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Bifurcation control deals with modification of bifurcation characteristics of a parameterized
nonlinear system by a designed control input. Typical bifurcation control objectives include
delaying the onset of an inherent bifurcation, stabilizing a bifurcated solution or branch, chang-
ing the parameter value of an existing bifurcation point, modifying the shape or type of a
bifurcation chain, introducing a new bifurcation at a preferable parameter value, monitoring
the multiplicity, amplitude, and/or frequency of some limit cycles emerging from bifurcation,
optimizing the system performance near a bifurcation point, or a combination of some of these
objectives. This article offers an overview of this emerging, challenging, stimulating, and yet
promising field of research, putting the main subject of bifurcation control into perspective.
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1. Introduction

Bifurcation control refers to the task of design-
ing a controller to modify the bifurcation proper-
ties of a given nonlinear system, thereby achiev-
ing some desirable dynamical behaviors. Typical
bifurcation control objectives include delaying the
onset of an inherent bifurcation [Tesi et al., 1996;
Wang & Abed, 1995], introducing a new bifurca-
tion at a preferable parameter value [Abed, 1995;
Abed & Wang, 1995; Chen et al., 1998b], changing
the parameter value of an existing bifurcation point
[Chen & Dong, 1998; Moiola & Chen, 1996], modi-
fying the shape or type of a bifurcation chain [Wang
& Abed, 1995], stabilizing a bifurcated solution or
branch [Abed & Fu, 1986, 1987; Abed et al., 1994;
Wang & Abed, 1994, 1995; Kang, 1998a, 1998b;
Laufenberg et al., 1997; Littleboy & Smith, 1998;

Nayfeh et al., 1996; Senjyu & Uezato, 1995], mon-
itoring the multiplicity [Calandrini et al., 1999;
Moiola & Chen, 1998], amplitude [Berns et al.,
1998a; Moiola et al., 1997a], and/or frequency of
some limit cycles emerging from bifurcation [Cam
& Kuntman, 1998; Chen & Moiola, 1994; Chen &
Dong, 1998b], optimizing the system performance
near a bifurcation point [Basso et al., 1998], or a
combination of some of these objectives [Abed et al.,
1995; Chen 1998, 1999a, 1999b].

Bifurcation control with various of objectives
have been implemented in experimental systems or
tested by using numerical simulations in a great
number of engineering, biological, and physico-
chemical systems; examples can be named in chem-
ical engineering [Alhumaizi & Elnashaie, 1997;
Moiola et al., 1991], mechanical engineering [Liaw &
Abed, 1996; Wang et al., 1994b; Chen et al., 1998;
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Cheng, 1990; Gu et al., 1997, Hackl et al., 1993;
Ono et al., 1998; Richards et al., 1997; Yabuno,
1997], electrical engineering [Chang et al., 1993;
Dobson & Lu, 1992; Wang et al., 1994a; Goman
& Khramtsovsky, 1998; Moroz et al., 1992; Sen-
jyu & Uezato, 1995; Srivastava & Srivastava, 1995;
Ueta et al., 1995; Volkov & Zagashvili, 1997], aero-
nautical engineering [Gibson et al., 1998; Littleboy
& Smith, 1998; Pinsky & Essary, 1994], biology
[Hassard & Jiang, 1992, 1993; Invernizzi & Treu,
1991; Shiau & Hassard, 1991], physics and chem-
istry [Hu & Haken, 1990; Iida et al., 1996; Reznik
& Scholl, 1993], and metheorology [Malmgren et al.,
1998], to cite only a few. Bifurcation control
not only is important in its own right, as further
discussed in Sec. 8 below, but also suggests a vi-
able and effective strategy for chaos control [Wang
& Abed, 1994, 1995; Chen, 1999a, 1999b; Chen
& Dong, 1998], because bifurcation and chaos are
usually “twins” and, in particular, period-doubling
bifurcation is a typical route to chaos in many non-
linear dynamical systems.

It is now known that bifurcation properties of a
system can be modified via various feedback control
methods. Representative approaches employ linear
or nonlinear state-feedback controls [Abed & Fu,
1986, 1987; Abed et al., 1994; Chen et al., 1998,
1999a, 1999b; Chen et al., 1998; Gu et al., 1998;
Kang, 1998a; Yabuno, 1997], apply a washout filter-
aided dynamic feedback controller [Wang & Abed,
1995], use harmonic balance approximations [Berns
et al., 1998a, 1998b; Genesio et al., 1993; Moiola
& Chen, 1996; Tesi et al., 1996] — perhaps with
time-delayed feedback [Brandt & Chen, 1997; Chen
et al., 1999a, 1999b, 1999c; Yap & Chen, 2000], and
utilize quadratic invariants in normal forms [Kang,
1998b]. This article reviews these effective meth-
ods for bifurcation control, and a few closely related
topics as well as some potential real-world applica-
tions and implications to other areas of dynamical
systems and controls.

Bifurcation control as an emerging research
filed has become challenging, stimulating, and yet
quite promising. To begin with our discussion and
review, Sec. 2 first provides two typical examples to
motivate this interesting and exciting research sub-
ject, and Sec. 3 briefly summarizes the ubiquitous
bifurcation phenomena observed in various control
systems thereby showing the importance and signif-
icance of the current study on bifurcation control.
In order to describe some methodologies and to
discuss some technical issues, classical bifurcation

theory, for both continuous-time and discrete-time
settings, are reviewed in Sec. 4. Then, a few rep-
resentative techniques for controlling bifurcations,
namely, the naive state-feedback method and sev-
eral of its variants, as well as a few more advanced
methods, are studied in Secs. 5 and 6, respectively.
A closely related topic of controlling limit cycles,
known also as controlling oscillations, is discussed
in Sec. 7, in which the frequency domain approach
is introduced. Some potential applications of bifur-
cation control are outlined in Sec. 8, with relevant
updated references given therein. Finally, Sec. 9
concludes the article with discussions on future di-
rections, putting the further pursuit of bifurcation
control into perspectives.

2. Bifurcation Control Two
Examples

Before getting into the mathematical definitions of
various bifurcations and the technical question of
how they can be controlled, it is illuminating to
discuss some control problems of two representative
examples — the discrete-time Logistic map and a
continuous-time model of an electric power system
— to appreciate the challenge of bifurcation control.
These examples illustrate some fundamental differ-
ences between bifurcation control and classical sys-
tems control, and indicate some unusual difficulties
associated with this kind of control tasks.

2.1. The logistic map

The well-known Logistic map is described by

xk+1 = f(xk, p) := pxk (1− xk) , (1)

where p > 0 is a real variable parameter. By
solving the algebraic equation x = f(x, p), two
equilibria of the map can be found: x∗ = 0
and x∗ = (p − 1)/p. Further examination of the
Jacobian, J = ∂f/∂x = p − 2px, reveals that
the stabilities of these equilibria depend on para-
meter p.

With 0 < p < 1, the point x∗ = 0 is stable,
and all the bounded initial points are mapped to
zero as k → ∞ in the system. However, it is in-
teresting to observe that, for 1 < p < 3, all initial
points of the map converge to x∗ = (p− 1)/p in the
limit. The dynamical evolution of the system be-
havior, as p is gradually increased from 3.0 to 4.0 by
small steps, is shown in Fig. 1. This figure, which is
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Fig. 1. Period-doubling of the Logistic system.

usually referred to as a bifurcation diagram, shows
that at p = 3, a stable period-two orbit is born out
of x∗, which becomes unstable at the moment, so
that in addition to 0 there emerge two more stable
equilibria:

x∗1,∗2 = (1 + p±
√
p2 − 2p− 3 )/(2p) .

When p increases to the value of 1 +
√

6 =
3.44948 . . ., each of these two points bifurcates
into two new points, as can be seen from the
figure. These four points together constitute a
period-four solution of the map (at p = 1 +√

6). As p moves through a sequence of val-
ues: 3.54409 . . . , 3.5644 . . . , . . . , an infinite series of

bifurcations is created by such period-doubling,
which eventually leads to chaos [Argyris et al.,
1994]:

period 1 → period 2 → period 4 → · · ·

period 2k → · · · → chaos

At this point, several control oriented problems
may be asked: Is it possible (and, if so, how) to find
a simple (say, linear) control sequence, {uk}, to be
added to the right-hand side of the Logistic map,
namely,

xk+1 = f(xk, p) = pxk(1− xk) + uk , (2)

such that, to mention just a few,

(i) the limiting chaotic behavior of the period-
doubling bifurcation process is suppressed?

(ii) the first bifurcation is delayed, or this and the
subsequent bifurcations are changed either in
form or in stability?

(iii) the asymptotic behavior of the system becomes
chaotic (if chaos is beneficial), for a parameter
value of p that is not in the chaotic region with-
out control?

2.2. An electric power model

A simple yet representative electric power system is
shown in Fig. 2, and is described by [Chiang et al.,
1990, 1994]



θ̇ = ω

ω̇ = 16.6667 sin(θL − θ + 0.0873)VL − 0.1667ω + 1.8807

θ̇L = 496.8718V 2
L − 166.6667 cos(θL − θ − 0.0873)VL

− 666.6667 cos(θL − 0.2094)VL − 93.3333VL + 33.3333 p + 43.333

V̇L = −78.7638V 2
L + 26.2172 cos(θL − θ − 0.0124)VL

+ 104.8689 cos(θL − 0.1346)VL + 14.5229VL − 5.2288 p − 7.0327 ,

(3)

where θ is the rotational angle of the power genera-
tor, with angular velocity ω = θ̇. In this power sys-
tem, the load is represented by an induction motor,
MI , in parallel with a constant PQ (active-reactive)
load. The variable reactive power demand, p, at the
load bus is used as the primary system parameter.
Also in the power system, the load voltage is VL∠θL,

with magnitude VL and angle θL, the slack bus has
terminal voltage E∠0o (a phasor), and the genera-
tor has terminal voltage denoted Em∠θ.

When the system parameter p is gradually
increased or decreased, two sequences of complex
dynamical phenomena can be observed [Abed et al.,
1993; Chiang et al., 1990; Lee & Ajjarapu, 1993].
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Fig. 2. A simple electric power system.

Fig. 3. Dynamics of the power network.

These are shown in Fig. 3, where on the left-hand
side:

• p = 10.818, a turning point of periodic orbit
occurs;
• p = 10.873, first period-doubling bifurcation

occurs;
• p = 10.882, second period-doubling bifurcation

occurs;
• p = 10.946, a subcritical Hopf bifurcation occurs;

on the right-hand side:

• p = 11.410, a saddle-node bifurcation occurs;
• p = 11.407, a supercritical Hopf bifurcation

occurs;
• p = 11.389, first period-doubling bifurcation

occurs;
• p = 10.384, second period-doubling bifurcation

occurs.

In this figure, (1) denotes stable equilibria, (2)
stable limit cycles, (3) and (4) different types of

unstable equilibria, and (5) and (6) different types
of unstable limit cycles.

The dynamics of this system with varying a
second parameter (machine damping) has been
studied in [Chiang et al., 1994; Tan et al., 1995],
showing the connection of the two Hopf bifurcation
points with a degenerate Hopf bifurcation and the
disappearance of the chaotic behavior.

Similar to the Logistic map discussed above, a
few interesting control problems are:

(i) can the limiting chaotic behavior of the period-
doubling bifurcation process be suppressed?

(ii) can the first bifurcation be delayed in occur-
rence, or this and the subsequent bifurcations
be changed either in form or in stability?

(iii) can the voltage collapse be avoided or delayed
through bifurcation or chaos control?

Nonconventional control problems like these
pose a real challenge to both nonlinear dynamics
analysts and control engineers.

3. Bifurcations in Control
Systems

The two examples of bifurcations in systems dis-
cussed above are simple but illustrative. In fact,
various bifurcations can occur in nonlinear dynam-
ical systems, including in systems under feedback
and/or adaptive controls. This is perhaps counter-
intuitive, but generally speaking, local instability
and complex dynamical behavior can result from
such controlled systems — if adequate process in-
formation is not available for feedback or param-
eter estimation. In these situations, one or more
poles of the closed-loop transfer function of the lin-
earized system may move to cross over the stability
boundary, potentially leading to signal divergence
as the control process continues. This, sometimes,
may not lead to a global unboundedness in a com-
plex nonlinear system, but rather, to self-excited
oscillations or bifurcations [Chang et al., 1993; Cui
et al., 1997; Golden & Ydstie, 1988, 1992; Mareels &
Bitmead, 1986, 1988; Praly & Pomet, 1987; Ydstie
& Golden, 1986, 1987, 1988].

Bifurcations exist in many feedback control sys-
tems, for example, in automatic gain control (AGC)
loops. AGCs are very popular in industrial appli-
cations (e.g. in most receivers of communication
systems). A typical structure of the AGC is shown
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in Fig. 4. It is usually used to maintain a constant
output level, v0, of a system, with respect to a ref-
erence (bias), vb, obtained from the received input
signal vi via a variable gain amplifier (VGA) and
a control signal, vc, through a filter, F (s). Here,
both the VGA and the detector are nonlinear. Such
an AGC loop can have homoclinic bifurcation lead-
ing to chaos [Chang et al., 1993]. Its discrete ver-
sion also has the common route of period-doubling
bifurcations to chaos, similar to the Logistic map
discussed above.

A single pendulum, controlled by a linear
proportional-derivative (PD) controller, is another
simple example of a feedback control system that
has various bifurcations [Kelly, 1996]. Even a
feedback system with a linear plant and a linear
controller can produce bifurcations and chaos if a
simple nonlinearity (e.g. saturation) exists in the
loop [Alvarez & Curiel, 1997].

Adaptive control systems are more likely to
produce bifurcations due to the changes of sta-
bilities. Different pathways, that lead to estima-
tor instability in a model-referenced adaptive con-
trol system, can be identified [Golden & Ydstie,
1992]. Similarly, in discrete-time adaptive control
systems, rich bifurcation phenomena have been ob-
served [Ydstie & Golden, 1987].

Bifurcations, ubiquitous in physical systems,
need not subject to control. For instance, power
systems generally have rich bifurcation phenomena
[Chiang et al., 1994; Wang et al., 1994a; Hill, 1995;
Ji & Venkatasubramanian, 1995; Lee & Ajjarapu,
1993; Venkatasubramanian & Ji, 1999]. In particu-
lar, when the consumer demand for power reaches
its peaks, the dynamics of an electric power network
may move to its stability margin, leading to oscilla-
tions and bifurcations. This may quickly result in
voltage collapse [Dobson et al., 1992; Wang et al.,
1994a].

A typical double pendulum can display bifur-
cation as well as chaotic motions [Thomsen, 1995;
Ueta et al., 1995; Zhou & Whiteman, 1996]. Some
rotational mechanical systems also have similar be-
haviors [Cheng, 1990]. A road vehicle under steer-
ing control can have Hopf bifurcation when it loses
stability, which may also develop chaos and even hy-
perchaos [Liu et al., 1996]. A hopping robot, even
a simple two-degree-of-freedom flexible robot arm,
can produce unusual vibrations and undergo period-
doubling which leads to chaos [Streit et al., 1988;
Vakakis et al., 1991]. An aircraft stalls during flight,
either below a critical speed or over a critical angle-

Fig. 4. Block diagram of an automatic gain control loop.

of-attack, and can respond to various bifurcations
[Chapman et al., 1992; Goman & Khramtsovsky,
1998]. Dynamics of ships can exhibit bifurcations
according to wave frequencies that are close to
the natural frequency of the ship, creating oscil-
lations and chaotic motions leading to ship capsize
[Liaw & Bishop, 1995; Sanchez & Nayfeh, 1979].
Simple nonlinear circuits are rich sources of bifurca-
tion phenomena [Chan & Tse, 1996; Madan, 1993;
Matsumoto, 1987; Tse, 1994]. Many other systems
have bifurcation properties, including cellular neu-
ral networks [Chua, 1998; Zou & Nossek, 1993],
laser, aeroengine compressors, weather, and biolog-
ical population dynamics [Abed et al., 1995].

Therefore, controlling bifurcations indeed will
have a tremendous impact on real-world applica-
tions and its significance in both dynamics analysis
and systems control will be enormous, profound,
and far-reaching.

4. Bifurcation Preliminaries

Before control methods can be discussed, mathe-
matical definitions of various bifurcations are intro-
duced in this section.

For this purpose, it is convenient to consider a
two-dimensional, parametrized, nonlinear dynami-
cal system, {

ẋ = f(x, y; p)

ẏ = g(x, y; p) ,
(4)

where p is a real variable system parameter.
Let (x∗, y∗) = (x∗(p0), y∗(p0)) be an equilib-

rium point of the system at p = p0, satisfying
f(x∗, y∗; p0) = 0 and g(x∗, y∗; p0) = 0. If the equi-
librium point is stable (resp. unstable) for p > p0

but unstable (resp. stable) for p < p0, then p0 is
a bifurcation value of p, and (0, 0, p0) is a bifurca-
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tion point in the parameter space of coordinates x-
y-p. A few examples are given below to distinguish
several different but typical bifurcations.

4.1. Bifurcations of
one-dimensional maps

The one-dimensional system

ẋ = f(x; p) = px− x2

has two equilibria: x∗1 = 0 and x∗2 = p. If p
is varied, then there are two equilibrium curves
(see Fig. 5, where the t-axis is the variable of
x = x(t) which may help better visualization of
the dynamics). Since the Jacobian of the system is
J = ∂f/∂x|x=0 = p, it is clear that for p < p0 = 0,

the equilibrium x∗1 = 0 is stable, but for p > p0 = 0
it becomes unstable. Hence, (x∗1, p0) = (0, 0)
is a bifurcation point. In this and the following
figures, the solid curves indicate stable equilibria
and the dashed curves, the unstable ones. Similarly,
one can verify that (x∗2, p0) is another bifurcation
point. This is called a transcritical bifurcation.

The one-dimensional system

ẋ = f(x; p) = p− x2

has an equilibrium point, x∗1 = 0, at p0 = 0, and
an equilibrium curve, (x∗)2 = p, at p ≥ 0, where
x∗2 =

√
p is stable and x∗3 = −√p is unstable for

p > p0 = 0. This is called a saddle-node bifurcation
(see Fig. 6).

Fig. 5. The transcritical bifurcation.

Fig. 6. The saddle-node bifurcation.

Fig. 7. The pitchfork bifurcation.
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The one-dimensional system

ẋ = f(x; p) = px− x3

has an equilibrium point, x∗1 = 0, at p0 = 0, and
an equilibrium curve, (x∗)2 = p, at p ≥ 0. Its
Jacobian is J = p − 3(x∗)2, so x∗1 = 0 is unsta-
ble for p > p0 = 0 and stable for p < p0 = 0. Also,
the entire equilibrium curve (x∗)2 = p is stable for
all p > 0 (at which the Jacobian is J = −2p). This
is called a pitchfork bifurcation, and is depicted in
Fig. 7.

An equivalent analysis for these elementary
static bifurcations using a frequency domain
approach is also possible [Moiola et al., 1997b].

Note, however, that not all nonlinear dy-
namical systems have bifurcations. This can be
easily verified by similarly analyzing the following
example:

ẋ = f(x; p) = p− x3 .

This equation has an entire stable equilibrium
curve, x = p1/3, and, thus, does not have any
bifurcations.

4.2. Hopf bifurcation of
higher-dimensional systems

The bifurcation phenomena discussed above for
one-dimensional parametrized nonlinear maps are

Fig. 8. Two types of Hopf bifurcation in the phase plane.
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usually referred to as static bifurcations. In higher-
dimensional systems or maps, the situation is more
complicated. For instance, there is an additional
bifurcation phenomenon for systems of dimension
two or higher — the Hopf bifurcation, referred to as
a dynamic bifurcation.

A Hopf bifurcation corresponds to the situa-
tion where, as the parameter p is varied to pass a
critical value p0, the system Jacobian has one pair
of complex conjugate eigenvalues moving from the
left-half plane to the right, crossing the imaginary
axis, while all the other eigenvalues remain stable.
At that moment of crossing, the real parts of the
two eigenvalues become zero, and the stability of
the existing equilibrium changes from being stable
to unstable. Also, at the moment of crossing, a limit
cycle is born. These phenomena are supported by
the following classical result [Arrowsmith & Place,
1990] (see Fig. 8):

Theorem (Poincaré–Andronov–Hopf). Suppose
that the two-dimensional system (4) has a zero
equilibrium, (x∗, y∗) = (0, 0), and that its associate
Jacobian has a pair of purely imaginary eigenvalues,
λ(p) and λ̄(p). If

d<{λ(p)}
dp

∣∣∣∣
p=p0

> 0

for some p0, then

(i) p = p0 is a bifurcation point of the system;
(ii) for close enough values p < p0, the zero equilib-

rium is asymptotically stable;
(iii) for close enough values p > p0, the zero equi-

librium is unstable;
(iv) for close enough values p 6= p0, the zero equi-

librium is surrounded by a limit cycle of mag-
nitude O(

√
|p− p0|).

As indicated in Fig. 8, the Hopf bifurcations
are classified as supercritical (resp. subcritical) if
the equilibrium is changed from stable to unsta-
ble (resp. from unstable to stable). In other words,
the periodic solutions have opposite stabilities as
the equilibria. Note that the same terminology of
supercritical and subcritical bifurcations apply to
other non-Hopf types of bifurcations.

For the discrete-time setting, consider a two-
dimensional parametrized system:{

xk+1 = f(xk, yk; p)

yk+1 = g(xk, yk; p) ,
(5)

with a real variable parameter p ∈ R and an equi-
librium point (x∗, y∗), satisfying x∗ = f(x∗, y∗; p)
and y∗ = g(x∗, y∗; p) simultaneously for all p in a
neighborhood of p∗ ∈ R. Let J(p) be its Jacobian
at this equilibrium, and λ1,2(p) be its eigenvalues,
with λ2(p) = λ̄1(p). If

|λ1(p∗)| = 1 and
∂|λ1(p)|
∂p

∣∣∣∣
p=p∗

> 0 (6)

the system undergoes a Hopf bifurcation at
(x∗, y∗, p∗), in a way analogous to the continuous-
time setting. Both supercritical and subcritical
Hopf bifurcations can be distinguished for the dis-
crete case, via a sequence of coordinate transforma-
tions [Glendinning, 1994; Hale & Koçak, 1991].

5. Basic State Feedback
Bifurcation Control Methods

To introduce some basic and direct state feed-
back control methods, consider a one-dimensional,
discrete-time, parametrized, nonlinear control sys-
tem of the form

xk+1 = F (xk; p) := f(xk; p) + u(xk; p) , (7)

where p ∈ R is a variable parameter, x0 ∈ R is the
initial state, and u(·) is the state feedback controller
to be designed. The map F : R→ R is autonomous
under this framework, which represents the dynam-
ical behaviors of the control system visualized in the
xk-xk+1 phase plane, k = 0, 1, 2, . . . .

The bifurcation analysis for this control system
is formulated as the following routine step-by-step
checking procedure for convenience in the design of
the controller.

5.1. Controlling saddle-node,
transcritical, and pitchfork
bifurcations

The first procedure is used for determining the tran-
scritical, pitchfork, and saddle-node types of bifur-
cations, as well as the stabilities of the equilibria.
The period-doubling bifurcation is discussed in the
next subsection.

Step 0. Initiate a structure of the controller (e.g. a
linear state feedback controller) in system (7).

Step 1. Solve the equilibrium equation

x∗ = F (x∗; p) , p ∈ R , (8)
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for a solution x∗(t; p); if no solution, change the
structure of the controller and try again.

Step 2. Determine the bifurcating parameter value,
p = p∗, such that

∂F

∂x

∣∣∣∣x=x∗
p=p∗

= 1 ; (9)

if no solution, change the structure of the controller,
and then return to Step 1.

Step 3. Determine the type of the bifurcation
according to the classification given in Table 1.

Table 1. Classification of three typical
types of bifurcations.

∂F

∂p

∣∣∣∣∣
x=x∗
p=p∗

∂2F

∂x2

∣∣∣∣∣
x=x∗
p=p∗

Bifurcations

6= 0 6= 0 saddle-node

= 0 6= 0 transcritical

= 0 = 0 pitchfork

Step 4. Determine the stability of the equilibria
according to Tables 2–4.

Table 2. Stability of equilibria near a saddle-node bifurcation.

∂F

∂p

∣∣∣∣∣
x=x∗
p=p∗

∂2F

∂x2

∣∣∣∣∣
x=x∗
p=p∗

Stable Equilibrium Unstable Equilibrium No Equilibrium

> 0 > 0 p < p∗ (upper) p < p∗ (lower) p > p∗

> 0 < 0 p > p∗ (upper) p > p∗ (lower) p < p∗

< 0 > 0 p > p∗ (lower) p > p∗ (upper) p < p∗

< 0 < 0 p < p∗ (lower) p < p∗ (upper) p > p∗

Table 3. Stability of equilibria near a transcritical bifurcation.

∂2F

∂x∂p

∣∣∣∣∣
x=x∗
p=p∗

− ∂2F

∂x2

∂2F

∂p2

∣∣∣∣∣
x=x∗
p=p∗

∂2F

∂x2

∣∣∣∣∣
x=x∗
p=p∗

Stable Equilibrium Unstable Equilibrium

6= 0 > 0 (lower) (upper)

6= 0 < 0 (upper) (lower)

Table 4. Stability of equilibria near a pitchfork bifurcation.

∂2F

∂x∂p

∣∣∣∣∣
x=x∗
p=p∗

∂3F

∂x3

∣∣∣∣∣
x=x∗
p=p∗

Stable Equilibrium Unstable Equilibrium Stable Equilibrium Unstable Equilibrium

(1st branch) (1st branch) (2nd branch) (2nd branch)

> 0 > 0 p < p∗ p > p∗ — p < p∗

> 0 < 0 p < p∗ p > p∗ p > p∗ —

< 0 > 0 p > p∗ p < p∗ — p > p∗

< 0 < 0 p > p∗ p < p∗ p < p∗ —

5.2. The period-doubling
bifurcation and its control

The following procedure can be used for determin-
ing the period-doubling bifurcation.

Step 0. Initiate a structure of the controller in
system (7).

Step 1. Solve the equilibrium equation

x∗ = F (x∗; p), p ∈ R , (10)

for a solution x∗(t; p); if no solution, change the
structure of the controller and try again.
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Table 5. Stability of equilibria near a period-doubling bifurcation.

ξ η Period-Doubling Stable Equilibrium Unstable Equilibrium

> 0 > 0 p < p∗ (stable) p > p∗ p < p∗

> 0 < 0 p > p∗ (unstable) p > p∗ p < p∗

< 0 > 0 p > p∗ (stable) p < p∗ p > p∗

< 0 < 0 p < p∗ (unstable) p < p∗ p > p∗

Step 2. Determine the bifurcating parameter value,
p = p∗, such that

∂F

∂x

∣∣∣∣x=x∗
p=p∗

= −1 ; (11)

if no solution, change the structure of the controller,
and then return to Step 1.

Step 3. Determine the existence of the period-
doubling bifurcation as well as the stability of the
equilibria according to the classification given in
Table 5, where

ξ =

(
2
∂2F

∂x∂p
+
∂F

∂p

∂2F

∂x2

) ∣∣∣∣x=x∗
p=p∗

(12)

and

η =

(
1

2

(
∂2F

∂x2

)2

+
1

3

∂3F 2

∂x3

) ∣∣∣∣x=x∗
p=p∗

. (13)

Therefore, by following the above procedures, a
controller can be designed by satisfying the condi-
tions listed in the corresponding tables, for control-
ling various bifurcations.

As an example, consider the Logistic map (1).
The control objective is to shift the original bifurca-
tion point (x∗, p∗) to a new position, (xo, po). For
this purpose, the structure of the controller can be
determined as follows: First, from condition (8),
one has

F (xo, po) = poxo(1− xo) + u |x=xo,p=po = xo ,

which gives

u |x=xo,p=po = xo − poxo + po(xo)2 ;

then from condition (9), one has

∂F

∂x

∣∣∣∣x=xo

p=po

= po − 2poxo +
∂u

∂x
|x=xo,p=po = 1 ,

which yields

∂u

∂x

∣∣∣∣x=xo

p=po

= 1− po + 2poxo .

These two results together lead to

u(xk; p) = (1− po + 2poxo)xk − po(xo)2

:= c1xk + c2 , (14)

where c1 = c1(xo, po) and c2 = c2(xo, po).
For the controlled logistic map,

xk+1 = F (xk; p) = pxk(1−xk)+(c1 xk+c2) , (15)

one has

∂F

∂p

∣∣∣∣x=xo

p=po

= xo − (xo)2 and
∂2F

∂x2

∣∣∣∣x=xo

p=po

= −2po ,

(16)

so that by Table 1,

• if xo = 0 and po 6= 0, then (xo, po) is a transcrit-
ical bifurcating point;
• if xo = 0 and po = 0, then (xo, po) is a pitchfork

bifurcating point;
• if xo 6= 0 and po 6= 0, then (xo, po) is a saddle-

node bifurcating point.

On the other hand, one has

ξ = 2(1− 2xo)− 2poxo(1− xo) and η = 2(po)2 .

(17)

Thus, according to Table 5, period-doubling
bifurcations with different stabilities of equilibria
can be classified for the controlled logistic map.
For instance, to shift the original period-doubling
bifurcation, starting at a stable equilibrium point
(x∗, p∗) = (2/3, 3), see Fig. 1, to a new position,
(xo, po) = (0, −2/3), the controller can be designed
as described above, and the result is shown in Fig. 9.
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Fig. 9. The controlled period-doubling bifurcation of the
Logistic map.

5.3. Controlling the Hopf bifurcation

Now, consider a Hopf bifurcation control problem,
first for continuous-time systems. The objective is
to design a simple controller,

u(t; p) = u(x, y; p) , (18)

which does not change the original equilibrium
point at (x∗, y∗) but can move the Hopf bifurcation
point (x∗, y∗, p∗) to a new position, (xo, yo, po) 6=
(x∗, y∗, p∗). Clearly, the controller must satisfy
u(x∗, y∗; p) = 0 for all p, in order not to change
the original equilibrium (x∗, y∗).

For the sake of determination, suppose that the
controller is added to the second equation of the
given system, namely:{

ẋ = f(x, y; p)

ẏ = g(x, y; p) + u(x, y; p) .
(19)

This controlled system has the Jacobian at (xo, yo)
as

J(p) =

[
fx fy

gx + ux gy + uy

]
x=xo,y=yo

, (20)

where fx = ∂f/∂x and gy = ∂g/∂y, etc., with
eigenvalues

λc1,2(p) =
1

2
(fx + gy + uy)

± 1

2

√
(fx + gy + uy)2 − 4[fx(gy + uy)− fy(gx + ux)] , (21)

where fx := fx|x=xo,y=yo and gy := gy|x=xo,y=yo , etc. for notational simplicity.

To have a Hopf bifurcation at (xo, yo; po) as required, the classical Hopf bifurcation theory leads to
the following conditions:

(i) (xo, yo) is an equilibrium point of the controlled system (19), namely,{
f(xo, yo; p) = 0

g(xo, yo; p) + u(xo, yo; p) = 0
(22)

for all p ∈ R.
(ii) The eigenvalues λc1,2(p) of the controlled system (19) are purely imaginary at the point (xo, yo; po)

and are complex conjugate:

(fx + gy + uy)|p=po = 0 , (23)

fx(gy + uy)− fy(gx + ux)|p=po > 0 , (24)

(fx + gy + uy)
2 − 4[fx(gy + uy)− fy(gx + ux)]|p 6=p0 < 0 . (25)

(iii) The crossing of the eigenlocus at the imaginary axis is transversal, namely,

∂Re{λc1(p)}
∂p

∣∣∣∣
p=po

=
∂(fx + gy + uy)

∂p

∣∣∣∣
p=po

> 0 . (26)
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These conditions provide the guidelines for
designing the intended controller [Chen et al.,
1999a].

The bifurcation control problem in the discrete-
time setting can be carried out in exactly the same
way [Chen et al., 1999b]. As an example, for the
following one-dimensional time-delayed feedback
control system:{

xk+1 = f(xk; p) + uk(yk; p)

yk+1 = xk+1 − xk ,
(27)

if the controller is designed to satisfy uk(0; p) = 0,
then it will not change the original equilibrium
point, x∗, of the given system. The controlled sys-
tem has the Jacobian at (xo, yo) = (x∗, 0) as

J(p) =

[
fx uy

fx − 1 uy

]
x=x∗,y=yo=0

, (28)

where fx = ∂f/∂xk and uy = ∂uk/∂yk, with eigen-
values

λ1,2(p) =
1

2
(fx + uy)±

1

2

√
(fx + uy)2 − 4uy . (29)

Conditions for the controller to satisfy λ1(p) =
λ̄2(p) and (6) are

(fx + uy)
2 ≤ 4uy, |λ1,2(p∗)| = 1, and

∂|λ1,2(p∗)|
∂p

> 0 .
(30)

Finally, it should be noted that all the condi-
tions derived in this subsection are necessary con-
ditions for Hopf bifurcations. In order to obtain
complete conditions, in both continuous-time and
discrete-time cases, one needs to compute a com-
plicated formula to determine the stability of the
bifurcated periodic solutions (so as to distinguish
the supercritical and the subcritical cases). This
formula is called the stability index (or curvature
coefficient), and will be further discussed below.

6. Various Bifurcation Control
Methods

There are some bifurcation control approaches that
are not directly derived from the definitions of bifur-
cations or from the Hopf bifurcation theorem. This
section introduces a few of such control techniques,
and their implication to the control of oscillations
and chaos.

6.1. Bifurcation control via
state feedback and washout
filter-aided dynamic
feedback controllers

To design a controller for bifurcation modifica-
tion purpose, Taylor expansion, and sometimes
linearization, of the given nonlinear dynamical sys-
tem is a common approach. Since bifurcations are
closely related by the eigenvalues of the linearized
model, controlling the behaviors of these eigenval-
ues in an appropriate way is the key to bifurcation
control.

It is fair to state that the field of systematic
bifurcation control starts with the work of [Abed
& Fu, 1986, 1987], followed by a growing set of re-
sults for control of bifurcations of various types [Lee
& Abed, 1991; Wang & Abed, 1994, 1995; Chen
et al., 1999b]. The work of [Abed & Fu, 1986, 1987]
focuses on obtaining stabilizing feedback control
laws for general n-dimensional one parameter fam-
ilies of nonlinear control systems:

ẋ = f(x; p, u) . (31)

Here, x is the state vector, u is the control input,
and p is the bifurcation parameter. The control
laws derived in [Abed & Fu, 1986, 1987] transform
an unstable (i.e. subcritical) Hopf or stationary bi-
furcation into a stable (i.e. supercritical) one. These
control laws, known as static state feedback, were
taken to be of the general form u = u(x). State
feedback control laws were designed rendering the
assumed Hopf bifurcation or stationary bifurcation
locally attracting.

In [Lee & Abed, 1991; Wang & Abed, 1994,
1995], dynamic state feedback control laws incor-
porating washout filters were developed. In this
way, the control laws guarantee preservation of all
system equilibria even under model uncertainty.

To illustrate the machinery of bifurcation con-
trol, the results of [Abed et al., 1994; Wang & Abed,
1994; Abed & Wang, 1995] are summarized next.
Consider a general discrete-time parametric system,

xk+1 = f(xk; p) , k = 0, 1, . . . , (32)

where f is assumed to be sufficiently smooth, with
respect to both xk ∈ Rn and p ∈ R, and has a fixed
point at (x∗, p∗) = (0, 0).

Assume that system (32) has a fixed point that
is the continuous extension of the origin. Suppose
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also that the Jacobian of the system, evaluated at
this singular point, possesses an eigenvalue, λ1(p),
that satisfies λ1(0) = −1 and λ′1(0) 6= 0, while all
remaining eigenvalues have magnitude strictly less
than one. Then, the nonlinear function f has a
Taylor expansion,

f(x; p) = J(p)x + q(x, x; p) + c(x, x, x; p) + · · · ,

where J(p) is the parametric Jacobian, and q and
c are quadratic and cubic vector-valued terms, gen-
erated by symmetric bilinear and trilinear forms,
respectively.

For this system, the following results [Abed
et al., 1994; Wang & Abed, 1994; Abed & Wang,
1995] characterize the bifurcation behavior of the
uncontrolled system and provide some guidelines for
designing a nonlinear state feedback controller for
bifurcation control:

(i) A period-doubling orbit can bifurcate from the
origin of system (32) at p = 0; the period-
doubling bifurcation is supercritical and stable
if β < 0 but is subcritical and unstable if β > 0,
where

β = 2 l>[c̃(r, r, r; p)

−2q̃(r, J̃−q̃(r, r; p); p)] ,

in which

l> = left eigenvector of J(0) associated with

the eigenvalue − 1

r = right eigenvector of J(0) associated with

the eigenvalue − 1

q̃ = J(0)q(x, x; p) + q(J(0)x, J(0)x; p)

c̃ = J(0)c(x, x, x; p)

+ 2q(J(0)x, q(x, x; p); p)

+ c(J(0)x, J(0)x, q(x,x; p); p)

J̃− = [J>(0)J(0) + ll>]−1J>(0) .

(ii) Consider system (32) with a control input

xk+1 = f(xk; p, uk), k = 0, 1, . . . , (33)

which is assumed to satisfy the same assump-
tions as above when uk = 0. If the critical
eigenvalue −1 is controllable for the associate
linearized system, then there is a feedback con-
trol, uk(xk), containing only third-order terms

in the components of xk, such that the con-
trolled system has a locally stable bifurcated
period-two orbit for p near zero. Also, this feed-
back stabilizes the origin for p = 0. If, however,
−1 is uncontrollable for the associate linearized
system, then generically there is a feedback,
uk(xk), containing only second-order terms in
the components of xk, such that the controlled
system has a locally stable bifurcated period-
two orbit for p near 0. Moreover, this feedback
stabilizes the origin for p = 0.

As an application, a well-known model of a
thermal convection loop can be used to demonstrate
the control of bifurcations [Wang & Abed, 1995],
where the physical setup of the experiment is shown
in Fig. 10. In this setup, the loop is heated from
below and cooled from above. This physical system
can be described by the Lorenz system

ẋ = −p(x− y)

ẏ = −xz − y
ż = xy − z − r ,

(34)

where the state variables, x, y, and z, represent the
cross-sectionally averaged velocity in the loop, the
temperature difference along the horizontal direc-
tion, and the temperature difference along the ver-
tical direction, respectively, as indicated in Fig. 10.
In addition, p > 0 (Prandtl number) and r > 0
(Rayleigh number) are used as parameters.

A bifurcation diagram for this thermal convec-
tion model is shown in Fig. 11. In the figure, a solid
(resp. a dashed) curve represents a stable (resp. un-
stable) equilibrium, and “◦” denotes the maxi-
mum amplitude of an unstable periodic orbit. The

Fig. 10. Structure of the thermal convection loop.
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Fig. 11. Bifurcation diagram of the thermal convection loop.

Fig. 12. Bifurcation control in the thermal convection loop.

transient chaotic behavior and chaotic dynamics of
the model are shown in Fig. 11 with r = 14.0 [Wang
& Abed, 1995].

It is well known that the convective equilib-
ria, denoted C+ for the upper loop and C− for the
lower loop of the configuration shown in Fig. 10,
lose their stabilities at a Hopf bifurcation occurring
at r = 16.0. To delay and stabilize the bifurcation,
a dynamic feedback control, u, utilizing a washout
filter, is applied, resulting in


ẋ = −p(x− y)

ẏ = −xz − y
ż = xy − z − r + u

v̇ = y − c v ,

(35)

where v is the state of the washout filter used for
the control:

u = −kc(y − cv)− kn(y − cv)3 ,

with constant gains kc and kn to be determined
in the design, while c is a constant chosen for the
filter. Figure 12 shows that with c = 0.5, kc = 2.5
and kn = 0.009, a trajectory of the closed-loop con-
trolled system is stabilized [Wang & Abed, 1995].

This bifurcation control technique is important
in some time-critical applications, such as in power
collapse prevention where a significant delay of
bifurcation can be crucial [Wang & Abed, 1993].
This technique also has direct relevance for chaos
control [Abed et al., 1994; Wang & Abed, 1994].
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6.2. Bifurcation control via
normal forms and invariants

The general theory of bifurcations in nonlinear dy-
namical systems is built on the basis of normal
forms. Systems with the same normal form have
equivalent bifurcations. Therefore, bifurcations can
be classified according to equivalent systems in
normal forms. Thus, development of a systematic
design technique for bifurcation control requires a
unified basis — a set of normal forms for control
systems.

Consider a nonlinear system of the form

ẋ = f(x, p) + g(x, p)u , (36)

where f(0, 0) = 0, x ∈ Rn is the state variable,
u ∈ Rm is the control input, and p ∈ R is a real
variable parameter. System (36) can be reformu-
lated by the following change of coordinates and
(regular) state feedback

x = φ(x, p), u = α(x, p) + β(x, p)u ,

β(0, 0) 6= 0 .
(37)

A set of normal forms is a family of simple
nonlinear control systems, such that any system in
the form of (36) can be transformed into a unique
system in that family. For dynamical systems with-
out control, Poincaré developed a framework of nor-
mal forms for autonomous systems [Wiggins, 1988,
1990]. The normal form theory for control systems
differs from the theory of Poincaré in the following
two aspects:

(i) In a dynamical system without control, a single
vector field is involved. However, there are two
vector fields (f and g) in a controlled system to
be simplified simultaneously.

(ii) In the Poincaré theory of normal forms, the
transformations used are changes of coordi-
nates. The transformation group for control
systems consists of both changes of coordinates
and state feedbacks.

Because of these two differences, the study of
bifurcations for control systems requires a set of nor-
mal forms for both functions f and g, under the
transformation group consisting of changes of coor-
dinates as well as state feedbacks.

The control normal forms obtained in [Kang
& Krener, 1992; Kang, 1998a, 1998b] are a set of
canonical forms: a system can be transformed into

one and only one of a system in such a form. In
the following, a system with a single uncontrollable
mode is used as an example to illustrate the main
idea of the normal form approach in the study of
control system bifurcations.

The equilibrium set of the system (36) is defined
to be

E = {(x, p)| ∃ u = u0 such that

f(x, p) + g(x, p)u0 = 0} . (38)

If system (36) is not linearly controllable, and if the
system has a single uncontrollable mode, λ = 0,
then it can be transformed by (37) into one of the
following normal forms:

ż = p+
n−1∑
i=1

γxixix
2
i + γzx1zx1 + γx1px1p

+ γzzz
2 +O(z, x, p, u)3

ẋ = A2x +B2u + f̃ [2](x) +O(z, x, p, u)3 ,

(39)

or

ż =
n−1∑
i=1

γxixix
2
i + γzx1zx1 + γx1px1p+ γzpzp

+ γzzz
2 + γppp

2 +O(z, x, p, u)3

ẋ = A2x +B2u + f̃ [2](x) +O(z, x, p, u)3 .

(40)

The pair (A2, B2) is in the Brunovsky controller
form, and the vector f̃ [2] is in the extended con-
troller normal form [Kang & Krener, 1992]. The co-
efficients in the quadratic terms in (39) and (40) are
called invariants, which are extremely important
in both dynamical analysis and bifurcation control.
These invariants are not changeable by transforma-
tion (37), and they characterize the nonlinear be-
havior of the system. The invariants form a matrix:

Q =


γzz

γzx1

2

γzp
2

γzx1

2
γx1x1

γx1p

2
γzp
2

γx1p

2
γpp

 , (41)

where the entries are the corresponding coefficients
in the normal forms (39) and (40).

Based on the above normal forms and invari-
ants, the following bifurcation related problems can
be easily solved, for the family of systems repre-
sented by these normal forms:
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(i) The geometry of equilibrium set E.
(ii) The types of bifurcations of the systems under

a feedback controller.
(iii) The stability of the system under a feedback

controller.

For example, system (39) has either a
paraboloid-shaped (when Q1 is sign definite) or a
saddle-shaped (when Q1 is indefinite with full rank)
equilibrium set. It is approximated by

p = −[z x1 ]Q1[z x1 ]>.

The importance of the set E is due to the
fact that E consists of all the possible equilibria
of a closed-loop system. In fact, if a state feed-
back u = α(x) is applied to the system in normal
form, the set of closed-loop equilibria is the inter-
section between α(x) = 0 and the set E. Since
E is a paraboloid or a saddle, the intersection is a
parabola. This implies that the closed-loop system
has a saddle-node bifurcation.

The stability of the system around the saddle-
node bifurcation can also be determined by the
invariants. In fact, the closed-loop system is lo-
cally asymptotically stable about an equilibrium,
(z, x1, p) ∈ Ec if

[a1 −az 0 ]Q[z x1 p ]> > 0 ,

where a1 and az are the coefficients of x1 and z in
the feedback controller u(x). The related mathe-
matical details can be found in [Kang & Krener,
1992; Kang, 1998a, 1998b].

6.3. Bifurcation control via
harmonic balance
approximations

For continuous-time systems, limit cycles generally
do not have analytic forms, and so have to be ap-
proximated in applications. For this purpose, the
harmonic balance approximation technique is very
efficient. This technique is useful in controlling bi-
furcations [Basso et al., 1998], such as for delaying
and stabilizing the onset of period-doubling bifur-
cations [Genesio et al., 1993; Tesi et al., 1996].

Consider the Lur’e system described by

f ∗ (g ◦ y +Kc ◦ y) + y = 0 , (42)

where ∗ and ◦ represent the convolution and com-
position operations, respectively. For a given sys-
tem, S = S(f , g), as shown in Fig. 13 without
the feedback control loop of Kc, assume that two

Fig. 13. The closed-loop Lur’e system.

parameters, ph and pc, are specified, which define
a Hopf bifurcation and a supercritical predicted
period-doubling bifurcation, respectively. Suppose
also that the system has a family of predicted first-
order limit cycles, which are stable within the range
ph < p < pc.

The objective here is to design a feedback
controller with gain Kc such that the controlled
system, S∗ = S∗(f , g, Kc), has the following prop-
erties [Tesi et al., 1996]:

(i) S∗ has a Hopf bifurcation for p∗h = ph;
(ii) S∗ has a supercritical predicted period-

doubling bifurcation for p∗c > pc;
(iii) S∗ has a one-parameter family of stable pre-

dicted limit cycles for p∗h < p < p∗c ;
(iv) S∗ has the same set of equilibria as S.

As an illustrative example, consider a simple
one-dimensional case where a washout filter with
the transfer function s/(s+a) (a > 0) is used. Since
a predicted first-order limit cycle can be approxi-
mated by

y[1](t) = y0 + y1 sin(ωt) ,

the controller transfer function can take on the
form

Kc(s) = kc
s(s2 + ω2(ph))

(s+ a)3
,

where kc is a constant gain to be designed, ω =
ω(ph) is the frequency of the limit cycle emerged
from the Hopf bifurcation at the point p = ph.
This controller preserves the Hopf bifurcation at
the same point. More importantly, since a > 0,
the controller is stable, so that by continuity in a
neighborhood of the nominal value kc = 0, the Hopf
bifurcation of S∗ not only remains supercritical but
also has a supercritical predicted period-doubling
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(a) before control

(b) after control

Fig. 14. Bifurcation delay via the harmonic balance
technique.

bifurcation (say at pc(kc), close to ph) and a one-
parameter family of stable predicted limit cycles,
for ph < p < pc(kc).

Finally, to determine kc such that the predicted
period-doubling bifurcation can be delayed to a de-
sired parameter value, p∗c , the following harmonic
balance equation y0[1 +G(0) k0(y0, y1)] = 0

1 +G(jω)Kc(jω) +G(jω)k1(y0, y1) = 0 ,

is solved, where G is the transfer function of the
linearized plant, f ′. These two equations are solved
for y∗0, y∗1, and ω∗, as functions of p, depending
on kc and a, within the range ph < p < p∗c .

For the period-doubling prediction to occur at the
point p∗c , the following condition must be satisfied:

1 +H(jω∗(p∗c/2))Kc(j ω
∗(p∗c/2))

+H(jω∗(p∗c/2))k1/2(y0(p∗c), y1(p∗c), φ) = 0 ,

(43)

where k1/2 is the describing function of the lin-
earized g at period-doubling and φ is the related
phase of the subharmonic term. Thus, by numer-
ically solving for kc, a, and φ, a stable predicted
period-doubling can be guaranteed at p = p∗c . More-
over, for each p ∈ (ph, p

∗
c), the predicted limit cycle

is stable [Tesi et al., 1996]. For a system with

g(y) = −y2 .

and

G(s) =
1

s3 + αs2 + 1.2s+ 1
,

where p = −α < 0 is chosen to specify the bifurca-
tion, the controller is found to be

Kc(s) = 0.43
s(s2 + 1.2)

(s+ 1)3
.

This achieves all the expected goals of control listed
above, and changes the period-doubling point from
p = −0.48 to p = −0.39, thereby delaying the
chaotic motion of the system (see Fig. 14).

7. Controlling Hopf Bifurcations

As seen from the previous sections, limit cycles are
associated with bifurcations. In fact, one type of de-
generate (or singular) Hopf bifurcations determines
the appearance of multiple limit cycles under sys-
tem parameter variation. Therefore, the birth and
the amplitudes of multiple limit cycles can be con-
trolled by monitoring the corresponding degenerate
Hopf bifurcations [Berns et al., 1998a; Moiola &
Chen, 1998; Calandrini et al., 1999]. This task can
be accomplished in the frequency domain setting.

7.1. Graphical Hopf bifurcation
theorem

Consider a general parametrized autonomous non-
linear system in the Lur’e form:

ẋ = A(p)x +B(p)u

y = −C(p)x

u = g(y; p) ,

(44)



Bifurcation Control: Theories, Methods, and Applications 529

where the matrix A(p) is invertible for all values
of parameter p. Assume that this system has an
equilibrium solution, y∗, satisfying

y∗(p) = −G(0; p)g(y∗(p); p) , (45)

where

G(0; p) = −C(p)A−1(p)B(p) .

Let J(p) = ∂g/∂y|y=y∗ and let λ̌ = λ̌(jω; p) be the
eigenvalue of the matrix

G(s; p)|s=jωJ(p) = C(p)[jωI −A(p)]−1B(p)J(p)

that is closest to the critical point which satisfies

λ̌(jω0; p0) = −1 + j0, j =
√
−1 .

Fix p = p̃ and let ω vary. Then a trajectory of the
function λ̌(ω; p̃) (the “eigenlocus”) can be obtained.
This locus traces out from the frequency ω0 6= 0. In
much the same way, a real zero eigenvalue (a condi-
tion for the static bifurcation) is replaced by a char-
acteristic gain locus that crosses the point (−1+j0)
at frequency ω0 = 0.

7.1.1. The single-input single-output case

In particular, for SISO systems, the matrix
[G(jω; p)J(p)] is merely a scalar, so that

y(t) ≈ y∗ + <
{

n∑
k=0

yke
jkωt

}
, (46)

where the complex coefficients {yk} are determined
as follows. For the approximation with n = 2, say,
define an auxiliary vector:

ξ1(ω̃) =
−l>[G(jω̃; p̃)]h1

l>r
, (47)

where p̃ is the fixed value of parameter p, l>

and r are the left and right eigenvectors of
[G(jω̃; p̃)J(p̃)], respectively, associated with the
eigenvalue λ̌(jω̃; p̃), and

h1 =

[
D2

(
z02 ⊗ r +

1

2
r̄ ⊗ z22

)
+

1

8
D3r ⊗ r ⊗ r̄

]
,

(48)

in which · denotes the complex conjugate, ω̃ is
the frequency of the intersection between the λ̌ lo-
cus and the negative real axis, closest to the point

(−1 + j0), ⊗ is the tensor product operator, and

D2 =
∂2g(y; p̃)

∂y2

∣∣∣∣
y=y∗

, D3 =
∂3g(y; p̃)

∂y3

∣∣∣∣
y=y∗

z02 = −1

4
[1 +G(0; p̃)J(p̃)]−1G(0; p̃)D2r⊗ r̄

z22 = −1

4
[1 +G(2jω̃; p̃)J(p̃)]−1G(2jω̃; p̃)D2r⊗ r

y0 = z02|p̃− p0|, y1 = r|p̃− p0|1/2,

y2 = z22|p̃− p0| .
Furthermore, the stability index (or curvature

coefficient), which indicates the stability of the
emerging limit cycle, has the following expression:

σ1(ω0) = −Re

{
l>[G(ω0; p0)]h1

l>G′(ω0; p0)J(p0)r

}
, (49)

where G′(ω0; p0) = dG(s)
ds

∣∣∣
ω=ω0,p=p0

.

Then, the graphical Hopf bifurcation theorem
(for SISO systems), formulated in the frequency do-
main, can be stated as follows [Mees & Chua, 1979;
Moiola & Chen, 1996]:

Theorem (Graphical Hopf Bifurcation Theorem).
Suppose that when ω varies, the vector ξ1(ω̃) 6= 0,
and the half-line, starting from −1 + j0 and point-
ing to the direction parallel to that of ξ1(ω̃), first
intersects the locus of the eigenvalue λ̌(jω; p̃), at
the point

P̌ = λ̌(ω̌; p̃) = −1 + ξ1(ω̃)θ2 ,

at which ω = ω̌ and the constant θ = θ(ω̌) ≥ 0, as
shown in Fig. 15. Suppose, furthermore, that the
above intersection is transversal, namely,

det

 <{ξ1(jω̌)} ={ξ1(jω̌)}

<
{
d

dω
λ̌(ω; p̃)

∣∣∣
ω=ω̌

}
=
{
d

dω
λ̌(ω; p̃)

∣∣∣
ω=ω̌

} 6= 0 .

Then

(i) The nonlinear system (44) has a periodic so-
lution (output) y(t) = y(t; y∗). Consequently,
there exists a unique limit cycle for the nonlin-
ear equation ẋ = f(x), in a ball of radius O(1)
centered at the equilibrium x∗.

(ii) If the total number of counterclockwise encir-
clements of the point p1 = P̌ + εξ1(ω̃), for a
small enough ε > 0, is equal to the number
of poles of [G(s; p)J(p)] that have positive real
parts, then the limit cycle is stable.
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Fig. 15. The frequency-domain Hopf bifurcation theorem.

7.1.2. An example of Hopf bifurcation
control

Consider the following system:

ẋ1 = −x1x2 + x2
2 + p ,

ẋ2 = −x2 + x3
1 + px2 ,

(50)

where p plays the role of the main bifurcation
parameter, which can be viewed as the input to
the planar system. This system can be transformed
into the required format, with

G(s) =


1

s+ α
0

0
1

s+ 1


and

g(y, p) =

[
−y1y2 + y2

2 + p− αy1

−y3
1 − py2

]
,

by choosing

A =

[
−α 0

0 −1

]
and B = C = I2 ,

where the constant α > 0 is introduced to guar-
antee the open-loop system poles being located in
the left-half plane. The equilibrium points of the
system are obtained as follows:

1

α
[−y∗1y∗2 + (y∗2)2 + p− αy∗1] = −y∗1

⇒ −y∗1y∗2 + (y∗2)2 + p = 0 ,

(51)

−(y∗1)3 − py∗2 = −y∗2 . (52)

Note that for p = 0, one has

PI = (y∗1, y
∗
2)1 = (0, 0)

and

PII,III = (y∗1, y
∗
2)2 = (±1, ±1) .

The system Jacobian is

J =

[
−y∗2 − α − y∗1 + 2y∗2
−3(y∗1)2 −p

]
(53)

and the characteristic gain loci are

λ2 + λ

(
p

s+ 1
+
y∗2 + α

s+ α

)

+
p(y∗2 + α)− 3(y∗1)2(y∗1 − 2y∗2)

(s+ 1)(s+ α)
= 0 . (54)

When λ̌ = −1 (a single root) and s = iω, one
obtains the general bifurcation condition, as

1− [(jω + α)p+ (y∗2 + α)(1 + jω)]− p(y∗2 + α) + 3(y∗1)2(y∗1 − 2y∗2)

(1 + jω)(α + jω)
= 0 . (55)

If ω0 = 0 satisfies Eq. (55), one obtains a condition,
for static bifurcations, as

y∗2(p− 1) + 3(y∗1)2(2y∗2 − y∗1) = 0 . (56)

Next, rewriting Eq. (52) as

(y∗1)3

(1− p) = y∗2 , (57)

and replacing y∗2 by this expression in Eq. (56), one

obtains

y
∗(1)
1sb = 0 and y

∗(2,3)
1sb = ±

√
2

3
(1− p) .

Substituting this expression into Eq. (57) gives

y
∗(1)
2sb = 0 and y

∗(2,3)
2sb = ±2

3

√
2

3
(1− p) .
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Finally, replacing the expressions of y
∗(1,2,3)
1 and

y
∗(1,2,3)
2 in Eq. (51), one obtains the values of p that

give the following (saddle-node type) static bifurca-
tion points:

p0sb = 0, PIsb = (y∗1, y
∗
2)1sb = (0, 0) ,

p1sb =
4

31
,

PIIsb,IIIsb = (y∗1, y
∗
2)2sb,3sb =

(
±3

√
2

31
, ±2

√
2

31

)
.

If ω0 6= 0 satisfies Eq. (55), one has a condition
for the Hopf bifurcation. So, let α = 1 for simplic-
ity. After separating Eq. (55) in real and imaginary
parts, one has

−ω2
0 + y∗2(p− 1) + 3(y∗1)2(2y∗2 − y∗1) = 0 ,

ω0(1− p) = y∗2ω0 ⇒ y∗2 = (1− p) .
To this end, applying Eqs. (51) and (52) into this
last equation yields

−2p+ 4p2 − 3p3 − p4 + 2p5 − p6 = 0 . (58)

Note that there are only two real roots of p that
satisfy Eq. (58), and they are the bifurcating values
for Hopf bifurcations:

(a) HB1

pHB1 = 0, (y∗1, y
∗
2)HB1 = (1, 1), ω01 =

√
2 ,

(b) HB2

pHB2 = −1.32471795,

(y∗1, y
∗
2)HB2 = (1.7548775, 2.32471795),

ω02 = 4.6192952 .

One can then analyze the stability of the
equilibrium solutions by using small perturbations
around the bifurcation points, and check if any one
of the characteristic loci [Eq. (54)] encircles the crit-
ical point (−1 + i0). To obtain complete results,
however, it is preferred to find the directions of
periodic solutions starting from the criticality,
i.e. the stability of the emerging periodic branch.
Here, for simplicity, only HB1 is discussed.

The right and left normalized eigenvectors
(l>r = 1, |r|= 1) of the matrix [G(jω01)J ] belong-
ing to λ̌ = −1 are

r =


1

2

1

2
− j
√

2

2

 and l> =

(
1− j√

2

j√
2

)
.

By using the formulas given above (evaluated at
criticality ω01 =

√
2), one has

z02 = − 1

16

[
5

9

]
, z22 =

1

24


5

2
− 5

√
2

2
j

−3

2
− 9

√
2

2
j

 ,

h1 =
1

16


−1

2
+ 21

√
2

4
j

11 + 5

√
2

2
j

 ,

which gives a very simple formula for the stability
index σ1(ω01) = −9/64. This corresponds to a sta-
ble periodic solution emerging from the first Hopf
bifurcation point. Equivalent computations show
that the second Hopf bifurcation point HB2 also
has a negative stability index and, hence, a stable
periodic solution is associated with it.

7.2. Controlling the birth of
multiple limit cycles

As mentioned earlier, one type of degenerate Hopf
bifurcations determine the appearance of multiple
limit cycles under system parameter variation. The
birth of multiple limit cycles can be controlled on
the basis of this intrinsic connection, by modifying
the corresponding degenerate Hopf bifurcations via
parameter variations.

7.2.1. Necessary conditions for
multiple limit cycles

For the harmonic expansion of (46) with higher-
order approximations (n > 2), more accurate
formulas can be derived. In particular, the first
harmonic of the output y(t) is obtained as

y[1] = θr + θ3z13 + θ5z15 + · · · , (59)

where z13, . . . , z1,2m+1 are vectors orthogonal to r,
m = 1, 2, . . . , which can be explicitly calculated
[Moiola & Chen, 1996].

For a given value of ω̌, which is the approxima-
tion of the oscillatory frequency,

G(jω̌) = G(s) + (−α+ jδω)G′(s)

+
1

2
(−α+ jδω)2G′′(s) + · · · , (60)
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where δω = ω̌ − ω, in which ω is the imaginary
part of the bifurcating eigenvalues, and G′(s) and
G′′(s) are the first and second derivatives of G(s),
respectively, with respect to s.

On the other hand, with the higher-order ap-
proximations, one has

[G(jω)J + I]
m∑
i=0

z1,2i+1θ
2i+1

= −G(jω)
m∑
i=1

v1,2i+1θ
2i+1 , (61)

where z11 = r and v1,2m+1 = hm, m = 1, 2, . . .,
with explicit formulas for computation [Moiola &
Chen, 1996].

In a general situation, the following equation
has to be solved:

[G(jω̌)J + I](rθ + z13θ
3 + z15θ

5 + · · · )

= −G(jω̌)[h1θ
3 + h2θ

5 + · · · ] . (62)

To do so, by substituting (60) into (62), one obtains

(α−jδω) = γ1θ
2+γ2θ

4+γ3θ
6+γ4θ

8+O(θ9) , (63)

in which all coefficients, γi, i = 1, 2, 3, 4, can be
calculated explicitly [Moiola & Chen, 1996].

Then, taking the real part of (63) gives

α = −σ1θ
2 − σ2θ

4 − σ3θ
6 − σ4θ

8 − · · · , (64)

where σi = −<{γi} are the stability index or
curvature coefficients of the expansion. In the
terminology of degenerate Hopf bifurcation, the de-
generacies are denoted as Hij. Here, in Hij, the
subscript i indicates that the stability index vanish
at criticality up to the ith order, while j means the
order in which the derivative(s) for the failure of the
transversality condition vanishes. Thus, H00 is the
classical Hopf bifurcation without any degeneracy
in the transversality condition.

Note that multiple limit cycles arise when the
stability indexes are perturbed near the value zero,
after the signs of the stability indexes are altered in
an increasing (or decreasing) order. For example,
to have four limit cycles in the vicinity of an H30-
degenerate Hopf bifurcation, (i.e. at the criticality,
σ1 = σ2 = σ3 = 0 but σ4 6= 0), the system parame-
ters have to be perturbed in such a way that their
signs are alternating, say, α > 0, σ1 < 0, σ2 > 0,
σ3 < 0, and σ4 > 0 [Calandrini et al., 1999].

7.2.2. An example of multiple limit
cycle control

Consider a planar cubic system in the Lur’e form
(44), with

A =

[
−1 0

0 −1

]
, B = C =

[
1 0

0 1

]
,

G(s) =


1

(s+ 1)
0

0
1

(s+ 1)

 ,

J =

[
−(p+ 1) 1

−1 −(p+ 1)

]
,

and

g(y)=


−(p+1)y1+y2−(a−w−β)y3

1−(3µ−η)y2
1y2

−(3β+ξ−3w−2a)y1y
2
2−(q−µ)y3

2

−y1−y2(p+1)−(q+µ)y3
1−(3w+3β+2a)y2

1y2

−(η−3µ)y1y
2
2−(w−β−a)y3

2

 ,

where p plays the role of the main bifurcation pa-
rameter and a, w, β, µ, η, ξ and q, are system
parameters, and y = −x = −[x1x2]>. For this
system,

r =


1√
2

− j√
2

 , l =


1√
2

j√
2

 ,
and

y∗ = z02 = z22 = 0.

Moreover, the first three stability indexes are

σ1 =
1

16
ξ, σ2 = − 5

32
aq, and σ3 =

25

128
awβ .

To control the birth of multiple limit cycles
from this system, choose a parameter, ξ < 0, so
that the first stability index has a definite sign. This
yields a stable periodic solution at the Hopf bifurca-
tion point. Moreover, from the expression of σ2, one
can see that the values of the parameters a and q
must have the same sign, to ensure σ2 < 0. Finally,
from the formula of σ3, which depends on parame-
ters a, ω and β, it is clear that to ensure a negative
sign for σ3, there are four possibilities:
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(1) sgn [a] = −1, sgn [ω] = 1 and sgn [β] = 1.

(2) sgn [a] = 1, sgn [ω] = −1 and sgn [β] = 1.

(3) sgn [a] = 1, sgn [ω] = 1 and sgn [β] = −1.

(4) sgn [a] = −1, sgn [ω] = −1 and sgn [β] = −1.

One advantage of this methodology is that feed-
back control (e.g. adding any nonlinear terms) is not
needed: one can simply modify the system parame-
ters according to the expressions of the stability in-
dexes, to achieve the goal of controlling the birth of
multiple limit cycles (for more details, see [Moiola
& Chen, 1998; Calandrini et al., 1999]). A more
complex system with multiple oscillations has been
analyzed in [Berns & Moiola, 1998] giving at the
same time a procedure to locate in the parameter
space the singularities of higher-order codimension.
Furthermore, multiple periodic solutions have been
detected in aircraft lateral dynamics [Ananthkrish-
nan & Sudhakar, 1996], in which the presence of
large periodic solutions provokes adverse effects on
maneuverability of the aircraft, and hence its con-
trol is of fundamental and critical importance.

7.3. Controlling the amplitudes
of limit cycles

Consider the parametrized nonlinear system (44),
with one more parameter, α, in the form{
ẋ(t) = A(p, α)x(t) +B(p, α)g(C(p, α)x(t); p, α)

y(t) = C(p, α)x(t) ,
(65)

where A,B, and C are n × n, n × r and m × n
matrices, respectively, p ∈ R and α ∈ R are the
main and auxiliary bifurcation parameters, respec-
tively, x ∈ Rn is the state vector, y ∈ R` is the
system output, and the smooth nonlinear function
g: R` → C2r+1(Rr) is considered as the system
input.

Taking Laplace transforms on (65) yields

(Le)(s) = −G(s; p, α)(Lu)(s) , (66)

where

e(t) = −y(t) = −Cx(t)

G(s; p, α) = C [sI −A]−1B

u(t) = g(Cx(t); p, α) := f(e(t); p, α) .

The equilibrium solution of (66), e∗, can be
obtained by solving the equation

G(0; p, α)f(e∗; p, α) = −e∗ . (67)

Consider the characteristic equation

det [λI −G(s; p, α)J ] = λm + am−1(s; p, α)λm−1

+ · · ·+ a0(s; p, α) = 0 ,

where J = ∂f/∂e|e=e∗ is the Jacobian, and m =
min(`, r). Letting s = jω and using the bifurcation
condition λ̌ = −1, the above equation is separated
into real and imaginary parts:

F1(ω, p, α) = (−1)m +
m−1∑
k=0

(−1)k< {ak(jω; p, α)} = 0

F2(ω, p, α) =
m−1∑
k=0

(−1)k= {ak(jω; p, α)} = 0 ,

Hopf bifurcation points are found from the solu-
tions of these two equations, which are denoted
(ω0, p0, α0), provided that ω0 6= 0.

A regular Hopf bifurcation point is a partial so-
lution of the above two equations, which is denoted
(ω0, α0) and satisfies

det


∂F1

∂p

∂F2

∂p

∂F1

∂ω

∂F2

∂ω


(ω0,α0)

6= 0,

where ∂F1
∂ω 6= 0 and ∂F2

∂ω 6= 0, at (ω0, α0), and

det

<{ξ1(ω)} ={ξ1(ω)}

<
{
dλ̌

dω

}
=
{
dλ̌

dω

}


(ω0,α0)

= σ1(ω0, α0) 6= 0.

Here, ξ1 is a complex number depending on the sec-
ond and third orders of partial derivatives of the
function f(e(t)), evaluated at e∗; λ̌ is the eigenvalue
closest to the critical point (−1 + j0) when s = jω
is sweeping onto the Nyquist contour; and σ1(·) is
the first stability index.

Fig. 16. Classical Hopf bifurcation: supercritical and sub-
critical. Black dots correspond to stable limit cycles while
circles represent unstable limit cycles.
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7.3.1. Degenerate Hopf bifurcations
and control of oscillations

Next, consider a periodic solution of (66), y(t),
given by its 2mth-order approximation

y(t) ≈ y∗ + <
{

2m∑
k=0

Y k ejkωt
}
, (68)

where Y k is a complex number in the kth harmonic
of the expansion. These {Y k} are obtained after
equating the output of the linear part of the system,
−G(jkω)F k, with the input signal to the nonlin-
ear feedback function f(e) := g(y) that has Fourier
coefficients {F k}. Then, the following harmonic
balance equations is obtained:

Y k = −G(jkω, p, α)F k(Y k, Y k−1, . . . , Y 0, p, α) ,

k = 0, 1, . . . , 2m.

These equations are solved in terms of Y 1 = rθ,
where r is the right eigenvector of G(jω, p, α)J
associated with the eigenvalue λ̌, and θ is the am-
plitude of the periodic solution.

The final result is obtained by computing sev-
eral complex numbers, ξm(r, ω), which are used to
graphically estimate the amplitude and frequency of
the periodic solution [Moiola & Chen, 1996]. This
requires solving the following equation:

λ̌(jω; p, α) = −1 +
m∑
k=1

ξk(r, ω)θ2k . (69)

A solution pair, (ω̃, θ̃), is then placed in (68), so as
to obtain the predicted periodic solution. For sim-
plicity, Lj is used to represent the right-hand side
of Eq. (69), namely,

Lj = −1 +
j∑

k=1

ξk(r, ω)θ2k, j = 1, 2, . . . , q . (70)

Then, under small variations in the main and
auxiliary bifurcation parameters, p and α, two dis-
tinct local bifurcation phenomena, H01 and H10,
can be found [Moiola & Chen, 1996].

To accomplish this task, it is proposed here
to use a parametrized controller, u(x; p, α) or
directly varying the system parameters (this is re-
ferred to as “parametric control”) in (65), with the
purpose of modifying the amplitudes or multiplici-
ties of limit cycles near the existing Hopf bifurcation
points (16). This feedback law should not modify

the location of the other equilibrium points that are
not related to the Hopf bifurcations. Under small
variations in p and α, one can find distinct local
bifurcation diagrams (i.e. plots of equilibrium and
periodic solutions), in the unfoldings ofH01 andH10

degenerate Hopf bifurcations.
First, let us define the two types of degenerate

Hopf bifurcations needed:

(i) The first type, denoted by H01 for simplicity,
refers to the failure of the transversality condition
in the classical Hopf bifurcation theorem, which
involves the interactions of two branches of peri-
odic solutions in its unfoldings. Then, by appropri-
ately varying the auxiliary parameter α (α, in this
case, is also the unfolding parameter in the rigorous
analysis of degenerate Hopf bifurcations), the two
Hopf bifurcation points either gradually separate
from each other, or collide together. The degener-
acy exactly corresponds to the collision of the two
Hopf points into a single point (middle diagrams in
Fig. 17).

There are two situations to analyze, but for en-
gineering applications it is preferable to deal with
the upper case (denoted by “(a)”) of Fig. 17 since it
guarantees that the stable limit cycle disappears or,
at least, that the stable periodic branch has a small
amplitude. If the amplitude is not small enough,
one can appropriately vary the parameters in order
to find a smaller periodic orbit. It must be noticed
that to guarantee the small amplitude of the peri-
odic solutions, it is desirable that the absolute value
of the stability index σ1 be very large. This can
be understood from the normal form point of view
for generic Hopf bifurcations, since the control ob-
jective will be performed in the connecting branch
of periodic solutions, where both Hopf points are
generic.

The general problem (after using the center
manifold theorem and reduced relevant dynamics
in a two-dimensional problem) can be stated as:

ẋ = (δp+ a(x2 + y2))x− (ω + cp+ b(x2 + y2))y ,

(71)

ẏ = (ω + cp+ b(x2 + y2))x+ (δp+ a(x2 + y2))y ,

(72)

which is expressed in polar coordinates as

ṙ = (δp+ ar2)r , (73)

ϑ̇ = ω + cp+ br2 , (74)
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Fig. 17. Degenerate Hopf bifurcation H01: (a) A branch of
stable limit cycles, (b) A branch of unstable limit cycles.

where δ = d
dp(<λt(p)) 6= 0, λt, λ̄t are the time-

domain formulas of bifurcating eigenvalues, and
a ∝ σ1 is a measure of the first stability index.
Then, to obtain small amplitude limit cycles for
generic Hopf bifurcations, i.e. a 6= 0 (σ1 6= 0), δ 6= 0,
one needs to decrease the amplitude of the nonzero
solution r = ±

√
−pδ/a. One way to do so is to

increase the absolute value of the stability index σ1

by using appropriate nonlinear feedback control or
by parametric control.

The following algorithm has been implemented
for obtaining the maximum or minimum (permissi-
ble) values of the main bifurcation control param-
eter and the auxiliary parameter, such that small
amplitude oscillatory solutions can be sustained:

Step 1. Locate an H01-degeneracy in the param-
eter space (p, α), and calculate the first stability
index at criticality, so as to guarantee that the
local bifurcation diagram has the shape of the
upper diagrams (case “(a)”) shown in Fig. 17. If the
stability index is positive, and if there are no other
eigenvalues crossing the critical point (−1+i0), then
the diagrams will be similar to the ones denoted as
“(b)” in Fig. 17. In the latter case, another (simi-
lar) procedure, such as the one introduced in [Abed
& Fu, 1986], can be applied to modify the stability
of the periodic solutions, arriving at the situation
depicted in Fig. 17, case “(a)”.

Step 2. Fix the value of the auxiliary parameter,
α, so as to have two bifurcation points after vary-
ing the bifurcation control parameter p. Then, solve
Eq. (69) by using an iterative algorithm, introduced
in [Moiola & Chen, 1996], for q = 1, 2, and 3.

Step 3. Compare the predictions in both ampli-
tude and frequency of different HBAs, (ω̂1, θ̂1), (ω̂2,

θ̂2), and (ω̂3, θ̂3), in the middle of the periodic

branch. Stop the algorithm if max |θ̂j − θ̂j+1| > δθ,
j = 1, 2, where δθ can be chosen as the maximum
allowable difference between the two HBAs. A rea-
sonable value for stopping would be 10 to 15% of
the value of θ̂3. Also, calculate the stability index σ1

at both extremes of the local bifurcation diagram,
so as to guarantee that it does not change sign. If
σ1 → 0 at one Hopf bifurcation point, stop the al-
gorithm at this value of α (since the emerging limit
cycle would have a large amplitude).

Step 4. Variate further the value of the auxiliary
parameter, α, in the direction along which the two
bifurcation points separate from each other. Then
go to Step 3.

Observe that the algorithm has a type of con-
vergence test by itself in each evaluation by using
different higher-order harmonic balance approxima-
tions (HBAs). If the three first HBAs give “coin-
cident” results up to a certain engineering approxi-
mation, the resulting limit cycle would be of small
amplitude since the approximations are local by na-
ture. The above computations are meaningful and
accurate on the basis of the existence of the H01-
degeneracy in the parameter space. This degener-
acy, if not existing in the original system, can be
created by an appropriate feedback control.

(ii) The second type of degenerate Hopf bifurca-
tions, denoted H10, concerns with the vanishing
of the first stability index σ1, or a (∝ σ1) in the
Poincaré normal form of the periodic solution. This
singularity produces a second limit cycle in the un-
folding of the degeneracy, under a small variation
of system’s parameters. In other words, a nested
configuration of limit cycles can be obtained, as
shown in Fig. 18. Generally, the H10-singularity has
large-amplitude limit cycles emerging from critical-
ity, and a hysteresis phenomenon. This can be used
to ensure a large basin of attraction (or repulsion)
for the innermost limit cycle.

It is also important to notice that one of the
nondegeneracy conditions in the H01-degeneracy is
that the first stability index has a definite sign,

Fig. 18. Degenerate Hopf bifurcation H10: (a) A large am-
plitude unstable limit cycle, (b) A large amplitude stable
limit cycle. LP is a limit point (fold) of the periodic branch.
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which will be maintained after the variation of the
system parameters. This property can be used to
control the presence of large amplitude oscillations,
at least locally, in a small neighborhood of the Hopf
bifurcation point.

7.3.2. Controlling the amplitude of limit
cycles in the electric power model

Consider the electric power model (3). By a change

of variables,

θ→ x1 , ω → x2 , θL → x3 , and VL → x4 ,

this power model is converted to the Lur’e form:{
ẋ(t) = Ax(t) +Bg(Cx(t); p, q)

y = Cx(t) ,

where

A =


−1 1 0 0

0 −3.33 q 0 0

0 0 −1 −93.33

0 0 0 −14.52

 , B = C = I4 ,

g(x(t)) := f(e(t)) =



−e1

−16.6667 e4 sin(−e3 + e1 + 0.0873) + 1.8807

496.8718 e2
4 + 166.6667 e4 cos(−e3 + e1 − 0.0873)

+666.6667 e4 cos(−e3 − 0.2094) + 33.3333 p + 43.3333 − e3

−78.763 e2
4 − 26.21 e4 cos(−e3 + e1 − 0.0124)

−104.868 e4 cos(−e3 − 0.1346) − 29.04 e4 − 5.228 p − 7.03


,

[
y1 y2 y3 y4

]>
=
[
−e1 −e2 −e3 −e4

]>
,

and

G(s) =



1

s+ 1

1

(s+ 3.33 q)(s + 1)
0 0

0
1

(s+ 3.33 q)
0 0

0 0
1

s+ 1

−93.33

(s+ 1)(s+ 14.52)

0 0 0
1

s+ 14.52


.

Setting the auxiliary parameter q = 0.109,
some local bifurcation diagrams are obtained. Two
Hopf bifurcation points connected by a continuous
branch of periodic solutions can be found, where
the left Hopf bifurcation point has a stability index
of absolute value less than that of the Hopf point
on the right.

When the auxiliary parameter is gradually
increased, to q = 0.105, larger-amplitude limit
cycles are obtained in the connected branch, as
shown in Fig. 19. In this figure, the predicted θ
is θ̂ = 0.180267, with a very small (< 4%) relative
error.

Note that the control strategy described above
is based on parametric variations in the model.
However, feedback control design is also possible.
For this particular power system model, a nonlin-
ear feedback controller of the form αc1w

2 + αc2w
3

works well. The control gains αc1 and αc2 can be
tuned to enlarge the absolute value of the stabil-
ity index at will. For example, amplitudes of limit
cycles can be controlled to zero by a suitable choice
of αc1 and αc2, in such a way that the first stabil-
ity index, σ1, does not vanish [Moiola et al., 1997a;
Nayfeh et al., 1996; Wang & Abed, 1993].
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Fig. 19. Simulation results for controlling amplitudes of
limit cycles in a power system.

7.3.3. Controlling the amplitude and
multiplicity of limit cycles
in a planar system

The above-described algorithm has been applied
to controlling the amplitude of oscillations to the
planar system given by Eq. (50). Notice that the re-
sults obtained by using HBAs and that obtained by
numerical integrations coincide only within a small
region of the main bifurcation parameter: from
Hopf bifurcations up to the points marked by black-
dots in Fig. 20 [Berns et al., 1998a]. In order to
reduce the size of the amplitudes of the oscillatory
solutions located in between the two Hopf points,
and then to recover the periodic solutions for a large
extent of the bifurcation control parameter, the
following nonlinear feedback law, u(x; p, α), can be
added to the first equation of the system:

ẋ1 = −x1x2 + x2
2 + p+ u(x; p, α) ,

ẋ2 = −x2 + x3
1 + px2 .

The goal is to indirectly increase the value of
σ1, thereby decreasing the amplitudes of the limit
cycles.

However, this feedback law should not modify
the equilibrium points, and, if possible, should not
change the location of the Hopf bifurcation points
either. To fulfill these two requirements, a simple
choice of the control law is

u(x; p, α3) = α3ẋ
3
2 , (75)

where α3 is the constant control gain to be further
determined. It is easy to verify, by definition, that

Fig. 20. Static and dynamic bifurcation varying the main
bifurcation parameter p. The frequency domain method ap-
proximates the emerging limit cycles up to the black dots due
to the large amplitude oscillations of the periodic branch.

Fig. 21. Numerical solution for p = −0.6. “A” is a large
amplitude limit cycle of the original system, and “B” and
“C” are smaller limit cycles with u = α3ẋ

3
2 (α3 = −10) and

u = α1ẋ2 (α1 = −0.01), respectively.

the equilibrium points do not change. Moreover,
neither G(s) nor J is modified, because the feed-
back law only affects the derivatives of the function
f(e), which has a degree equal to or greater than 3.

When α3 = −10.0 is used, the predicted solu-
tions obtained using L1 and L2 are both difficult
to be distinguished from the true limit cycle, even
for the worst value of p, p = −0.6, which is in the
middle of the periodic branch. To compare the re-
duction of the amplitudes of the limit cycles when
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p = −0.6, Fig. 21 includes the original (without
feedback) oscillatory solution (marked as “A”), and
the one obtained by using the above feedback law
(marked as “C”). If one only wants to preserve the
equilibrium points but change the Hopf bifurcation
points, then the following simpler feedback law may
be used:

u(x; p, α1) = α1ẋ2 . (76)

However, it does change the location of the Hopf
bifurcations points, and, by varying appropriately
the value of α1, one can obtain the three upper
local bifurcation diagrams of Fig. 17.

Figure 21 shows the largest limit cycle for the
case of p = −0.6 with this feedback law (marked as
“B”). This can be compared to the large-amplitude
limit cycle of the uncontrolled system (labeled “A”),
and to the one generated by the first feedback law
(noted as “C”). In so doing, eventually, for a cer-
tain critical value of α1c, both HB1 and HB2 points
collide into an H01-degenerate Hopf bifurcation. In
the investigation of this phenomenon, after some al-
gebraic calculations, one obtains the location of the
degenerate Hopf bifurcation point, as

α1H01 = −0.030979, pH01 = −0.323543 ,

(ê1, ê2) = (1.2479, 1.46825) .

Therefore, with the second feedback law, one
has the ability to control the periodic branch
(in both amplitude and frequency of the oscil-
lations), in a way similar to handling the local
bifurcation diagrams arising in the unfoldings of
an H01-degenerate Hopf bifurcation. In this con-
trol process, the constant gain α1 actually replaces
the role of the auxiliary parameter α introduced
before.

Next, consider changing the limit cycle mul-
tiplicity by introducing the following nonlinear
law:

u(x; p, α1) = α2ẋ
2
2 + α3ẋ

3
2 , (77)

where α2 = −0.17 and α3 = −0.015. By computing
the local bifurcation diagram with a continuation
software package such as LOCBIF [Khibnik et al.,
1993], it ends up with a similar graph as the one to
the bottom of Fig. 18, as it is shown in Fig. 22 (see
[Moiola et al., 1999] for more details).

Fig. 22. Local bifurcation diagram near H10-degeneracy.
The limits of the figure are: pmax = −1.3, pmin = −1.35,
x1 max = −1.5, x1 min = −2 (α2 = −0.17, α3 = −0.015).

8. Potential Applications of
Bifurcation Control

Bifurcation control is useful in many engineering
applications. Due to the vast and still rapidly grow-
ing array of information on potential applications
of bifurcation control in engineering systems, it is
literally impossible to give an all-rounded and com-
prehensive coverage of these materials in one single
section of this article. Therefore, only a couple of
topics that are familiar to the authors are presented
here, leaving a large volume of literature to the
interested reader to search.

8.1. Application in cardiac
alternans and rhythms control

One interesting application of bifurcation control is
the control of pathological heart rhythms [Brandt &
Chen, 1997; Chen et al., 1998a; Wang et al., 1997,
1998]. The rhythm of the heart is determined by
a wave of electrical impulses (in the form of ac-
tion potential), which travels in the heart condition
pathway. Arrhythmias in the heart such as fibril-
lation and ectopic foci are life threatening. Under-
standing the mechanism leading to arrhythmias is
an important medical problem with enormous im-
pact. Within this context, an even more challenging
problem is the control and curing of such abnor-
mal biological disorders. For a control engineer, a
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natural question is concerning with the role of feed-
back in such situations. From a bifurcation control
point of view, what is interesting about arrhythmias
is that they have been closely linked to a variety of
bifurcations, both static and dynamic, and chaos
(e.g. see [Chay, 1995; Garfinket et al., 1992]). This
connection enables bifurcation control methods to
be used for controlling heart rhythms.

As an illustration, dynamic bifurcation control
is applied to suppression of pathological rhythm
(cardiac alternans) in an atrioventricular modal
conduction model [Sun et al., 1995]. It is shown in
[Sun et al., 1995] that this theoretical model, which
incorporates physiological concepts of recovery,
facilitation and fatigue, can accurately predict a
variety of experimental observed complex rhythms
of nodal conduction.

Specifically, the model proposed in [Sun et al.,
1995] was based on stimulus-response measure-
ments from six isolated rabbit hearts. The model
is used for describing electrical conduction through
the atrioventricular (AV) node, which can explain
the pathological cardiac alternans. According to
that reference, the atrial-His interval Ai+1, which
is between cardiac impulse excitation of the low in-
teratrial septum and the bundle of His during the
(i + 1)st cardiac cycle, is determined by the previ-
ous atrial-His interval Ai and the AV nodal recovery
time Hi:

Ai+1 = f(Ai, Hi)

= Amin +Ri+1 + βi exp

(
− Hi

τrec

)
, (78)

R0 = γ exp

(
− H0

τfat

)
, (79)

Ri+1 = Ri exp

[
− (Ai +Hi)

τfat

]
+ γ exp

(
− Hi

τfat

)
, (80)

βi =

{
201 ms− 0.7Ai, for Ai < 130 ms

500 ms− 3.0Ai, for Ai ≥ 130 ms ,

(81)

in which H0 is the initial H interval and the param-
eters Amin, τrec, γ and τfat are positive constants.

When the rabbit hearts were electrically stim-
ulated at a fixed time period S following bundle
of His activation, a kind of reentrant tachycardia
is observed with the A intervals demonstrating an

Fig. 23. Bifurcation diagram of open-loop AV nodal con-
duction model.

alternating time series. This can be simulated in
the model by substituting the constant S interval
for Hi with S < 57 ms. In the subsequent analysis,
S (in Hi = S) is used as the bifurcation parameter.

Using S as the bifurcation parameter, Fig. 23
shows a bifurcation diagram of the cardiac system
(78)–(81). It can be seen that there is a period-
1 to period-2 bifurcation occurring near S = 57.
Cardiac alternans arise at this bifurcation. A
common view is that this period-1 to period-2
bifurcation is a period-doubling bifurcation and,
therefore, alternans rhythms are associated with
period-doubling bifurcations. It was shown in [Chen
et al., 1998a] that the cardiac system (78)–(81) un-
dergoes a so-called border-collision bifurcations at
this bifurcation point. The control objective of
[Chen et al., 1998a] is to suppress the cardiac alter-
nans utilizing a form of dynamic bifurcation control
directed at the border-collision bifurcation.

To control the cardiac alternans, a small per-
turbation, ui, is applied to the AV node recovery
interval as the control input:

Hi = S + ui . (82)

In [Christini & Collins, 1996; Brandt & Chen, 1997],
several control schemes were suggested to stabilize
the model to a period-1 rhythm. Since cardiac alter-
nans arise at the border-collision bifurcation in the
model, a dynamic bifurcation control law directed
at this bifurcation is employed. This technique fol-
lows the same line of work on bifurcation control as
in [Abed et al., 1995; Wang & Abed, 1994].
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With the dynamic feedback control law, the
overall closed-loop system is given by

Ai+1 = f(Ai, S + ui) (83)

wi+1 = Ai + (1− d)wi (84)

zi = Ai − dwi (85)

ui = g(zi) . (86)

This involves the use of a discrete-time washout
filter. Here, wi is the washout filter state variable,
zi is the output function, d (0 < d < 2) is a time
constant related to the washout filter, and g(zi) is
the control function to be designed.

The objective is to steer Ai from the patholog-
ical period-2 orbit to a period-1 one. To achieve
this, a linear controller can be designed to shift
the border-collision bifurcation, effectively stabiliz-
ing the branch of unstable fixed points embedded
in the region of period-2 rhythm within the uncon-
trolled system. The control law used is

ui = g(zi) = −klzi , (87)

where kl and d are control design parameters.
An illuminating control result, a bifurcation di-

agram of the controlled map, is shown in Fig. 24.
It can be seen that the border-collision bifurcation
at Sc is eliminated and the parameter range for the
stable period-1 orbit is increased. Note that the
fixed point structure is preserved in the controlled
system due to the washout filter-aided design.

To illustrate the effect of the controller, a sim-
ulation result is presented in Fig. 25, where S is
set to be a constant (45 ms). To account for noise
in real-world applications, a zero-mean Gaussian
white noise sequence, ξi (σξ = 1 ms), was added
to S, and Ai was assumed to be measured with a
precision of 0.5 ms, to simulate the measurement
noise.

Recently, some experiments were conducted for
suppressing the alternans rhythm in a piece of dis-
sected rabbit heart [Hall et al., 1997], where the
control algorithm used is

ui =
α(xi − xi−1)

2
. (88)

When substituting d = 1 and kl = α/2 into
(83)–(86) and (87), one can see that (88) is a spe-
cial case of the linear controller (83)–(86) and (87).
In [Hall et al., 1997], it was shown that when using

Fig. 24. Bifurcation diagram of the AV nodal conduction
model under linear dynamic control: k = 0.85, d = 0.1.

Fig. 25. Linear dynamical bifurcation control of the AV
nodal conduction model with environment and measurement
noise.

the controller (88) in the experiments, the origi-
nal system’s unstable period-1 equilibrium can be
targeted exactly even in the case of slow evolution
of the equilibria. This demonstrates the validity
and robustness of the controller (83)–(86). More-
over, the bifurcation control methods proposed in
[Abed et al., 1995; Chen et al., 1998; Wang & Abed,
1994] offer considerably flexibility in the achiev-
able performance and dynamics of the closed-loop
system.

8.2. Application in power network
control and stabilization

Nonlinearity is an inherent and essential charac-
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Fig. 26. Bifurcation control of voltage collapse.

teristic of electric power systems, especially in
heavily loaded operation. Historically, power sys-
tems were designed and operated conservatively
and, as a result, systems were normally operated
within a region where system dynamical behaviors
were fairly linear. Only occasionally would systems
be forced to the limits where nonlinearities could
begin to have significant impacts on the system
behaviors.

Notably, the recent trend has different
promises. Economic and environmental factors,
along with the current trend towards an open ac-
cess market, have strongly demanded that power
systems be operated much closer to their limits as
they become more heavily loaded. Ultimately, there
will be greater dependence on control methods that
can enable the system capability rather than on ex-
pensive physical system expansion. It is therefore
vital to gain greater understanding of the nonlinear
phenomena of an operational power system [Hill,
1995] and, even more significantly, the human abil-
ity to control them [Hill et al., 1993].

The electric power system (3), featured in
Secs. 1 and 7.3.2, was proposed in [Chiang et al.,
1990] as an example of exhibiting voltage collapse.
Voltage collapse refers to an event in which the
voltage magnitudes in AC power systems decline
to some unacceptably low levels that can lead to
system blackout. The power system model (3)
exhibits rich nonlinear phenomena, including
bifurcations and chaos. The following presents a
bifurcation control approach to the problem of con-
trolling voltage collapse [Wang & Abed, 1993] in
model (3).

Consider the model (3) subject to control u
which is added to the right-hand side of the last
equation. Note that the control occurs in the exci-
tation system and involves a purely electrical con-
troller. Feedback signals, which are some dynamic
functions of the speed ω, are widely used in power
system stabilizers (PSS).

A nonlinear bifurcation control law of the form
[Wang & Abed, 1993]

u = knω
3

transforms the subcritical Hopf bifurcation to a su-
percritical bifurcation. It also ensures a sufficient
degree of stability of the bifurcated periodic solu-
tions, so that chaos and crises are eliminated. This
control law allows stable operation very close to the
point of impending collapse (saddle node bifurca-
tion). Figure 26 shows a bifurcation diagram for
the closed-loop system with control gain kn = 0.5.

Another linear bifurcation control law

u = klω

involves changing the critical parameter value, at
which the Hopf bifurcations occur, by a linear feed-
back control. This linear feedback law eliminates
the Hopf bifurcations and the resulting chaos and
crises [Wang & Abed, 1993]. Therefore, the linearly
controlled system can operate at a stable equilib-
rium up to the saddle node bifurcation.

In summary, although the relative importance
of the effects of the nonlinear phenomena in gen-
eral power systems under stressed conditions is still
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a topic for further research [Hill, 1995], the bi-
furcation control approach appears to be a viable
technique for controlling these systems.

8.3. Application in axial flow
compressor and jet engine
control

An application of bifurcation control is in the
axial flow compressors, which are the hearts of
aeroengines. Recent years have witnessed a flurry of
research activities in axial flow compressor dynam-
ics, both in terms of analysis of stall phenomena and
their control. This interest is due to the increased
performance that is potentially achievable in mod-
ern gas turbine jet engines by operating near the
maximum pressure rise. The increased performance
comes at the price of a significantly reduced sta-
bility margin. Specifically, axial flow compressors
are subject to two distinct aerodynamic instabili-
ties, rotating stall and surge, which are associated
with bifurcations [McCaughan, 1989]. Both these
instabilities are disruption of the normal operating
condition that is designed for steady and axisym-
metric flow, and both can bring catastrophic conse-
quences to jet airplanes. Because these instabilities
occur at the critical operating point of the highest
pressure rise, the compressors are forced to operate
at a much lower pressure rise in order to provide
adequate stability margin which limit greatly the
performance of axial flow compressors.

Due to the design constraint, there has been
much work on enhancing compression system sta-
bility using active control. Many of the early con-
trol strategies were designed to extend the stable
axisymmetric operating range by delaying the onset
of stall (see, e.g. [Day, 1993; Paduano et al., 1993]).
The application of bifurcation control to compres-
sion system has initiated a promising paradigm aim-
ing at solving this challenging problem [Liaw &
Abed, 1992; Wang et al., 1993; Badmus et al.,
1993]. These bifurcation control approaches look for
controllers to enhance the operability of the com-
pression system by modifying the nonlinear stabil-
ity characteristics of the compression system. The
model utilized in these studies is the so-called third-
order Moore–Greitzer model [Moore & Greitzer,
1986], which is viewed as the simplest formulation
that captures the physics of stall and surge phe-
nomena. It was found that the first stalled flow so-
lution is born through a subcritical bifurcation. The
practical importance of the subcritical stall bifurca-

tion is that when the axisymmetric flow operating
point becomes subject to perturbations, the system
will jump to a large-amplitude, fully developed stall
cell. Subcritical bifurcations also imply hysteresis,
and so returning the throttle to its original position
may not bring the system out of stall.

The control strategy of [Liaw & Abed, 1992;
Wang et al., 1993; Badmus et al., 1993] seeks to
transform the hard subcritical bifurcation at the
onset of stall into a soft supercritical bifurcation,
thereby eliminating the hysteresis associated with
rotating stall. The compressor stall application is
an excellent example for illustration (both theory
and experimental validation) of a guiding philos-
ophy in bifurcation control. It relates to stabi-
lization, or “softening,” of bifurcations, with im-
plications to improving system performance and
robustness [Abed & Fu, 1986, 1987; Abed & Wang,
1995; Abed et al., 1995]. Similar control strategy
was utilized in [Behnken et al., 1995] and a number
of other research work. Others [Krstic et al., 1995;
Krstic et al., 1998] employed more conventional
control approaches such as backstepping technique
to arrive at control laws for surge and rotating
stall.

Some recent results on bifurcation control of
compression systems involves output feedback [Gu
et al., 1999], which assume that the unstable modes
corresponding to the critical eigenvalue of the lin-
earized system are not linearly controllable. The
first one is the stabilizability condition for the case
where the critical mode is not linearly observable
through output measurement. It was shown [Gu
et al., 1999] that nonlinear controllers do not offer
any more advantage over the linear ones for bifur-
cation stabilization in this case. The second one is
stabilizability conditions for the situation where the
critical mode is linearly observable through output
measurement that includes state feedback as a spe-
cial case. It is shown that linear controllers are ad-
equate for stabilization of transcritical bifurcation,
and quadratic controllers are adequate for stabiliza-
tion of pitchfork and Hopf bifurcations, respectively.
More importantly, the stabilizability conditions are
characterized in explicit forms that can be used to
synthesize stabilizing controllers, if they exist.

Other work in bifurcation control include
stability analysis [Gu et al., 1998] and feedback sta-
bilization [Belta et al., 1999] for a partial differential
equation model of the compression system. An in-
teresting result in [Belta et al., 1999] is that the pro-
posed feedback control law requires no distributed
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sensors and actuators for stabilization of the partial
differential equation model described in [Moore &
Greitzer, 1986].

Finally, surge control is also an interesting topic
for study along this line of research [Kang et al.,
1999].

8.4. Other examples of bifurcation
control applications

In some physical systems, such as the stressed
system, delay of bifurcations offers an opportu-
nity to obtain stable operating conditions for the
machine beyond the margin of operability at the
normal situation [Abed et al., 1995]. Sometimes,
it is desirable that the stability of bifurcated limit
cycles can be modified, with application to some
conventional control problems such as thermal con-
vection experiments [Wang & Abed, 1995]. Other
examples include stabilization via bifurcation con-
trol in tethered satellites [Liaw & Abed, 1990],
magnetic bearing systems [Mohamed & Emad,
1993], voltage dynamics of electric power systems
[Wang & Abed, 1993]; delay of bifurcation in com-
pressor stall in gas turbine jet engines [Baillieul
et al., 1995; Wang et al., 1993], in rotating chains
via external periodic forcing [Weibel & Baillieul,
1997], and in various mechanical systems such as
robotics and electronic systems such as laser ma-
chines and nonlinear circuits [Chen & Dong, 1998].

A list of potential applications of bifurcation
control can be continued. The readers with interest
in some specific applications of bifurcation as well
as chaos control are referred to the aforementioned
literature and the references therein, and particu-
larly these very recent source books in this field,
[Chen & Dong, 1998; Chen, 1999a, 1999b].

9. Some Concluding Remarks

This article has summarized some of the motiva-
tion, techniques and, results achieved to date on
control of bifurcations. A number of representative
approaches have been discussed in detail. A few
remarks are in order.

The basic state feedback bifurcation control
method covered in Sec. 5 deals with bifurcations in
one-dimensional discrete-time and two-dimensional
continuous nonlinear systems. The method is a
good starting point to understand how a con-
trol input can be selected through some routine

step-by-step checking procedure, so as to result
in desired modifications on the system’s bifur-
cation behaviors. In order to handle nonlinear
systems of higher dimensions, however, one has
to resort to alternative approaches. In this re-
gard, the pioneering work of bifurcation control
method (state feedback and/or dynamic feedback)
discussed in Sec. 6.1 is directly applicable to
nonlinear systems of any finite order, given in
either discrete-time or continuous-time forms, not
requiring invariant manifold reduction or coordi-
nate transformation. The method in Sec. 6.1 has
developed into a growing set of tools dealing with
stationary bifurcations (pitchfork bifurcation, tran-
scritical bifurcation), Hopf bifurcation and period-
doubling bifurcation in general n-dimensional
parameterized nonlinear systems. Moreover, the
dynamic feedback controllers feature equilibrium
preservation even in the presence of model uncer-
tainty, and automatic targeting of the orbits to be
controlled.

Normal forms are one of the powerful tools for
analyzing bifurcations in nonlinear dynamical sys-
tems. Therefore, it is natural to develop normal
form based control design techniques for bifurcation
control problems. This method, which is presented
in Sec. 6.1, applies coordinate transformations to
arrive at the so-called control normal forms for non-
linear control systems. These control normal forms
offer important insights into the significant role of
invariants which characterize the nonlinear behav-
ior of the system.

For continuous-time systems with limit cycles,
the harmonic balance based bifurcation control dis-
cussed in Sec. 6.3 is readily applicable and efficient.
The main reason is that limit cycles generally do not
have analytic forms and have to be approximated in
applications. Finally, to deal with Hopf bifurcation
induced limit cycles as well as multiple limit cy-
cles associated with degenerate Hopf bifurcations,
the frequency domain based graphical bifurcation
control method in Sec. 7, can be employed. Both
amplitude and multiplicity of limit cycles can be
controlled via this method.

In summary, bifurcation control involves de-
signing a control input for a system to result in
desired modification to the system’s bifurcation be-
havior. For a given application, which approach to
be employed depends largely on the nature of the
problem, the familiarity of the designer, and the
machinery of a particular approach with a sound
engineering judgement.
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10. To Probe Further

When leaving the idealized mathematical realm and
looking around the natural world, one certainly
finds a very interesting and realistic phenomenon
— there is almost nothing that is linear but is not
man-made out there, is it? The nonlinear nature of
the real world, and of the real life, have brought up
a great deal of technological challenges to scientists
and engineers — the most difficult yet also most
exciting complexities in dynamics, for which bifur-
cations, chaos, and fractals alike all get to interplay
within a common ground of the mathematical as
well as physical wonderland.

The field of bifurcation control is still very much
in a rapidly evolving phase. This is the case not only
in deeper and wider theoretical studies but also in
many newly found real-world applications. It calls
for further efforts and endeavors from the commu-
nities of engineering, physics, applied mathemat-
ics, and biological as well as medical sciences. New
results and new publications on the subject of
bifurcation control continue to appear, leaving a
door widely open to every individual who has the
desire and courage to pursue further in this stimu-
lating and promising direction of new research.
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Hale, J. & Koçak, H. [1991] Dynamics and Bifurcations
(Springer-Verlag, NY).

Hall, K., Christini, D. J., Tremblay, M. & Collins, J. J.
et al. [1997] “Dynamic control of cardiac alternans,”
Phys. Rev. Lett. 78, 4518–4521.

Hassard, B. & Jiang, K. [1992] “Unfolding a point of
degenerate Hopf bifurcation in an enzyme-catalyzed
reaction model,” SIAM J. Math. Anal. 23,
1291–1304.

Hassard, B. & Jiang, K. [1993] “Degenerate Hopf bifur-
cation an isolas of periodic solutions in an enzyme-
catalyzed reaction model,” J. Math. Anal. Appl. 177,
170–189.

Hill, D. J., Hiskens, I. A. & Wang, Y. [1993] “Robust,
adaptive or nonlinear control for modern power sys-
tems,” Proc. 32nd IEEE Conf. Decision and Control,
San Antonio, TX, pp. 2335–2340.

Hill, D. J. (ed.) [1995] Special Issue on Nonlinear
Phenomena in Power Systems, Proc. IEEE 83,
No. 11.

Hu, G. & Haken, H. [1990] “Potential of the Fokker–
Planck equation at degenerate Hopf bifurcation
points,” Phys. Rev. A41, 2231–2234.

Iida, S. K., Ogawara, K. & Furusawa, S. [1996] “A study
on bifurcation control using pattern recognition of
thermal convection,” JSME Int. J. Series B — Fluid
and Thermal Eng. 39, 762–767.

Invernizzi, S. & Treu, G. [1991] “Quantitative analysis
of the Hopf bifurcation in the Goodwin n-dimensional
metabolic control system,” J. Math. Biol. 29,
733–742.

Ji, W. & Venkatasubramanian, V. [1995] “Dynamics of
a minimal power system: Invariant tori and quasi-
periodic motions,” IEEE Trans. Circuits Syst. 42,
981–1000.

Kang, W. & Krener, A. J. [1992] “Extended quadratic
controller normal form and dynamic feedback lin-
earization of nonlinear systems,” SIAM J. Contr.
Optim. 30, 1319–1337.

Kang, W. [1998a] “Bifurcation and normal form of non-
linear control systems,” Parts I and II, SIAM J. Contr.
Optim. 36, 193–232.

Kang, W. [1998b] “Bifurcation control via state feedback
for systems with a single uncontrollable mode,” SIAM
J. Contr. Optim., 2000, to appear.

Kang, W., Gu, G., Sparks, A. & Banda, S. [1999] “Bifur-
cation test functions and surge control for axial flow
compressors,” Automatica 35, 229–239.

Kelly, R. [1996] “Bifurcation in PD feedback regula-
tion of a single pendulum,” Proc. 7th Congreso Lati-
noamericano de Control Automatico — IFAC, Buenos
Aires, Argentina, pp. 1034–1039.

Khibnik, A. I., Kuznetsov, Yu. A., Levitin, V. V. &
Nikolaev, E. V. [1993] “Continuation techniques and
interactive software for bifurcation analysis of ODE’s
and iterated maps,” Physica D62, 360–371.

Krstic, M., Protz, J. M., Paduano, J. D. & Kokotovic,
P. V. [1995] “Backstepping designs for jet engine stall
and surge control,” Proc. 34th IEEE Conf. Decision
and Control, pp. 3049–3055.

Krstic, M., Fontaine, D., Kokotovic P. V. & Paduano, J.
D. [1998] “Useful nonlinearities and global stabiliza-
tion of bifurcations in a model of jet engine surge and
stall,” IEEE Trans. Auto. Contr. 43, 1739–1745.

Laufenberg, M. J., Pai, M. A. & Padiyar, K. R. [1997]
“Hopf bifurcation control in power systems with static
var compensator,” Int. J. Elect. Power & Energy Syst.
19, 339–347.

Lee, B. & Ajjarapu, V. [1993] “Period-doubling route to
chaos in an electrical power system,” IEE Proc. Part
C 140, pp. 490–496.

Lee, H.-C. & Abed, E. H. [1991] “Washout filters in
the bifurcation control of high alpha flight dynamics,”
Proc. Ame. Control Conf., Boston, pp. 206–211.

Liaw, C. Y. & Bishop, S. R. [1995] “Nonlinear heave-
roll coupling and ship rolling,” Nonlin. Dyn. 8,
197–211.

Liaw, D. C. & Abed, E. H. [1990] “Stabilization of
tethered satellites during station keeping,” IEEE
Trans. Auto. Cont. 35, 1186–1196.

Liaw, D. C. & Abed, E. H. [1992] “Analysis and control
of rotating stall,” Proc. NOLCOS’92: Nonlinear Con-
trol System Design Symp. — IFAC, Bordeaux, France,
pp. 88–93.

Liaw, D. C. & Abed, E. H. [1996] “Control of compressor
stall inception — A bifurcation-theoretic approach,”
Automatica 32, 109–115.

Littleboy, D. M. & Smith, P. R. [1998] “Using bifur-
cation methods to aid nonlinear dynamic inversion
control law design,” J. Guidance Contr. Dyn. 21,
632–638.

Liu, Z., Payre, G. & Bourassa, P. [1996] “Nonlinear
oscillations and chaotic motions in a road vehicle sys-
tem with driver steering control,” Nonlin. Dyn. 9,
281–304.



Bifurcation Control: Theories, Methods, and Applications 547

Madan, R. (ed.) [1993] Chua’s Circuit: A Paradigm for
Chaos (World Scientific, Singapore).

Malmgren, B. A., Winter, A. & Chen, D. L. [1998] “El
Niño southern oscillation and north Atlantic oscilla-
tion control of climate in Puerto Rico,” J. Climate
11, 2713–2717.

Mareels, I. M. Y. & Bitmead, R. R. [1986] “Nonlinear
dynamics in adaptive control: Chaotic and periodic
stabilization,” Automatica 22, 641–665.

Mareels, I. M. Y. & Bitmead, R. R. [1988] “Nonlinear dy-
namics in adaptive control: Periodic and chaotic sta-
bilization II — analysis,” Automatica 24, 485–497.

Matsumoto, T. [1987] “Chaos in electronic circuits,”
Proc. IEEE 75, 1033–1057.

McCaughan, F. E. [1989] “Application of bifurcation the-
ory to axial flow compressor instability,” ASME J.
Turbomachinery 111, 426–433.

Mees, A. I. & Chua, L. O. [1979] “The Hopf bifurcation
theorem and its applications to nonlinear oscillations
in circuits and systems,” IEEE Trans. Circuits Syst.
26, 235–254.

Mohamed, A. M. & Emad, F. P. [1993] “Nonlinear os-
cillations in magnetic bearing systems,” IEEE Trans.
Auto. Cont. 38, 1242–1245.

Moiola, J. L., Desages, A. C. & Romagnoli, J. A. [1991]
“Degenerate Hopf bifurcations via feedback system
theory — Higher-order harmonic balance,” Chem.
Eng. Sci. 46, 1475–1490.

Moiola, J. L. & Chen, G. [1996] Hopf Bifurcation
Analysis: A Frequency Domain Approach (World
Scientific, Singapore).

Moiola, J. L., Berns, D. W. & Chen, G. [1997a] “Feed-
back control of limit cycle amplitudes,” Proc. IEEE
Conf. Decis. Contr., San Diego, CA, pp. 1479–1485.

Moiola, J. L., Colantonio, M. C. & Doñate, P. D. [1997b]
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