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In the past few years, the discovery of
small-world and scale-free properties
of many natural and artificial complex
networks has stimulated a great deal
of interest in studying the underlying
organizing principles of various com-
plex networks, which has led to dra-
matic advances in this emerging and
active field of research. The present
article reviews some basic concepts,
important progress, and significant
results in the current studies of vari-
ous complex networks, with emphasis
on the relationship between the
topology and the dynamics of such
complex networks. Some fundamental
properties and typical complex net-
work models are described; and, as an
example, epidemic dynamics are ana-
lyzed and discussed in some detail.
Finally, the important issue of robust-
ness versus fragility of dynamical
synchronization in complex networks
is introduced and discussed.
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world network, scale-free network,
synchronization, robustness
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Introduction

C
omplex networks are currently being studied across
many fields of science [1-3]. Undoubtedly, many
systems in nature can be described by models of

complex networks, which are structures consisting of
nodes or vertices connected by links or edges. Examples
are numerous. The Internet is a network of routers or
domains. The World Wide Web (WWW) is a network of
websites (Fig. 1). The brain is a network of neu-
rons. An organization is a network of people.
The global economy is a network of national
economies, which are themselves networks of
markets; and markets are themselves networks
of interacting producers and consumers. Food
webs and metabolic pathways can all be repre-
sented by networks, as can the relationships
among words in a language, topics in a conver-
sation, and even strategies for solving a mathe-
matical problem. Moreover, diseases are
transmitted through social networks; and com-
puter viruses occasionally spread through the
Internet. Energy is distributed through trans-
portation networks, both in living organisms,
man-made infrastructures, and in many physical
systems such as the power grids. Figures 2-4 are
artistic drawings that help visualize the com-
plexities of some typical real-world networks.

The ubiquity of complex networks in sci-
ence and technology has naturally led to a set
of common and important research problems
concerning how the network structure facili-
tates and constrains the network dynamical
behaviors, which have largely been neglected
in the studies of traditional disciplines. For
example, how do social networks mediate the
transmission of a disease? How do cascading
failures propagate throughout a large power
transmission grid or a global financial network?
What is the most efficient and robust architecture for a
particular organization or an artifact under a changing
and uncertain environment? Problems of this kind are
confronting us everyday, problems which demand
answers and solutions.

For over a century, modeling of physical as well as
non-physical systems and processes has been performed
under an implicit assumption that the interaction pat-
terns among the individuals of the underlying system or
process can be embedded onto a regular and perhaps
universal structure such as a Euclidean lattice. In late
1950s, two mathematicians, Erdös and Rényi (ER), made

a breakthrough in the classical mathematical graph theo-
ry. They described a network with complex topology by a
random graph [4]. Their work had laid a foundation of the
random network theory, followed by intensive studies in
the next 40 years and even today. Although intuition
clearly indicates that many real-life complex networks are
neither completely regular nor completely random, the
ER random graph model was the only sensible and rigor-

ous approach that dominated scientists’ thinking about
complex networks for nearly half of a century, due essen-
tially to the absence of super-computational power and
detailed topological information about very large-scale
real-world networks.

In the past few years, the computerization of data
acquisition and the availability of high computing power
have led to the emergence of huge databases on various
real networks of complex topology. The public access to
the huge amount of real data has in turn stimulated great
interest in trying to uncover the generic properties of dif-
ferent kinds of complex networks. In this endeavor, two
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Figure 1. Network structures of the Internet and the WWW. On the Inter-
net, nodes are routers (or domains) connected by physical links such as
optical fibers. The nodes of the WWW are webpages connected by direct-
ed hyperlinks.



significant recent discoveries are the small-world effect
and the scale-free feature of most complex networks.

In 1998, in order to describe the transition from a regu-
lar lattice to a random graph, Watts and Strogatz (WS)
introduced the concept of small-world network [5]. It is
notable that the small-world phenomenon is indeed very
common. An interesting experience is that, oftentimes,
soon after meeting a stranger, one is surprised to find that
they have a common friend in between; so they both cheer:
“What a small world!” An even more interesting popular
manifestation of the “small-world effect” is the so-called
“six degrees of separation” principle, suggested by a social
psychologist, Milgram, in the late 1960s [6]. Although this
point remains controversial, the small-world pattern has
been shown to be ubiquitous in many real networks. A
prominent common feature of the ER random graph and
the WS small-world model is that the connectivity distri-
bution of a network peaks at an average value and decays
exponentially. Such networks are called “exponential net-
works” or “homogeneous networks,” because each node
has about the same number of link connections.

Another significant recent discovery in the field of com-
plex networks is the observation that many large-scale
complex networks are scale-free, that is, their connectivity
distributions are in a power-law form that is independent
of the network scale [7, 8]. Differing from an exponential
network, a scale-free network is inhomogeneous in nature:
most nodes have very few link connections and yet a few
nodes have many connections.

The discovery of the small-world effect and scale-free

feature of complex networks has led to dramatic
advances in the field of complex networks theory in the
past few years. The main purpose of this article is to pro-
vide some introduction and insights into this emerging
new discipline of complex networks, with emphasis on
the relationship between the topology and dynamical
behaviors of such complex networks. 

Some Basic Concepts

Although many quantities and measures of complex net-
works have been proposed and investigated in the last
decades, three spectacular concepts—the average path
length, clustering coefficient, and degree distribution—
play a key role in the recent study and development of
complex networks theory. In fact, the original attempt of
Watts and Strogatz in their work on small-world networks
[5] was to construct a network model with small average
path length as a random graph and relatively large clus-
tering coefficient as a regular lattice, which evolved to
become a new network model as it stands today. On the
other hand, the discovery of scale-free networks was
based on the observation that the degree distributions of
many real networks have a power-law form, albeit power-
law distributions have been investigated for a long time in
physics for many other systems and processes. This sec-
tion provides a brief review of these important concepts. 

Average Path Length
In a network, the distance dij between two nodes, labeled
i and j respectively, is defined as the number of edges
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Figure 2. [Courtesy of SCIENCE] A simple “complexity pyra-
mid” composed of various molecular components of cell-

genes, RNAs, proteins, and metabolites [47]. The bottom
of the pyramid shows the traditional representation of

the cell’s functional organization (level 1). There is a
remarkable integration of various layers at both the

regulatory and the structural levels. Insights into
the logic of cellular organization can be gained

when one views the cell as an individual com-
plex network in which the components are

connected by functional links. At the low-
est level, these components form genet-

ic-regulatory motifs or metabolic path-
ways (level 2), which in turn are the

building blocks of functional mod-
ules (level 3). Finally, these mod-

ules are nested, generating a
scale-free hierarchical archi-

tecture (level 4).



along the shortest path connecting them. The diameter D
of a network, therefore, is defined to be the maximal dis-
tance among all distances between any pair of nodes in
the network. The average path length L of the network,
then, is defined as the mean dis-
tance between two nodes, aver-
aged over all pairs of nodes.
Here, L determines the effective
“size” of a network, the most
typical separation of one pair of
nodes therein. In a friendship
network, for instance, L is the
average number of friends exist-
ing in the shortest chain con-
necting two persons in the
network. It was an interesting
discovery that the average path
length of most real complex net-
works is relatively small, even in
those cases where these kinds
of networks have many fewer
edges than a typical globally
coupled network with a equal
number of nodes. This small-
ness inferred the small-world
effect, hence the name of small-
world networks.

Clustering Coefficient
In your friendship network, it is
quite possible that your friend’s
friend is also your direct friend;
or, to put it another way, two of
your friends are quite possibly
friends of each other. This prop-
erty refers to the clustering of the
network. More precisely, one can
define a clustering coefficient C as
the average fraction of pairs of
neighbors of a node that are also
neighbors of each other. Suppose
that a node i in the network has ki

edges and they connect this node
to ki other nodes. These nodes
are all neighbors of node i. Clear-
ly, at most ki (ki − 1)/2 edges can
exist among them, and this
occurs when every neighbor of
node i connected to every other
neighbor of node i. The clustering
coefficient C i of node i is then
defined as the ratio between the
number E i of edges that actually

exist among these ki nodes and the total possible number
ki(ki − 1)/2, namely, Ci = 2Ei/(ki(ki − 1)). The clustering
coefficient C of the whole network is the average of Ci over
all i. Clearly, C ≤ 1; and C = 1 if and only if the network is
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(a) Food Web (c) Social Network

(b) Metabolic Network (d) Java Network

Figure 3. Wiring diagrams for several complex networks. (a) Food web of the Little Rock
Lake shows “who eats whom” in the lake. The nodes are functionally distinct “trophic
species”. (b) The metabolic network of the yeast cell is built up of nodes—the substrates
that are connected to one another through links, which are the actual metabolic reactions.
(c) A social network that visualizes the relationship among different groups of people in
Canberra, Australia. (d) The software architecture for a large component of the Java
Development Kit 1.2. The nodes represent different classes and a link is set if there is
some relationship (use, inheritance, or composition) between two corresponding classes.

(a) (b)

Figure 4. [Courtesy of Richard V. Sole] Wiring diagrams of a digital circuit (a), and an old
television circuit (b). The dots correspond to components, and the lines, wiring. Concentric
rings indicate a hierarchy due to the nested modular structure of the circuits. 
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Network Size Clustering coefficient Average path length Degree exponent 

Internet, domain level [13] 32711 0.24 3.56 2.1

Internet, router level [13] 228298 0.03 9.51 2.1

WWW [14] 153127 0.11 3.1 γin = 2.1 γout = 2.45

E-mail [15] 56969 0.03 4.95 1.81

Software [16] 1376 0.06 6.39 2.5

Electronic circuits [17] 329 0.34 3.17 2.5

Language [18] 460902 0.437 2.67 2.7

Movie actors [5, 7] 225226 0.79 3.65 2.3

Math. co-authorship [19] 70975 0.59 9.50 2.5

Food web [20, 21] 154 0.15 3.40 1.13

Metabolic system [22] 778 — 3.2 γin = γout = 2.2

Table 1. 
Small-world pattern and scale-free property of several real networks. Each network has the number of nodes N , the clustering coeffi-
cient C , the average path length L and the degree exponent γ of the power-law degree distribution. The WWW and metabolic network
are described by directed graphs.

is globally coupled, which means that every node in the
network connects to every other node. In a completely
random network consisting of N nodes, C ∼ 1/N , which is
very small as compared to most real networks. It has been
found that most large-scale real networks have a tendency
toward clustering, in the sense that their clustering coeffi-
cients are much greater than O(1/N), although they are
still significantly less than one (namely, far away from
being globally connected). This, in turn, means that most
real complex networks are not completely random. There-
fore they should not be treated as completely random and
fully coupled lattices alike.

Degree Distribution
The simplest and perhaps also the most important char-
acteristic of a single node is its degree. The degree ki of a
node i is usually defined to be the total number of its con-
nections. Thus, the larger the degree, the “more impor-
tant” the node is in a network. The average of ki over all i
is called the average degree of the network, and is denot-
ed by < k >. The spread of node degrees over a network
is characterized by a distribution function P(k), which is
the probability that a randomly selected node has exact-
ly k edges. A regular lattice has a simple degree sequence
because all the nodes have the same number of edges;
and so a plot of the degree distribution contains a single
sharp spike (delta distribution). Any randomness in the
network will broaden the shape of this peak. In the limit-
ing case of a completely random network, the degree
sequence obeys the familiar Poisson distribution; and the
shape of the Poisson distribution falls off exponentially,

away from the peak value < k >. Because of this expo-
nential decline, the probability of finding a node with k
edges becomes negligibly small for k >> < k >.In the past
few years, many empirical results showed that for most
large-scale real networks the degree distribution deviates
significantly from the Poisson distribution. In particular, for
a number of networks, the degree distribution can be bet-
ter described by a power law of the form P(k) ∼ k−γ . This
power-law distribution falls off more gradually than an
exponential one, allowing for a few nodes of very large
degree to exist. Because these power-laws are free of any
characteristic scale, such a network with a power-law
degree distribution is called a scale-free network. Some
striking differences between an exponential network and a
scale-free network can be seen by comparing a U.S.
roadmap with an airline routing map, shown in Fig. 5.

The small-world and scale-free features are common to
many real-world complex networks. Table 1 shows some
examples that might interest the circuits and systems
community (for example, the discovery of the scale-free
feature of the Internet has motivated the development of
a new brand of Internet topology generators [9-12]).

Complex Network Models

Measuring some basic properties of a complex network,
such as the average path length L, the clustering coeffi-
cient C , and the degree distribution P(k), is the first step
toward understanding its structure. The next step, then,
is to develop a mathematical model with a topology of
similar statistical properties, thereby obtaining a plat-
form on which mathematical analysis is possible.
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Regular Coupled Networks
Intuitively, a globally coupled network has the smallest
average path length and the largest clustering coefficient.
Although the globally coupled network model captures the
small-world and large-clustering properties of many real
networks, it is easy to notice its limitations: a globally cou-
pled network with N nodes has N(N − 1)/2 edges, while
most large-scale real networks appear to be sparse, that is,
most real networks are not fully connected and their num-
ber of edges is generally of order N rather than N2.

A widely studied, sparse, and regular network model is
the nearest-neighbor coupled network (a lattice), which
is a regular graph in which every node is joined only by a

few of its neighbors. The term “lattice” here may suggest
a two-dimensional square grid, but actually it can have
various geometries. A minimal lattice is a simple one-
dimensional structure, like a row of people holding
hands. A nearest-neighbor lattice with a periodic bound-
ary condition consists of N nodes arranged in a ring,
where each node i is adjacent to its neighboring nodes,
i = 1, 2, · · · , K/2, with K being an even integer. For a large
K , such a network is highly clustered; in fact, the cluster-
ing coefficient of the nearest-neighbor coupled network is
approximately C = 3/4.

However, the nearest-neighbor coupled network is not
a small-world network. On the contrary, its average path
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Exponential Network Scale-Free Network
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Figure 5. [Courtesy of A.-L. Barabási] Differences between an exponential network—a U.S. roadmap and a scale-free network—an air-
line routing map. On the roadmap, the nodes are cities that are connected by highways. This is a fairly uniform network: each major
city has at least one link to the highway system, and there are no cities served by hundreds of highways. The airline routing map dif-
fers drastically from the roadmap. The nodes of this network are airports connected by direct flights among them. There are a few
hubs on the airline routing map, including Chicago, Dallas, Denver, Atlanta, and New York, from which flights depart to almost all
other U.S. airports. The vast majority of airports are tiny, appearing as nodes with one or a few links connecting them to one or sev-
eral hubs. 



length is quite large and tends to infinity as N → ∞. This
may help explain why it is difficult to achieve any dynam-
ical process (e.g., synchronization) that requires global
coordination in such a locally coupled network. Does
there exist a regular network that is sparse and clustered,
but has a small average path length? The answer is Yes. A
simple example is a star-shaped coupled network, in
which there is a center node and each of the other N − 1
nodes only connect to this center but not among them-
selves. For this kind of network, the average path length
tends to 2 and its clustering coefficient tends to 1, as
N → ∞. The star-shaped network model captures the
sparse, clustering, small-world, as well as some other
interesting properties of many real-world networks. There-
fore, in this sense, it is better than the regular lattice as a
model of many well-known real networks. Clearly, though,
most real networks do not have a precise star shape.

Random Graphs
At the opposite end of the spectrum from a completely
regular network is a network with a completely random
graph, which was studied first by Erdös and Rényi (ER)
about 40 years ago [4].

Try to imagine that you have a large number (N >> 1)

of buttons scattered on the floor. With the same probabil-
ity p, you tie every pair of buttons with a thread. The result

is a physical example of an ER random graph with N nodes
and about pN(N − 1)/2 edges (Fig. 6). The main goal of
the random graph theory is to determine at what connec-
tion probability p a particular property of a graph will
most likely arise. A remarkable discovery of this type was
that important properties of random graphs can appear
quite suddenly. For example, if you lift up a button, how
many other buttons will you pick up thereby? ER showed
that, if the probability p is greater than a certain threshold
pc ∼ (ln N)/N , then almost every random graph is con-
nected, which means that you will pick up all the buttons
on the floor by randomly lifting up just one button.

The average degree of the random graph is
< k >= p(N − 1) ∼= pN . Let Lrand be the average path
length of a random network. Intuitively, about < k >Lrand

nodes of the random network are at a distance Lrand or
very close to it. Hence, N ∼< k >Lrand , which means that
Lrand ∼ ln N/ < k >. This logarithmic increase in average
path length with the size of the network is a typical small-
world effect. Because ln N increases slowly with N , it
allows the average path length to be quite small even in a
fairly large network. On the other hand, in a completely
random network, for example in your friendship network
(say it is completely random), the probability that two of
your friends are friends themselves is no greater than the
probability that two randomly chosen persons from your
network happen to be friends. Hence, the clustering coef-
ficient of the ER model is C = p =< k > /N << 1. This
means that a large-scale random network does not show
clustering in general. In fact, for a large N , the ER algo-
rithm generates a homogeneous network, where the con-
nectivity approximately follows a Poisson distribution.

Small-World Models
As pointed out above, regular lattices are clustered, but
do not exhibit the small-world effect in general. On the
other hand, random graphs show the small-world effect,
but do not show clustering. Thus, it is not surprising to
see that the regular lattice model and the ER random
model both fail to reproduce some important features of
many real networks. After all, most of these real-world
networks are neither entirely regular nor entirely random.
The reality is that people usually know their neighbors,
but their circle of acquaintances may not be confined to
those who live right next door, as the lattice model would
imply. On the other hand, cases like links among Web
pages on the WWW were certainly not created at random,
as the ER process would expect.

Aiming to describe a transition from a regular lattice to
a random graph, Watts and Strogatz [5] introduced an
interesting small-world network model, referred to as WS
small-world model. The WS model can be generated as
follows (Fig. 7).
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p = 0 p = 0.1

p = 0.15 p = 0.25

(a) (b)

(c) (d)

Figure 6. Evolution of a random graph. Given 10 isolated
nodes in (a), one connects every pair of nodes with proba-
bility (b) p = 0.1,(c) p = 0.15 and (d) p = 0.25, respectively.



WS Small-World Model Algorithm
1) Start with order: Begin with a nearest-neigh-

bor coupled network consisting of N nodes
arranged in a ring, where each node i is adjacent to
its neighbor nodes, i = 1, 2, · · · , K/2, with K being
even.

2) Randomization: Randomly rewire each edge
of the network with probability p; varying p in such
a way that the transition between order (p = 0) and
randomness (p = 1) can be closely monitored.

Rewiring within this context means shifting one end of
the connection to a new node chosen at random from the
whole network, with the constraints that any two different
nodes cannot have more than one connection between
them, and no node can have a connection with itself. This
process introduces pN K/2 long-range edges, which con-
nect nodes that otherwise would be part of different neigh-
borhoods. Both the behaviors of the clustering coefficient
C (p) and of the average path length L(p) in the WS small-
world model can be considered as a function of the
rewiring probability p. A regular ring lattice (p = 0) is high-
ly clustered (C (0) ∼= 3/4) but has a large average path
length (L(0) ∼= N

2K >> 1). It is found that, for a small prob-
ability of rewiring, when the local properties of the network
are still nearly the same as those for the original regular
network, and when the clustering coefficient does not dif-
fer subsequently from its initial value (C (p) ∼ C (0)), the
average path length drops rapidly and is in the same order
as the one for random networks (L(p) >> L(0)) (Fig. 8).
This result is actually quite natural. On the one hand, it is
sufficient to make several random rewirings to decrease

the average path length significantly. On the
other hand, several rewired links cannot
crucially change the local clustering proper-
ty of the network. 

The small-world model can also be
viewed as a homogeneous network, in
which all nodes have approximately the
same number of edges. In this regard, the
WS small-world network model is similar to
the ER random graph model. The work on
WS small-world networks has started an
avalanche of research on new models of
complex networks, including some variants
of the WS model. A typical variant was the
one proposed by Newman and Watts [23],
referred to as the NW small-world model
lately. In the NW model, one does not break
any connection between any two nearest
neighbors, but instead, adds with probabil-
ity p a connection between a pair of nodes.
Likewise, here one does not allow a node to

be coupled to another node more than once, or to couple
with itself. With p = 0, the NW model reduces to the origi-
nal nearest-neighbor coupled network, and if p = 1 it
becomes a globally coupled network. The NW model is
somewhat easier to analyze than the original WS model
because it does not lead to the formation of isolated clus-
ters, whereas this can indeed happen in the WS model. For
sufficiently small p and sufficiently large N , the NW model
is essentially equivalent to the WS model. Today, these
two models are together commonly termed small-world
models for brevity.

The small-world models have their roots in social net-
works, where most people are friends with their immedi-
ate neighbors, for example neighbors on the same street
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Rewiring of Links

P=0 0<P<<1 P=1

Regular Small-World Random
(a) (b) (c)

Figure 7. (a) In this completely regular friendship network, people are friends
with only their 4 nearest neighbors. The network is highly cliquish, and any 2
people are on average many degrees apart. (b) In this small-world network,
people still know 4 others on average, but a few have distant friends. The net-
work is still highly cliquish, but the average degree of separation is small. (c)
In this random network, everyone still knows 4 others on average, but friends
are scattered: few people have many friends in common, and pairs are on
average only a few degrees apart.
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Figure 8. [Courtesy of NATURE] Average path length and
clustering coefficient of the WS small-world model as a func-
tion of the rewiring probability p [5]. Both are normalized to
their values for the original regular lattice  (p = 0). 



or colleagues in the same office. On the other hand, many
people have a few friends who are far away in distance,
such as friends in other countries, which are represented
by the long-range edges created by the rewiring proce-
dure in the WS model, or by the connection-adding pro-
cedure in the NW model.

Scale-Free Models
A common feature of the ER random graph and the WS
small-world models is that the connectivity distribution of
the network is homogenous, with peak at an average value
and decay exponentially. Such networks are called expo-
nential networks. A significant recent discovery in the field
of complex networks is the observation that a number of
large-scale complex networks, including the Internet,
WWW, and metabolic networks, are scale-free and their
connectivity distributions have a power-law form.

To explain the origin of power-law degree distribution,
Barabási and Albert (BA) proposed another network
model [7,8]. They argued that many existing models fail
to take into account two important attributes of most real
networks. First, real networks are open and they are
dynamically formed by continuous addition of new nodes
to the network; but the other models are static in the
sense that although edges can be added or rearranged,
the number of nodes is fixed throughout the forming
process. For example, the WWW is continually sprouting
new webpages, and the research literature constantly
grows since new papers are continuously being pub-
lished. Second, both the random graph and small-world
models assume uniform probabilities when creating new
edges, but this is not realistic either. Intuitively, webpages

that already have many links (such as the homepage of
Yahoo or CNN) are more likely to acquire even more links;
a new manuscript is more likely to cite a well-known and
thus much-often-cited paper than many other less-known
ones. This is the so-called “rich get richer” phenomenon,
for which the other models do not account.

The BA model suggests that two main ingredients of
self-organization of a network in a scale-free structure are
growth and preferential attachment. These point to the
facts that most networks continuously grow by the addi-
tion of new nodes, and new nodes are preferentially
attached to existing nodes with large numbers of connec-
tions (again, “rich get richer”). The generation scheme of
a BA scale-free model is as follows:

BA Scale-Free Model Algorithm
1) Growth: Start with a small number (m0) of

nodes; at every time step, a new node is introduced
and is connected to m ≤ m0 already-existing nodes.

2) Preferential Attachment: The probability �i

that a new node will be connected to node i (one of
the m already-existing nodes) depends on the
degree ki of node i, in such a way that �i = ki/

∑
j kj.

After t time steps, this algorithm results in a network
with N = t + m0 nodes and mt edges (Fig. 9). Growing
according to these two rules, the network evolves into a
scale-invariant state: The shape of the degree distribution
does not change over time, namely, does not change due
to further increase of the network scale. The correspon-
ding degree distribution is described by a power law with
exponent −3, that is, the probability of finding a node
with k edges is proportional to k−3.

Numerical results have indicated that, in comparison
with a random graph having the same size and the same
average degree, the average path length of the scale-free
model is somewhat smaller, and yet the clustering coeffi-
cient is much higher. This implies that the existence of a
few “big” nodes with very large degrees (i.e., with a very
large number of connections) plays a key role in bringing
the other nodes of the network close to each other. How-
ever, there is today no analytical prediction formula for
the average path length and the clustering coefficient for
the scale-free model. The BA model is a minimal model
that captures the mechanisms responsible for the power-
law degree distribution. This model has some evident lim-
itations when compared with some real-world networks.
This observation has in effect spurred more research on
evolving networks, with the intention to overcome limita-
tions such as those of the BA model. A summary of these
models is given by Albert and Barabási [2].

Recently, Milo et al. [24] defined the so-called “net-
work motifs” as patterns of interconnections occurring in
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Figure 9. A scale-free network of 130 nodes, generated by
the BA scale-free model. The five biggest nodes are shown in
red, and they are in contact with 60% of other nodes (green).



complex networks at numbers that are significantly high-
er than those in completely random networks. Such
motifs have been found in networks ranging from bio-
chemistry, neurobiology, ecology, to engineering. This
research may uncover the basic building blocks pertain-
ing to each class of networks.

Achilles’ Heel of Complex Networks

An interesting phenomenon of complex networks is their
“Achilles’ heel”—robustness versus fragility. For illustra-
tion, let us start from a large and connected network. At
each time step, remove a node (Fig. 10). The disappear-
ance of the node implies the removal of all of its connec-
tions, disrupting some of the paths among the remaining
nodes. If there were multiple paths between two nodes i
and j, the disruption of one of them may mean that the
distance dij between them will increase, which, in turn,
may cause the increase of the average path length L of
the entire network. In a more severe case, when initially
there was a single path between i and j, the disruption of
this particular path means that the two nodes become
disconnected. The connectivity of a network is robust (or
error tolerant) if it contains a giant cluster comprising
many nodes, even after a removal of a fraction of nodes.

The predecessor of the Internet—the ARPANET—was

created by the US Department of Defense, by its
Advanced Research Projects Agency (ARPA), in the late
1960s. The goal of the ARPANET was to enable continuous
supply of communications services, even in the case that
some subnetworks and gateways were failing. Today, the
Internet has grown to be a huge network and has played
a crucial role in virtually all aspects of the world. One may
wonder if we can continue to maintain the functionality of
the network under inevitable failures or frequent attacks
from computer hackers. The good news is that by ran-
domly removing certain portions of domains from the
Internet, we have found that, even if more than 80% of the
nodes fail, it might not cause the Internet to collapse.
However, the bad news is that if a hacker targeted some
key nodes with very high connections, then he could
achieve the same effect by purposefully removing a very
small fraction of the nodes (Fig. 11). It has been shown
that such error tolerance and attack vulnerability are
generic properties of scale-free networks (Fig. 12) [25-28].
These properties are rooted in the extremely inhomoge-
neous nature of degree distributions in scale-free net-
works. This attack vulnerability property is called an
Achilles’ heel of complex networks, because the mytho-
logical warrior Achilles had been magically protected in
all but one small part of his body—his heel.
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Epidemic Dynamics in Complex Networks

For one specific example, the AIDS propagation network
is quite typical. When AIDS first emerged as a disease
about twenty years ago, few people could have predicted
how the epidemic would evolve, and even fewer could
have been able to describe with certainty the best way of
fighting it. Unfortunately, according to estimates from the
Joint United Nations Programme on HIV/AIDS (UNAIDS)
and the World Health Organization (WHO), 21.8 million
people around the world had died of AIDS up to the end
of 2000 and 36.1 million people were living with the
human immunodeficiency virus (HIV) by the same time. 

As another example, in spite of technological progress
and great investments to ensure a secure supply of elec-
tric energy, blackouts of the electric transmission grid are
not uncommon. Cascading failures in large-scale electric
power transmission systems are
an important cause of the cata-
strophic blackouts. Most well
known is the cascading series of
failures in power lines in August
1996, leading to blackouts in 11
US states and two Canadian
provinces. This incident left
about 7 million customers with-
out power for up to 16 hours, and
cost billions of dollars in total
damage. There is an urgent need
for developing innovative
methodologies and conceptual
breakthroughs for analysis, plan-
ning, operation, and protection of
the complex and dynamical elec-
tric power networks. In yet anoth-
er example, the ILOVEYOU computer virus spread over
the Internet in May 2000 and caused a loss of nearly 7 bil-
lion dollars in facility damage and computer down-time.

How do diseases, jokes, and fashions spread out over
the social networks? How do cascading failures propagate
through large-scale power grids? How do computer virus-
es spread out through the Internet? Serious issues like
these are attracting much attention these days. Clearly,
the topology of a network has great influence on the over-
all behavior of an epidemic spreading in the network.
Recently, some researchers have started to study such
spreading phenomena, for example on small-world and
scale-free networks [29-34].

A notable attempt of Pastor-Satorras and Vespignani
[31-32] was to study both analytically and numerically a
large-scale dynamical model on the spreading of epi-
demics in complex networks. The standard susceptible-
infected-susceptible (SIS) epidemiological model was
used for investigation. Each node of the network repre-

sents an individual, and each link is a connection along
which the infection can spread from one individual to
some others. It is natural to assume that each individual
can only exist in one of two discrete states—susceptible
and infected. At every time step, each susceptible node is
infected with probability υ if it is connected to at least
one infected node. At the same time, infected nodes are
cured and become again susceptible with probability δ.
They together define an effective spreading rate, λ = υ/δ.
The updating can be performed with both parallel and
sequential dynamics. The main prediction of the SIS
model in homogeneous networks (including lattices, ran-
dom graphs, and small-world models) is the presence of
a nonzero epidemic threshold, λc > 0. If λ ≥ λc, the infec-
tion spreads and becomes persistent in time; yet if λ < λc,
the infection dies out exponentially fast (Fig. 13 (a)).

It was found [31-32] that, while for exponential net-
works the epidemic threshold is a positive constant, for a
large class of scale-free networks the critical spreading
rate tends to zero (Fig. 13(b)). In other words, scale-free
networks are prone to the spreading and the persistence
of infections, regardless of the spreading rate of the epi-
demic agents. It implies that computer viruses can spread
far and wide on the Internet by infecting only a tiny frac-
tion of the huge network. Fortunately, this is balanced by
exponentially small prevalence and by the fact that it is
true only for a range of very small spreading rates
(λ << 1) that tend to zero.

Synchronization in Complex Dynamical Networks

A survey of recent literature reveals that networks of cou-
pled dynamical systems have received a great deal of atten-
tion from the nonlinear dynamics community, mainly due to
the fact that they can exhibit many complex and interesting
dynamical phenomena, such as Turing patterns, auto-
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waves, spiral waves, and spatiotemporal chaos. Also, these
networks are important in modeling many large-scale real-
world systems. 

In the past decade, special attention has been focused
on the synchronization of chaotic dynamical systems. For
the same reason, many scientists have started to consider
the synchronization phenomenon in large-scale networks
of coupled chaotic oscillators. These networks are usually
described by systems of coupled ordinary differential
equations or maps, with completely regular topological
structures such as chains, grids, lattices, and globally cou-
pled graphs. Two typical settings are the discrete-time cou-
pled map lattice (CML) [35] and the continuous-time cellu-
lar neural (or more generally, nonlinear) networks (CNN)
[36]. The main advantage of these simple architectures is
that it allows one to focus on the complexity caused by the
nonlinear dynamics of the nodes without worrying about
additional complexity in the network structure; and anoth-
er appealing feature is the ease of their implementation by
integrated circuits.

The topology of a network, on
the other hand, often plays a crucial
role in determining its dynamical
behaviors. For example, although a
strong enough diffusive coupling
will result in synchronization within
an array of identical nodes [37], it
cannot explain why many real-
world complex networks exhibit a
strong tendency toward synchro-
nization even with a relatively weak
coupling. As an instance, it was
observed that the apparently inde-
pendent routing messages from dif-
ferent routers in the Internet can
easily become synchronized, while
the tendency for routers towards
synchronization may depend heavi-
ly on the topology of the Internet
[38]. One way to break up the
unwanted synchronization is for
each router to add a (sufficiently
large) component randomly to the
period between two routing mes-
sages. However, the tendency to
synchronization in the Internet is so
strong that changing one determin-
istic protocol to correct the syn-
chronization is likely to generate
another synchrony elsewhere at the
same time. This suggests that a
more efficient solution requires a
better understanding of the nature

of the synchronization behavior in such complex net-
works as the Internet.

Recently, synchronization in different small-world and
scale-free dynamical network models has been carefully
studied [39-45]. These studies may shed new light on the
synchronization phenomenon in various real-world com-
plex networks.

A Typical Dynamical Network Model
Consider a typical dynamical network consisting of N
identical linearly and diffusively coupled nodes, with
each node being an n-dimensional dynamical system
(e.g., a chaotic system). The state equations of this net-
work are described by

ẋi = f(xi) + c
N∑

j=1

aij�xj, i = 1, 2, · · · , N. (1)

In this model, xi = (xi1, xi2, · · · , xin)
T ∈ �n are the state

variables of node i, the constant c > 0 represents the cou-
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pling strength, and � ∈ �n×n is a constant 0 − 1 matrix
linking coupled variables. If there is a connection between
node i and node j (i 	= j), then aij = aji = 1; otherwise,
aij = aji = 0 (i 	= j). Moreover, aii = −ki, where ki is the
degree of node i. The coupling matrix A = (aij) ∈ �N×N

represents the coupling configuration of the network. 
Dynamical network (1) is said to be (asymptotically)

synchronized if

x1(t) = x2(t) = · · · = xN (t) = s(t), as t → ∞, (2)

where s(t) ∈ �n is a solution of an isolated node, i.e.,
ṡ(t) = f(s(t)). Here, s(t) can be an equilibrium point, a
periodic orbit, or a chaotic attractor, depending on the
interest of the study. 

Consider the case that the network is connected in
the sense that there are no isolated clusters. Then, the
coupling matrix A = (aij)N×N is a symmetric irreducible
matrix. In this case, it can be shown that λ1 = 0 is the
largest eigenvalue of A with multiplicity 1 but all the
other eigenvalues of A are strictly negative. Let λ2 < 0
be the second-largest eigenvalue of A. It has been
proved [40, 41] that the synchronization state (2) is
exponentially stable if 

c ≥
∣∣∣d̄/λ2

∣∣∣ , (3)

where d̄ < 0 is a constant determined by the dynamics of
an isolated node and the inner linking structural matrix �.
(In fact, d̄ can be more precisely characterized by the Lya-
punov exponents of the network [46].)

Given the dynamics of an isolated node and the inner
linking structural matrix �, the synchronizability of the
dynamical network (1) with respect to a specific coupling
configuration A is said to be strong if the network can syn-
chronize with a small value of the coupling strength c. The
above result implies that the synchronizability of the
dynamical network (1) can be characterized by the sec-
ond-largest eigenvalue of its coupling matrix. 

The second-largest eigenvalue of the coupling matrix of a
globally coupled network is −N, which implies that for any
given and fixed nonzero coupling strength c, a globally cou-
pled network will synchronize as long as its size N is large
enough. On the other hand, the second-largest eigenvalue of
the coupling matrix of a nearest-neighbor coupled network
tends to zero as N → ∞, which implies that for any given and
fixed nonzero coupling strength c, a nearest-neighbor coupled
network cannot synchronize if its size N is sufficiently large.

Synchronization in Small-World Networks
Consider the dynamical network (1) with NW small-world
connections [41]. Let λ2sw be the second-largest eigenval-
ue of the network coupling matrix. Figures 14 (a) and (b)

show the numerical values of λ2sw as a function of the
adding probability p and the network size N , respectively.
It can be seen that, for any given coupling strength c > 0:
(i) for any N > |d̄|/c, there exists a critical value p̄ such
that if p̄ ≤ p ≤ 1 then the small-world network will syn-
chronize; (ii) for any given p ∈ (0, 1], there exists a critical
value N̄ such that if N > N̄ then the small-world network
will synchronize. These results imply that the ability to
achieve synchronization in a large-size nearest-neighbor
coupled network can be greatly enhanced by just adding a
tiny fraction of distant links, thereby making the network
become a small-world model. This reveals an advantage of
small-world networks for achieving synchronization, if
desired (Fig. 15).

Synchronization in Scale-Free Networks
Now consider the dynamical network (1) with BA scale-
free connections instead [42]. Figure 16 shows that the
second-largest eigenvalue of the corresponding cou-
pling matrix is very close to −1, which actually is the
second-largest eigenvalue of the star-shaped coupled
network. This implies that the synchronizability of a
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scale-free network is about the same as that of a star-
shaped coupled network (Fig. 17). It may be due to the
extremely inhomogeneous connectivity distribution of
such networks: a few “hubs” in a scale-free network play
a similar (important) role as a single center in a star-
shaped coupled network.

The robustness of synchronization in a scale-free
dynamical network has also been investigated, against
either random or specific removal of a small fraction f
(0 < f << 1) of nodes in the network. Clearly, the
removal of some nodes in network (1) can only change
the coupling matrix. If the second-largest eigenvalue of
the coupling matrix remains unchanged, then the syn-
chronization stability of the network will remain
unchanged after such a removal. It was found that even
when as many as 5% of randomly chosen nodes are
removed, the second-largest eigenvalue of the coupling
matrix remains almost unchanged; therefore the ongoing
synchronization is not altered. On the other hand,
although the scale-free structure is particularly well-suit-
ed to tolerate random errors, it is also particularly vul-
nerable to deliberate attacks. In particular, it was found
that the magnitude of the second-largest eigenvalue of the
coupling matrix decreases rapidly, almost decreases to
one half of its original value in magnitude, when only an
f ≈ 1% fraction of the highly connected nodes was
removed. At a low critical threshold, e.g., f ≈ 1.6%, the
eigenvalue abruptly changes to zero, implying that the
whole network was broken into isolate clusters; therefore
the ongoing synchronization will be completely
destroyed. Similarly, it is believed that the error tolerance
and attack vulnerability of synchronizability in scale-free
networks are rooted in their extremely inhomogeneous
connectivity patterns.

Conclusions

In the past few years, advances in complex networks have
uncovered some amazing similarities among such diverse
systems as the Internet, cellular neural networks, meta-
bolic systems, and even the community of Hollywood
movie stars. In particular, significant progress has been
made on the effects of network topology on network
dynamical behaviors. However, this has been seen as
only the tip of a giant iceberg and there remain important
problems and technical challenges with regard to model-
ing, analysis, control, and synchronization of complex
dynamical networks. 

Today, we are building increasingly integrated and
interconnected networks for information, energy, trans-
portation, commerce and the like. The critical nature of
these networks raises concerns about the risk and impact
of system failures, and makes it imperative for us to bet-
ter understand the essence of such complex networks.

This calls for greater effort in the design and operation of
all kinds of large-scale and complex dynamical networks,
so as to provide better analysis and prediction of various
potential issues. The ultimate goal is to maximize the net
potentials that can better benefit our human society.
Achieving this understanding requires intensive
advanced research—the research that will develop a
solid scientific foundation for further study of real-world
complex dynamical networks and new methodologies for
their construction and utilization. The complex issues
that we are facing everyday, from cell biology to power
systems to communication networks, demand break-
through ideas and revolutionary techniques. It has
become a great challenge and also provided a great
opportunity for scientists and engineers at this very
beginning of the twenty-first century.
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