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Abstract—The well-known Engset model has been widely used
and studied. In this paper, we propose a new state dependent
approximation for a special case of the generalized Engset model
that considers packet/burst dumping. We also correct here several
errors in [7] which considered the same model. Numerical results
over a wide range of parameters demonstrate the superiority of
the new approximation over previous ones.

Index Terms—Blocking probability, Engset formula, OBS,
bufferless optical networks.

I. INTRODUCTION

IN this paper, we consider one of Cohen’s generalizations
of the Engset model [2], [4] in which the time before

a source generates a new call is dependent on the success
of the previous call. The concept of a call, which was
relevant to telephony, was often used in classical work on the
Engset model. In the context of modern networking research
it represents packets or bursts. In this paper, we will use calls,
packets or bursts, interchangeably. In our modeling, they all
refer to jobs offered to a service system.

This generalization is applicable to optical burst (or packet)
switching [1], [3], [8], in which a blocked burst is dumped,
and until the dumping is completed, a source cannot generate a
new burst. The salient feature that distinguishes such a special
case from the traditional Engset model is that a source must
completely transmit (i.e. dump) a blocked burst before a new
burst can be generated. In contrast, the Engset model assumes
a new burst can be generated immediately after a blocking
event which results in blocking probability overestimation.
Therefore, it was proposed in [5], [6], [7] to increase the
source’s off-time to capture the burst dumping effect.

In this paper, for a given source, the mean effective off-
time (MEOT) refers to the mean time period between the end
of transmission of a successful burst and the commencement
of transmission of the next successful one. This period may
incorporate the dumping of blocked bursts. We consider here
MEOT for each source to be dependent on the number of
busy channels, and demonstrate that this leads to an approxi-
mation which is consistently more accurate than all previous
proposals. In addition, we correct several errors made in [7].
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II. THE MODEL

We consider the loss model of [7], [8] involving 𝑁 sources
that offer calls/packets/bursts to 𝐾 channels/servers. Both 𝑁
and 𝐾 are assumed to be finite integers. We assume the case
𝑁 > 𝐾 , but we do not consider the case 𝑁 >> 𝐾 , which
degenerates to the Erlang system as 𝑁 approaches infinity. On
the other hand, if 𝑁 ≤ 𝐾 , the call-congestion is equal to zero.
Neither the case 𝑁 >> 𝐾 , nor the case 𝑁 ≤ 𝐾 , is of interest
to us here. We assume that the packet transmission or dumping
times are independent and exponentially distributed with mean
1/𝜇. At any point in time, any of the 𝑁 sources is either
active, idle or dumping. During an active period, a source
will transmit a successful packet. A source cannot generate a
new packet during either an active or a dumping period. The
end of an active or dumping period is always a beginning of
an idle period. The length of an idle period is assumed to be
independent and exponentially distributed with mean 1/𝜆. As
soon as an idle period ends, the source generates a new packet.
The new packet is blocked if all 𝐾 channels are already busy,
which results in a dumping period. Otherwise, the new packet
is successful, which results in an active period for that source.

III. A STATE-DEPENDENT APPROXIMATION

The aim here is to find the MEOT for each source which is
dependent on the number of busy servers such that a single di-
mensional Markov chain can be used to accurately predict the
blocking probability. Having an accurate approximation based
on a single dimension is important because exact results for
the generalized Engset relies on a 2-dimensional Markov chain
that are not scalable for large 𝑘 and 𝑁 . Note that although
significant computational improvement can be achieved using
Matrix methods [1], they are still not as scalable as a single
dimensional solution.

All the approximations considered in [7] were based on
lengthening the off-period from 1/𝜆 to 𝑚 to compensate
for the time that packets or bursts are dumped immediately
following a blocking event. However, they all do not consider
the fact that during periods of higher carried traffic load there
are more blocking and thus more dumping, so the MEOTs are
longer. Therefore, we propose here to achieve higher accuracy
by considering the MEOT to be state-dependent. To this end,
we define 𝑚𝑖 to be the MEOT in state 𝑖, namely when there
are 𝑖 busy servers, 𝑖 = 0, 1, 2, . . . , 𝐾 .

Note that in the traditional Engset model, bursts arrive at
rate (𝑁 − 𝑖)/𝑚𝑖 in state 𝑖, where 𝑚𝑖 = 𝑚 = 1/𝜆 for all
𝑖. The traditional model is therefore typically considered to
be state-dependent but the MEOT (for each source) is state-
independent. In our new model, we allow the MEOT to be
dependent on system state 𝑖 (i.e. 𝑚𝑖 ∕= 𝑚).
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Let 𝜋𝑖 be the probability of having 𝑖 servers busy, 𝑖 =
0, 1, 2, . . . , 𝐾 . The 𝜋𝑖 and 𝑚𝑖 values satisfy the following
steady state equations.

𝜋𝑖+1 =
𝑁 − 𝑖

𝜇𝑚𝑖(𝑖 + 1)
𝜋𝑖, for 𝑖 = 0, 1, 2, . . . , 𝐾 − 1, (1)

where the 𝑚𝑖 values are set to increase linearly with 𝑖 as
follows

𝑚𝑖 =
1

𝜆
+

(𝑖+ 1)𝑎

𝐾𝜇
. (2)

The choice of a linear relationship between 𝑚𝑖 and the state 𝑖
is made for simplicity. The constant 𝑎 is obtained as follows.

𝜆

𝜆+ 𝜇
𝑁 =

𝐾∑
𝑖=0

(𝑁 − 𝑖)

𝑚𝑖𝜇
𝜋𝑖. (3)

In the real system, an idle period of mean length 1/𝜆 is
always followed by a transmission/dumping period of mean
length 1/𝜇. The true burst arrival rate per source is therefore
1/
(
1/𝜇 + 1/𝜆

)
and is thus independent of the blocking

probability. The left hand-side of (3), which is given by
multiplying this expression by 𝑁/𝜇, is the intended offered
load in the real system.

In (3), we equate the intended offered load, namely the
offered load in the real system of the on-off sources (including
the dumped packets/bursts) to the offered load in the model.

Substituting (2) into (1) and (3) and together with the
normalization equation

∑𝐾
𝑖=0 𝜋𝑖 = 1, we have 𝐾+2 equations

and 𝐾 + 2 unknowns (i.e. 𝑎 and 𝜋𝑖 where 𝑖 = 0, 1, . . . , 𝐾)
which form a set of fixed point equations and can be solved
by the algorithm provided in the next section.

The blocking probability is then derived by

Π𝐵 = 1− carried load

offered load

where carried load =
∑𝐾−1

𝑖=0
(𝑁−𝑖)
𝑚𝑖𝜇

𝜋𝑖.
In the remaining part of this section, we prove that a unique

solution exists for the set of coupled fixed-point equations
defined by (1), (2) and (3) together with the normalization
equation. This solution is our new state-dependent approx-
imation for call congestion. As we cannot guarantee that
the successive substitution algorithm [5] converges to the
unique solution, we provide a binary search algorithm to
numerically compute the unique solution for the set of fixed-
point equations and we prove its convergence. Finally, in the
next section, we numerically compare the accuracy of our new
state dependent approximation with Syskis approximation and
the approximations in [5] and [7].

A. Existence and Uniqueness of the Fixed Point Solution

By setting 𝑥 = 𝑎 in (2) and moving the left-hand side of
(3) to the right, we define the function

𝑓(𝑥) =

𝐾∑
𝑖=0

(𝑁 − 𝑖)

𝑚𝑖(𝑥)𝜇
𝜋𝑖 − 𝜆

𝜆+ 𝜇
𝑁, (4)

where we have written 𝑚𝑖(𝑥) instead of 𝑚𝑖 to emphasize that
𝑚𝑖 is functionally dependent on 𝑥 through (2). Our task is to
prove 𝑓(𝑥) = 0, 𝑥 ≥ 0, has a unique solution.

Algorithm 1 Calculate solution of 𝑓(𝑥) = 0 for an absolute
error criterion of 𝜖

1: 𝑥− ← 0, 𝑥+ ← 𝐾 Initial lower/upper bounds
2: while 𝑥+ − 𝑥− > 𝜖 do
3: 𝑥← (𝑥+ + 𝑥−)/2 Halve the search interval
4: if 𝑓(𝑥) > 0 then
5: 𝑥− ← 𝑥 Tighten lower bound
6: else
7: 𝑥+ ← 𝑥 Tighten upper bound
8: end if
9: end while

10: return 𝑥← (𝑥+ + 𝑥−)/2 𝜖 satisfied, thus return 𝑥

To establish solution existence, we observe that 𝑓(𝑥) is
continuous and changes sign at least once for 𝑥 ≥ 0. This
is because for 𝑥 = 0, 𝑚𝑖 = 1/𝜆 and the system degenerates
to the Engset system and hence 𝑓(0) > 0 since in the Engset
system the offered load is larger than the intended offered load
for Π𝐵 > 0. On the other hand, for 𝑥 = 𝐾

𝑓(𝐾) =

𝐾∑
𝑖=0

(𝑁 − 𝑖)(
1
𝜆 + 𝑖+1

𝜇

)
𝜇
𝜋𝑖 − 𝜆

𝜆+ 𝜇
𝑁, (5)

<

𝐾∑
𝑖=0

𝑁(
1
𝜆 + 1

𝜇

)
𝜇
𝜋𝑖 − 𝜆

𝜆+ 𝜇
𝑁 = 0

Therefore, a solution exists by the intermediate-value theorem.
To establish solution uniqueness, suppose 𝑓(𝑥1) = 𝑓(𝑥2) =

0 for 𝑥2 > 𝑥1 ≥ 0. The mean-value theorem requires the
existence of an 𝜂 satisfying 𝑓(𝑥2)− 𝑓(𝑥1) = 𝑓 ′(𝜂)(𝑥2 − 𝑥1)
or 𝑓 ′(𝜂) = 0, where 𝑥1 ≤ 𝜂 ≤ 𝑥2. This provides us with
a contradiction because simple calculations reveal 𝑓 ′(𝑥) < 0
(the proof is provided in the Appendix). Therefore, 𝑥1 = 𝑥2.

B. Binary Search Algorithm to Solve 𝑓(𝑥) = 0

This is the well known binary search algorithm. The only
reason we present it here is to correct our errors in the same
algorithm introduced in [7]. Let 𝑥∗ be the unique solution
of 𝑓(𝑥) = 0. Due to the monotonicity of 𝑓(𝑥), at each
iteration of Algorithm 1, if 𝑥 < 𝑥∗, then 𝑓(𝑥) > 𝑓(𝑥∗) = 0.
Conversely, if 𝑥 > 𝑥∗, then 𝑓(𝑥) < 𝑓(𝑥∗) = 0. Consequently,
𝑥∗ lies in the interval [𝑥−, 𝑥+] at each iteration of Algorithm
1. Furthermore, this interval halves at each iteration, thereby
ensuring 𝑥∗ is sandwiched within an interval whose eventual
length does not exceed 𝜖. Thus, Algorithm 1 converges to a
unique solution of 𝑓(𝑥) = 0 with error 𝜖.

IV. NUMERICAL RESULTS

Figs. 1 and 2 show blocking probability versus normalized
traffic intensity 𝜌 = (𝑁/𝐾)(𝜆/𝜇) for 𝑁 = 2 and 𝐾 = 1
and for 𝑁 = 6 and 𝐾 = 3, respectively. These figures
demonstrate that the new state-dependent (SD) approximation
is consistently more accurate than all previous proposals. See
[9] for further numerical results that demonstrate advantages
of the MEOT state-dependent approach.
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Fig. 1. Blocking probability versus normalized traffic intensity 𝜌 for 𝑁 = 2
and 𝐾 = 1.
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Fig. 2. Blocking probability versus normalized traffic intensity 𝜌 for 𝑁 = 6
and 𝐾 = 3.

V. CORRECTIONS TO [7]

In lines 5 and 7 in Algorithm 1 in the 3rd page of [7],
the updated 𝑥−/𝑥+ should be set to 𝑥 instead of Γ(𝑥).
This change ensures the algorithm is a true “Binary Search
Algorithm” as claimed in [7]. It guarantees convergence in
a bounded number of steps. We cannot prove (or disprove)
convergence if this change is not made. Also, some of the
values reported in reported in Table 1 of [7] are in error.
Specifically, all the rows in Table 1 listed as 𝜌 = 0.9 actually
correspond to 𝜌 = 0.8. And the entire “New” column is in
error due to a programming bug. This resulted in incorrect
conclusions reported in [7] about the superiority of the “New”
approximation.

VI. CONCLUSION

We have provided a new MEOT state-dependent approx-
imation and corrected several errors in [7] for a version
of the generalized Engset model that considers packet/burst
dumping. We have demonstrated numerically that the new

approximation is consistently more accurate than previous
proposals.

APPENDIX: PROOF OF 𝑓 ′(𝑥) < 0

Recall 𝑚𝑖 = 𝑚𝑖(𝑥) =
1
𝜆 + 𝑖+1

𝐾
𝑥
𝜇 . 𝑓(𝑥) can be written as

𝑓(𝑥) =

𝐾∑
𝑖=0

(𝑁 − 𝑖)

𝑚𝑖𝜇
𝜋𝑖 − 𝜆

𝜆+ 𝜇
𝑁

=
(𝑁 −𝐾)

𝑚𝐾𝜇
𝜋𝐾 +

𝐾∑
𝑖=1

𝑖𝜋𝑖 − 𝜆

𝜆+ 𝜇
𝑁

=
(𝑁 −𝐾)

𝑚𝐾𝜇
𝜋𝐾 +

𝐾∑
𝑖=1

(
𝐾∑
𝑘=𝑖

𝜋𝑘

)
− 𝜆

𝜆+ 𝜇
𝑁.

Proving 𝑓(𝑥) is decreasing in 𝑥 or 𝑎 means proving
∑𝐾

𝑘=𝑖 𝜋𝑘

is decreasing in 𝑚𝑘 since 𝑚𝑘 is increasing in 𝑥. Since 𝜋𝑗 =(∏𝐾
𝑘=𝑗 𝛼𝑘𝑚𝑘

)
𝜋𝐾 where 𝑗 = 0, 1, 2, . . . , 𝐾 and 𝛼𝑘 ≜

(𝑘+1)𝜇
𝑁−𝑘 for 𝑘 = 0, 1, 2, . . . , 𝐾 − 1 or ≜ 1/𝑚𝐾 for 𝑘 = 𝐾 ,

we have

𝐾∑
𝑘=𝑖

𝜋𝑘 =

∑𝐾
𝑗=𝑖

(∏𝐾
𝑘=𝑗 𝛼𝑘𝑚𝑘

)
∑𝐾

𝑗=0

(∏𝐾
𝑘=𝑗 𝛼𝑘𝑚𝑘

) =
1

∑𝑖−1
𝑗=0(

∏
𝐾
𝑘=𝑗 𝛼𝑘𝑚𝑘)∑𝐾

𝑗=𝑖(
∏𝐾

𝑘=𝑗 𝛼𝑘𝑚𝑘)
+ 1

=
1

∑𝑖−1
𝑗=0(

∏𝐾
𝑘=𝑗 𝛼𝑘𝑚𝑘)/(

∏𝐾
𝑘=𝑖 𝑚𝑘)∑

𝐾
𝑗=𝑖(

∏
𝐾
𝑘=𝑗 𝛼𝑘𝑚𝑘)/(

∏
𝐾
𝑘=𝑖 𝑚𝑘)

+ 1

=
1

∑𝑖−1
𝑗=0(

∏
𝐾
𝑘=𝑗 𝛼𝑘)(

∏𝑖−1
𝑘=𝑗 𝑚𝑘)∑

𝐾
𝑗=𝑖(

∏
𝐾
𝑘=𝑗 𝛼𝑘)

(∏𝑗−1
𝑘=𝑖

1
𝑚𝑘

) + 1

where 𝑖 = 1, 2, . . . , 𝐾 and
∏𝑖−1

𝑘=𝑖
1

𝑚𝑘
≜ 1. Since

𝛼𝑘 > 0,
∑𝑖−1

𝑗=0

(∏𝐾
𝑘=𝑗 𝛼𝑘

)(∏𝑖−1
𝑘=𝑗 𝑚𝑘

)
is increasing in

𝑚𝑘 and
∑𝐾

𝑗=𝑖

(∏𝐾
𝑘=𝑗 𝛼𝑘

)(∏𝑗−1
𝑘=𝑖

1
𝑚𝑘

)
is decreasing in 𝑚𝑘,

and hence
∑𝐾

𝑘=𝑖 𝜋𝑘 is decreasing in 𝑚𝑘. Therefore, 𝑓(𝑥) is
decreasing in 𝑥 or 𝑎.
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