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1. Introduction

Research on the emerging fields of chaos control and chaos synchronization has
seen a very rapid development in the past two decades (e.g. Chen & Dong 1998,
and many references cited therein). In particular, the concept of anti-control of
chaos (or chaotification), by means of making an originally non-chaotic
dynamical system chaotic or enhancing the existing chaos of a chaotic system,
has attracted increasing attention in recent years (e.g. Chen 1998, 2001, 2003,
and some references therein). This interest seems to be continuously expanding,
mainly due to the great potentials of chaos in some non-traditional applications
such as those found within the context of electronic, informatic, mechanical,
optical and especially biological and medical systems (Chen 1998, 2001; Chen &
Dong 1998).

In this paper, the notion of anti-control of discrete chaos is introduced.
Discrete maps, i.e. discrete dynamical systems, with chaotic and bifurcating
behaviours have been found very useful in some real-world applications
particularly in, for instance, encryption (Jakimoski & Kocarev 2001), digital
communications (Kocarev et al. 2001) and brain science (Schiff et al. 1994) as
well as heart pathology and analysis (Ditto et al. 2000). These provide a strong
motivation for the current research on anti-control of chaos, in both continuous
and discrete dynamical systems.
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In the pursuit of anti-control of discrete maps, a simple yet mathematically
rigorous anti-control method was first developed by Chen & Lai (1996, 1997, 1998)
from the engineering state-feedback control approach, which yields chaos in the
sense of Devaney (1987) for linear systems, or Wiggins (1990) for nonlinear
systems. Afterwards, Wang & Chen (1999, 2000a) further showed that the
Chen–Lai algorithm for chaotification leads to chaos not only in the sense of
Devaney (1987) or Wiggins (1990), but also in the sense of Li–Yorke (Li & Yorke
1975). Lately, Li & Chen (2003a) further relaxed the condition for anti-control,
showing that the Wang–Chen chaotification theorems established in Wang &
Chen (2000a) can be somewhat generalized and that the Chen–Lai scheme is
indeed a ‘universal’ anti-control scheme for discrete maps. Recently, the state-
feedback anti-control algorithm of Chen–Lai–Wang was improved to be an
output-feedback, anti-control algorithm by Zhang & Chen (2004), and meanwhile
was simplified to an anti-control scheme with a single-state variable feedback in
each dimension, by Zheng et al. (2004) and Zheng & Chen (2004), where the
generated chaos was also shown to be in the sense of both Devaney and Li–Yorke.

More recently, Shi et al. (in press) studied anti-control of chaos for discrete
systems in Banach spaces via the state-feedback control. They established several
chaotification schemes in general Banach spaces and extended the Chen–Lai and
Wang–Chen schemes in finite dimensional spaces (Chen & Lai 1998; Wang &
Chen 2000a) to a special Banach space, showing that the controlled systems are
chaotic in the sense of both Devaney (1987) and Li–Yorke (Li & Yorke 1975).
Consequently, the Chen–Lai algorithm and the Wang–Chen algorithm for finite-
dimensional chaotification led to chaos not only in the sense of Wiggins (1990) and
Li–Yorke (Li & Yorke 1975), but also in the sense of Devaney (1987).

In an effort to show that the chaos so generated is indeed chaos in a rigorous
mathematical sense, the celebrated Li–Yorke theorem (for the one-dimensional
case; Li & Yorke 1975) and the Marotto theorem (for the n-dimensional case;
Marotto 1978) were usually employed. In retrospect, Li & Yorke introduced the
first precise definition of discrete chaos and established a very simple criterion of
chaos for one-dimensional maps, i.e. ‘period three implies chaos’ for brevity (Li &
Yorke 1975). After 3 years, Marotto (1978) generalized this result to
n-dimensional maps, showing that the existence of a snap-back repeller implies
chaos in the sense of Li–Yorke. This theorem is until now the best one for
predicting and analysing discrete chaos for higher-dimensional maps. It has been
known that there exists an error in the condition of the original Marotto theorem;
hence, several authors had tried to correct it in different ways (Chen et al. 1998;
Lin et al. 2002; Li & Chen 2003b; Shi & Chen 2004b), among which Shi & Chen
gave a correct and complete presentation (Shi & Chen 2004b). It should be pointed
out that it is possible to use other definitions of chaos, which, however, is beyond
the scope of the present brief introduction to the subject. Moreover, for two-
directional discrete systems, the reader is referred to a recent paper (Chen et al.
2004), and for the general continuous setting, to a brief overview (Wang 2003).

This paper is organized as follows. In §2, some necessary and detailed
mathematical preliminaries on chaos in the sense of Devaney, Wiggins and
Li–Yorke are provided. The central problem of chaotification is formulated and
described in §3, where the state-of-the-art achievement and progress in this
research area are summarized. In §4, chaotification in Banach spaces is discussed.
Finally, §5 gives some concluding remarks.
Phil. Trans. R. Soc. A (2006)



2435Introduction to anti-control of discrete chaos
2. Chaos in the sense of Devaney and Li–Yorke

This section gives some necessary mathematical preliminaries on the concept and
criteria of discrete chaos, including chaos in the sense of Devaney and Li–Yorke,
providing some rigorous guidelines for chaotification.
(a ) Chaos in the sense of Devaney and Wiggins

A typical textbook definition of discrete chaos was given in Devaney (1987):
Let S be a set in a metric space (X, d), and let f m be the mth-order iteration of

a map f : S/S, namely, f mdf (f mK1), mZ1,2,., with f 0Zidentity map.

Definition 2.1. A point x�2S is called a periodic point with period m
(or m-periodic point), if x�Zf m(x�), but x�sf k(x�) for 1%k!m. If mZ1, x� is
called a fixed point. The point x� is called periodic, or is named a periodic point, if
it is an m-periodic point for some mR1.

Definition 2.2 (Chaos in the sense of Devaney). A map f : S/S is said to be
chaotic, if:

(i) the map f has sensitive dependence on initial conditions, in the sense that
there exists dO0, such that for any x2S and any neighbourhood N of x in
S, d(f m(x), f m(y))Od for some y2N and some mR0,

(ii) the map f is topologically transitive, in the sense that for any pair of non-
empty open subsets U, V3S, there exists an integer mO0, such that
f m(U )hVs:, and

(iii) the periodic points of the map f are dense in S.

It should be noted that this definition has some redundancy and can be further
simplified (e.g. Banks et al. 1992; Touhey 1997). If condition (iii) above is
dropped, then it is called chaos in the sense of Wiggins (1990).
(b ) Chaos in the sense of Li–Yorke

Let us consider a one-dimensional discrete system:

xkC1 Z f ðxkÞ; xk2I3R; k Z 0; 1; 2;.: ð2:1Þ

Li & Yorke (1975) introduced the first mathematical definition of chaos and
established a criterion for it—simply called ‘period three implies chaos’.

Theorem 2.1 (Li & Yorke 1975). Let I be an interval in R and f : I/I be a
continuous map. Let us assume that there is one point, a2I, for which the points
bZf (a), cZf 2(a) and dZf 3(a) satisfy

d%a!b!c ðordRaObOcÞ:

Then:

(i) for every kZ1, 2,., there is a k-periodic point in I;
(ii) there is an uncountable set S3I, containing no periodic points, which

satisfies the following conditions:
Phil. Trans. R. Soc. A (2006)
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(ii1) for every p, q2S with psq,

limn/Njf nðpÞKf nðqÞjO0

and
limn/Njf nðpÞKf nðqÞjZ 0;

(ii2) for every p2S and periodic point q2I,

limn/Njf nðpÞKf nðqÞjO0:
Motivated by the work of Li & Yorke (1975), Marotto (1978) further
generalized this elegant result to the n-dimensional setting.

Let us consider the following n-dimensional system:

xkC1 Z f ðxkÞ; xk2Rn; k Z 0; 1; 2;.; ð2:2Þ
where the map f : Rn/Rn is continuously differentiable. Denote by B 0

rðxÞ the
open ball in Rn of radius r centred at a point x2Rn, and by Br(x) its closure.

Definition 2.3 (Marotto 1978).

(i) Let f be differentiable in Br(x). The point x2Rn is an expanding fixed point
of f in Br(x), if f (x)Zx and all eigenvalues of Df (y) exceed 1 in absolute
value for all y2Br(x).

(ii) Let us assume that x is an expanding fixed point of f in Br(x) for some rO0.
Then, x is said to be a snap-back repeller of f, if there exists a point x02Br(x)
with x 0sx, such that f m(x 0)Zx and the determinant jDfm(x 0)js0 for an
integer mO0.

In the following theorem, kxk1 denotes the usual Euclidean norm of x2Rn.

Theorem 2.2 (Marotto 1978). If f possesses a snap-back repeller, then the
system (2.2) is chaotic.

(i) There is a positive integer N, such that for each integer pRN, f has a point
with period p.

(ii) There is a ‘scrambled set’ of f, namely, an uncountable set S containing no
periodic points of f, such that

(ii1) f (S )3S,
(ii2) for every x, y2S with xsy,

limk/Nkf kðxÞKf kðxÞk1O0;
(ii3) for every x2S and any periodic point y of f,

limk/Nkf kðxÞKf kðyÞk1O0:
(iii) There is an uncountable subset S0 of S, such that for all x,y2S0:

limk/Nkf kðxÞKf kðyÞk1 Z 0:
In the one-dimensional setting, the existence of a snap-back repeller of f is
equivalent to the existence of a point of period-3 for the map f n for some positive
integer n, as pointed out in remark 3.1 of Marotto’s paper (Marotto 1978).
Phil. Trans. R. Soc. A (2006)



2437Introduction to anti-control of discrete chaos
Conditions (ii2) and (iii) together imply that S0 contains at most one point x that
does not satisfy (ii3) (Zhou 1987). Therefore, condition (ii3) is not essential. Based
on this fact, other definitions of scrambled set and chaos in the sense of Li–Yorke
were proposed (Zhou 1987; Huang & Ye 2002; Sumi 2003), as stated below.

Definition 2.4 (Chaos in the sense of Li–Yorke). Let X be a metric space and
f : X/X be continuous. A subset S of X is called a scrambled set of f, if for any
two different points x, y2S,

(i) limn/Ndðf nðxÞ; f nðyÞÞZ0;

(ii) limn/Ndðf nðxÞ; f nðyÞÞO0:

A map f is said to be chaotic in the sense of Li–Yorke, if there exists an
uncountable scrambled set S of f.

Under some conditions, chaos in the sense of Devaney is stronger than that in
the sense of Li–Yorke (Huang & Ye 2002).

As mentioned in §1, to verify that the generated chaos is indeed a chaos in
a rigorous mathematical sense, the celebrated Li–Yorke theorem for the one-
dimensional case and the Marotto theorem for the n-dimensional case were
usually employed. The Marotto theorem is the best one in predicting and
analysing discrete chaos in higher-dimensional difference equations to date.
As also mentioned, there exists an error in the condition of the original
Marotto theorem (Marotto 1978), which has been corrected recently and a
modified version of this important theorem is given by Shi & Chen (2004b),
as follows:

Theorem 2.3 (A Modified Version of the Marotto Theorem) (Shi & Chen
2004b; Theorem 4.5). Let f :Rn/Rn be a map with a fixed point z2Rn. Let us
assume that

(1) f is continuously differentiable in some neighbourhood of z and all the
eigenvalues of D f (z) have absolute values larger than 1, which implies that
there exists a positive constant r and a norm k$k in Rn, such that f is
expanding in Br(z) in norm k$k, and

(2) z is a snap-back repeller of f with f m(x 0)Zz for some x 02B0
r ðzÞ, x 0sz and

some positive integer m. Furthermore, f is continuously differentiable in some
neighbourhoods of x 0, x1, ., xmK1, respectively, and det D f (xj)s0 for
0%j%mK1, where xjZf (xjK1), 0%j%mK1.

Then, all the results of the Marotto Theorem hold.
(c ) Generalizations of the Marotto theorem

The two concepts, expanding fixed point and snap-back repeller, introduced
by Marotto for continuously differentiable maps in Rn, were extended recently to
maps in metric spaces by Shi & Chen (2004a). Moreover, generalizations of the
Marotto theorem in Banach spaces and complete metric spaces were also
established (Shi et al. in press; Shi & Chen 2004a,b). These new results are
introduced here in this section.
Phil. Trans. R. Soc. A (2006)
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Let (X, d ) be a metric space and f : X/X be a map.

(1) A point z2X is called an expanding fixed point of f in Br(z) for some constant
rO0, if f (z)Zz and there exists a constant lO1, such that

dðf ðxÞ; f ðyÞÞRldðx; yÞ; cx; y2BrðzÞ:

The constant l is called an expanding coefficient of f in Br(z). Furthermore, z
is called a regular expanding fixed point of f in Br(z), if z is an interior point of
f (Br(z)).

(2) Let us assume that z is an expanding fixed point of f in Br(z) for some rO0.
Then, z is said to be a snap-back repeller of f, if there exists a point x 02B0

r ðzÞ
with x 0sz and f m(x 0)Zz for some positive integer m. Furthermore, z is said
to be a non-degenerate snap-back repeller of f, if there exist positive constants
m and r0, such that B0

r0ðx 0Þ3B0
r ðzÞ and

dðf mðxÞ; f mðyÞÞRmdðx; yÞ; cx; y2Br0ðx0Þ;
z is called a regular snap-back repeller of f, if f ðB0

r ðzÞÞ is open and there exists
a positive constant d0, such that B0

d0
ðx0Þ3B0

r ðzÞ and z is an interior point of
f mðB0

dðx 0ÞÞ for all positive constants d%d0.

Several remarks are given below in order to understand the above-introduced
concepts (see Shi & Chen (2004a,b) for more details):

(1) Let (X, k$k) be a Banach space. If f is continuously Frechét differentiable
in the neighbourhood of a fixed point z2X, then z is an expanding fixed point
of f if, and only if,

kDf ðzÞk0O1;

where

kD f ðzÞk0dinffkD f ðzÞxk : x2X with kxkZ 1g:
Furthermore, z is a regular expanding fixed point of f if D f (z) is an invertible
linear map, i.e. D f (z) has a bounded linear inverse map. In the special case of
XZRn, if f is continuously differentiable in the neighbourhood of a fixed point
z, then z is an expanding fixed point of f in some norm if, and only if, all the
eigenvalues of the Jacobi matrix D f (z) have absolute values strictly larger
than 1. In this case, z is a regular expanding fixed point of f. Hence, if f
satisfies the conditions in (i) of the Marotto definitions (see §2b), then z is a
regular expanding fixed point of f in some norm (but generally not in the
usual Euclidean norm).

(2) In the case of XZRn, if z is a snap-back repeller of f with x0,m,r specified as in
the above definition, and if f is continuous in Br(z) and continuously
differentiable in some neighbourhoods of x 0,x1, ., xmK1, respectively, with
det D f (xj)s0 for 0%j%mK1, where xjZf (xjK1) (0%j%mK1), then z is a
regular and non-degenerate snap-back repeller of f. Obviously, detDfmðx 0ÞZ
detDf ðxmK1Þ,detDf ðxmK2Þ/detDf ðx 0Þ. Hence, z is a regular and non-
degenerate snap-back repeller of f, if f satisfies the conditions in (ii) of the
Marotto definitions (see §2b).
Phil. Trans. R. Soc. A (2006)



2439Introduction to anti-control of discrete chaos
The following is a generalization of the Marotto Theorem in Banach spaces
and in complete metric spaces.

Theorem 2.4 (A generalization of the Marotto Theorem in Banach Spaces)
(Shi et al. in press; Theorem 2.1). Let (X, k$k) be a Banach space and let f :X/X
be a map with a fixed point z2X. Let us assume that

(1) f is continuously differentiable in B0
r0ðzÞ for some r0O0 and D f (z) is an

invertible linear map satisfying

kDf ðzÞk0O1;

which is equivalent to that there exists a positive constant r%r0, such that z is
a regular expanding fixed point of f in Br(z), and

(2) z is a snap-back repeller of f with fm(x 0)Zz for some x 02B0
r ðzÞ, x 0sz, and

some positive integer m. Furthermore, f is continuously differentiable in some
neighbourhoods of x1, ., xmK1, respectively, satisfying that D f (x) is an
invertible linear map for all x2B0

r ðzÞ, xZxj (1%j%mK1) and kD f (xj)k0O0
for 1%j%mK1, where xjZf (xjK1), 1%j%mK1.

Then, for any neighbourhood U of z, there exists a positive integer nOm and a
Cantor set L3U, such that f n :L/L is topologically conjugate to the symbolic
dynamical system s :

PC
2/

PC
2 . Consequently, there exists a compact and perfect

invariant set S3X containing a Cantor set, such that f is chaotic on S in the sense
of Devaney as well as Li–Yorke, and has a dense orbit on S.

Theorem 2.5 (A generalization of the Marotto Theorem in Complete Metric
Spaces) (Shi & Chen 2004a; Theorem 4.1). Let (X, d ) be a complete metric space
and f :X/X be a map. Let us assume that

(1) f has a regular and non-degenerate snap-back repeller z2X, i.e. there exist
positive constants r1 and l1O1, such that f ðB0

r1ðzÞÞ is open and

dðf ðxÞ; f ðyÞÞRl1dðx; yÞ; cx; y2Br1ðzÞ;
and there exists a point x02B0

r1ðzÞ, x0sz, a positive integer m, and positive

constants d and l2, such that f m(x 0)Zz, B0
dðx0Þ3B0

r1ðzÞ, z is an interior point

of f mðB0
dðx0ÞÞ, and

dðf mðxÞ; f mðyÞÞRl2dðx; yÞ; cx; y2Bdðx 0Þ; and

(2) there exists a positive constant m1, such that

dðf ðxÞ; f ðyÞÞ%m1dðx; yÞ; cx; y2Br1ðzÞ; and
(3) there exists a positive constant m2, such that

dðf mðxÞ; f mðyÞÞ%m2dðx; yÞ; cx; y2Bdðx 0Þ:

Then, for each neighbourhood U of z, there exists a positive integer nOm and a
Cantor set L3U, such that f n :L/L is topologically conjugate to the symbolic
dynamical system s :

PC
2/

PC
2 . Consequently, f

n is chaotic on L in the sense of
Devaney and also f is chaotic in the sense of Li–Yorke.
Phil. Trans. R. Soc. A (2006)
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(d ) Chaos in complete metric spaces

Motivated by some basic properties of the logistic map, which produces chaos,
Shi & Chen (2004a) established a criterion of chaos for discrete maps in complete
metric spaces.

Theorem 2.6 (Shi & Chen 2004a; Theorems 3.1 and 3.2). Let (X, d ) be a
complete metric space and V1, V2 be non-empty, closed and bounded subsets of X
with d (V1, V2)O0. If a continuous map f :V1gV2/X satisfies the following
conditions:

(1) f (Vj)IV1gV2 for jZ1,2,
(2) f is expanding in V1 and V2, respectively, i.e. there exists a constant l0O1,

such that
dðf ðxÞ; f ðyÞÞRl0dðx; yÞ; cx; y2V1 and cx; y2V2; and

(3) there exists a constant m0O0, such that

dðf ðxÞ; f ðyÞÞ%m0dðx; yÞ;cx; y2V1 andcx; y2V2;

then, there exists a Cantor set L3V1gV2, such that f :L/L is topologically
conjugate to the symbolic dynamical system s :

PC
2/

PC
2 . Consequently, f is

chaotic on L in the sense of both Devaney and Li–Yorke. In the special case where
V1 and V2 are compact subsets of X, the above results still hold, with the
assumption (3) removed.
3. Chaotification: problem description and basic schemes

Now, let us consider a general finite-dimensional discrete-time dynamical system,
originally neither chaotic or complex, nor ill-behaved or unstable, in the
following form:

xkC1 Z fkðxkÞ; x 02Rn is given; ð3:1Þ
where fk($) is only assumed to be continuously differentiable, at least locally in a
region of interest. In other words, the given system can be linear or nonlinear,
time-invariant or time-varying and stable or unstable.

The objective is to design a control input sequence, {uk}, such that the output
of the controlled system,

xkC1 Z fkðxkÞCuk; ð3:2Þ
is chaotic, in the sense of Devaney, Wiggins or Li–Yorke defined above.

An important remark is that in a practical design, ameaningful controller should
be simple in structure, as simple as possible and preferably simpler than the given
system, such that the goal of control (here, chaotification) can be achieved. The
main reason is that although many things can be done mathematically, a designed
controller should be simple, cheap, user-friendly and implementable in engineering
applications; therefore, practically it does not make sense to come out with a
controller that is more complex and more expensive than the given system to be
controlled. In real life, these kind of controllers will not be used anywhere. The
discussion below tries to follow this basic engineering principle, thereby designing
some very simple and implementable chaotifiers (anti-controllers).
Phil. Trans. R. Soc. A (2006)
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(a ) A generic chaotification algorithm

Chen & Lai (1997, 1998) developed the first rigorous anti-control algorithm
based on feedback control with mod-operation, described by

xnC1 Z f ðxnÞCunðmod 1Þ; ð3:3Þ
with

un Zmxn; ð3:4Þ
where f (0)Z0; f is continuously differentiable at least locally in a region near
x�Z0, in the usual k-dimensional real space Rk, and satisfies

kDf ðxÞk1%L; ð3:5Þ
for all x2Rk or for all x in some region containing x�Z0, and for some constant
LO0, with kCk1 being the spectral norm of any k!k matrix CZ(cij), mZLCec,
cO0 is a parameter, and k is a positive integer.

It is noted that kCk1%kCk, where kCkZmax
Pk

jZ1 jcij j : 1% i%k
� �

is the
operator norm of a k!k matrix CZ(cij). It is shown by Chen & Lai (1998) that
for any cO0, the controlled systems (3.3) and (3.4) are chaotic in the sense of
Devaney in the linear case of f (x)ZAx, where A is a k!k real matrix, and is
chaotic in the sense of Wiggins in the nonlinear case. Later, Wang & Chen (1999)
showed that the controlled systems (3.3) and (3.4) are chaotic in the sense of
Li–Yorke by using the Marotto theorem. It is known that chaos in the sense of
Devaney is stronger than that in the sense of Wiggins and also Li–Yorke under
some conditions, as mentioned above. Recently, this chaotification algorithm
with the mod-operation has been further extended to a general metric space Yk

(Shi et al. in press), which will be discussed later.
Let us assume that f (0)Z0 and there exist positive constants r and L, such

that f is continuously differentiable in Br(0) and satisfies

kDf ðxÞk%L; cx2Brð0Þ: ð3:6Þ
Let us consider the controlled system

xnC1 Z f ðxnÞCmxnðmod rÞ; ð3:7Þ
where the mod-operation is component-wise. It is proved by Shi et al. (in press)
that for each constant m satisfying

mOm0dmaxf5ð1CLÞ; 10Lg:
The controlled system (3.7) is chaotic on a Cantor set in the sense of Devaney, as
well as both Li–Yorke and Wiggins.

It is well known that if f is continuously differentiable in B1(0) in the case of
k!N, then both kD f (x)k and kD f (x)k1 are bounded in B1(0). Hence, by taking
rZ1 and k!N, the controlled system (3.3) with controller (3.4) is chaotic on a
Cantor set in the sense of Devaney, as well as both Li–Yorke and Wiggins.

In summary, the Chen–Lai anti-control algorithm via state-feedback control with
the mod-operation leads to chaos in the sense of Devaney, Li–Yorke and Wiggins.

Some simplification and modification of the above-described basic Chen–Lai
anti-control algorithm were also developed (Wang & Chen 2000b; Zhang & Chen
2004; Zheng & Chen 2004; Zheng et al. 2004).
Phil. Trans. R. Soc. A (2006)
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(b ) Chaotification for continuous maps

It has been noted that in most publications concerning chaotifying discrete
dynamical systems, it is assumed that themaps, corresponding to the original system
and the designed controller, are continuously differentiable in the domain of interest,
and themap, corresponding to the original system, has at least one fixed point in the
domain. It is clear that these conditionsmaynot be satisfied in some physicalmodels.

Recently, chaotification of discrete dynamical systems governed by continuous
maps was studied. If the map f, corresponding to the original system (3.1), is
continuous and monotonic on two disjoint closed intervals in the one-dimensional
case, and is continuous and satisfies the Lipschitz condition on two disjoint
closed rectangular regions in the higher-dimensional case, then some simple
state-feedback controllers can be designed, such that the controlled system,

xnC1 Z f ðxnÞCmgðxnÞ; ð3:8Þ
is chaotic in the sense of Devaney for all sufficiently large values of m (Shi & Chen
2005). For example, g can be taken as the sine function or a piecewise linear
function component-wise. In these results, it is not required that f has a fixed
point and is continuously differentiable in the domain, and it is also not required
that g is continuously differentiable in its domain. This makes it possible to
design some very simple controllers for a large family of system models.
4. Chaotification in Banach spaces

Recently, there were some attempts in chaotifying discrete dynamical systems in
Banach spaces, with some fundamental results established by Shi et al. (in press),
as follows.

Let us consider the following time-invariant discrete dynamical system:

xnC1 Z f ðxnÞ; nR0; ð4:1Þ
where f : D3X/X is a map and (X, k$k) is a Banach space.

The objective is to design a (simple) control input sequence, {un}, such that
the output of the controlled system

xnC1 Z f ðxnÞCun; nR0; ð4:2Þ
is chaotic in the sense of Devaney. The controller to be designed is in the form of

un Z gðmxnÞ; ð4:3Þ
or in the form

un ZmgðxnÞ; ð4:4Þ
where m is a positive parameter, and the map g : D 0/X is expected to be (very)
simple with D 0 being a suitable subset of X.
(a ) Chaotification in general Banach spaces

Let us assume that the map f, corresponding to the original system (4.1),
satisfies f (0)Z0 and there exists positive constants r and L, such that f is
continuous in Br(0) and continuously differentiable in B0

r ð0Þ, satisfying
kD f ðxÞk%L; cx2B0

r ð0Þ; ð4:5Þ
where D f (x) denote the Frechét derivative of f at x, kD f (x)k is the norm of a
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bounded linear operator D f (x), i.e.

kD f ðxÞkdsupfkD f ðxÞyk : y2X with kykZ 1g;
while Brð0ÞZfx2X : kxk%rg and B0

r ð0ÞZfx2X : kxk!rg are the closed and
open balls of radium r centred at xZ0, respectively.

First, let us consider controller (4.3). If the map g in controller (4.3) satisfies
the following conditions:

(i) g is continuous in Br(0)gU and continuously differentiable in B0
r ð0ÞgU0,

where UZfx2X : a%kxk%bg and U0 is the interior of U with r!a!b,
(ii) x�Z0 is a fixed point of g and there exists a point x2U0, such that

g(x)Z0, and
(iii) D g(x) is an invertible linear operator for each x2B0

r ð0ÞgU0 and there
exists a positive constant N, such that

kgðxÞKgðyÞkRNkxKyk; cx; y2Brð0Þ and cx; y2 �U;

then, for each constant m satisfying

mOm0dmax
b

r
;
Lr Cb

Nr
;

Lb

NðkxkKaÞ ;
Lb

NðbKkxkÞ

� �
;

and for any neighbourhood U of x�Z0, there exists a positive integer nO2 and a
Cantor set L3U, such that Fn

m : L/L is topologically conjugate to the symbolic

dynamical system s :
PC

2/
PC

2 , where Fm(x)Zf (x)Cg(mx). Consequently, as

stated in Theorem 2.4 above, Fm is chaotic on S in the sense of Devaney as well as
Li–Yorke.

Here, g can be designed to be simple and satisfies assumptions (i)–(iii). For
example, g can be taken as one of the following four simple functions:

g1ðxÞZ
Gx; if kxk%r

abitrary; r!kxk!a

GðxKxÞ; if a%kxk%b;

;

8><
>:

where 0!r!a!b and x2X is a fixed point satisfying a!kxk!b.
Next, let us consider controller (4.4). If the map g in controller (4.4) satisfies

the following conditions:

(1) g is continuous in Ba(0)gU 0 and continuously differentiable in B0
að0ÞgU00,

whereU0Zfx2X : b%kxk%rg andU00 is the interior ofU 0 with 0!a!b!r,
(2) x�Z0 is a fixed point of g and there exists a point x2U00, such that g (x)Z0, and
(3) D g (x) is an invertible linear operator for each x2B0

að0ÞgU00 and there exists a
positive constant N, such that

kgðxÞKgðyÞkRNkxKyk; cx; y2Bað0Þ and cx; y2U0;

then, for each constant m satisfying

mOm0dmax
LaCr

Na
;

Lr

NðkxkKbÞ ;
Lr

NðrKkxkÞ

� �
;
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and for any neighbourhood U of x�Z0, there exists a positive integer nO2 and a
Cantor set L3U, such that Fn

m : L/L is topologically conjugated to the

symbolic dynamical system s :
PC

2/
PC

2 , where Fm(x)Zf (x)Cmg(x). Conse-
quently, as stated in Theorem 2.4, Fm is chaotic on S in the sense of Devaney and
Fm as well as Li–Yorke.

Here, g can also be easily designed and satisfies assumptions (i)–(iii). For
example, g can be taken as one of the following four simple functions:

g2ðxÞZ
Gx; if kxk%a

abitrary a!kxk!b

GðxKxÞ; if b%kxk%r;

;

8><
>:

where 0!a!b!r and x2X is a fixed point satisfying b!kxk!r.
(b ) Chaotification in some special Banach spaces

Let

Rk Z fx Z fxjgkjZ1 : xj2R for 1% j%kg;
with 1%k%N and

Yk Z fx2Rk : kxkk!Ng;
with the norm

kxkk Z supfjxj j : 1% j%kg:

It can be easily verified that (Yk, k$kk) is a Banach space. Clearly, in the special
case of k!N, Yk is the classical k-dimensional real space Rk and its norm k$kk is
the sup-norm, while in the special case of kZN, YkZlN and the norm k$kk is the
usual norm of lN.

In general, of course, chaotification of system (4.1) in (Yk, k$kk) can be
achieved by using the controller (4.3) or (4.4) with the map g satisfying
assumptions (i)–(iii) or (1)–(3) in §4a, respectively. Here, the chaotification of
system (4.1) is considered in the space (Yk, k$kk) with a special feedback
controller un given in the form of equation (4.3) or (4.4). In addition, the
Chen–Lai anti-control algorithm with mod-operation in a finite-dimensional real
space, proposed by Chen & Lai (1998), is extended to YN.

For convenience, denote

I kdfx Z fxjgkjZ1 : xj2I for 1% j%kg;
where I is a bounded subset of R. Clearly, I k3Yk.

Introduce the following function in Yk for each kR1:

SawrðxÞZ fsawrðxjÞgkjZ1; ð4:6Þ
where sawr is the classical sawtooth function, i.e.

sawrðxÞZ ðK1ÞmðxK2mrÞ; ð2mK1Þr%x!ð2mC1Þr ;m2Z ;

where Z is the integer set. Clearly, Sawr(x) is the sawtooth function sawr(x) in R,
when kZ1, and Sawr(x) is the sawtooth function sawr(x) in Rk, when k!N,
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defined by eqns (9) and (12) by Wang & Chen (2000a). So, Sawr here can be
regarded as a generalization of the classical sawtooth function.

First, let us consider the controlled system (4.2) with (4.4). Let us assume that
f satisfies

kf ðxÞKf ðyÞk%LkxKyk; cx; y2Brð0Þ; ð4:7Þ
for some positive constants r and L. If the map g given in equation (4.4) is taken as

gðxÞZSawr=3ðxÞ;

then, for each constant m satisfying

mOm0dmaxf1CL; 5C6ðLCkf ð0ÞkrK1Þg;
the controlled system (4.2) with (4.4) is chaotic on a Cantor set in the sense of both
Devaney and Li–Yorke.

Next, let us consider the controlled system (4.2) with (4.3). Under the
assumption (4.7), if f (0)Z0 and the map g given in (4.4) is taken as

gðxÞZ e SawrðxÞ;
where es0 is a fixed real constant, then, for each constant m satisfying

mOm0d5jejK1ð1CLÞ;
the controlled system (4.2) with (4.3) is chaotic on a Cantor set in the sense of
both Devaney and Li–Yorke. It is noted that the controller g(mx)Ze Sawr(mx)
can be arbitrarily small in norm, since the constant e can be taken as arbitrarily
small in absolute value.

Several remarks on the conditions about f and g are in order. First, it is not
required that f has a fixed point in the domain of interest, when the controller
(4.4) is used. Second, if f is continuous in Br(0), continuously differentiable in
B0
r ð0Þ, and satisfies equation (4.5), then equation (4.7) holds. Finally, it is noted

that the sawtooth function sawr(x) is unimodal on R. In fact, any function, as
long as it has similar geometric properties to the sawtooth function, may be used
to generate a function in Yk in the same way as in equation (4.6) and the
generated function can be regarded as an anti-controller, such that the controlled
system is chaotic (Chen 2003). For example, the classical sine function sin x has
similar geometric properties to the sawtooth function. Similar to Sawr(x) in
equation (4.6), the following function is generated by sin x :

SinðxÞZ fsin xjgkjZ1; x Z fxjgkjZ12Yk :

If g(x)Ze Sin (rK1x) in controller (4.3) and g(x)ZSin (4rK1x) in controller (4.4),
then the controlled systems (4.2) with (4.3) and (4.2) with (4.4) are chaotic in the
sense of Devaney and Li–Yorke, respectively, for all sufficiently large values of m.
5. Concluding remarks

The emerging field of chaos control and anti-control (chaotification) is very
stimulating and promising. This new direction of research has gradually become
quite intensive and is expected to have far-reaching impacts with enormous
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opportunities in academic, medical, industrial and commercial applications. New
theories for dynamics analysis, new methodologies for controls and new design
for circuit implementation altogether are calling for new efforts and endeavours
from the communities of nonlinear dynamics, circuits and systems, biological and
social sciences, applied mathematics and especially control systems. Control
theorists and engineers should not miss this unique opportunity, especially those
who have expertise in both nonlinear dynamics and nonlinear control systems.
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