while other
BSs follows the N -policy for potential short-term sleep. To
obtain the blocking probability P (BH) and mean delay E[WH]
for the hybrid scheme, we can mostly follow the analysis of
the cooperative scheme by IESA in Section IV-C, as overflow
traffic is also present in the hybrid scheme.

However, when calculating the blocking probability
Pb(λi,j , R,K) of traffic at level j in BS i as in Equation (23),
we should consider appropriate distributions for C and S
instead of simply setting E[C] → ∞ as in the cooperative
scheme, as the state probabilities for a BS selected not to enter
long-term sleep should be calculated based on an M/G/1/K
queue with vacations, close-down and startup times.

V. NUMERICAL RESULTS

We now verify the accuracy of analytical methods described
in the previous section by comparing analytical results with
numerical simulations.

We collected and analysed real data for power consumption
and mobile traffic from 27 January to 24 February 2017
from a BS site in Hong Kong operated by SmarTone Mobile
Communications Limited [35], as shown in Fig. 2 (this figure
was also reported in the conference paper [16]). It shows
that the power consumption of the site when there is no
mobile traffic is about 1867.6 W and the maximum power
consumption during the period is about 2150 W. As we are
limited by the information that we can publish, we assume
that the site is composed of 7 identical BSs and the BSs are
operating at their full capacity at the time of maximum power
consumption2, such that the static power consumption for an
active BS is PID ≈ 266.8 W and the maximum transmission
power of a BS is PTR ≈ 40.43 W. We further assume
PSL ≈ 10 W, based on a separate experiment we carried out on
energy saving by implementing BS sleeping in real networks.
As discussed in Section III-B, the value of PSL has accounted
for the increasing transmission power by neighboring active
BSs for coverage extension.

For simplicity without loss of generality, we assume that the
mean arrival rate λ arrivals/s is the same for all seven BSs, and
mean service time E[R] = 1 s. We consider a wide range of
arrival rates, including low arrival rates during idle hours and
high arrival rates during busy hours. Based on our analysis
in Section IV, the results are insensitive to the distribution
of the close-down time C beyond its mean. Therefore, we
further assume that the distribution of C is exponential. In

2It is common in related studies to assume that BSs of the same type have
the same power consumption profile (e.g., [11], [12], [22]).
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Fig. 2. Power consumption of a real BS site.

the cooperative and hybrid schemes, we assume that one of
seven BSs is switched to long-term sleep, while all active BSs
are able to serve traffic intended for other BSs that are full
or sleeping as the BSs in the same site are geographically
close to each other. As we consider a single system setting,
the parameter Ω∗ for IESA throughout this section is set to 7
(equal to |U |), which gives the most accurate approximation
under this particular setting [15].

The 95% confidence interval for all simulation results
presented in this section, based on Student’s t-distribution, are
within 3% of the observed mean.

A. Accuracy and computational efficiency of proposed analyt-
ical methods

In Figs. 3 and 4, we demonstrate the accuracy of our pro-
posed analytical methods by comparing the derived analytical
results with simulation results. We set K = 10 for all three
schemes in Fig. 3 and K = 100 in Fig. 4. The parameters
related to short-term sleep for the isolated and hybrid schemes
are N = 3, E[C] = 2 s, and E[S] = 2 s. The distributions for
both R and S are exponential. The analytical and simulation
results are quite close to each other in all cases. As expected,
under the same arrival rate, the blocking probability is lower
and the mean delay is higher for a larger K. In general, when
the arrival rate is low, BSs are more likely to benefit from the
short-term sleep.

We then change the distributions of R and S. As isolated
and cooperative schemes can be regarded as special cases
of the hybrid scheme, we present the results only for the
hybrid scheme in Fig. 5. We consider four different situations
with three types of distributions, namely exponential distribu-
tion, deterministic (degenerate) distribution, Pareto distribution
with shape parameter 2.001 (Pareto-1, with finite mean and
variance), and Pareto distribution with shape parameter 1.98
(Pareto-2, with infinite variance, but finite mean). Apart from
the distributions, the other parameters are the same as in Fig. 3.
The results demonstrate that power consumption and GoS are
nearly insensitive to the distributions of service and startup
times (beyond their means), so our analytical methods are
sufficiently robust to variations in these distributions.

To demonstrate that our methods are also applicable for non-
Poisson arrivals, we consider the MMPP arrival process under

the hybrid scheme with exponential service and startup times.
We demonstrate the simulation results for MMPP arrivals with
two different arrival state duration parameters (which are the
rate of transition between two states with different mean arrival
rates [36], referred to as mode duration parameters in some
publications [37]) in Fig. 6, where “MMPP-1” represents an
arrival process with the arrival state duration parameters for
both states equal to 1 and “MMPP-2” represents an arrival
process with the arrival state duration parameters for both
states equal to 100. The other parameters are the same as in
Fig. 3. To the best of our knowledge, no effective analytical
methods are available yet for evaluating the blocking prob-
ability and the mean delay for networks of multiple queues
with MMPP arrivals. The results show that, even for MMPP
arrivals with different arrival state duration parameters, our
analytical methods based on Poisson arrivals still give a fairly
accurate evaluation on the blocking probability, mean delay
and power consumption for all three BS sleeping schemes,
with less than 10% difference between the analytical and
simulation results in most cases. Therefore, our method can be
a desirable estimation tool for networks with MMPP arrivals.

In terms of computational efficiency, our analytical method
based on IESA for cooperative and hybrid schemes can obtain
a unique solution after a bounded number of iterations [13],
while the brute-force Markov chain solution has exponential
complexity in terms of the number of BSs [34]. In Fig. 7, we
present numerical results for the running time by simulation
(with the 95% confidence intervals for all results kept within
3%) and our analytical method as a function of the number
of BSs in the network (similar to the empirical method used
in [38]) under the hybrid scheme on a laptop with a 2 GHz
Intel i7 processor and 8 GB RAM, by the Curve Fitting
Toolbox of MATLAB. For the ease of demonstration, we
assume that in a network with |U | BSs, ni = |U | − 1 for all
i ∈ U , and set Ω∗ = |U | in all cases, so that the complexity is
O(|U |3) as discussed in Section IV-C. The numerical results
in Fig. 7 demonstrate that both simulation and our analytical
method have a polynomial complexity O(|U |3), while the
running time of the simulation is at least five times longer than
that of our analytical method. In certain cases, e.g., the one
demonstrated in our conference paper [16] with exponential
service times, deterministic close-down times, no setup times
and 7 BSs in the network, the running time of our analytical
method could be five orders of magnitude less than that
of simulation. Given its low runtime and acceptable level
of accuracy, our approximation method can search and find
optimal tradeoff solutions in mobile cellular networks that
tradeoff GoS and power consumption.

B. Trade-off between GoS metrics and power consumption

We now apply our analytical methods to investigate the
tradeoff between power consumption and GoS metrics in-
cluding mean delay and blocking probability by adjusting the
parameters including K, N , and E[C] under different BS
sleeping schemes. In this subsection, we set E[S] = 2 s,
λ = 0.6, and assume that both R and S are exponentially
distributed.
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Fig. 3. Accuracy of proposed analytical methods for three BS sleeping schemes with K = 10 in terms of (a) Blocking probability; (b) Mean delay; (c)
Power consumption. (Sim = simulation, Ana = analytical)
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Fig. 4. Accuracy of proposed analytical methods for three BS sleeping schemes with K = 100 in terms of (a) Blocking probability; (b) Mean delay; (c)
Power consumption. (Sim = simulation, Ana = analytical)
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Fig. 5. Accuracy of proposed analytical methods for different distributions of service and startup times under the hybrid scheme in terms of (a) Blocking
probability; (b) Mean delay; (c) Power consumption. (Sim = simulation, Ana = analytical)
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Fig. 6. Comparison of analytical results and simulation results with Poisson and MMPP arrivals (arrival state duration parameters for both states = 1 for
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Fig. 7. Running time of (a) analytical methods; (b) simulation on networks with different number of BSs.

In Fig. 8, we keep K = 10 to focus on the tradeoff between
the blocking probability and power consumption by changing
the parameter N under the isolated and hybrid schemes. The
results verify that, when N increases, power consumption
decreases and blocking probability increases, as more arrivals
must be accumulated at a BS in short-term sleep before it
begins the startup. The results also show that, for the same
amount of power consumption, the cooperative and hybrid
schemes can achieve lower blocking probabilities compared
to the isolated scheme. This is because cooperation among
BSs in handling incoming traffic when some of BSs are not
available leads to higher utilization of capacity in the whole
network. Furthermore, the isolated and hybrid schemes are
flexible in attaining a desirable level of trade-off between
blocking probability and power consumption according to the
requirement of the network operator by adjusting N or E[C].
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Fig. 8. Tradeoff between power consumption and blocking probability by
adjusting N when K = 10.

We then adjust the values of K and N to keep the blocking
probability just under 1%, and demonstrate corresponding
values of mean delay and power consumption in Fig. 9. The
results show that, similar to Fig. 8, given the same level of
power consumption, a shorter mean delay can be attained
under the hybrid and cooperative schemes than the isolated
scheme. Meanwhile, by increasing the value of N while

holding all other things equal, the power consumption can
be reduced at the cost of a relatively higher delay under the
isolated and hybrid schemes, as a larger N leads to longer
periods of short-term sleep under these two schemes.
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Fig. 9. Tradeoff between power consumption and mean delay by adjusting
the values of N and K.

Finally, we change the value of K while keeping all other
parameters constant, to demonstrate the tradeoff between mean
delay and blocking probability under the three schemes in
Fig. 10. By doing so, we are in fact adjusting the maximum
allowable delay for admitted requests. A smaller K leads
to more strict requirement for the maximum delay, as each
admitted request is expected to wait for fewer existing requests
to finish their services. This also increases the blocking proba-
bility for every scheme as it is more likely that a request fails to
satisfy the requirement and has to be blocked. In terms of the
delay-blocking tradeoff, the cooperative and hybrid schemes
are again superior to the isolated scheme.

VI. CONCLUSIONS

In this paper, we proposed accurate, robust, and scalable
analytical means to evaluate blocking probability, mean delay
and power consumption in cellular networks with three BS
sleeping schemes, by modeling the network as a network
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Fig. 10. Tradeoff between blocking probability and mean delay by adjusting
the value of K.

of M/G/1/K queues with vacations and applying the IESA
framework. The accuracy and computational efficiency of
our proposed method were verified by numerical simula-
tions. Furthermore, we demonstrated that the cooperative
and hybrid schemes can achieve better tradeoffs in terms
of blocking-power, delay-power and blocking-delay than the
isolated scheme. Compared to our conference version of this
paper [16], we considered additional practical issues including
the startup times and additional power consumption when
activating a sleeping BS, and different distributions of service
and startup times. We also demonstrated that our proposed
methods are robust for MMPP arrivals over a large range of
arrival state duration parameters.

Our new analytical methods, especially those for the coop-
erative and hybrid schemes where no existing feasible methods
are available, are useful for applications such as network
design, dimensioning and optimization, where numerous eval-
uations of GoS metrics and power consumption are needed to
identify the optimal solutions for a board range of scenarios.
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