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Abstract—While the Poisson point process (PPP) has been
widely employed to model the user distribution in many network
design problems, an existing challenge is that it often reveals
inaccuracy in small-cell networks. In this paper, instead of
employing PPP, we capture the randomness of user equipment
(UE) by collecting many their realizations. Specifically, we focus
on the millimeter-wave (mmWave) base station (BS) deployment
problem in an urban geometry, based on the application of a
scenario sampling approach, previously introduced for large-
scale optimization, to quantitatively sample a portion of the UE
realizations. Motivated by the scenario sampling, a reduced-scale
mmWave BS deployment problem is formulated, whose optimal
solution is attained by the proposed low-complexity iterative
search algorithm. A required number of samples that guarantee
a specified majority of the link quality constraints is analyzed.
Simulation results verify the scenario sampling theory and the
effectiveness of the proposed algorithm.

Index Terms—Millimeter-wave networks, base station deploy-
ment, scenario sampling, large-scale integer linear programming.

I. INTRODUCTION

The ever-growing number of high data rate mobile applica-
tions coupled with the promise of connecting billions of user
equipments (UEs) is demanding the deployment of millimeter-
wave (mmWave) small-cell networks at large scale. Due to the
high frequency and directional transmission, millimeter wave
(mmWave) links are less susceptible to interference but are
more vulnerable to physical blockage caused by obstacles in
urban geometry [1]. Moreover, the capacity of each mmWave
base station (BS)1, equipped with hybrid antenna arrays, is
strictly limited by the number of radio frequency (RF) chains,
in which capacity-limited blockage occurs when all RF chains
are occupied by user equipments (UEs).

To mitigate both the physical and capacity-limited block-
ages, multiple BSs can be installed to cover a region. The more
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1BS capacity refers to the maximum number of UEs that a BS can
simultaneously serve.

the number of deployed BSs, the more UEs can be served with
reduced blockages. However, deploying more BSs comes at
the price of higher network deployment and maintenance costs.
To mitigate this issue, cost-efficient approaches that minimize
the number of deployed BSs while keeping the outage of
each UE below a certain threshold, has been considered more
recently [2], [3]. However, solution approaches to the latter
problems largely depend on the UE deployment statistics in
the geometry of interest [4]. While the Poisson point process
(PPP) was validated for macro-cellular networks to capture the
randomness of UEs, it often reveals inaccuracy in the small-
cell dense mmWave networks [5]. Holding both the accuracy
and tractability of a stochastic model is often a dilemma
because geometry-dependency exponentially adds complexity
to network design problems. It is within this context that in
the mmWave BS deployment literature, the UE distribution
is often ignored [6], [7] or many simplifying assumptions
have been made [2], [3]. An alternative approach is to rely
on available UE realization data that have been measured at
different time scales to sufficiently capture the randomness of
UEs2. Although a major benefit of leveraging the measurement
data is its accuracy, involving all realizations to solve the BS
deployment problem is yet computationally prohibitive.

In this work, we propose a scenario sampling approach, pre-
viously studied in the context of large-scale convex problems
[9] to solve the blockage probability-guaranteed minimum-cost
mmWave BS deployment problem in an urban geometry. For
each UE realization, we analyze the physical and capacity-
limited blockage probabilities and formulate the mmWave BS
deployment into a large-scale integer linear problem (ILP),
which is non-convex and excessively complex to be directly
solved. The scenario sampling approach is then applied to
form a small-scale ILP. The global optimality of the samll-
scale ILP is achieved by the proposed low-complexity iterative
search algorithm. However, any domain reduction introduced
by the sampling could lead to substantial suboptimality. Thus,
a required number of samples that ensure the optimal solution
of the reduced problem satisfies a specified majority of the
UE realizations is derived. We perform numerical simulations
to corroborate the established analysis as well as effectiveness
of the proposed algorithm.

It should be noted that the mmWave BS deployment prob-
lem in this work is approached in a link-connectivity point-of-
view with the primary focus on providing the initial connectiv-

2For example, UE placements in a network can be collected by the existing
LTE BSs using positioning reference signals as described in [8].
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Fig. 1: Urban street geometry for mmWave BS deployment
with B = 164 candidate locations.

ity to UEs with the blockage tolerance guarantees. Therefore,
our major focus is not to describe a physical-layer algorithmic
approach for the quality-of-service improvement that can be
readily implemented, after the BS deployment, by leveraging
existing directional beam optimization and power allocation
techniques [10] or investigating new ways of enhancing such
techniques, which is subject to further research and not the
focus of the present work.

The rest of the work is organized as follows. In Section II,
we describe the mmWave BS deployment scenario under
consideration and contrive the blockage constraints. Section III
formulates the mmWave BS deployment into a large-scale ILP,
which is further reduced to be a small-scale ILP by using the
scenario sampling approach in Section IV. The small-scale
ILP is optimally solved in Section V. Simulation verification
and conclusions are given in Section VI and VII, respectively.

II. SYSTEM SETUP

We consider an urban street geometry, as shown in Fig. 13,
consisting of rectangular buildings with length lbld and width
wbld,1 and wbld,2. These buildings are separated by streets with
width wst and 2wst. The outdoor BSs can be wall-mounted
at the candidate locations, i.e., red dots at the boundaries of
each building in Fig. 1, indexed by b ∈ B = {1, 2, . . . , B}.
We assume that B is an even integer throughout the paper. A
column vector y = [y1, y2, · · · , yB ]

T is employed to denote
the state of each BS candidate location. If a BS is deployed
at the bth location, we set yb = 1, and yb = 0 otherwise. A
candidate location can be occupied by at most one BS to serve
outdoor UEs distributed on streets. We shall use “BS b” to
denote the BS deployed at the bth candidate location. Let ∆ be
the set of measured active UE realizations with the cardinality
card(∆) =K, where K can be very large, depending on the
time scale. Given a realization δ ∈ ∆, we denote the number
of active UEs in δ as U (δ) and their locations are known.

Because non-line-of-sight (NLoS) mmWave links suffer
from much larger attenuation than LoS links, we only take
the LoS paths into account for the BS deployment at 28 GHz
mmWave bands, while neglecting the NLoS paths. These LoS

3While the urban geometry in Fig. 1 originates from the METIS project
[11, Fig. B-2], the devised approach in this paper can be directly applied to
any geometry with pre-determined candidate BS locations.

paths can be occasionally blocked by random obstacles (e.g.,
vehicles and pedestrians) on streets in Fig. 1. By modeling
the random obstacles using a Boolean scheme, blockage
probability of the LoS link [12] between BS b and UE u in a
δ∈∆ can be modeled by

p
(δ),blk
u,b (ru,b) = 1− exp(−βru,b − α), (1)

where ru,b is the link distance between BS b and UE u, and
α > 0 and β > 0 are the parameters that depend on the
density and sizes of the random obstacles, respectively. The
larger the density and sizes of obstacles, the bigger the values
of α and β are, resulting in higher p(δ),blk

u,b (ru,b). Because sizes
of the random obstacles are usually much smaller than the
link distance, we assume independent link blockage [12], [13].
Under these assumptions, in what follows, we analyze physical
and capacity-limited blockage probabilities to be adopted to
BS deployment problem formulation in Section III.

A. Physical Blockage

We define N (δ)
b ≤ U (δ) as the number of the nearest active

UEs that can be served by BS b in realization δ ∈ ∆. An
indicator Λ

(δ)
u,b(N

(δ)
b ) is introduced such that Λ

(δ)
u,b(N

(δ)
b ) = 1

implies that UE u in δ ∈ ∆ can be served by BS b, and
Λ

(δ)
u,b(N

(δ)
b ) = 0, otherwise. Thus, ybΛ

(δ)
u,b(N

(δ)
b ) = 1 implies

that the UE u in δ is served by BS b. In the context of mmWave
BS deployment, we allow for multiple BSs to simultaneously
serve an active UE of interest to combat physical blockages,
i.e., mathematically,∑

b

ybΛ
(δ)
u,b(N

(δ)
b ) ≥ 1.

Then, a physical outage can be defined as an event that the
links from all BSs covering a UE are blocked by random
obstacles on the streets. Provided the independent blockage
assumption, the physical blockage constraint is formulated as
B∑
b=1

ybΛ
(δ)
u,b(N

(δ)
b )log

(
p

(δ),blk
u,b

)
≤ log

(
ζphy) , ∀u∈U (δ), (2)

where U (δ) is the index set of the U (δ) active UEs, i.e.,
card(U (δ)) = U (δ), and ζphy is the physical blockage tolerance
level. We let A(δ)(N(δ))∈RU(δ)×B be a matrix with the entry
Λ

(δ)
u,b(N

(δ)
b )log

(
p

(δ),blk
u,b

)
at the uth row and bth column, and

b ∈ RU(δ)×1 be a column vector with each entry log
(
ζphy

)
,

where N(δ) =
[
N

(δ)
1 , . . . , N

(δ)
B

]
. A compact form of (2) is

A(δ)
(
N(δ)

)
y � b, (3)

where � represents the entry-wise less than or equal to.

B. Capacity-limited Blockage

As discussed in Section I, BS capacity is limited by the
number of RF chains NRF. If N (δ)

b ≤ NRF, no capacity-
limited blockages occurs. On the other hand, if N (δ)

b > NRF,
the capacity-limited blockage could occur if the number of
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physically-blocked UEs is less than N
(δ)
b −NRF. Thus, the

probability of the capacity-limited blockage can be written as

f
(
N

(δ)
b

)
= 1

N
(δ)
b >NRF

∑N
(δ)
b −NRF−1

i=0

∑(N
(δ)
b
i )

j=1 q
(δ)
i,j , (4)

where 1
N

(δ)
b >NRF

= 1 if N (δ)
b > NRF, and 1

N
(δ)
b >NRF

= 0,
otherwise. The index i denotes the number of physically-
blocked UEs and q(δ)

i,j is the probability of i physically-blocked
UEs in the jth combination in (4)

q
(δ)
i,j =

∏
u∈Φi,j

p
(δ),blk
u,b

∏
u∈N (δ)

b −Φi,j

(
1−p(δ),blk

u,b

)
,

where N (δ)
b is the index set of the nearest N (δ)

b UEs in
realization δ, and Φi,j ⊂ N (δ)

b is the index set of the i
physically-blocked UEs in the jth combination in (4). The
capacity-limited blockage constraint is thus formulated by

f
(
N

(δ)
b

)
≤ ζcap, ∀b ∈ B,∀δ ∈ ∆, (5)

where ζcap is the capacity-limited blockage tolerance level.

III. BS DEPLOYMENT PROBLEM

The aimed mmWave BS deployment problem is given by

min
y,N(δ)

∑B
b=1 yb (6)

subject to: f(N
(δ)
b )≤ζcap, ∀b ∈ B,∀δ ∈ ∆, (7)

A(δ)
(
N(δ)

)
y � b, ∀δ ∈ ∆. (8)

It optimizes the BS deployment vector y and UE distribution
N(δ) to minimize the number of deployed BSs subject to the
capacity-limited and physical blockage constraints.

The monotonicity of f(N
(δ)
b ) and A(δ)

(
N(δ)

)
y with N (δ)

b

in (7) and (8), respectively, leads to the following lemma.

Lemma 1. Suppose the problem in (6) is feasible. Then, the
optimal solution (y?∆,N

(δ)?) to (6) is attained if each entry
of N(δ)? is the maximum N

(δ)
b satisfying (7), ∀b∈B, ∀δ ∈ ∆.

Proof. It is evident from (2) that as
∑B
b=1 ybΛ

(δ)
u,b(N

(δ)
b )

increases, the left-hand-side (LHS) of (2) decreases. This
implies, as N

(δ)
b grows, each entry on the LHS of (8)

decreases, making the physical blockage constraint further
feasible (relaxation). On the other hand, the LHS of (7) is an
increasing function of N (δ)

b . Thus, the maximum N
(δ)
b of (6),

which is also feasible, is determined by (7). Suppose that for
any feasible solution

(
y∆,N

(δ)
)

to (6), where some elements
in N(δ) are not their maximum possible values, we increase
these elements to their maximum and obtain another feasible
solution

(
y∆, Ñ

(δ)
)
. Then, the pair

(
y∆, Ñ

(δ)
)

achieves a
lower objective in (6) than

(
y∆,N

(δ)
)

because the constraints
in (8) become further relaxed. This verifies that the optimal y?∆
should be attained by Ñ(δ), which completes the proof.

By Lemma 1, one can find the maximum N
(δ)
b satisfying

(7), which is denoted as N̄ (δ)
b , by increasing N (δ)

b from N
(δ)
b =

NRF, ∀b ∈ {1, 2, . . . , B}, ∀δ ∈ ∆. Thus, substituting N (δ)
b =

N̄
(δ)
b , ∀b ∈ {1, 2, . . . , B}, simplifies problem (6) to

min
y

∑B
b=1 yb subject to: A(δ)y � b, ∀δ ∈ ∆. (9)

We note that the problem in (9) is a binary ILP. While ILP
has been extensively studied and there are efficient solvers
(e.g., Gurobi [14]), the significantly increased dimensions of
the constraint matrices

A=
[(
A(δ1)

)T
,
(
A(δ2)

)T
, . . . ,

(
A(δK)

)T ]T∈R∑
δ∈∆ U(δ)×B(10)

in (9) demand a prohibitively large amount of computing
power and resources, such as random access memory (RAM),
to store and process the matrix A. This issues often causes
memory outage, making it impractical to be solved at scale.
To address these challenges, we propose the scenario sampling
approach in the next section.

IV. SCENARIO SAMPLING APPROACH

We first introduce a set A(N) = {δ1, δ2, . . . , δN}, obtained
by randomly sampling N elements of ∆. Replacing ∆ in (9)
with the sampled set A(N) leads to a reduced-scale problem:

min
y

∑B
b=1 yb subject to:A(δ)y � b, ∀δ ∈ A(N). (11)

We denote by y?A(N) the optimal solution to (11). How to
determine the number of samples N has profound impact to
the effectiveness of the reduced-scale problem in (11) – the
number of samples N should be determined so that y?A(N)

is feasible to a specified majority of UE realizations in ∆.
Hence, we introduce violation probability of y?A(N):

V
(
y?A(N)

)
=Pr

(
δ∈∆, A(δ)y?A(N)�b

)
. (12)

Definition 1. We say a solution y?A(N) is robust if
V
(
y?A(N)

)
≤ ε, where ε>0 is an arbitrary small value.

Note here that a different A(N) in (11) results in a different
optimal solution y?A(N) and different violation probability
V
(
y?A(N)

)
. We let

B =
{
A(N) = (δ1, δ2, . . . , δN ) , V

(
y?A(N)

)
> ε
}

(13)

be a set consisting of {A(N)}, with which the solution y?A(N)

to (11) becomes nonrobust. Guaranteeing the robustness with
probability exceeding 1−γ requires randomly sampled A(N)s
satisfying

Pr (B) ≤ γ, (14)

where γ > 0 is an arbitrary, small constant. Obviously, as N
grows, both V

(
y?A(N)

)
in (12) and Pr (B) in (14) decrease

and, we have

V
(
y?A(N)

)
= Pr (B) = 0, if N = card(∆).

In what follows, we derive a required number of samples
N(ε, γ) in a sense that any N ≥ N(ε, γ) guarantees (14).
Derivations of such a minimum number of samples was
originally studied in [9] for convex problems. In this work,
we extend this prior work to the ILP in (11), which is non-
convex.
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A. Preliminaries
We begin by introducing a definition of a supportive UE

realization set, based on the fact that removing a δ ∈ A(N)
from A(N) either unchanges or decreases the objective func-
tion value of (11). In particular, we iteratively remove UE
realizations one by one from A(N) where the A(N) after
the ith omission is denoted as Ai(N) ⊂ A(N). Because
Ai(N) ⊂ Ai−1(N), after the ith omission, the optimal ob-
jective value of (11) either keeps unchanged or decreases.
The ith omitted UE realization is said to be supportive if the
objective function value of (11) is decreased by si > 0, and it
is unsupportive, otherwise. The omission continues untilA(N)
becomes empty, i.e., i = N .

Definition 2. In a sequential removal of realizations from
A(N), the collection of all supportive UE realizations is called
a supportive UE realization set, denoted by Asup.

Remark 1. An example of a supportive UE realization set is

Asup = {δi1 , δi2 , . . . , δiM }, im<im+1, ∀m, (15)

where δim is the imth omission that is supportive. It is
straightforward to conclude that sum(y?A(N)) =

∑M
m=1 sim ,

where sum(y?A(N)) is the summation of all entries of the
optimal solution y?A(N) to (11). Then, the cardinality of Asup,
card(Asup) = M , is no larger than B, i.e., M ≤ B, due to
the fact that sum(y?A(N))=

∑M
m=1 sim ≤ B.

Lemma 2. There exist a subset A(B) ⊂ A(N) such that, for
N > B, any optimal solution to problem (11) is also optimal
to the problem:

min
y

∑B
b=1 yb subject to: A(δ)y � b, ∀δ ∈ A(B). (16)

Proof. We first note that the ILP in (11) can have multiple
optimal solutions and any optimal solution y?A(N) to (11) is
feasible to (16). Thus, it suffices to show that there exists a set
A(B) ⊂ A(N) and the problem (16) under A(B) ⊂ A(N)
has the same optimal objective value as (11).

By Remark 1, a set A(N) with N > B can include at least
N − B unsupportive UE realizations. Omitting these unsup-
portive UE realizations from A(N) yields A(B) satisfying

Asup ⊆ A(B) ⊂ A(N). (17)

Consider the omission sequence of the elements in A(B), in
reverse order, that results in the same Asup in (17). Initially,
we start with evaluating the last supportive realization {δiM },
for which the optimal objective value of (16) increases from
zero to siM . Sequentially evaluating UE realization in A(B),
the objective value of (16) is unchanged until the δiM−1

is
added to {δiM }, yielding the objective siM−1

+siM . We repeat
the above procedures until evaluating all elements in A(B),
in which the optimal objective value of (16) is

∑M
m=1 sim .

Because the following holds sum(y?A(N)) =
∑M
m=1 sim by

Remark 1, problems (11) and (16) share the same objective
value, which completes the proof.

B. Required Number of Samples
Evidenced by Lemma 2, all optimal solutions to (11) for an

arbitrary A(N) can be enumerated by counting the optimal

solutions to (16). Motivated by this observation, we find a
lower bound N(ε, γ) of the required number of samples that
ensures the robustness of (11), which is our main result of this
section.

Theorem 1. A lower bound of the number of samples N that
guarantees a robust solution to (11) with probability exceeding
1− γ is given by

N(ε, γ)=

⌈
B +

ln γ−(K−B) ln K
K−B−B ln K

B−ln ( B
B/2)

ln(1−ε)

⌉
, (18)

where dxe is the smallest integer larger than or equal to x.

Proof. The ILP in (16) can have multiple optimal solutions.
Without loss of generality, we denote the `th optimal solution
as y?A(B),`. Then, for any arbitrary A(B), the number of
optimal solutions to (16) is limited by4

Number of optimal solutions≤
( B

sum
(
y?A(B),`

))≤( B
B/2

)
. (19)

We let a subset of B in (13) with y?A(N) =y?A(B),` be

BA(B),`=
{
A(N)=(A(B), δ1, . . . , δN−B) , V (y?A(B),`)>ε

}
.

If V (y?A(N) = y?A(B),`) ≤ ε, the BA(B),` is empty and
Pr
(
BA(B),`

)
=0. On the other hand, if V (y?A(N) =y?A(B),`)>

ε, the BA(B),` is non-empty, and because the A(N) in BA(B),`

yields an optimal solution y?A(N) =y?A(B),`, the A(δ)y?A(N) �
b holds for realizations δ1, . . . , δN−B in A(N) ∈ BA(B),`.
Thus, for the latter, the probability that an arbitrary UE
realization δ satisfies the constraint A(δ)y?A(B),` � b is upper
bounded by 1− ε, yielding

Pr
(
BA(B),`

)
≤ (1− ε)N−B , (20)

where we use the fact that {δi}N−Bi=1 are independent. It is
noteworthy to realize that any realization in B in (13) belongs
to a BA(B),l and thereby, B =

⋃
∀A(B),` BA(B),`. The Pr(B)

in (14) can be therefore upper-bounded by

Pr(B) ≤
∑
∀A(B),` Pr

(
BA(B),`

)
≤
(
K
B

)(
B
B/2

)
(1− ε)N−B ,

where
(
K
B

)
is the number of different combinations of B

elements in ∆. Setting
(
K
B

)(
B
B/2

)
(1−ε)N−B ≤ γ to guarantee

the robustness in (14), taking the natural logarithm of both
sides, and applying the Stirling’s formula [15, (1.13)] to
ln
(
K
B

)
≈ (K −B) ln K

K−B +B ln K
B reveals (18).

Seen from (18), the N(ε, γ) grows drastically as either γ
or ε decrease (i.e., become more robust). For example of K=
106, B = 164, and (ε, γ) = (0.15, 0.1), (18) gives N(ε, γ) =
9986. However, slightly lowering (ε, γ) to (0.05, 0.05) gives
N(ε, γ) = 31286. While these bounds are much smaller than
the size of ∆ (K = 106), it is still computationally challenging
as the resulting constraint matrix

A=
[
(A(δ1))T , . . . , (A(δN ))T

]T
∈R

∑
δ∈A(N) U

(δ)×B

has massive dimensions. As a remedy, a low-complexity
sequential search algorithm, based on searching for a small-

4For an odd B, the right hand side of (19) becomes
( B
B/2+1/2

)
.
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dimensional substitute for A(N), is proposed in the next
section.

V. ITERATIVE SEARCH ALGORITHM FOR BS DEPLOYMENT

In this section, we devise a low-complexity iterative algo-
rithm solving the problem in (11) with N = N(ε, γ). The
algorithm is based on iteratively solving the following problem

min
y

∑B
b=1 yb s.t.: A(δ)y � b, ∀δ ∈ C, (21)

where the size of the set C is increasing with the iteration.
Specifically, it is initialized with C={δ1}, where δ1∈A(N)

in (11), and then recursively adds a δ∈A(N) into C to search
for an optimal solution to problem (21). In the first iteration,
we obtain a solution y

?,(1)
C with C = {δ1}. If there exists

a δ2 ∈ A(N) satisfying A(δ2)y
?,(1)
C � b, C is updated to

C = C ∪ {δ2}. To efficiently find the solution y
?,(2)
C with a

reduced complexity, we leverage the previous solution y
?,(1)
C

to obtain a feasible solution to problem (21) with the updated
C. This can be simply done by sequentially adding new BSs
to the existing y

?,(1)
C to cover the UEs in δ2 that violate the

physical blockage constraint in (2). Taking the found feasible
solution as an initial condition of a numerical ILP solver (e.g.,
Gurobi), the problem (21) at the 2nd iteration can be efficiently
and optimally solved, yielding y

?,(2)
C . The above procedure is

repeated until the incumbent y
?,(t)
C , where t is the iteration

number, is feasible to all elements in A(N) in (11). Due to
the fact that C⊂A(N), the y

?,(t)
C is then the optimal solution

to problem (11). The pseudo code of the details in the proposed
algorithm is shown in Algorithm 1.

Algorithm 1 Iterative Search Algorithm

1: Initialize: C = {δ1}, δ1 ∈ A(N), iteration index t = 1.
2: Solve problem (21) to obtain a solution y

?,(t)
C .

3: while 1 do
4: Find a δt+1 ∈ A(N) satisfying A(δt+1)y

?,(t)
C � b.

5: if δt+1 exists then
6: Update C = C

⋃
{δt+1}.

7: Find a feasible solution to (21) with the updated C,
take it as an initialization to solve (21), and obtain y

?,(t+1)
C

8: Update t = t+ 1.
9: else

10: Break
11: end if
12: end while
13: return optimal solution y

?,(t)
C .

VI. SIMULATION STUDIES

We evaluate the proposed mmWave BS deployment tech-
nique in the urban geometry in Fig. 1, where the length and
width of buildings and the street width are set to lbld =100 m,
wbld,1 = 100 m, wbld,2 = 40 m, and wst = 20 m, respectively.
The total number of candidate BS locations is B = 164.
There are NRF = 8 RF chains per BS. According to [12,
Corollary 1.1], α and β in (1) are set to be 0.007 and 0.0037,

respectively. We set the maximum tolerance levels for the
physical and capacity-limited blockage rate to ζphy = 0.05
in (2) and ζcap = 0.02 in (5). The urban link budget model
in 28GHz bands with transmit power 30 dBm is considered,
which gives the maximum LoS link distance 200 m [13],
i.e., ru,b ≤ 200 m in (1). The UE realization set ∆ with
card(∆)=K=106 is drawn following different homogeneous
PPPs in different outdoor street regions as shown in Fig. 2: the
active UEs are drawn in the regions 1 − 3 with the densities
2 × 10−4, 5 × 10−4, and 8 × 10−4 per square meter. In this
setting, each UE realization has on average 35 active UEs.

TABLE I: Statistics of Algorithm 1.

(ε, γ) (0.15, 0.10) (0.05, 0.05)

N=N(ε, γ) 9986 31286
sum(y?A(N)) 29 30

CPU running time (seconds) 1948 5552
Iteration number 118 158

V(y?A(N)) 0.071 0.022

For each (ε, γ) in TABLE I, we set N=N(ε, γ), based on
(18), and sample each A(N) to formulate problem (11), which
is optimally solved by Algorithm 1. For both cases in Table I,
the obtained violation probability satisfies V(y?A(N)) ≤ ε,
verifying the proposed scenario sampling theory. It is found
in TABLE I that Algorithm 1 with (0.05, 0.05), for instance,
converges after 158 iterations and terminates within 5552 sec-
onds of running time. In contrast, instead of using Algorithm 1,
directly solving problem (11) for N=31286 leads to memory
outage. This is because, with N = 31286 and on average
35 UEs in each UE realization, the dimensions of constraint
matrix A for problem (11) become around (35×31286)×164
(B = 164). This is much larger than (35 × 158) × 164 for
Algorithm 1, i.e., at the 158th iteration. The resulting 30 BSs
for (ε, γ) = (0.05, 0.05) are displayed in Fig. 2. Because the
region 3 in Fig. 2 has the largest UE density, BSs are mainly
deployed at the boundary of each region to concurrently cover
the region 3 as well as regions 1 and 2.

In Fig. 3, we visualize the coverage of the deployed BSs in
terms of the LoS pathloss measured at 28 GHz [16], which
is given by Pathloss = 61.4 + 20log10(r) dB, where r is link
distance in meter. For visualization purposes, we partition the
streets in Fig. 2 into numerous small square grids with side-
length 5 meters. Since a grid can be LoS-visible to multiple
BSs, the pathloss of a grid is set to be the minimum pathloss to
its LoS-visible BSs in Fig. 2. Seen from Fig. 3, the maximum
pathloss of the deployed BSs occurs at the boundary of each
cell with the value around 100 dB. This attenuation can be
readily compensated for by using the directional transmission
in mmWave communications [17].

Fig. 4 displays the cumulative distribution function (CDF)
of the violation probability V(y?A(N)) in (12) of the proposed
approach for (ε, γ) = (0.15, 0.1) in Table I. In Fig. 4, the
percentage of violation probability larger than ε = 0.15 is
0.04<γ= 0.1, validating the proposed sampling theory. The
gap between 0.04 and γ = 0.1 comes from the fact that the
derived bound N(ε, γ) in (18) is rather loose. For comparison,
we consider another minimum-cost BS deployment technique
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Outdoor street region 3

Outdoor street region 1

Outdoor street region 2

4(2 10  per square meter)

4(5 10  per square meter)

4(8 10  per square meter)

Fig. 2: Optimally deployed 30 BSs under (ε, γ)=(0.05, 0.05).

Pathloss (dB)

Fig. 3: Pathloss distribution of the BS deployment result in
Fig. 2.

[7] as our benchmark, that is obtained by replacing the
constraints in (9) with the d-macro-diversity constraints, i.e.,
each outdoor location on the streets is covered by at least
d BSs. When d = 4, the benchmark deploys 31 BSs with
violation probability 17%, which needs slightly more BSs but
has much worse UE outage performance than the proposed
scheme. This is because the optimal solution of the benchmark
is independent of the UE realization. The key advantage of the
proposed scenario sampling is in its capability of providing UE
outage and robustness guarantee, parameterized by (ε, γ) and
N(ε, γ).

VII. CONCLUSIONS

We proposed a UE outage-guaranteed mmWave BS deploy-
ment technique in urban street scenarios, where the random

0 0.05 0.1 0.15 0.2
Violation probability

0

0.2

0.4

0.6

0.8

0.9

1

C
D

F

Fig. 4: CDF of violation probability in (12) for (ε, γ) =
(0.15, 0.1).

UE distribution is characterized by its numerous measured
realizations. To make the formulated large-scale problem solv-
able, we developed a scenario sampling approach to obtain
a small-scale BS deployment problem and optimally solved
the problem by proposing an iterative algorithm. The analysis
and simulations showed that our proposed scenario sampling
can solve the optimization problem with low complexity and
achieve the guaranteed UE outage and robustness.
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