
Chapter 4
Laplacian Spectra and Synchronization
Processes on Complex Networks
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Abstract The spectrum of the Laplacian matrix of a network contains a great
deal of information about the network structure and plays a fundamental role in
the dynamical behavior of the network. This chapter is to explore and analyze the
Laplacian eigenvalue distributions of several typical network models, to study the
network dynamics towards synchronization at a mesoscale level of description, and
to report the finding of a relation between the spectral information of the Laplacian
matrix and the dynamics in the network synchronization process. First, an example
of adding long-distance edges is given to show that the network synchronizability
may not be directly inferred from statistical properties of the network. Then, the
Laplacian eigenvalues of several representative complex networks are shown to
possess very different properties, and yet they also share some common features
meanwhile. Further, the correlation between the Laplacian spectrum and the node-
degree sequence of a network is investigated, revealing that scale-free networks
have the highest correlation values, followed by random networks and then by
small-world networks. To that end, a simple local prediction–correction algorithm
is presented for approximating the eigenvalue λi+1 from λi, i = 1,2, · · · ,N, where
N is the network size. Finally, it is shown that the processes of synchronization and
generalized synchronization (GS) display different patterns, depending intrinsically
on the topological structures of the networks. It is found that in the process of
synchronization (or GS), roughly speaking, synchronization (or GS) first starts from
a small part of hub nodes and then spreads to the other nodes with smaller degrees.
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It is also demonstrated that, for community networks, a typical synchronization
process generally starts from partial synchronization through cluster synchroniza-
tion to evolve to global complete synchronization.

4.1 Introduction

In recent years, the theory of complex networks has attracted wide attention and
become an area of great interest [1–5], for its advances in the understanding of
many natural and social systems. One subject in the studies of complex networks
that has received a great deal of attention is the topological characterization of
various networks. Indeed, there has been considerable interest in investigating how
the statistical properties of a network, such as the degree distribution, average
distance, clustering coefficient, betweenness, and so on, are related to the dynamical
processes taking place on the network [6–14]. However, it was shown in [15] that
some statistical network properties are not sufficient to determine various complex
dynamical patterns. It is found that unfortunately statistical properties may actually
infer completely opposite conclusions about some large-scale complex networks
sometimes.

From a graph-theoretic perspective, the spectrum (i.e., the set of eigenvalues)
of the Laplacian matrix of a network contains tremendous information about the
underlying network, which provides useful insights into the intrinsic structural
features of the network [16]. A prototype example is the synchronizability of a
network [17–20], which is crucially determined by the ratio of the smallest nonzero
eigenvalue to the largest one of the corresponding Laplacian matrix. Also, the
eigenvectors of the Laplacian matrix are known to be useful for detecting the
community structure of a network [21].

Synchronization, as an emerging phenomenon of a population of dynamically
interacting units, has fascinated humans since the ancient times. Synchronization
phenomena and processes are ubiquitous in nature and play a vital role within vari-
ous contexts in biology, chemistry, ecology, sociology, technology, and even visual
arts. To date, the problem of how the structural properties of a network influence
the performance and stability of the fully synchronized states of the network have
been extensively investigated and discussed, both numerically and theoretically.
Regarding partial synchrony, however, research results obtained thus far are much
less and unmature [22–32]. It is well known today that synchronization analysis,
synchronization processes and topological scales are all crucially determined by the
whole eigenvalues spectrum of the Laplacian matrix of the network [15, 24, 25].
As such, a careful investigation on the eigenvalues spectrum of a complex network
is of great significance especially regarding the evolution of the dynamical behaviors
of the network.

The present chapter studies the Laplacian spectra of complex networks and
their effects on the synchronization processes over the networks. Specifically, it
is to further explore and analyze the Laplacian eigenvalue distributions of several
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typical network models, to study the network dynamics towards synchronization at
a mesoscale level of description, and to report a connection between the spectra of
the Laplacian matrix and the dynamical process through the emergence of network
synchronization.

Section 4.2 introduces the notion of eigenvalues spectrum of the Laplacian matrix
of a network, and some well-known estimations of the eigenvalues. As reported in
[15], some networks with the same statistical properties may have very different
synchronization characteristics. Here, in addition, an example is given to show that
adding long-distance edges can sensitively affect the average distance, a typical
statistical property, while the smallest nonzero eigenvalue remains essentially
unchanged.

Section 4.3 introduces and analyzes the spectral distributions of regular, random,
small-world, scale-free, and community networks. The main finding is that the
Laplacian eigenvalues of these four types of complex networks have very different
properties in general and yet they also share some common features meanwhile. The
spectral distributions of regular, random, and small-world networks are homoge-
neous, whereas that of the scale-free networks is quite heterogeneous. Furthermore,
for random and small-world networks, the smallest nonzero eigenvalue depends
approximately linearly on the connection probability adopted in network generation.
There exist some big gaps between consecutive eigenvalues in community networks,
while for a network with k prominent communities there are k− 1 eigenvalues near
zero. In various realizations of the same type of network topology of the same size,
the variations of their Laplacian eigenvalues are quite small; and this is roughly the
same for all different types of network models studied.

In Sect. 4.4, it is revealed that the distributions of the Laplacian eigenvalues are
very similar to the distributions of the node-degree sequence. It is found that the
correlation between the spectrum and the node-degree sequence of a scale-free
network is the highest, followed by random networks and then by small-world
networks. Meanwhile, a simple local prediction-correction algorithm is designed
to determine the eigenvalue λi + 1 from λi, i = 1,2, ...,N where N is the size of the
network. It is also demonstrated that the eigenvalue curves are quite different from
their corresponding node-degree distributions in some regions with small indexes,
although they are quite similar in other regions.

Section 4.5 studies the dynamics towards synchronization in complex networks
at the mesoscale level of description. The dynamical processes towards synchro-
nization show different patterns depending intrinsically on the network topological
structures. It is found that the processes of synchronization and generalized synchro-
nization (GS) display different patterns, depending intrinsically on the topological
structures of the networks. It is also found that in the process of synchronization
(or GS), roughly speaking, synchronization (or GS) first starts from a small part
of hub nodes and then spreads to the other nodes with smaller degrees. Finally, it
is demonstrated that, for community networks, a typical synchronization process
generally starts from partial synchronization through cluster synchronization to
global complete synchronization.
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4.2 The Laplacian Matrix and Its Eigenvalues

Consider a network G of N nodes, with edges linking certain pairs of nodes together.
Suppose that there are no self-loops and no multiple edges between the same pair of
nodes. The Laplacian matrix L of the network is defined by

Luv =

⎧
⎪⎨

⎪⎩

dv if u = v,

−1 if u and v are adjacent,

0 otherwise.

where dv denotes the degree of node v. The adjacency matrix A = (auv) is defined
by auv = 1 if u is adjacent to v or 0 others. Thus, the Laplacian matrix L is defined
to be L = D−A, where D = (di j) is the diagonal matrix of all node degrees, that is,
with dii equals the degree of node i, i = 1,2, . . . ,N. Only undirected networks are
considered here, for which all the Laplacian matrices are symmetric and positive
semi-definite, with nonnegative real eigenvalues arranged as λ1 ≤ λ2 ≤ ·· · ≤ λN .

Since the Laplacian matrix, described as above, has zero row-sums (hence, zero
column-sums), the smallest eigenvalue λ1 = 0 with the corresponding eigenvector
(1,1, . . . ,1)T; in particular, λ2 is nonzero if and only if the network is connected,
and furthermore the number of connected components is equa1 to the multiplicity
of the 0 eigenvalue.

4.2.1 Basic Properties of Laplacian Eigenvalues

Let dmin and dmax denote the smallest and the largest degree of a network,
respectively, and use the index i to order the degrees of its nodes: dmin = d1 ≤ d2 ≤
·· · ≤ dN = dmax. The following estimates are well-known [33]:

λ2 ≤ N
N − 1

dmin ≤ N
N − 1

dmax ≤ λN ≤ 2dmax . (4.1)

Similarly, using the average degree davg, it was shown in [34] that

davg < λN(A)≤ N, (4.2)

where λN(A) is the largest eigenvalue of the adjacency matrix A and, moreover,
λN(A) = N if and only if the complementary graph of G is disconnected [35].
However, the above estimations are generally conservative.

Fiedler [36] further established the following bounds relative to the node
connectivity and the edge connectivity:

λ2 ≤ υ(G)≤ e(G),
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where υ(G) is the node connectivity of G, namely the minimal number of
nodes whose removal together with the adjacent edges would result in losing the
connectivity of G, while e(G) is the edge connectivity, defined as the minimal
number of edges whose removal would result in losing the connectivity of G.

Fiedler [36] also established a lower bound relative to the edge connectivity or to
the largest degree, as follows:

λ2 ≥ 2e(G)(1− cos(π/N)),

λ2 ≥ 2[cos(π/N)− cos(2π/N)]− 2cos(π/N)(1− cos(π/N))dmax.

The second lower bound is better if and only if 2e(G) > dmax. Relatively, one also
has 2(1−cos(π/N)) = λ2(PN), where λ2(PN) the second smallest eigenvalue of the
adjacent matrix corresponding to PN , a path through N nodes.

Anderson and Morley [37] showed that

λN ≤ max{du + dv : u and v are adjacent},
The equality holds if and only if G is a semi-regular bipartite graph.

Merris [38] showed that

λN ≤ max{dv +mv},
where mv is the average degree of all the neighbors of node v.

Rojo, Soto, and Rojo [39] gave another upper bound on λN , as follows:

λN ≤ max{du + dv −|Nu ∩Nv| : u �= v},

where |Nu ∩Nv| denotes the number of the common neighbors of nodes u and v.
Li and Pan [40] proved that

λN−1 ≥ dN−1,

where the equality holds for a complete bipartite graph or a tree with a degree
sequence {N/2,N/2,1, . . . ,1}. Prior to this, it was known [41] that

λN ≥ dmax + 1,

where the equality holds if and only if dmax = N − 1.
Last but not least, Duan, Liu, and Chen [42] reported some useful estimation

bounds for some Laplacian eigenvalues and the eigenvalue ratio about complex
network synchronizability, with respect to subgraphs, complementary and product
graphs.
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4.2.2 Statistical Properties Versus Laplacian Spectra

In [13], it was shown that the synchronizability of a large class of networks is
determined by the eigenvalue ratio λ2/λN , of which it was shown that the main
dependence is on the smallest nonzero eigenvalue λ2 [43, 44]. Since in most real
networks, dmin = 1, it follows from (4.1) that

λ2 ≤ N/(N − 1),

which, of course, is a rather conservative estimation.
From (4.1), one immediately gets that

λ2

λN
≤ dmin

dmax
≤ 1. (4.3)

Therefore, generally speaking, the closer to 1 the ratio is, the better the network syn-
chronizability will be. For example, that scale-free networks have dmin/dmax � 1;
therefore, as has been well experienced, they have relatively poorer synchronizabil-
ity in comparison to most other types of network structures in general.

It should be noted, however, that (4.3) does not imply that a more homogeneous
degree distribution always means a better synchronizability. It was shown in [15]
that the effect of small structural changes on synchronizability may not average out
within a large-scale network, therefore the synchronizability may not be described
by the statistical network properties. Moreover, some examples were presented in
[15, 16] to show that networks with the same degree distribution can have very
different synchronizability characteristics.

According to [15], furthermore, an upper bound of λ2 can be estimated by

λ2 ≤ 2
|∂S|
|S| , (4.4)

where S is any subset of nodes satisfying 0 < |S| ≤ N/2, |S| is the total number
of nodes in S, and |∂S| is the number of common edges between S and its
complementary graph. It was also reported in [15] that the estimation (4.4) plays
a key role in understanding why the statistical properties of a network may fail to
determine λ2. An important observation is that the above bound on λ2 is determined
by the properties of some subgraph S but not in general by the network itself.
In particular, S can be very small comparing to the whole network, so in this case the
statistical properties of the network need not be reflected by S, therefore the former
may not be very crucial for bounding the value of λ2.

Here, an example is given to further show that adding long-distance edges to a
network can sensitively affect the average distance, but they have very little effect
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Fig. 4.1 Synchronizability comparison: (a) between network N0, composing of a small-world
model H of 500 nodes, and network N1, composing of a small-world model H of 500 nodes
and a fully connected model S of 50 nodes, with only one edge connecting H and S together;
(b) between network N0 and network N2, composing of a small-world model H of 500 nodes and
a fully connected model S of 50 nodes, with two edges connecting H and S together

on the smallest nonzero eigenvalue. To do so, consider a community network N1

composing of a huge part H and a small part S, where H is a small-world model
of 500 nodes and S is a fully connected model of 50 nodes, which is connected to
H by only one edge. For comparison, define another network, N0, composing of
H only, without the small part S. Then, add some long-distance edges into H with
probability p, so as to shorten the average network distance. Under this framework,
the synchronizability of the networks N0 and N1 is analyzed numerically, with
results as shown in Fig. 4.1a.

From Fig. 4.1a, one can observe the following: (1) Without the small part S, if
p is increased, then λ2 and λ2/λN both rise up, implying that increasing p yields
a better synchronizability of the network. (2) With the small part S, when p is
large enough, λ2 first increases and then saturates, while the largest eigenvalue
λN continues to increase. Therefore, the ratio λ2/λN eventually decays, thereby
reducing the synchronizability. In other words, the network does not become
more synchronizable, even though the probability p with long-distance connections
increases, that is, the average network distance becomes smaller. This means
that one cannot use the statistical properties to measure the synchronizability of
networks in general, which is consistent with the observations reported in [15]. (3)
It is easier for a network to synchronize in the case without the small community S
than the case with S.
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Furthermore, when there exists a small part S, as p is increased, the numerical
result shows that the final value of the eigenvalue λ2 remains to be about 0.021
(see Fig. 4.1a). In terms of (4.4), the theoretical value is λ2 ≤ 2/50 = 0.04, which
is not of significant difference from the numerical result. In addition, when there
exist two edges between H and S, the final value of λ2 remains to be about 0.042
(see Fig. 4.1b), implying that the value of λ2 is positively proportional to the number
of edges between the two parts, at least for the present simple cases with one or two
connections. In fact, this conclusion may also be deduced from (4.4).

4.3 Spectral Properties of Several Typical Networks

The spectrum of a network is the set of eigenvalues of the network’s Laplacian
matrix. While there are strict mathematical formulas to describe the spectra of some
very regular networks, much less is known about the spectra of many real-world
networks for their complex and irregular topological structures. A critical limitation
in addressing the spectra of these real-world networks is the lack of theoretical tools
for analysis; therefore, numerical simulation becomes the only way for investigation
today.

For all the numerical results reported below, each value is obtained through
averaging 50 simulation runs.

4.3.1 Regular Networks

Some very regular cases are easy to analyze.
For a fully connected network, the Laplacian matrix is

L =

⎛

⎜
⎜
⎜
⎝

N − 1 −1 · · · −1
−1 N − 1 · · · −1
. . .

. . .
. . .

. . .

−1 −1 · · · N − 1

⎞

⎟
⎟
⎟
⎠
,

with eigenvalues

λ1 = 0, λ2 = · · ·= λN = N. (4.5)

For a star-shaped network, the Laplacian matrix is

L =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

N − 1 −1 −1 · · · −1
−1 1 0 · · · 0

...
. . .

−1 0 · · · 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,
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Fig. 4.2 Rank index i versus eigenvalues of the Laplacian matrices L: (a) 2K-ring network with
N = 1000 and K = 2; (b) random network with N = 1000 and p = 0.007

with eigenvalues

λ1 = 0, λ2 = · · ·= λN−1 = 1, λN = N. (4.6)

In a 2K-ring network with degree sequence {2K,2K, . . . ,2K}, each node is
connected to its 2K nearest neighbors, thereby forming a ring-shape of graph. Its
Laplacian matrix is a circulant matrix:

L =

⎛

⎜
⎜
⎜
⎝

2K −1 · · · −1 0 · · · 0 −1 · · · −1
−1 2K −1 · · · −1
. . .

. . .
. . .

. . .

−1 · · · −1 0 · · · 0 −1 · · · −1 2K

⎞

⎟
⎟
⎟
⎠
,

with eigenvalues 0 and 2K − 2∑K
l=1 cos 2π il

N = 4∑K
l=1 sin2 π il

N , i = 1,2, . . . ,
N − 1.

To show some spectral properties of the 2K-ring networks, consider the simple
case of K = 2 as an example, and compute the eigenvalues of its Laplacian matrix for
size N = 1,000. It can be seen from Fig. 4.2a that the nonzero eigenvalues come out
equally in pairs, except the eigenvalue 4. Moreover, the smallest nonzero eigenvalue
is λ2 = 0.00019739 and the largest one is λN = 6.25. The eigenvalue ratio λ2/λN is
so small, implying that this network is very difficult to synchronize.

4.3.2 Random Networks

In contrary to the completely regular networks, a completely random network can
be described by a random graph. One classical model of random graphs was first
defined and then studied extensively by Erdös and Rényi [45]. An ER random
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Fig. 4.3 Rank index i versus eigenvalues of the Laplacian matrices L, for random networks of size
N = 1,000 with different connection probabilities

network has all edges established at random, with probability p, between each
possible pair of nodes in the network. Thus, a random graph of N nodes with
probability p will have pN(N − 1)/2 edges statistically.

For example, consider such a network with N = 1,000 nodes. When p = 0.007>
pc, where pc = (1+ ε)lnN/N ≈ 0.0069, the random network will almost surely be
connected. The eigenvalues are uniformly distributed in the interval [0,20), as can
be seen from Fig. 4.2b. The spectrum has a short span and is quite homogeneous.
It is found that the smallest nonzero eigenvalue λ2 = 0.3712 and the largest one is
λN = 19.0554, giving the ratio λ2/λN = 0.0195.

Figure 4.3 displays the spectra of random networks, which are changing with the
connection probability p. One can observe that as p increases, the spectral width
decreases quickly, meanwhile the smallest nonzero eigenvalue λ2 and the largest
one λN both increase. The main reason is that the increased p not only reduces the
total number of isolated subgraphs, leading to increase of λ2, but also raises the
largest degree dmax, indicating the increase of λN according to (4.1).

In the case of p = 0.005, the network has very sparse edges, and there exist some
disconnected subgraphs, since p < pc. Hence, λ2 = 0, consistent with the numerical
result. As a result, such random networks generated with p = 0.005 are impossible
to synchronize in general. When p = 0.01, the smallest nonzero eigenvalue and the
eigenvalue ratio are changed to λ2 = 1.4512 and λ2/λN = 0.0610, respectively. As
the probability is further increased to p = 0.1, one has λ2 = 68.0447 and the ratio
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becomes λ2/λN = 0.4979. When the probability p is very close to 1, the model
becomes very much like a fully connected network, and so the eigenvalue ratio
λ2/λN tends to 1. Therefore, from a statistical point of view, the synchronizability
is enhanced gradually as the connection probability p is increased, as can be clearly
seen from Fig. 4.4.

Interestingly, for random networks, a prominent approximately linear depen-
dence between λ2 and the connection probability p can be observed from Fig. 4.4a.
Thus, λ2(p) is used to denote the dependence of λ2 on the probability p. For a fixed
size N, if λ2(p1) and λ2(p2) are computed from two suitable numbers of p1 and p2

(p1 �= p2), then one can estimate the smallest nonzero eigenvalue λ ∗
2 (p) for any p

by using the following formula:

λ ∗
2 (p)≈ λ2(p1)−λ2(p2)

p1 − p2
(p− p1)+λ2(p1).

Since p > pc, these random networks will almost surely be connected; therefore,
it is reasonable to choose both p1, p2 > pc. Here, take p1 = 0.1 and p2 = 0.25 to
compute the corresponding λ ∗

2 of other probabilities p, resulting the plots shown
in Fig. 4.5. It can be observed that the relative error |λ2 −λ ∗

2 |/λ2 is quite big when
p < 0.05, while it is small when p > 0.1, and these estimations are almost exact.

4.3.3 Small-World Networks

Small-world networks are neither completely regular nor completely random; one
representative model is the NW small-world network, proposed by Newman and
Watts [46]. In this model, some edges are added to an initial 2K-ring at random,
with a probability p ∈ [0,1].
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Fig. 4.6 Small-world networks of size N = 1,000: (a) Rank index i versus eigenvalues of
Laplacian matrices L; (b) the smallest nonzero eigenvalue λ2 versus the connection probability p

With p = 0, the network is the initial 2K-ring network. As p is increased,
the smallest nonzero eigenvalue λ2 and the largest one λN both will increase
(see Fig. 4.6a). However, λ2 grows much faster than λN , resulting in an increased
eigenvalue ratio λ2/λN . It implies that the synchronizability of the small-world
network is improved as the connection probability is increased.

For 0 < p < 1, it can be seen from Figs. 4.3 and 4.6a that, similarly to random
networks, the spectral range of a small-world network becomes narrower when the
connection probability p is increased.

With p=1, the small-world model becomes a fully connected graph, so the
spectrum of this case is similar to the fully connected network discussed before.
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Thus, it can be concluded that the spectrum of an NW small-world network,
which is quite homogeneous, transits from the spectrum of a 2K-ring network to
that of a fully connected network, as the connection probability p is increased.

For the NW small-world network model, a similar phenomenon of a prominent
approximately linear dependence of λ2 on the connection probability p can be
observed, as seen from Fig. 4.6b. By linear fitting, the estimation of λ2 for an NW
small-world network of N = 1,000 can be obtained, as λ ∗

2nw(p) = 992.48 ∗ p −
38.831. It should be noted that these values are related to several parameters such as
the probability p, the ring constant K, and the size N of the network.

4.3.4 Scale-Free Networks

Scale-free networks are characterized by the power-law form of their degree distri-
butions, which can be generated with the Barabási–Albert’s preferential attachment
algorithm [47]. Staring from an initial set of m0 fully connected nodes, one node is
added along with m new edges, at every time step. Nodes in the existing network
with higher degrees have higher probabilities, proportional to their degrees, to be
connected by the new node through a new edge, where multiple connections are
prohibited. This algorithm yields a typical BA scale-free network, which is growing
until the process stops.

Figure 4.7a shows some spectral properties of a scale-free network of size N =
1,000. It can be seen that the eigenvalues are distributed in a very heterogeneous
way. Part of the eigenvalues are located in the interval [0,20], while some larger
ones are located far away from this interval. The smallest nonzero eigenvalue is λ2 =
0.5391 and the largest one is λN = 81.6367, resulting in the ratio λ2/λN = 0.0066.
It can also be observed that a large difference exists between λ2 and λN , implying
that the spectral distribution range of the scale-free network is wide, distinctive from
regular, random and small-world networks.

Figure 4.7b compares the spectra between NW small-world and BA scale-free
networks. It can be seen that the span of the eigenvalues distribution in the small-
world network is smaller than that of the scale-free network. For the latter, most of
its eigenvalues are comparatively concentrated, and meantime there are some very
large eigenvalues.

In summary, the spectral properties of different networks are clearly different.
Thus, one can tell which category a network belongs to, by simply looking at
its spectral properties. The spectra of regular, random, and small-world networks
are homogeneous, whereas those of scale-free networks are heterogeneous. Fur-
thermore, for random and small-world networks, the synchronizability is increased
as the connection probability p is increased. In particular, the smallest nonzero
eigenvalue is almost linearly dependent on the connected probability for both ER
random and NW small-world networks.
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small-world networks with N=1,000 and p=0.0025

4.3.5 Community Networks

Community structure means densely connected groups of nodes with sparse connec-
tions between them. This section discusses the spectra of networks with prominent
community structures, called community networks.

First, consider the spectra of networks composing of two communities, each of
which is (1) a fully connected graph (Fig. 4.8a); (2) a random network (Fig. 4.8b);
(3) a small-world network (Fig. 4.8c); and (4) a scale-free network (Fig. 4.8d). There
are some random edges between two communities. It can be seen from Fig. 4.8 that
there is a big gap between λ2 and λ3. Moreover, as the number of edges between two
communities is increased, λ2 is increased and the gap between λ2 and λ3 decreases,
indicating that the community structure becomes blurred. It can also be seen that
the other eigenvalues basically remain unchanged, reflecting the robustness of the
spectral properties of the corresponding subgraphs.

Next, consider some networks composing of three communities: (1) each
community is a small-world network (Fig. 4.9a); (2) each community is a scale-
free network (Fig. 4.9b). There exist several random edges between every two
communities. It can be seen that there is a big gap between λ3 and λ4, and
the increased number of random edges among the three communities led to the
increased values of λ2 and λ3. Furthermore, λ2 and λ3 are increased much faster
than the other eigenvalues; therefore, the difference between λ3 and λ4 is reduced,
and the community structure becomes blurred.

Remark 4.1. From Figs. 4.8c (4.9a), namely, and 4.8d (4.9b), one can find that
the distributions of the eigenvalues in Figs. 4.8c and 4.9a are more homogeneous
than those shown in Figs. 4.8d and 4.9b. This is probably due to the heterogeneity
of the BA scale-free subnetworks and the homogeneity of the NW small-world
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Fig. 4.8 Rank index i versus eigenvalues of the Laplacian matrix L: (a) a network composing of
two fully connected subgraphs of size N = 250, with random edges 100, 200 and 300 between
two communities, respectively; (b) a network composing of two random subgraphs of size N =
250, with p = 0.03, having 5, 20 and 100 random edges between two communities, respectively;
(c) a network composing of two small-world subgraphs of size N = 250, with p = 0.005, having
5,20 and 100 random edges between two communities, respectively; (d) a network composing of
two scale-free subgraphs of size N = 250, with m0 = 5 and m = 2, having 5, 20 and 100 random
edges between two communities, respectively

subnetworks, since there exists a positive correlation between the spectrum and
the degree sequence, as will be further discussed later in Sect. 4.4. Thus, the more
diverse the degree distribution, the more heterogeneous the eigenvalues of the BA
scale-free subnetworks.

In summary, the spectra of community networks bring to light many aspects of
the network topologies: (1) the number of zero eigenvalues equals the number of
isolated communities; (2) a gap between eigenvalues indicates the existence of a
community structure; (3) for a network with k prominent communities, there are
k−1 eigenvalues near zero, the gap between λk and λk+1 is larger than the difference
between any other consecutive eigenvalues, and larger eigenvalues in the last part of
the sequence reflect some major properties of communities; and (4) the increase of
the number of edges between communities can result in the increase of the value of
λ2, which also means a better synchronizability.
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4.4 Relation Between the Spectrum and the Degree Sequence

Real-world networks are usually very large in size; thus, it is generally difficult and
time-consuming to compute their spectra. However, the degree sequence is easy to
obtain. So, if one can find the relation between a spectrum and a degree sequence, it
will be reasonable to make use of the degree sequence for estimating the spectrum of
a real network. The question is, then, whether or not they have any easily described
and computable relations?

4.4.1 Theoretical Analysis

In order to identify some intrinsic relations between the Laplacian eigenvalues and
the degree sequence of a network, the following lemma is needed.

Lemma 4.1 (Wielanelt-Hoffman Theorem [48]). Suppose C = A + B, where
A,B,C ∈ RN×N are symmetric matrices, and let the eigenvalue sets λ (B) and λ (C)
be arranged in the non-decreasing order. Then,

N

∑
i=1

|λi(C)−λi(B)|2 ≤ ||A||2F ,

where ||A||F =
(

∑i j |ai j|2
)1/2

denotes the Frobenius norm of matrix A.
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Theorem 4.1 ([49]). Let G be a graph of N nodes with Laplacian matrix L,
and arrange the node-degree set and the eigenvalue set in the vector form, as
d = (d1,d2, . . . ,dN)

T and λ (L) = (λ1,λ2, . . . ,λN)
T, respectively, both in the non-

decreasing order. Then,

δ =
||λ (L)− d||2

||d||2 ≤
√||d||1
||d||2 ≤

√
N

||d||1 .

Remark 4.2. Theorem 4.1 shows that for the Laplacian matrix L, the difference
between Laplacian eigenvalues λ (L) and node-degrees d is bounded by ||d||1/||d||22.
Thus, for a large-scale complex network with a huge number of edges, ||d||1/||d||22
typically have a small value, implying that the distribution of the Laplacian
eigenvalues is indeed similar to the distribution of the node degrees. On the other
hand, however, for a large-scale network with sparse connections, the value of

N/
(

∑N
i=1 di

)
is usually small, implying that the inequality is quite conservative.

Remark 4.3. It is reported in [49] that the differences between Laplacian eigenval-
ues λ (L) and node-degrees d are very small for random, small-world and scale-free
networks, according to extensive numerical simulations. In the next subsection, it
will be shown that the eigenvalues distributions are very closely related to the node-
degree sequences, which is consistent with the results of [49].

Theorem 4.2 ([49]). Let λ j be the eigenvalues of the Laplacian matrix L of a graph
with N nodes, and di be the degree of node i, i = 1,2, · · · ,N. Then, in every interval
[di −

√
di,di +

√
di], there is at least one eigenvalue λ ∗ ∈ {λ j| j = 1,2, . . . ,N} of L,

that is,

(di −
√

di)≤ λ ∗ ≤ (di +
√

di), i = 1,2, · · · ,N.

Remark 4.4. In Theorem 4.2, some intervals [di −
√

di,di +
√

di] may overlap, and
some eigenvalues of L may not fall into any of such intervals at all.

Remark 4.5. By the Gerschgorin Theorem, the eigenvalues of L satisfy that

|λ − lii| ≤
N

∑
j=1, j �=i

|li j|.

Since lii = di, and L has zero row-sum, one has |λ − di| ≤ di, namely,

0 ≤ λ ≤ 2di , i = 1,2, . . . ,N.

Thus, one can see that the result given by Theorem 4.2 is less conservative than this
estimation given by the Gerschgorin Theorem.
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Fig. 4.10 ER random networks of size N = 1,000: (a) rank index i versus the relative spectrum
and relative degree sequence, when p = 0.0258; (b) correlation coefficient between the spectrum
and degree sequence versus the probability p

4.4.2 Numerical Results

To visualize the relation between the eigenvalues distribution and the degree
sequence, extensive numerical simulations were performed and analyzed.

For convenience of analysis, define the relative spectrum

Re(i) := (λi −λ2)/(λN −λ2), i = 2,3, . . . ,N,

and the relative degree sequence

Rd(i) := (di − d2)/(dN − d2), i = 1,2, . . . ,N.

Numerical results illustrated in Figs. 4.10a, 4.11a and 4.12a show the relations
between the relative spectrum Re and the relative degree sequence Rd. The total
numbers of edges, in the random networks with p = 0.0258, the small-world
networks with p = 0.0218, and the scale-free networks with m0 = m = 13, are all
equal to 12909± 10.

It can be easily seen from Fig. 4.10a that the spectrum and the degree sequence
of a random network seems to be correlated, but how much the two are correlated is
unclear, so the correlation coefficient between the spectrum and the degree sequence
is calculated. When the connection probability p = 0.0258, from Fig. 4.10b, one
can see that the correlation coefficient is 0.9925. That is, the spectrum and degree
sequence are quite correlated. And, the correlation coefficient is increased, though
slowly, as p is increased.

Figure 4.11a shows the correlation between the spectrum and degree sequence of
a small-world network of 1,000 node with the connection probability p = 0.0218.
Calculation yields the correlation coefficient 0.9921 in this case, implying that the
spectrum and degree sequence are comparatively correlated. Fig. 4.11b shows that
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Fig. 4.11 NW small-world networks of size N = 1,000: (a) rank index i versus the relative
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Fig. 4.12 BA scale-free networks of size N = 1,000: (a) rank index i versus the relative spectrum
and relative degree sequence of scale-free networks of size N = 1,000, when m0 = m = 13;
(b) correlation coefficient between the spectrum and degree sequence versus m

the correlation coefficient ascends to a certain degree, and then converges to a
constant value of 0.9935 as the probability p is increased further.

From Fig. 4.12, one can see that the spectrum and degree sequence of a BA scale-
free network are closely correlated. Indeed, when m0 = m = 13, the correlation
coefficient equals 0.9992. Figure 4.12b shows the increasing correlation coefficient
with the increasing m.

Moreover, it can also be observed that the correlation between the spectrum
and degree sequence of a scale-free network is the highest, followed by random
networks and then by small-world networks. Therefore, in the following, a scale-
free network with m0 = m = 13 is used as an example to estimate all the eigenvalues
in terms of λ2, λN , and the degree sequence.
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It is known that if the correlation coefficient between two random variables X ,Y
is close to 1, then it means that the probability of the linear relation Y = aX + b
is close to 1. But the parameters a and b are usually unknown, so it is difficult
to compute the whole spectrum of eigenvalues (the so-called global method) from
the degree sequence, λ2 and λN . The following is an efficient local algorithm for
computing approximations of λi+1 from λi, i = 1,2, ...,N.

• Initial conditions: λ̄1 = λ ∗
1 = 0.

• Step 1 (Prediction). Compute λ̄i in terms of the degree sequence, λ2, and λN , as
follows:

λ̄i =
di − d2

dN − d2
(λN −λ2)+λ2.

• Step 2 (Correction). Compute the approximation λ ∗
i+1 from λi, iteratively, by

λ ∗
i+1 = λi +(λ̄i+1 − λ̄i), i = 1,2, . . . ,N − 1.

Figure 4.13a shows a comparison between the approximated λ ∗
i and the exact

λi, i = 2,3, . . . ,N. It is clear that the estimations are very accurate. From Fig. 4.13b,
one can see that the relative error (λi − λ ∗

i )/λi is very small, with an average of
0.3263%, demonstrating that the local algorithm for estimating λi+1 from λi is
indeed highly effective.

4.5 Synchronization Processes on Complex Networks

Complex networks in various physical systems can be described at different scales.
This section discusses networks at the “mesoscale,” as defined in [25], addressing
subgraphs rather than at the “microscale” which addresses individual nodes or at
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the “macroscale” which addresses the network as a whole. The mesoscale is an
intermediate scale examining substructures such as motifs, cliques, cores, loops,
and communities. In particular, the community detection problem concerning the
determination of mesoscopic structures that have functional, relational or even
social dynamics and impacts is an important and yet also challenging subject for
investigation in the field of complex networks.

This section focuses only on synchronization processes on complex networks
at the mesoscale level of description. Synchronization is a generic feature of
networked dynamical systems such as cells and oscillators. Previous studies have
discussed the onset of synchronization and the impact of structural properties on
network synchronizability. The interest here is the regions outside the onset of phase
synchronization and the role of network topology in the synchronization processes.

4.5.1 Paths to Synchronization on Complex Networks

One of the most popular models for coupled oscillators is the Kuramoto model [50]:

dθi

dt
= ωi +λ

N

∑
j=1

Ai j sin(θ j −θi), i = 1,2, . . . ,N, (4.7)

where ωi represents the natural frequency of the ith oscillator and λ is the coupling
constant.

This model can be studied in terms of an order parameter, r, that measures the
extent of phase synchronization in the network, defined by

reiΨ =
1
N

N

∑
j=1

eiθ j ,

where Ψ represents the average phase of the network. The parameter 0 ≤ r ≤ 1
displays a second-order phase transition in the coupling strength, with r = 0 being
the value of the incoherent solution and r = 1 the value of the complete phase
synchronization.

In [26], a new parameter, redge, is defined, as

redge =
1

2Nl
∑

i
∑
j∈Γi

∣
∣
∣
∣ lim

Δ t→∞

∫ tr+Δ t

tr
ei[θi(t)−θ j(t)]dt

∣
∣
∣
∣,

where Γi is the set of neighbors of node i and Nl is the total number of edges. This
parameter represents the fraction of edges with which the network achieves phase
synchronization, averaging over a large enough time interval Δ t after the network is
relaxed at a large time instant tr.

In [26], the dynamics of (4.7) for ER and scale-free (SF) networks were studied,
with respect to both global and local synchronization. It shows that the evolution
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Fig. 4.14 Left: evolution of the order parameter r, and the fraction of synchronized edges
rlink (= redge ) as a function of λ ; Right: size of the largest synchronized connected component (GC)
and the number of synchronized connected components (NC), as a function of λ , for the different
topologies considered [26]

of the order parameter r, as λ increases, can capture the global coherence of
synchronization in the network, and that redge can be used to measure the local
formation of synchronization patterns thereby revealing how global synchronization
is achieved.

Synchronization processes in ER and SF networks were studied numerically in
[26]. It can be seen from Fig. 4.14 that the global coherence of the synchronized
state, represented by r and implying the onset of synchronization, first occurs for the
SF network. If λ is further increased, there is a value of r for the ER network curve to
cross over the SF network curve. From this value up, in λ , the ER network remains
slightly better in synchrony than the SF network. The behavior of redge provides
some additional information about the processes between ER and SF networks.
Interestingly, the nonzero values of redge for very small λ indicate that some local
synchronization patterns has occurred even in the regime of global incoherence
(r ≈ 0). Right at the onset of synchronization for the SF network, its redge value
grows faster than the ER network. This implies that for the SF network the locally
synchronized structures rise at a faster rate than the ER network. Finally, when λ
is further increased, for the ER network, the growth in its synchronization patterns
increases drastically up to those obtained from the SF network, and even higher.

From the evolution of the number of synchronized clusters and the size of the
largest generated clusters (GC) shown in Fig. 4.14, the emergence of clusters of
synchronized pairs of oscillators (edges) in the networks shows that for small λ
values, still in the incoherent range with r ≈ 0, both ER and SF networks have
developed a largest cluster of synchronized pairs of oscillators involving about 50%
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of the network nodes, with an equal number of smaller synchronization clusters.
From this point of view, in the SF network the GC grows up but the number of
smaller clusters goes down, whereas for the ER network the growth exploits. These
results indicate that although SF networks present more coherence in terms of both
r and redge, the mesoscopic evolution of the synchronization patterns is slower than
the ER networks, which are far more locally synchronizable than heterogeneous
networks in general (see [26]).

In [26], it argued that the above observed differences in the local behavior are
resulted from the growth of the GC. It is shown in [26] that for ER networks pairs
of oscillators synchronize to merge and form many different clusters and then form
a GC when the coupling strength is increased. Many small clusters join together
to produce a giant component consisting of synchronized pairs, the size of which
is almost the same as the whole network, as soon as the global coherent state is
achieved. However, this is far from the case for SF networks, where the GC is
formed from a core consisting of about a half of the nodes in the network, and then
new pairs of oscillators are incorporated into the GC one by one, as the coupling
strength is increased.

In Fig. 4.15, it can be seen that for the SF network, the probability that a node of
degree k belongs to the GC is an increasing function of k for every fixed λ , hence the
more connected a node is, the more likely it takes part in the cluster of synchronized
entries, as reported in [26]. Therefore, one can conclude that synchronization starts
from the node with the largest degree and then spreads to the rest nodes in the
network in this scenario.

Remark 4.6. The observed phenomena may be understood from the master-
stability-function point of view. In this setting, the dynamics of a network of N
coupled oscillators is described by

ẋi(t) = f (xi(t))− ε
N

∑
j=1

Li jΓ x j, i = 1,2, . . . ,N, (4.8)

where xi is the state of oscillator i and f (xi(t)) governs its dynamics, Γ is the inner
coupling matrix, and L = (Li j) is the Laplacian matrix of the network. Denote the
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completely synchronizing state of (4.8) as {x j(t) = s(t), ∀ j | ṡ(t)= f (s(t))}. A small
perturbation on s(t) yields the following linear variational equations:

δ̇ xi(t) = D f (s(t))δxi − ε
N

∑
j=1

Li jΓ (δx j), i = 1,2, . . . ,N. (4.9)

Further, (4.9) can be diagonalized into N decoupled blocks of the form

η̇i = [D f (s(t))− ελiΓ ]ηi, i = 1,2, . . . ,N. (4.10)

From (4.10), the speed of node i converging to the synchronization manifold is
mainly determined by λi, with f (·) given. It has been shown in the above that the
distribution of the Laplacian eigenvalues of a network is strongly related to the node-
degree distribution; therefore, one can conclude that synchronization typically starts
from the node with the largest degree.

4.5.2 Paths to Generalized Synchronization
on Complex Networks

In [32], the processes of generalized synchronization (GS) of complex networks was
studied, mainly on NW small-world networks and BA scale-free networks, using the
adaptive coupling strategy in the following form:

ẋi = fi(xi(t))− ci(t)
N

∑
j=1

ai jΓ (xi(t)− x j(t)), i = 1,2, . . . ,N, (4.11)

where xi is the state of node i, fi(·) is a continuous vector function, ci(t) > 0
is a time-varying coupling strength to be designed using only the neighborhood
information of node i, Γ is the inner coupling matrix, and A = (ai j) is the adjacency
matrix of the network.

Construct an auxiliary network of the form

ẋ′i = fi(x
′
i)− ci(t)

N

∑
j=1

ai jΓ (x′i − x j), i = 1,2, . . . ,N, (4.12)

denote ei = x′i − xi, and apply the adaptive controller

ċi(t) = γi

N

∑
j=1

ai jei
T Γ ei, i = 1,2, . . . ,N, (4.13)

where γi are positive constants.
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Fig. 4.16 Visualization of the evolutionary process to reach global GS via adaptive coupling
strength regulation on a BA network. Total number of nodes N = 800 and total number of edges is
2388±2 [32]

To describe the process of GS on network (4.11), define the following error
signals at each time step:

Ei(t) = ||x′i(t)− xi(t)||2 , i = 1,2, . . . ,N, (4.14)

and label the nodes according to their decreasing degree ordering d(1) ≥ d(2) ≥
·· · ≥ d(N). Thus, i = 1 denotes the node with the largest degree, i = 2 the node
with the second largest degree, and so on.

Numerical results illustrated by Figs. 4.16 and 4.17 show the processes towards
global GS. Figure 4.16a shows the synchronization process of a BA network with
m = 3; Fig. 4.16b displays the evolution process of Ei(t), with i = 2, 202 and
402, respectively, for t ∈ [0,1.0]. Figure 4.17a shows the synchronous process of
a NW network, with connection probability p = 0.0025; Fig. 4.17b displays the
evolution process of Ei(t), with i = 2, 202, and 402, respectively, for t ∈ [0,1.0]. The
total numbers of edges in the BA network and the NW network are both equal to
2388± 2.

Clearly, not all nodes can achieve a common GS state simultaneously. Also
obviously, there is a transition process from non-GS to global GS. It can be seen
from Fig. 4.16a that, as time evolves, GS starts from the nodes with the largest
degree and then spreads to the rest of the network. This can also be verified by
(4.11)–(4.12), from which linearization results in

ėi =

[

D fi(xi)− ci(t)
N

∑
j=1

ai jΓ

]

ei, (4.15)
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Fig. 4.18 A comparition of BA network and NW network. (a) shows the evolution of the total
errors E(t); (b) shows the percentage of nodes which have achieved GS in the adaptive evolution
process [32]

where D fi(xi) denotes the Jacobian matrix of fi(x) at xi. In (4.15), ∑N
j=1 ai j is the

degree of node i; hence, the larger a node’s degree is, the faster its synchronization
error converges, as can be seen in Figs. 4.16b and 4.17b.

Next, define E(t) = ∑N
i=1 Ei(t).

Figure 4.18a shows the evolution of E(t) for a BA scale-free network and a NW
small-world network, while Fig. 4.18b shows the percentage of synchronized nodes
in the GS process.

From Fig. 4.18, one can see that the BA network is easier to reach GS in the
early stage, but harder in the later stage, in the process. This can be explained by the
fact that the NW network has a comparative homogeneous node-degree distribution
while the BA network has some hubs with extremely large degrees. In fact, in the
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beginning of the process, the existence of these hubs accelerates the GS speed on
the BA network. But, at the later stage, the speed to achieve GS is dominated by the
large number of nodes with smaller degrees. Thus, for the BA network, although the
hubs achieve GS rather quickly, the distant nodes are much more difficult to achieve
GS. So, as a result on the whole large network, it is easier for the NW network to
achieve global GS than the BA network with the same numbers of nodes and edges.

4.5.3 Paths to Synchronization on Community Networks

In this subsection, synchronization processes on community networks are investi-
gated.

Again, consider the network of N coupled identical oscillators, described by (4.7)
with ωi = ω , ∀i. The objective is to achieve θi → θ , ∀i as t → ∞. This problem was
studied in [24, 25], where the following concepts were defined to characterize the
dynamic time scales:

• The average of the correlations between pairs of oscillators

ρi j(t) = 〈cos(θi(t)−θ j(t))〉, (4.16)

where the brackets stand for the average over initial random phases;
• A connectively matrix with a given threshold T based on the above average

correlations between pairs of oscillators

DT (t)i j =

{
1 if ρi j(t)> T,

0 if ρi j(t)< T.
(4.17)

For large enough T , the evolution of this matrix unravels the process of nodes
merging into groups or communities.

In this part, a community network is composed of a huge part H and a small part
S, where H is a NW small-world model of 500 nodes with connection probability
p = 0.01, and S is a fully connected model of 50 nodes and is connected to H via
only one edge. Through numerical simulations, some relation between the dynamic
time scales and the Laplacian spectrum are obtained, as shown in Fig. 4.19.

In Fig. 4.19a, one can see the evolution of the oscillators, and find a path to
the final global complete synchronization on a community network. When time
t < 0.02, the whole network is in the state of “non-synchronization.” As time goes
on, the nodes in the small community S begin to synchronize, while those in the
huge community H do not. This situation is referred to as “partial synchronization,”
which is determined by the community topological structure, where nodes inside the
communities are first to synchronize. The small community S is fully connected,
so is easier to synchronize than the huge one H. When t > 0.5, the nodes in
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Fig. 4.19 Network with two communities: one is a huge part H of a small-world model of 500
nodes with p = 0.01; another is a small part S of a fully connected model of 50 nodes; with only
one edge linking the two communities. (a) The time evolution of oscillators θi (i = 1,2, · · · ,N).
Red line: nodes in H; Blue line: nodes in S; (b) number of disconnected components as a function
of time t; (c) average of the correlation between pairs of oscillators. The colors are graded from
blue (0) to dark red (1); (d) the inverse of the corresponding eigenvalues of the Laplacian matrix
of L versus the rank index i

the huge community H also achieve synchronization, but the synchronous state
of H is different from that of S. At this time, the synchronous state of the whole
network achieves the so-called “cluster synchronization.” Obviously, this regime is
a particular transition to the global complete synchronization for the community
network. A side benefit is that one can easily detect the community structure of a
network during the stage of cluster synchronization. Finally, when the time is long
enough, with t > 30 here, all oscillators in the whole network are entrained to the
“global complete synchronization” state.

According to [24,25], the number of zero eigenvalues of DT (t) in (4.17) indicates
the number of connected components of the dynamical (synchronized) network.
Figure 4.19b plots the number of disconnected components as a function of time.
At the beginning, all nodes are uncorrelated, so there are N disconnected sets. As
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time goes on, some nodes become synchronized to each other and then merge into
groups until a single synchronized component is formed after a long enough time.
One can observe two plateau regions here, which indicate the relative stability of
the dynamics at a given time scale. Notice that the plateau of 300 communities is
shorter than the plateau of 2 communities, namely, the synchronization of 2 groups
is much more stable than 300 groups, indicating that the 2-group community has
better coherence in topological structure.

From Figs. 4.19b and d, one can see that there is a link between the stability of
these regions and the spectrum of the Laplacian matrix. The huge gaps between
eigenvalues indicates the existence of a relatively stable community structure. It can
be observed that three groups of eigenvalues are separated by gaps. Each gap sep-
arates two communities, with 550, 300, or 2 groups of nodes. The synchronization
dynamics and the spectrum of the Laplacian matrix, which reflects the topological
structure of the network, show a surprising similarity.

Finally, Fig. 4.19c presents ρi j(t) at a fixed time instant, t = 2s. At this instant,
the whole network is at the stage of cluster synchronization, and it is easy to identify
the separation of two communities. Therefore, the network is very close to a state in
which two communities are synchronized individually, with different synchronous
states from each other, once again proving the side benefit of cluster synchronization
in community identification.

Similar synchronization processes can be observed for other communities, as
shown in Fig. 4.20. Here, Fig. 4.20a displays the evolution of oscillators in a
network consisting of two fully connected communities. There exists a clear
transition to global complete synchronization. Figure 4.20b also verifies that the
community structure of the two communities is very stable. In Fig. 4.20c, one can
see that the network with three communities has a trend moving towards cluster
synchronization. However, this transition is not as obvious as that of the community
network shown in Fig. 4.20a. This is because the network in Fig. 4.20c has an
inapparent community structure, where the first community is a small-world model
of 100 nodes with p = 0.01, which has very sparse edges. Figure 4.20d shows an
even fuzzier community structure of three communities, which is consistent with
Fig. 4.20c.

Based on the above-described analysis, one can draw the following conclusions.
(1) For community networks, there exists a general path to achieve global complete
synchronization as time goes on: non-synchronization→ partial synchronization→
cluster synchronization → global complete synchronization. (2) Synchronization
processes can be used to identify topological scales, that is, communities at different
time scales. (3) Synchronization dynamics have a strong relation with the spectrum
of the Laplacian matrix, which reflects the topological structure of the network.

Finally, it is remarked that this chapter only discusses complex networks of
identical nodes. As to networks of non-identical nodes, spectral analysis becomes
much more complicated, even for cluster synchronization (see, e.g., [51,52]), which
is beyond the scope of the present study.
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Fig. 4.20 Top: Network with 2 communities; each is a fully connected model of 150 nodes. There
are 10 edges between the two communities. (a) The time evolution of oscillators θi (i= 1,2, · · · ,N).
Red line: nodes in one community; Blue line: nodes in the other community. (b) Number of
disconnected components as a function of time t . Bottom: Network with 3 communities: the first
one is a small-world model of 100 nodes, with p = 0.01; the second is a small-world model of 150
nodes, with p = 0.1; the third is a small-world model of 200 nodes, with p = 0.5. There are 5 edges
between every pair of communities. (c) The time evolution of oscillators θi (i = 1,2, · · · ,N). Red
line: nodes in the first community; Blue line: nodes in the second community; Green line: nodes in
the third community. (d) Number of disconnected components as a function of time t

4.6 Conclusions

The Laplacian spectra of several typical complex networks, particularly community
networks, have been analyzed mainly from a numerical simulation approach. It
is found that four representative complex networks have completely different
spectra, where for ER random and NW small-world networks, the smallest nonzero
eigenvalue λ2 depends approximately linearly on the connection probability p. For
community networks, the number of eigenvalues near zero reflects the number
of communities identifiable from the network. In particular, for random, small-
world, and scale-free networks, their spectra are positively correlated to their
degree sequences. To find an approximated eigenvalue λi+1 from λi, a local
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prediction-correction algorithm has been proposed, which is shown to be very
effective. Furthermore, paths to complete synchronization and generalized syn-
chronization of different networks have been investigated, concluding that the
synchronization processes are different with respect to different topological struc-
tures, and that nodes with the largest degree firstly achieve synchronization (and
generalized synchronization) and then synchronous dynamics spread out to the
rest nodes in the network. It has also been found that there is a general path
towards global complete synchronization: non-synchronization → partial synchro-
nization → cluster synchronization → global complete synchronization. Finally, it
has been revealed that the gaps existing in a Laplacian spectrum are largely depen-
dent on the stability of the communities of the networks at different time scales.
All these new findings should provide useful insights to a better understanding of
complex network synchronization.
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34. Atay, F.M., Bıyıkoǧlu, T.: Graph operations and synchronization of complex networks. Phys.
Rev. E 72, 016217 (2005).

35. Biggs, N.: Algebraic Graph Theory. 2nd ed., Cambridge Mathematical Library, Cambridge
(1993).

36. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Mathematical Journal 23,
298–305 (1973).

37. Anderson, W.N., Morley, T.D.: Eigenvalues of the Laplacian of a Graph. Linear and Multilinear
Algebra 18, 141–145 (1985) (Widely circulated in preprint form as University of Maryland
technical report TR-71-45, October 1971).

38. Merris, R.: A note on Laplacian graph eigenvalues. Linear Algebra and its Applications 285,
33–35 (1998).

39. Rojo, O., Sojo, R., Rojo, H.: An always nontrivial upper bound for Laplacian graph eigenval-
ues. Linear Algebra and its Applications 312, 155–159 (2000).



4 Laplacian Spectra and Synchronization Processes on Complex Networks 113

40. Li, J., Pan, Y.: A note on the second largest eigenvalue of the Laplacian matrix of a graph.
Linear and Multilinear Algebra 48, 117–121 (2000).

41. Merris, R.: Laplacian matrices of graphs: a survey. Linear Algebra and its Applications 197/198
143–167 (1994).

42. Duan, Z., Liu, C., Chen, G.: Network synchronizability analysis: The theory of subgraphs and
complementary graphs. Physica D 237, 1006–1012 (2008).

43. Wang, X.F., Chen, G.: Synchronization in scale-free dynamical networks: Robustness and
fragility. IEEE Trans. on Circ. Syst.-I 49, 54–62 (2002).

44. Wang, X.F., Chen, G.: Synchronization in small-world dynamical networks. Int. J. of Bifur.
Chaos 12, 187–192 (2002).
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