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Abstract Although deterministic compartmental models are
useful for predicting the general trend of a disease’s spread,
they are unable to describe the random daily fluctuations in
the number of new infections and hospitalizations, which
is crucial in determining the necessary healthcare capacity
for a specified level of risk. In this paper, we propose a
stochastic SEIHR (sSEIHR) model to describe such random
fluctuations and provide sufficient conditions for stochastic
stability of the disease-free equilibrium, based on the basic
reproduction number that we estimated. Our extensive nu-
merical results demonstrate strong threshold behavior near
the estimated basic reproduction number, suggesting that the
necessary conditions for stochastic stability are close to the
sufficient conditions derived. Furthermore, we found that in-
creasing the noise level slightly reduces the final proportion
of infected individuals. In addition, we analyze COVID-19
data from various regions worldwide and demonstrate that
by changing only a few parameter values, our sSEIHR model
can accurately describe both the general trend and the ran-
dom fluctuations in the number of daily new cases in each
region, allowing governments and hospitals to make more ac-
curate caseload predictions using fewer compartments and
parameters than other comparable stochastic compartmental
models.
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1 Introduction

Over the past year, the Coronavirus Disease 2019 (COVID-
19) pandemic has placed enormous stress on healthcare sys-
tems worldwide. The severity of the pandemic, given the
fact that it takes a long time to develop effective vaccines,
has imposed tremendous pressures and responsibilities onto
the healthcare systems in all countries and regions, especially
those with limited medical resources such as available staff,
equipment and facilities. In particular, differing from most
infectious diseases found to date, COVID-19 is especially vi-
olent, aggressive and fast-spreading, and even among those
deemed “recovered” from the disease, there are many for
which adverse effects have lingered for months after the ini-
tial symptoms [1]. Meanwhile, failure to meet the demand for
hospital resources can lead to resource saturation and a grow-
ing backlog of infectious patients requiring hospitalization,
in turn increasing the total transmission rate due to uniso-
lated infectious individuals and causing an adverse feedback
loop.

1.1 Related studies on COVID-19

Due to an incomplete knowledge of COVID-19 during the
early stages, scientists used existing models to forecast the
pandemic and made inaccurate predictions. Fortunately, based
on historical data, people can still make relatively accurate
predictions by applying some kinds of model-free meth-
ods [2,3]. However, to generate policy-relevant insights into
the nonpharmaceutical interventions, people still need to un-
derstand the physical principles of the pandemic. Since the
clinical data of COVID-19 has been carefully studied [4],
scientists now can make more accurate epidemic predictions
using corresponding mathematical models [5,6]. Ref. [7]
presents the details of three regional-scale models for pre-
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dicting and estimating the trend of the pandemic. We also
introduced a compartmental model and made an accurate
trend forecasting on Hong Kong’s COVID-19 pandemic [8].

To predict the number of cases in a region and the corre-
sponding healthcare demands, epidemiological models are
very useful and have been constructed to describe the spread
of diseases like COVID-19. In particular, compartmental
models, which track the evolution of the number or pro-
portion of the individuals in each disease state (susceptible,
infected, removed, etc.) using a system of ordinary or stochas-
tic differential equations, have been developed for nearly a
century and have proved effective and useful [9,10].

1.2 Contributions of this paper

In this paper, we develop a stochastic version of the modi-
fied SEIHR compartmental model established in [8], which
allows one to accurately model the random fluctuations in
the number of daily new cases in the COVID-19 epidemic
process. We prove sufficient conditions on the parameters
of the new stochastic SEIHR (sSEIHR) model, such that the
disease-free equilibrium (DFE) of the system is stochastically
stable, based on an estimated basic reproduction number. Our
extensive numerical results demonstrate strong threshold be-
havior near the estimated basic reproduction number, sug-
gesting that the necessary conditions for stochastic stability
are actually close to the sufficient conditions established.

The proposed sSEIHR model is then fitted to public
COVID-19 data from various regions worldwide, and it is
demonstrated numerically that the model can accurately de-
scribe both the general trend and the random fluctuation in
the number of daily new cases in each region. The ability
of our model to accommodate a wide range of geograph-
ical regions and the variations in their various COVID-19
outcomes with minimal adjustments to model parameters
shows the robustness of our model. This can offer sugges-
tions to governments and hospitals for their making more
accurate caseload predictions compared to using a determin-
istic model.

Recall that it has been demonstrated in [8] that deter-
ministic models using fewer compartments than the SEIHR
model, e.g. SIR or SEIR, fail to accurately describe the evo-
lution of COVID-19. Therefore, except potentially by means
of more complex compartment interactions, both the SEIHR
model developed in [8] and the new sSEIHR model devel-
oped here are the smallest compartmental models that can
accurately describe the number of active COVID-19 cases in
a region of concern. The model’s performance suggests that
it captures key hidden dynamical features of general epi-
demics in general environments and deserves independent
investigation.

The true significance of this work is the generality of
the proposed model with few parameters. In particular, it is

surprising to find that the model fits very well to a number
of regions/countries worldwide with only a few parameter
value changes, under the consideration of the heterogeneity
of economic and social features, medical resources, quar-
antine measures, mitigation strategies and healthcare sys-
tems’ characteristics in different regions/countries. In ad-
dition, within each region, changes in non-pharmaceutical
intervention (NPI) strength over time can be expressed as a
single parameter, while all other parameters remaining con-
stant. The robustness and accuracy observed make this model
valuable for real applications.

2 Background and related work

Notation For vectors x = [G1, · · · , G=]
) ∈ R=, let �= de-

note the set {x ∈ R= :
∑

8 G8 = 1} and �∗
= denote the set

{x ∈ [0, 1]= :
∑

8 G8 = 1}.

2.1 The SIR model

A classical approach for epidemiological modeling is to use
compartmental models [9]. One such compartmental model
is the SIR model, in which individuals are classified as sus-
ceptible (S), infected (I), or removed (R) (either recovered
or deceased). The number of individuals in each state, i.e.
compartment, can be described by a system of ordinary dif-
ferential equations.

Let S(C), I(C), and R(C) denote the numbers of suscep-
tible, infected, and removed individuals, respectively, and let
# be the population size, at time C ≥ 0. The system can then
be described by
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where x(C) ∈ �∗
3, with � (0) > 0 and {V, W, `} > 0. For

this model, the basic reproduction number '0 = V/(W + `)

is important, which can be thought of as the number of ex-
pected cases directly generated by an infected individual, if
all other individuals are susceptible to infection. The epi-
demic is expected to persist if '0 > 1, but will die out if
'0 < 1.

It was proved [11] that, for x(C) ∈ �∗
3, '0 uniquely de-

termines whether the epidemic through system (1) will die
out (� (∞) = 0) or persist (� (∞) > 0), independent of the
nonzero initial conditions. This threshold behavior demon-
strates the power and usefulness of compartmental modeling
in the study of epidemic spreading.
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2.2 Other deterministic models

Numerical results shown in [8] demonstrate that the SIR
model is inadequate for describing COVID-19 dynamics.
Reasons include:

– Like some other diseases, COVID-19 has a long latent
period. The SIR model does not take this into account,
however. As an improvement, SEIR models have been
developed to model the effect of latent periods, where E
represents an additional “exposed” compartment [12].

– Ideally, symptomatic individuals are detected and treated
in hospitals, wherein they cannot infect the general com-
munity. The SIR model does not take this into account,
either. As an improvement, the SEIQR or SEIHR model
creates an additional compartment for such individuals,
with Q and H representing “quarantined” and “hospital-
ized”, respectively [13].

– The COVID-19 pandemic has a large number of asymp-
tomatic infections. The SIR model certainly does not take
this into account. Therefore, some other models seek to
divide infected individuals into symptomatic and asymp-
tomatic compartments. Alternatively, the E compartment
in the SEIR model can be made infectious [8].

To account for the above issues simultaneously, in [14] a
nine-compartment model is constructed, and the model is
referred to as \-SEIHRD, in which there are two I, H, and R
compartments, respectively. However, while the \-SEIHRD
model is useful for detailed study of COVID-19 dynamics,
it may not be desirable to use such a complicated model
for more effective parameter fitting, especially if only the
total number of active cases is required to be estimated. This
problem is resolved in [8], with a model having only five
compartments:
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(2)

with x(C) ∈ �∗
5, {U, [, l� , l� , l� } > 0, and � (0) + � (0) >

0, where (, � , � , �, and ' denote the proportions of sus-
ceptible, exposed, infectious, hospitalized, and removed in-
dividuals, respectively. Note that in our model, “infectious”
denotes symptomatic infectious individuals, whereas “ex-
posed” includes both non-infectious exposed individuals and
asymptomatic infectious individuals. The parameter [ allows
for asymptomatic transmissions, a key feature of COVID-19
propagation. The meaning of each parameter in (2) is given
in Table 1. Further interpretation about the compartments
can be found in [8].

The basic reproduction number of system (2) is

'0 =
[

V + X�
+

UV

(V + X� ) (W + X� )
.

Table 1 Meaning of parameters in the SEIHR model (2)

Parameter Definition

[ Transmission rate of exposed individuals
U Transmission rate of (symptomatic) infected

individuals
V Reciprocal of the mean latent period, i.e. the

rate at which exposed individuals become
symptomatic

W Rate at which infected individuals are hospi-
talized

l� Rate of recovery of non-hospitalized exposed
individuals

l� Rate of recovery of non-hospitalized infected
individuals

l� Rate of recovery of hospitalized individuals
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Fig. 1 Graphical depiction of the dSEIHR model.

Hereafter, the term “deterministic SEIHR model” or
“dSEIHR model” refers to the one described by system (2).
A diagram showing the transitions of the dSEIHR model (2)
is given in Fig. 1. Note that (2) differs from the traditional
SEIHR model in that the exposed individuals may also be
infectious.

To further improve the model ability in prediction, es-
pecially over a long time period, a factor ?(C) ∈ [0, 1] was
introduced in [8] to denote the strength of various interven-
tions (a smaller ?(C) implies a stronger intervention), leading
to
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, (3)

which is called the ?-dSEIHR model.
For fitting the ?-dSEIHR model (3) to real COVID-19

data, piecewise constant functions were used in [8] to approx-
imate ? (C). This matches the discrete nature of governmental
and healthcare policy, where occasional policy changes will
cause immediate changes in ? (C).

2.3 Stochastic epidemic models

While the deterministic models described in Sections 2.1
and 2.2 have proven useful for estimating the cumulative
number of infections over time, these do not capture the
stochastic nature of disease propagation. This can lead to
healthcare dimensioning and resource allocation problems if
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the actual number of daily new cases is significantly different
from the predicted value, which in turn can lead to resource
saturation and a growing backlog of infectious patients re-
quiring hospitalization, increasing the total transmission rate
due to unisolated infectious individuals and causing an ad-
verse feedback loop.

To describe random fluctuations, stochastic compartmen-
tal models are commonly used, where the system in Sec-
tion 2.2 is modified to be a drift-diffusion process of the
form

dx = 5 (x, C) dC + 6 (x, C) d, (C) , (4)

where 5 and 6 are vector-valued functions and, (C) denotes
a Wiener process, i.e. that derived by integrating Gaussian
white noise.

Examples of stochastic compartmental models in the
literature include [15] and [16], which are the stochastic
analogs of the deterministic SIR and \-SEIHRD models de-
scribed in Section 2.2, respectively. Notably, in [15,16] it
is assumed that the noise in these two stochastic models is
attributable to a single state transition, i.e. S→I in [15] and
S→E in [16]. The same assumption will be adopted for the
new sSEIHR model.

3 Stochastic SEIHR model with Gaussian white noise

3.1 Model formulation

While the deterministic SEIHR model (2) addresses the
COVID-19 phenomena listed in Section 2.2, it cannot model
the random fluctuations in the number of daily new cases.
To address this issue, we therefore convert system (2) to a
stochastic SEIHR (sSEIHR) model by introducing an addi-
tive random component to the I→H transition, thus obtaining
the following drift-diffusion process:

dx = d
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with x(C) ∈ �5 and � (0) + � (0) > 0, where , (C) de-
notes a Wiener process obtained from integrating Gaussian-
distributed white noise. Here, in this model, only the two
terms I and H are considered having random fluctuations
due, for example, to uncertain hospital management.
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Fig. 2 Graphical depiction of the sSEIHR model (5), where b (C) de-
notes Gaussian white noise.

A graphical depiction of system (5) is shown in Fig. 2,
where b (C) denotes Gaussian white noise.

3.2 Stability results

It is easy to see that (5) has a disease-free equilibrium
DFE = (1, 0, 0, 0, 0). Regarding the system stability at this
equilibrium, we have the following main result.

Theorem 1 If

'∗
0 =

[

V + X�
+

UV

(V + l� )
(
W + l� +

i2

2

) < 1 ,

then the DFE (1, 0, 0, 0, 0) of system (5) is stochastically

stable, in the sense defined in Appendix A.

For a proof of Theorem 1, see Appendix B.
Note that in the absence of noise, i.e. i = 0, '∗

0 be-
comes the basic reproduction number of the corresponding
deterministic system (2).

3.3 Numerical results

Consider a system with a total population of # = 106, where
S, E, I, H , and R denote the numbers of susceptible, ex-
posed, infected, hospitalized and removed individuals, re-
spectively, with ( = (/# , � = E/# , � = I/# , � = H/# ,
and ' = R/# , which evolve according to the stochastic dif-
ferential equation (5).

The impact of the noise term i� (C) d, (C) on the epi-
demic process is examined, using the Euler–Maruyama method
with initial state S = # −1, E = 1, and I = H =R = 0, with
the system parameters V = 0.14, W = 0.7, and l� = l� =

l� = 0.1.
Figure 3 shows the simulated value of 1 − ((∞) =

1 − limC→∞ ((C) and '∗
0, for various values of U = Y and

i. It shows that the value of 1 − ((∞) undergoes a sharp
transition in the vicinity of the line '∗

0 = 1, suggesting that
the necessary conditions for stochastic stability are close to
the sufficient conditions provided in Theorem 1. Further-
more, Figure 3 demonstrates that, when the noise parameter
i increases, the final value 1 − ((∞) slightly decreases.

Figure 4 shows the impact of the noise parameter i on
the epidemic process. Note that for large values of i, the
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Fig. 3 Comparison between the simulated value of 1 − ( (∞) and '∗
0

of the sSEIHR model (5) for the initial values and parameter settings
defined in Section 3.3.

probability Pr{W +ib (C) < 0} becomes significant, such that
patients can return to the state I from state H and even cause
� (C) to become negative, as can be seen clearly from Fig-
ure 4a. Therefore, smaller values of i are generally more
suitable for modeling the random fluctuations at the hos-
pitalization rate d� (C) of the system. Furthermore, as the
primarily concern is to estimate some rough probabilistic
bounds on the number of daily new cases, the simulation
with Gaussian white noise is sufficient.

3.4 Real-data analysis

Analogous to our modification of the dSEIHR model to pro-
duce the ?-dSEIHR model, the sSEIHR model is modified
by introducing a scaling factor ?(C) to denote the strength of
various anti-epidemic interventions:

dx = d
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Fig. 4 Impact of the noise intensity i on the epidemic process de-
scribed by the sSEIHR model (5).
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This will be referred to as the ?-sSEIHR model.

3.4.1 Hong Kong

Now, consider the number of daily new cases Δ= = S(=) −

S(= + 1) of COVID–19 in Hong Kong, between 25 June
and 8 Oct 2019. This is compared to the expected values Δ∗

=

obtained from the ?-dSEIHR model (3).
The fitted parameters of the ?-dSEIHR model are given

in Table 2, wherel� = l� = l� = l and ?(C) = ?= for C in
each period C= shown, with ?(C) = 1 for C prior to C1. Note that
this dataset corresponds toH(C) and H is the only observable
compartment in the model. Note that the parameters # , V,
W, l� = l� = l� = l, and C= (= = 1, 2, 3, 4) are fixed
parameters, so only [, U, and ?= (= = 1, 2, 3, 4) are fitted.

Since the noise term i� (C)d, (C) in the ?-sSEIHR model
is proportional to � (C), we are interested in the values A= =
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Table 2 Parameter setting for the Hong Kong dataset

Parameter Value Parameter Value

# 7 500 700 ?1 0.635
i 0.03 C1 4/7 ~ 23/7
[ 0.48 ?2 0.345
U 0.5 C2 24/7 ~ 13/8
V 0.14 ?3 0.235
W 0.7 C3 14/8 ~ 27/8
l 0.1 ?4 0.4445

C4 28/8 ~ 8/10

2020/6/25 2020/7/16 2020/8/6 2020/8/27 2020/9/17
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Date

(a) Daily new cases

(b) Distribution of A= = Δ=/Δ
∗
=

Fig. 5 Ratios A= and the estimated (1 ± f)-range of fluctuations in
the number of daily new COVID-19 cases in Hong Kong, where C = 0
refers to 25 June 2020.

Δ=/Δ
∗
=. As shown in Figure 5b, the values A= roughly follow

a left-truncated Gaussian distribution with mean ` = 0.97
and standard deviation f = 0.28. Figure 5a shows Δ=, Δ∗

=,
and Δ

∗
= (1 ± f) for the Hong Kong dataset.

Next, using the same fitted parameters as that in the ?-
dSEIHR model, the task is to find a value for i such that
d= = Δ

∗∗
= /Δ∗

= has an standard deviation of f, where Δ
∗∗
=

denotes the mean value of S(=) − S(= + 1) obtained from
1000 sample paths of the ?-sSEIHR model. From the data,
the result is found to be i = 0.03.

Figure 6 shows the cumulative and daily numbers of
COVID-19 cases in Hong Kong between 25 June and 8 Oct
2019, the ?-dSEIHR model estimate, and the (2.5,97.5)-
percentile range of sample paths from the corresponding ?-
sSEIHR model. As shown in Figure 6b, this range (colored
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Fig. 6 Actual and predicted numbers of COVID-19 cases in Hong
Kong, as estimated using the ?-sSEIHR model (5).

gray) closely matches the Δ∗
= (1±f) envelope obtained from

the ?-dSEIHR model for all time points.

3.4.2 Other regions worldwide

In simulation, the process described in Section 3.4.1 is re-
peated for four global regions, namely Germany, Spain,
South Africa, and the state of New York, using data obtained
from [17]. The parameter settings of the fitted ?-dSEIHR and
?-sSEIHR models are given in Table 3. Again, the values of
A= roughly follow a left-truncated Gaussian distribution, with
standard deviations f ranging from 0.24 to 0.33.

Figure 7 shows the distributions of A= for each of the
four global regions, as well and the mean ` and standard
deviation f for each distribution.

Figure 8 shows the cumulative and daily numbers of
COVID-19 cases in each global region during the specified
time periods, the corresponding ?-dSEIHR estimates, and
the (2.5,97.5)-percentile ranges of sample paths from the
corresponding ?-sSEIHR model. It can be seen that these
ranges, colored gray, closely match the Δ∗

= (1 ± f) envelope
obtained from the ?-dSEIHR model for the number of daily
new cases (right column) in each region. This result not only
demonstrates the usefulness of the ?-sSEIHR model, but also
reveals that the noise profiles in different regions may have
a similar nature.
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(a) Germany, ` = 1.01, f = 0.33 (b) Spain, ` = 0.98, f = 0.30

(c) South Africa, ` = 1.07, f = 0.31 (d) New York State, ` = 0.98, f = 0.24

Fig. 7 Distributions of A= in four global regions.

Table 3 Parameter settings for four global regions, with V = 0.14,
W = 0.7, and l� = l� = l� = 0.1 for all regions.

Germany Spain South Africa New York

# 83 783 945 47 431 256 59 622 350 19 745 289
i 0.035 0.035 0.03 0.03
[ 0.338 0.57 0.47 0.638
U 0.46 0.6 0.54 0.7

?1 0.476 0.635 0.47 0.87
C1 27/3 ~ 25/5 13/3 ~ 27/3 22/3 ~ 16/4 13/3 ~ 21/3
?2 0.64 0.345 0.555 0.35
C2 26/5 ~ 8/7 28/3 ~ 12/4 17/4 ~ 12/7 22/3 ~ 14/4
?3 — 0.235 0.378 0.253
C3 — 13/4 ~ 10/5 13/7 ~ 13/9 15/4 ~ 14/5
?4 — 0.4445 0.47 0.31
C4 — 11/5 ~ 31/5 14/9 ~ 12/10 15/5 ~ 6/7

3.5 Discussion

Section 3.2 shows the theoretical significance of the sSEIHR
model. By studying the stability of the disease-free equi-
librium, an estimated basic reproduction number '∗

0 was
obtained, which helped understand the critical condition of
the COVID-19 outbreak. Section 3.3 confirms the numerical
results in accordance with the theoretical results. The numer-
ical results also show the critical value of the noise intensity
where the pandemic happened. Most importantly, Section

3.4 shows the accuracy of our sSEIHR model on COVID-19
pandemic predictions in different irrelevant regions.

The key to the success achieved on COVID-19 pandemic
forecasting/fitting can be appreciated by as follows. First,
our deterministic SEIHR model captures the critical features
of the COVID-19 transmission process, such as the disease
transmission during the latent period, the hidden infections,
and the isolation policy. Then, using only a few parameters,
we successfully developed a deterministic model that ac-
curately described the COVID-19 pandemic trend. In order
to predict the daily caseload, the corresponding stochastic
SEIHR model only needs one more parameter than the de-
terministic SEIHR model. Surprisingly, the real data analysis
shows that the noise intensities in different regions are very
close to each other. In the end, we used one parameter to
describe the policy changes during the pandemic. Based on
the timing of local intervention in each region, we changed
the parameter accordingly and obtain an accurate prediction
of the trend of the COVID-19 pandemic. All of this proves
that our model has excellent performance in COVID-19 pan-
demic prediction.

4 Concluding remarks

In this paper, we developed a model described by a system
of stochastic differential equations to describe a stochastic
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Fig. 8 Real COVID-19 data and ?-sSEIHR predicted values for four global regions.
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SEIHR (sSEIHR) process. We proved that the disease-free
equilibrium is stochastically stable when the estimated basic
reproduction number '∗

0 is less than one. Extensive numer-
ical results demonstrate strong threshold behavior near the
estimated basic reproduction number, suggesting that the
necessary conditions for stochastic stability are close to the
sufficient conditions given in Theorem 1. We also included
a factor ?(C), denoting the strength of various anti-epidemic
interventions, to establish a ?-sSEIHR model, and used this
model to fit the daily number of hospitalized cases in Hong
Kong and other four global regions worldwide. We find that
the five regions have a very similar noise profile, with an
estimated f value from 0.24 to 0.33 and a fitted i parameter
from 0.03 to 0.035 for the ?-sSEIHR model.

As the new ?-sSEIHR model not only predicts the mean
number of daily new cases of COVID-19 in a region, but also
specifies a possible range of values, it can provide healthcare
practitioners with a clearer picture of potential demands for
medical resources due to epidemics. Furthermore, the simi-
larity of the noise parameter i for different regions suggests
that the information about a disease learned from one region
can be used for other regions regarding management poli-
cies, even at a less advanced stage of an epidemic, as long
as the transmission parameters [ and U in the model can be
estimated with a reasonable accuracy.

A Concepts of stochastic stability

Without loss of generality, consider a stochastic system with a zero-
vector equilibrium state, i.e. x4 = [0 . . . 0]T, which is referred to as
the trivial solution.

Let |x | denote the Euclidean norm of a vector x = x (C) for C ≥ 0.
Assume that there exists a unique solution to the stochastic system, i.e.
x (C) exists and is unique, for any initial value x0 and Wiener process
, (C) .

Recall some definitions and lemmas from the literature, e.g. [18,
19].

Definition 1 The trivial solution of a stochastic system is said to be
stochastically stable, or stable in probability, if for all Y > 0 and
A > 0, there exists a X > 0 such that |x (C) | > A for all C > 0 (i.e.
x (C) remains within Euclidean distance A of the trivial solution) with
probability 1 − Y. Otherwise, the system is said to be stochastically

unstable.

Definition 2 Let R+ = {G : G ≥ 0}, and let �2,1 (R+ × R+;R) denote
the set of functions + (x, C) ∈ (R+ × R+) → R that are twice differ-
entiable in x ∈ R3 and once in C ∈ R+. Then, for the stochastic system
(4) and some function + ∈ �2,1 (R+ × R+;R), define

!+ (x, C) =
m+

mC
+ 5 T (∇x+ ) +

1

2
Tr

[
6T (Hx+ ) 6

]
, (7)

where ∇x+ and Hx+ are the gradient and Hessian matrix of + with
respect to x, respectively.

Lemma 1 If there exists a positive-definite function + (x, C) ∈ �2,1

(R+× [C0,∞);R) such that !+ (x, C) ≤ 0 for all (x, C) ∈ R+× [C0,∞) ,

then the trivial solution to system (4) is stochastically stable.

The method of proving the stability of a stochastic system using+ (x, C)

and !+ (x, C) is known as Lyapunov’s second method [18].

B Proof of Theorem 1

Since d( (C) , d� (C) , and d� (C) do not depend on � (C) or ' (C) , the
compartments H and R can be decomposed from the system, yielding

dx = d



(

�

�


=



− [[� + U� ] (

[[� + U� ] ( − (V + l� ) �

V� − (W + l� ) �


dC +



0
0

−i�


d, (C) .

Substituting u = [D1 , D2 , D3 ]
T
= [1 − (, �, � ]T, one obtains

du =



− [[D2 + UD3 ] (1 − D1)

[[D2 + UD3 ] (1 − D1) − (V + l� ) D2

VD2 − (W + l� ) D3


dC +



0
0

−iD3


d, (C)

(8)

with disease-free equilibrium DFEu = (0, 0, 0) . It suffices to show that
DFEu is stochastically stable.

Linearizing (8) around the point DFEu (by removing the D1D2 and
D1D3 terms), one obtains

du =



− ([D2 + UD3)

([D2 + UD3) − (V + l� ) D2

VD2 − (W + l� ) D3


dC +



0
0

−iD3


d, (C) . (9)

It then suffices to prove the following:

Proposition 1 The trivial solution to (9) is stochastically stable.

Proof Lyapunov’s second method [18] will be applied. Select a Lya-
punov function of the form

+ (u) = 2D1 + D2 +&D2
3 ,

where & > 0. Using the differential operator ! defined in (7), one has

!+ (u, C) =
m+

mC
+ 5 T (∇u+ ) +

1

2
Tr

[
6T (Hu+ ) 6

]

= 0 +



− ([D2 + UD3)

([D2 + UD3) − (V + l� ) D2

VD2 − (W + l� ) D3



T 

2
1

2&D3



+
1

2

[
0 0 −iD3

]


0 0 0
0 0 0
0 0 2&





0
0

−iD3


= − ([D2 + UD3) − (V + l� ) D2

+ 2&VD2D3 − 2& (W + l� ) D
2
3 +&i2D2

3

≤ − ([D2 + UD3) D3 − (V + l� ) D2D3

+ 2&VD2D3 − 2& (W + l� ) D
2
3 +&i2D2

3

= [−[ − V − l� + 2&V ] D2D3

−

[
U + 2&

(
W + l� −

i2

2

)]
D2

3

≤ [[ − V − l� + 2&V ] D2D3

−

[
U − 2&

(
W + l� +

i2

2

)]
D2

3

Next, choose

& =
U

2
(
W + l� +

i2

2

)

such that

!+ (u, C) ≤



[ − (V + l� ) +
UV

(
W + l� +

i2

2

)



D2D3



10 Ruiwu Niu et al.

= (V + l� )
(
1 − '∗

0

)
D2D3 ,

where

'∗
0 =

[

(V + l� )
+

UV

(V + l� )
(
W + l� +

i2

2

) .

Thus, for '∗
0 < 1, + (u) is positive definite and !+ (u, C) ≤ 0. By

Lemma 1, the disease-free equilibrium (0, 0, 0) of system (9) is stochas-
tically stable. ⊓⊔
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