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Abstract— The Engset model has been extensively studied
and widely used for blocking probability evaluation in telecom-
munications networks. In 1957, J. W. Cohen considered two
generalizations of the Engset model:

1) Permitting the distributions of the holding time and inter-
arrival time to differ from source to source;

2) Permitting the idle time distribution to depend on whether
or not the previous call was successful.

He derived the call and time congestions for the first general-
ization, however, he simply posed the second generalization as
a problem. In a leading teletraffic text by Syski, the call and
time congestions are approximated for the second generalization,
though it appears that Syski has overlooked that his results
are in fact an approximation. In this paper, we point out
Syski’s apparent oversight, we improve the accuracy of his
approximation, and we provide an efficient algorithm for its
numerical computation and prove its convergence.

Index Terms— Generalized Engset Formula, teletraffic, block-
ing probability, performance models, state-dependent arrivals.

I. INTRODUCTION

THE Engset model [5] is well-known, has made its way
to many textbooks (eg. [7]), and has been often used in

telephony to evaluate blocking probability when the number
of traffic sources competing for a limited communication
resource is not too large. Furthermore, recent applications to
a bufferless optical network [1], [4], [6], [8], [9] and a mobile
network that provides packet radio service (GSM/GPRS) [3]
have revamped interest in generalized Engset models.

In this paper, we consider Cohen’s second generalization [2]
of the Engset model in which the distribution of the time until
a source generates a new call differs according to whether or
not the previous call was successful. This generalization finds
application in situations in which a source cannot generate a
new call immediately after the arrival of a blocked call, but
rather must remain frozen for a certain period.

Considering a particular source, we let K1 be the r.v.
(random variable) representing the period between the end of
transmission of a successful call and the arrival of the next
call (successful or not) and K2 the r.v. representing the period
between the arrival of a blocked call and the arrival of the
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next call (successful or not). In the Engset model, K1 = K2.
In what we call the generalized Engset model, it is possible
that K1 �= K2.

Interestingly, Cohen posed the K1 �= K2 case long before
the advent of optical switching and GSM/GPRS. However,
in his derivation of the call and time congestions for his
generalized Engset model, he reverted to the simpler K1 = K2

case, though he permitted K1 and K2 to vary from source to
source. In a leading teletraffic text by Syski [7], it appears
that Cohen’s results have been misinterpreted as also holding
for the general K1 �= K2 case. In particular, see pp. 173-
179 in [7], where Cohen’s results are re-derived. Although
Cohen’s results are not exact for the general K1 �= K2

case, they may provide an approximation for the call and
time congestions. Therefore, Syski’s misinterpretation remains
useful as an approximation. Although Syski did not intend
to introduce an approximation, we refer to his results as
Syski’s approximation because they do not yield the exact
call and time congestions for the K1 �= K2 case. Another
approximation for call congestion was provided for the K1 �=
K2 case in [8].

In this paper, we improve the approximation in [8] and show
that our new approximation can be numerically computed
with a binary search that is guaranteed to converge. Finally,
we numerically verify that our new approximation is more
accurate than the ones in [7] and [8].

II. THE MODEL

We are interested in Cohen’s second generalization of
the Engset model. We consider a loss model comprising N
sources offering calls to K channels. We assume both N and
K are finite integers and N > K, but not N � K. As N
becomes large, our model degenerates to an Erlang system,
while if N ≤ K, the call congestion is zero. Neither of these
cases interest us here. We assume the length of a frozen period
and the length of a period required to transmit a call (holding
time) is independent and exponentially distributed with mean
1/µ.

At any time instant, each of the N sources is either active,
frozen or idle. A successful call is transmitted during an active
period. A source cannot generate a new call during an active
or frozen period. An idle period always follows an active
or frozen period. We assume the length of an idle period is
independent and exponentially distributed with mean 1/λ. As
soon as an idle period expires, the source generates a new call.
The new call is blocked if all K channels are engaged, which
results in a frozen period following the idle period. Otherwise,
the new call is successful if at least one of the K channels is
free, which results in an active period.

In terms of our K1 and K2 notation, we have K1 is
independent and exponentially distributed with parameter λ,
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whereas K2 is a two stage hypo-exponential distribution, one
stage with parameter µ and the other λ.

We are interested in determining the call congestion, defined
as the steady-state probability that an arbitrary call arrives to
find that all K channels are engaged. For small N and K,
the call congestion can be computed numerically by deter-
mining the steady-state distribution for the Markov process
underlying our model. The states-space of this Markov process
is

{
(i, j) | i = 0, 1, . . . , K, j = 0, 1, . . . , N − K

}
, where

state (i, j) means i of the K channels are engaged and j
sources are frozen. Hence, N − i − j sources are idle. The
steady-state distribution πi,j can be computed numerically by
solving the set of local balance equations [1], [9]. Finally,
the call congestion is given by (To − Tc)/To, where To =∑

i,j(N − i − j)(λ/µ)πi,j and Tc =
∑

i,j iπi,j .

III. THE APPROXIMATIONS

All three approximations considered in this section reduce
the general K1 �= K2 case to the K1 = K2 case for
which time congestion can be computed in O(K) using the
conventional Engset formula. In particular, the distinct frozen
and idle states inherent to the K1 �= K2 case are lumped
together into what we call a super-idle state. Therefore, the
state-space is reduced to {j | j = 0, 1, . . . ,K}, where state j
means j of the K channels are engaged. Hence, N−j sources
are in the super-idle state, meaning they are either genuinely
idle or frozen. In this way, the call congestion, Π, for the
K1 �= K2 case is approximated using the Engset formula with
mean ON time 1/µ and mean OFF time that is equal to the
mean length of a super-idle period. Let m denote the mean
length of a super-idle period. According to the Engset formula,
we have

Π = Eng(m, 1/µ,N,K) =

(
N−1

K

)
1/(mµ)K∑K

k=0

(
N−1

k

)
1/(mµ)k

. (1)

The mean length of a super-idle period is computed differently
for each approximation.

A. Syski’s Approximation

Syski’s approximation arose out of his misinterpretation of
Cohen’s earlier results. In particular, Syski mistook Cohen’s
results to hold for the general K1 �= K2 case.

Let Π denote the call congestion. According to Syski (see
pp. 100-103 in [7] or pp. 160-161 in [2]), if a source is
super-idle at an arbitrary time instant, the next call (successful
or not) arrives in (t, t + dt) after this arbitrary instant w.p.
(with probability)

(
1 − FK1(t)

)
/k1 if the previous call was

successful and w.p.
(
1− FK2(t)

)
/k2 if the previous call was

blocked, where FK1(t) = P(K1 ≤ t), k1 = E(K1) = 1/λ
and similarly for K2. Therefore, if a source is super-idle at an
arbitrary time instant, the next call (successful or not) arrives
in (t, t + dt) after this arbitrary instant w.p.

g(t)dt =

(
(1 − Π)

(
1 − FK1(t)

)
k1

+
Π

(
1 − FK2(t)

)
k2

)
. (2)

Writing g(t) =
(
1−G(t)

)
/m, where G(t) is the distribution

of the length of a super-idle period and m its mean, we see

m =
1

g(0)
=

k1k2

k2 + Π(k1 − k2)
. (3)

Substituting k1 = 1/λ and k2 = 1/µ + 1/λ into (3) gives

1
m

= λ − λ2Π
(λ + µ)

. (4)

The Engset formula (with mean ON time 1/µ and mean OFF

time m) together with (4) define a pair of coupled nonlinear
equations for which it may be possible to numerically compute
a solution using successive substitution.

Equation (2) is certainly true in the sense that dt/m is the
probability that a present super-idle period terminates after an
arbitrary time. However, Syski incorrectly assumed dt/m is
also the probability that a present super-idle period terminates
after an arbitrary time given that j channels are engaged.
Syski overlooked that m is state-dependent. In particular, if
K channels were engaged at the beginning of a super-idle
period, we have m = k2, whereas if fewer than K channels
were engaged, we have m = k1. But Syski uses m as given
by (4) for both cases in equation (2.57) on p. 176 in [7].

B. Approximation in [8]

In [8], an alternative to (4) is proposed whereby the mean
OFF time used in the Engset formula is computed as the
weighted average of a genuine idle period and the duration
of a genuine idle period plus a frozen period. In particular,

m =
1 − Π

λ
+ Π

(
1
µ

+
1
λ

)
=

1
λ

+
Π
µ

. (5)

As with Syski’s approximation, the Engset formula (with mean
ON time 1/µ and mean OFF time m) together with (5) define
a pair of coupled nonlinear equations for which it may be pos-
sible to numerically compute a solution by iterating such that
1/mn = Γ(mn−1), m0 = 1/λ, where mn is the value of m at
the nth iteration and Γ(m) = λµ/

(
µ+λEng(m, 1/µ,N,K)

)
.

In [8], it is shown that 1/m = Γ(m) has a unique
solution. However, iterating such that 1/mn = Γ(mn−1) is
not guaranteed to converge. We remark that the convergence
proof in [8] that claims to guarantee convergence of 1/mn =
Γ(mn−1) is incomplete. To complete the convergence proof,
we would need to prove that the twice iterated operator
Γ(2)(m) = Γ

(
Γ(m)

)
= 1/m has only one solution, namely

the solution it inherits from 1/m = Γ(m).

C. Our New Approximation

To account for the fact that a super-idle period may span
multiple frozen periods, we amend (5) such that

m =
1 − Π

λ
+ Π

(
1
µ

+
1
λ

+ m

)
, (6)

that is, m = (µ + λΠ)/
(
(1 − Π)µλ

)
. Equation (6) is similar

to its counterpart (5) except that m has been added to the
second term. This change models the possibility that further
frozen periods may follow the initial frozen period, whereas
(5) wrongly assumes a blocked call is always followed by a
successful call.

In the remaining part of this section, we prove a unique
solution exists for the set of coupled equations defined by
(1) together with (6). This solution is our new approximation
for call congestion. We provide a binary search algorithm to
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TABLE I

CALL CONGESTION, µ = 1 AND ε = 10−6

(ρ, N, K) Syski’s [8] New Exact
(0.4, 2, 1) 0.1629 0.1623 0.1615 0.1528
(0.9, 2, 1) 0.2696 0.2656 0.2597 0.2449
(0.4, 3, 1) 0.2065 0.2061 0.2050 0.1989
(0.9, 3, 1) 0.3316 0.3290 0.3214 0.3149
(0.4, 5, 1) 0.2392 0.2390 0.2379 0.2344
(0.9, 5, 1) 0.3776 0.3764 0.3692 0.3681
(0.4, 6, 3) 0.0319 0.0318 0.0318 0.0302
(0.9, 6, 3) 0.1155 0.1135 0.1125 0.1055
(0.4, 9, 3) 0.0486 0.0486 0.0485 0.0469
(0.9, 9, 3) 0.1628 0.1611 0.1593 0.1544
(0.4, 15, 3) 0.0639 0.0639 0.0638 0.0626
(0.9, 15, 3) 0.2029 0.2019 0.1998 0.1975
(0.4, 10, 5) 0.0078 0.0078 0.0078 0.0074
(0.9, 10, 5) 0.0610 0.0600 0.0598 0.0559
(0.4, 15, 5) 0.0146 0.0146 0.0146 0.0141
(0.9, 15, 5) 0.0995 0.0984 0.0978 0.0943

numerically compute the unique solution for (1) and (6) and
we prove its convergence. We have opted for a binary search
algorithm because we cannot guarantee that the successive
substitution algorithm proposed in [8] converges to the unique
solution of (1) and (6). Finally, in the next section, we
numerically validate the accuracy of our new approximation
relative to Syski’s approximation and the approximation in [8]
as well as the exact call congestion.

D. Existence and Uniqueness of Solution for (1) and (6)

By setting x = m in (6) and moving the left-hand side of
(6) to the right, we define the function

f(x) =
1
λ

+ Π(x)
(

1
µ

+ x

)
− x, x ≥ 0, (7)

where we have written Π(x) instead of Π to emphasize that Π
is functionally dependent through (1) on the mean OFF time,
x. Our task is to prove f(x) = 0, x ≥ 0, has a unique solution.

To establish solution existence, we observe that f(x) is
continuous and changes sign at least once for x ≥ 0. This
is because f(0) = 1/µ + 1/λ > 0, while as x gets large,
the −x term in f(x) dominates, thus f(x) < 0. Therefore, a
solution exists by the intermediate-value theorem.

To establish solution uniqueness, suppose f(x1) = f(x2) =
0 for x2 > x1 ≥ 0. The mean-value theorem requires the
existence of an η satisfying f(x2)− f(x1) = f ′(η)(x2 − x1),
where x1 ≤ η ≤ x2. This provides us with a contradiction
because simple calculations reveal

f ′(x) = Π(x) − 1 + Π′(x)
(

x +
1
µ

)
< 0,

where the last inequality follows from the fact that Π′(x) < 0
for all x > 0. Therefore, x1 = x2.

E. Binary Search Algorithm to Solve f(x) = 0
Let x∗ be the unique solution of f(x) = 0. We define the

monotonically decreasing transformation
Γ : [1/λ,Γ(1/λ)] −→ [1/λ,Γ(1/λ)] such that

Γ(x) =
µ + λΠ(x)(
1 − Π(x)

)
µλ

.

We show that the binary search algorithm specified in
Algorithm 1 finds the unique solution of f(x) = 0 for an
absolute error criterion of ε.

Algorithm 1 Calculate solution of f(x) = 0 for an absolute
error criterion of ε

1: x− = 1/λ, x+ = Γ(1/λ) Initial lower/upper bounds
2: while x+ − x− > ε do
3: x = (x+ + x−)/2 Halve the search interval
4: if Γ(x) < x then
5: x− = Γ(x) Tighten lower bound
6: else
7: x+ = Γ(x) Tighten upper bound
8: end if
9: end while

10: return x = (x+ + x−)/2 ε satisfied, thus return x

Due to the monotonicity of Γ(x), at each iteration of
Algorithm 1, if x < x∗, then Γ(x) > x∗ and thus Γ(x) >
x∗ > x. Conversely, if x > x∗, then Γ(x) < x∗ and thus
Γ(x) < x∗ < x. Consequently, x∗ lies in the interval [x−, x+]
at each iteration of Algorithm 1. Furthermore, this interval
halves at each iteration, thereby ensuring x∗ is sandwiched
within an interval whose eventual length does not exceed ε.

IV. NUMERICAL RESULTS

In Table I, we present plots of call congestion for all three
approximations versus what we call the normalized traffic
intensity, which is defined as ρ = (N/K)(λ/µ).

Table I empirically verifies that our new approximation is
the tightest upper bound on call congestion, while Syski’s
approximation is the loosest. The approximation in [8] is
sandwiched in between.
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