
Cascading failure spreading on weighted heterogeneous
networks

Zhi-Xi Wu, Gang Peng, Wen-Xu Wang, Sammy Chan, and Eric
Wing-Ming Wong ‡
Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR,
People’s Republic of China

Abstract. We study the onset and spreading of cascading failure on weighted heterogeneous
networks by adopting a local weighted flow redistribution rule, where the weight and tolerance
of a node is correlated with its link degreek askθ andCkθ, respectively. The weight parameter
θ and tolerance parameterC are positive:θ > 0 andC > 1.0. Assume that a failed node leads
only to a redistribution of flow passing through it to its nearest neighboring nodes. We give
out theoretical estimations of the onset of the cascading failure for different values ofθ. It
is found that the cascading failure emerges most difficult on networks withθ = 1.0, while
it develops more slowly for largerθ. We furthermore explore the statistical characteristics
of the avalanche size on the networks by varyingθ, and obtain versatile dynamical scenarios
of the cascading processes, which exhibit either “subcritical”, or “critical”, or “supercritical”
behaviors depending on the value of the weight parameter.
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1. Introduction

Network science focusing on the relationship between structure, function and dynamics has
attracted much attention in recent years [1, 2, 3, 4]. One of the hot topics in the network
science is the robustness characteristic of complex network against attacks and random
failures [1, 2, 3, 4], as known that our daily life are closely related to various types of networks,
such as power grids, information communication networks, and transportation networks, and
so on. Evidence has demonstrated that in such networks, even though intentional attacks or
random failures emerge very locally, the entire network can be greatly affected, often resulting
in large scale collapse and unfunctioning of part or whole of the systems. An often cited
realistic example is the1996 blackout of the power transportation network in U.S.A. [5].

Up to now, it has been shown again and again that the topological features of underlying
interaction networks have great impacts on the final outcomes of the dynamics taking place
on them [1, 2, 3, 4]. For example, the scale free topology of a network results in a vanishing
threshold of epidemic spreading on it with the increase of the network size, also gives
rise to a robust behavior against random failures and fragile for aimed attacks [1, 3]. In
fact, understanding how the structure affects the dynamics is regarded as one of the major
objectives in the study of complex networks [2]. For this reason, most previous cascading
models confined on complex networks, such as the sandpile model [6], the global load
based cascading model [7, 8, 9, 10, 11, 12, 13], and the fiber bundle model [14, 15, 16],
have also been subjected to this issue. However, the network weights have not been taken
into consideration in these models, regardless of the fact that real networks display a large
heterogeneity in the weights which have a strong correlation with the network topology
[17, 18, 19]. In fact, the existing common weighted features play a significant role in a
variety of dynamical processes, including epidemic spreading, information packets routing,
synchronization, etc [20, 21, 22, 23]. In particular, Wanget al. [21] introduced a local-
information based routing strategy on scale free networks, wherein each node is selected as
a router by its neighbors with a probability proportional to its weightkα. They showed that
in the case ofα = −1.0, the whole network achieves its optimal performance. Another
influential work concerning about alternative routing strategy on networks is studied by Yan
et al. [22], in which each node contributes a weight ofkβ to any path going through it. It was
found atβ = 1.0 the network capability in processing traffic is improved more than 10 times
as compared to shortest path routing. More recently, Korniss [23] proposed that complex
networks are easy to be synchronized if the coupling strength (denoted by the weight of the
edges) between any two connected nodes with degreeski andkj is weighted as(kikj)

−1.0.
Hence, there is a need for a modelling approach that can capture the coupling of cascading
and weighted characteristics.

In a recent work of Wang and Chen [24], a cascading model with a local weighted
flow redistribution rule (LWFRR) is proposed and studied on weighted scale free and small
world networks. In their model, the cascading process is triggered by a small initial
perturbation (a randomly selected edge with weight(kikj)

θ is attacked), and spreads to
other constituents sequentially. They found that the weighted complex network reaches
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the strongest robustness level at a universal value of the weight parameterθ = 1. In
the present work, we follow the research of [24] by considering a cascading model on
weighted complex heterogeneous networks, wherein the cascading process is triggered by
small initial attacks or failures on network nodes. It is found that in the node-based
cascading model, the condition for the universal robustness of the network is unchanged. In
addition, by exploring the statistical characteristics of the avalanche size, we obtain versatile
scenarios of the cascading dynamical processes, which exhibit either “subcritical”, “critical”,
or “supercritical” behaviors depending on the value of the weight parameter.

2. The model

It has been proposed that many realistic networks share two common properties: small
average path lengths among any two nodes and a power-law degree distribution [1, 2, 3, 4].
For simplicity, we use the well-known Barabási-Albert (BA) scale-free network model [1] as
the physical infrastructure on top of which a cascading process takes place. The BA model
containing two generic mechanisms of many real complex systems: growth and preferential
attachment [1] can be constructed as follows. Starting fromm0 nodes, one node withm links
is attached at each time step in such a way that the probability

∏
i of being connected to the

existing nodei is proportional to the degreeki of that node, i.e.,
∏

i = ki/
∑

j kj, wherej runs
over all existing nodes. In the present work, the total network size is fixed asN = 5000 and
the parameters are set to bem0 = m = 2 (hence the average connectivity of the network is
〈k〉 = 2m = 4 [1]).

With the heterogeneous networks at hand, let us define the cascading model under the
LWFRR based on node failure. We assume that the weight of a nodei is given bywi = kθ

i ,
whereθ is a tunable parameter in our study, which controls the strength of the node weight.
This assumption is reasonable since many previous studies concerning about both model
networks and real networks have shown that the load of (or traffic handled by) a node scales
with its degree asL(k) = bkη, whereη relies on topological elements [11, 17, 25, 26, 27].
Thus, our assumption on the node weights is in accordance with the previous load based model
but has practical convenience. Following Ref. [24], we assume that the potential cascading
failure is triggered by a small initial attack or perturbation, e.g., unfunctioning of a single
nodei. The flow supposed to going through the broken nodei will be redistributed to its
nearest neighboring nodes (see Fig. 1 for illustration). The additional flow∆Fj received by
the neighboring nodej is proportional to its weight,

∆Fj = Fi × Fj

Σl∈Ωi
Fl

, (1)

where Ωi is the set of neighboring nodes ofi. Following previous models addressing
cascading problems [8, 10, 13, 16, 24], each nodei in the network has a weight threshold
or capacityFi, which is the maximum flow that the node can handle. Conventionally, it
is assumed that the threshold of a node is proportional to its weightFi = CFi = Ckθ

i ,
where the constantC > 1 is a threshold parameter characterizing the tolerance of the network
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[7, 8, 9, 10, 13, 16, 24]. Considering a neighborj of the nodei, if

Fj + ∆Fj > Fj = Ckθ
j , (2)

then the nodej will be broken, inducing further redistribution of flow ofFj + ∆Fj and
potentially further nodes’ breakdown. After the cascading failure process stops, we calculate
the avalanche sizeSi, which is defined as the total number of broken nodes through the process
induced by attacking the nodei initially.

Figure 1. Schematic illustration of the LWFRR triggered by a node failure. The focal nodei

is broken and the flow along it is redistributed to its neighboring nodesj, k, . . .. Among these
neighbors, the one with higher flow capacity (i.e., more degrees) will undertake more shared
flow (denoted by the width of the links) from the failed node.

The LWFRR can be explained by taking the scenario of information traffic on the Internet
as an example. After congestion or breakdown occurs in a router, information flow is rerouted
to bypass it, which evidently leads to the flow increase in other routers. Since, in general, a
node of higher traffic flows has always a stronger ability to handle traffic transmission, i.e., a
node’s threshold is proportional to its weight, it is reasonable to preferentially reroute traffic
along those higher-capacity nodes to maintain normal functioning of traffic and try to avoid
further congestions. For simplicity, we assume that the additional flow received by a router
is proportional to its weight. When a node receives extra flow, its total flow may exceed its
capacity with packets built up in its buffer, and congestion occurs consequently. The same
story could happen again for those neighbors of the newly broken nodes. As a result, an
avalanche of overloads emerges on the network. Another related example for LWFRR exists
in our daily public traffic system. If we map each road as a node, and the intersection between
two roads as a link between them, then we can get a traffic network [28]. Once a road is
congested because of some traffic accidents, the congestion of the road will immediately
increase the burden of adjacent roads. It is natural that those roads with more traffic lanes
would share more additional traffic. At last, we want to remark that our LWFRR may be
more relevant to the dynamics in the protein interaction network or cellular networks. In such
systems, when a certain element such as a protein or a substrate fails or is removed, others
should take over its burden to survive the lack thereof.
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3. Results and discussion

To explore the effect of a small initial attack on our cascading model, we defunctionalize
only one node initially and calculateSi, which is the avalanche size (the total number of
broken nodes) induced by defunctionalizingi, after the cascading process is over. To quantify
the robustness of the network, we adopt the average avalanche sizeS =

∑
i Si/N , obtained

via summation over all the avalanche sizes by defunctionalize each node initially at each time
divided by the total number of nodesN . Given a value ofθ, when the value ofC is sufficiently
small, we can imagine that it is easy for the whole network to get into fully collapse in the case
of arbitrary node’s failure. On the other hand, for sufficiently largeC, the destructive impacts
caused by the failure of those nodes with small degrees could be absorbed by nodes with large
ones, and no cascading phenomenon emerges. Thus, with the increase ofC, there should be
some crossover behavior of the system from large scale breakdowns to no breakdown, going
through small scale ones. Thus,S can be regarded as an order parameter to characterize the
robustness of the network.

Figure 2. Average avalanche sizeS as a function of tolerance parameterC for serval values of
θ on BA scale free networks with total sizeN = 5000 and average connectivity〈k〉 = 4. The
cascading failure thresholdC beyond which broken nodes’ growth occurs (S > 0) is smaller
for θ = 1.0 as compared to the cases ofθ = 0.3 and1.6. Each curve is obtained by averaging
over experiments on 20 independent networks.

Figure 2 showsS as a function of the tolerance parameterC for serval values ofθ for BA
networks with sizeN = 5000 and average connectivity4. Each curve is obtained by averaging
over experiments on20 independent networks. For each curve, a crossover behavior occurs at
a critical threshold ofC. When the value ofC is beyond this threshold, no cascading failure
arises and the system maintains its normal and efficient functioning; While for the case of
C smaller than the threshold,S increases rapidly from zero and cascading failure emerges,
causing the whole or part of the network to stop working. Hence the threshold is the least
value of protection strength to avoid cascading failure. Apparently, the lower the value of it,
the stronger the robustness of the network against cascading failure.
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From Figure 2, we note that it is the case ofθ = 1.0 that a cascading process occurs
at the latest with the decrease ofC, which is in accordance with the edge-based cascading
model [24]. In order to understand this observed universal phenomenon, we provide some
theoretical analysis. To avoid the emergence of cascading failure, the following condition
should be satisfied:

FiFj∑
l∈Ωi

Fl

+ Fj < Fj. (3)

Rewriting the arguments as a function of the node degree, we have

kθ
i k

θ
j∑

l∈Ωi
kθ

l

+ kθ
j < Ckθ

j . (4)

The denominator of the first term of the above inequality can be written as

∑

l∈Ωi

kθ
l =

kmax∑

k′=kmin

kiP (k′|ki)k
′θ, (5)

whereP (k′|ki) is the conditional probability that a node ofki has a neighbor ofk′. Since BA
networks have no degree-degree correlation [2], we haveP (k′|ki) = k′P (k′)/〈k〉. Combining
(4) and (5), we yield

kθ−1
i 〈k〉
〈kθ+1〉 + 1 < C. (6)

From the above inequality, the critical tolerance parameter, denoted byC, can be calculated
by considering the ranges ofθ < 1, θ = 1, andθ > 1, respectively:

C =





kθ−1
max〈k〉/〈kθ+1〉+ 1, θ > 1,

〈k〉/〈k2〉+ 1, θ = 1,

kθ−1
min〈k〉/〈kθ+1〉+ 1, θ < 1,

(7)

wherekmax andkmin are the maximum and minimum node degrees of the network. To find
the rank of these critical values, we first consider the ratio ofC(θ > 1)− 1 to C(θ = 1)− 1:

C(θ > 1)− 1

C(θ = 1)− 1
=

kθ−1
max〈k2〉
〈kθ+1〉 . (8)

Since the degree distribution of BA networks in the large limit sizeN is P (k) = 2k2
mink

−3

[1], we havekmax = k2
min ln N , 〈k2〉 =

∫ kmax
kmin

k2P (k)dk = k2
min ln N , and 〈kθ+1〉 =

∫ kmax
kmin

kθ+1P (k)dk = 2
θ−1

kθ+1
min(N

θ−1
2 −1). Substituting these expressions to Eq.(8), we obtain

C(θ > 1)− 1

C(θ = 1)− 1
=

(θ − 1)N
θ−1
2 ln N

2(N
θ−1
2 − 1)

. (9)

In the large limit ofN , both the denominator and nominator approach infinity, Eq.(9) can be
calculated by deviating the denominator and nominator with respect toN , respectively, which
yields1 + ln N

θ−1
2 . Forθ > 1, Eq.(9) is larger than 1, which indicatesC(θ > 1) > C(θ = 1).

Similarly, we can getC(θ < 1) > C(θ = 1). Thus, forθ = 1, the cascading failure occurs
most difficult with the decrease of the tolerance parameterC, confirming our simulation
results in Figure 2. Here, we want to point out that there is some discrepancy between the
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Figure 3. Average averge avalanche sizeS as a function of the tolerance parameterC on
BA scale free networks with sizeN = 5000. The average degree of the networks is fixed as
〈k〉 = 4, and the value of the weight parameterθ is varied as 0.3, 0.6, 1.0, 1.3, 1.6, 2.0, from
right to left. The data are obtained by averaging over experiments on 20 independent networks

theoretical estimations of the critical tolerance parameter and those obtained by computer
simulation, which results from one approximation in the analytical treatment and also the
finite size of the networks.

So far, we have shown by both simulation and analysis that when the weight parameter
θ = 1.0, cascading failure triggered by attacking a single node occurs most difficult on
BA scale free networks. But it is not the whole story. Generally, besides the onset of the
avalanche, we also care about how the avalanche size changes depending on the tolerance
parameter. To this end, we also investigated the evolution of the average avalanche size on the
network after the emergence of cascading failure by further decreasingC while keeping the
weight parameterθ fixed. The simulation results are presented in Figure 3. It is found that
on networks with largerθ the average avalanche size develops in a slower rate as compared
with those cases of smallerθ. This point is reflected by the smaller avalanche size for larger
value of θ at a given toleranceC. The phenomenon can be understood as follows. For
heterogeneous networks with a large value of wight parameterθ, if the nodes with large
degrees are initially attacked, due to their high possessing capacity, it is easier for them to
induce further breakdown of other nodes, especially those with smaller degrees. This gives
rise to the result that cascading failure is easier to occur for largeθ, as was shown in Figure
2. On the other hand, for largerθ, if it was nodes with smaller degrees that are attacked
initially, the additional flow they released to their neighbors would be more easily absorbed
by those neighbors with large degrees due to their higher tolerance, possibly without inducing
further cascading failures. Moreover, it is known that in BA scale free networks, the nodes
with large degrees only occupy a very small portion and most nodes are with small ones.
Note that the average avalanche sizeS is obtained by averaging overSi of all nodes in the
network. Combining these elements, we can conclude that the networks with larger weight
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parameter is prone to cascading failure caused by single node’s breakdown, whereas, after
cascading failures emerged, their magnitudes develop more slowly as compared to the cases
of smaller weight parameter. As forθ smaller than unity, since the capacity of high degree
nodes are considerably inhibited, the high degree nodes are more easily broken induced by
the failures of their small degree neighbors, i.e., the damage from small degree neighbors is
more difficult to be absorbed by high degree nodes (for example, in the case ofθ = 0.1, the
absolute difference of the weight between a node with degree4 and a node with degree100

is about0.436, while for θ = 1.0 the difference is96). Hence, the avalanche size grows more
rapidly with decrease ofC than the case ofθ = 1, as reflected in Figure 3.

Now let us investigate the avalanche size distributionP (S), which is a conventional
parameter to characterize the avalanche dynamics. To explore the statistical features of the
avalanche sizes, we continuously increase the flow along nodes by a small constantδ, starting
from a load-empty network. This method is essentially the same with the sandpile model and
fiber bundle model [6, 15, 16]. For simplicity, the threshold of each node is assigned to be its
weight. At any time step, we addδ to the flow of one randomly selected node. With time going
on, the flow accumulated on the network increases continuously. If the flow of a node exceeds
its prescribed threshold, the node is broken and the flow on it will be redistributed to its
neighboring nodes according to the LWFRR, which would induce other potential breakdown
of the nodes. A sampling time step is counted after all the cascading events (if any) are over.
At each time step, we record the number of broken nodes as the avalanche size at this time
step. Then we recover all broken nodes and set their flows to zero. At the next time step,
we add flowδ to a randomly selected nodes as before, and repeat the cascading process. The
total sampling time is up to108. After that, we obtain the avalanche distribution of the sizes
recorded at each time step. if no cascading failures occur,S is zero.

We have explored the avalanche size distributionP (S) on BA scale free networks with
N = 5000 and〈k〉 = 4. The parameterθ is varied in the range0.1 ≤ θ ≤ 1.8, while the
parameterδ is fixed to δ = 1. The simulation results are shown in Figure 4. As can be
seen from Figure 4, the form of the calculatedP (S) depends on theθ-value considerably.
For smallerθ, P (s) shows an exponential decay behavior bending down rapidly at larger
magnitudes ofS, which implies large avalanche events are scarce [Figure 4(a)]. Such
behavior ofP (S) is often called “subcritical”. For the moderateθ, e.g.,θ = 0.9, 1.0, the
curves lie on a straight line fairly well [Figure 4(b)], apparently satisfying the power law
decay form, which is a prominent phenomenon empirically observed in previously studied
cascading failure process and the mark of emergence of “criticality” [7, 9]. The truncation
at the tails are due to finite size effect. As shown in Figure 4(c), for large values ofθ, P (S)

exhibits a pronounced peak structure for larger cascading events, while the power-law feature
still remains for smaller magnitudes. Accordingly, such behavior ofP (S) is often called
“supercritical”, sinceP (S) bends up at larger magnitudes (though it eventually falls off at
even larger magnitudes), which means that a small initial perturbation can disturb a very
large area of the whole system. Here, we want to remark that with the increase ofθ, both
the power-law decay behavior ofP (S) and the pronounced peak whereP (S) bending up
emerges smoothly, and the magnitude of the peak value also increases gradually [from Figure
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θ θ

θ θ

Figure 4. Distributions of the avalanche size from time stept = 1 to 108 for different
values ofθ on BA networks with sizeN = 5000 and average degree〈k〉 = 4. (a)
representsP (s) for smaller values of the weight parameter0.1 ≤ θ ≤ 0.6; (b) represents
P (s) for moderate values of the weight parameter0.7 ≤ θ ≤ 1.2; and (c) represents for
larger values of the weight parameter1.3 ≤ θ ≤ 1.8. (a), (b), and (c) correspond to the
regions of “subcritical”, “coexistence of subcritical-critical-supercritical”, and “supercritical”,
respectively. For clarification, three typical curves in each region are shown in panel (d),
corresponding toθ = 0.2, 1.0, 1.5, respectively.

4(a) to (c). For clarification, we show three typical curves in each region in Figure 4(d),
corresponding toθ = 0.2, 1.0, 1.5, respectively]. Thus, the crossover from the “subcritical”
to “critical” to “supercritical” behavior with increasingθ is of continuous or “second-order”
nature. At present time, unfortunately, it is hard for us to give an analytical expression to
P (S), since the cascading process considered here is not a type of conventional branching
process and cannot be addressed by following the method proposed in Ref. [25].

4. Conclusion

To sum up, we have studied the cascading reaction behaviors on BA scale free networks with
respect to small node initial attacks. Each node is endowed with a weightkθ describing its
ability of handling load, and a toleranceCkθ when confronting additional flow. We provide
theoretical estimations of the critical tolerance parameter value for the onset of the cascading
failure. It is found that the cascading failure emerges most difficult on networks withθ = 1.0.
Though, with the decreasing of the tolerance, the networks with large value ofθ are prone
to the emergence of avalanche triggered by a randomly attacked node, the magnitude of
avalanche size on them grows more slowly as compared to that on the networks with small
θ. Depending on the weight parameterθ, subcritical, critical and supercritical avalanche
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dynamics may occur. For largeθ, cascading failure can spread over a large portion of the
network. In other words, the smaller the value ofθ, the smaller region the cascading failure
is confined. These results indicate the significant roles of weights in complex networks for
designing protection strategies against cascading failures. In addition, the obtained power-
law distributions of the avalanche sizes in critical and supercritical regimes demonstrate the
validity and generality of our model for characterizing cascading reaction behaviors. These
results may help us understand cascading phenomena in the real world, and may shed light on
designing control strategy to prevent various cascading-failure-induced disasters.
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[21] Wang W-X, Wang B-H, Yin C-Y, Xie Y-B and Zhou T, 2006Phys. Rev.E 73026111
[22] Yan G, Zhou T, HuB, Fu Z-Q and Wang B-H, 2006Phys. Rev.E 73046108
[23] Korniss G, 2007Phys. Rev.E 75051121
[24] Wang W-X and Chen G, 2008Phys. Rev.E 77026101
[25] Goh K-I, Kahng B and Kim D, 2001Phys. Rev. Lett.87278701
[26] Park K, Lai Y C and Ye N, 2004Phys. Rev.E 70026109
[27] Holme P, Kim B J, Yoon C N and Han S K, 2002Phys. Rev.E 65056109
[28] Rosvall M, Trusina A, Minnhagen P and Sneppen K, 2005Phys. Rev. Lett.94, 028701


