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CHAOS, BIFURCATIONS, AND THEIR
CONTROL

1. NONLINEAR DYNAMICS

Unlike linear systems, many nonlinear dynamical systems
do not show orderly, regular, and long-term predictable
responses to simple inputs. Instead, they display complex,
random-like, seemingly irregular, yet well-defined output
behaviors. Such dynamical phenomenon is known as chaos
today.

The term chaos, originated from the Greek word 𝜒𝛼𝑜𝜁 ,
was designated “the primeval emptiness of the universe
before things came into being of the abyss of Tartarus, the
underworld. … In the later cosmologies, Chaos generally
designated the original state of things, however conceived.
The modern meaning of the word is derived from Ovid,
who saw Chaos as the original disordered and formless
mass, from which the maker of the Cosmos produced the
ordered universe” (1). There also is an interpretation of
chaos in ancient Chinese literature, which refers to the
spirit existing in the center of the universe (2). In mod-
ern scientific terminology, chaos has a fairly precise but
rather complicated definition by means of the dynamics of
a generally nonlinear system. For example, in theoretical
physics, “chaos is a type of moderated randomness that,
unlike true randomness, contains complex patterns that
are mostly unknown” (3).

Bifurcation, as a twin of chaos, is another prominent
phenomenon of nonlinear dynamical systems: Quantita-
tive change of system parameters leads to qualitative
change of system properties such as the number and the
stability of system equilibria. Typical bifurcations include
transcritical, saddle-node, pitchfork, hysteresis, and Hopf
bifurcations. In particular, period-doubling bifurcation is
a route to chaos. To introduce the concepts of chaos and
bifurcations as well as their control (4,5,6,7,8,9), some pre-
liminaries on nonlinear dynamical systems are in order.

1.1. Nonlinear Dynamical Systems

A nonlinear system refers to a set of nonlinear equations,
which can be algebraic, difference, differential, integral,
functional, or abstract operator equations, even a certain
combination of these. A nonlinear system is used to de-
scribe a physical device or process that otherwise cannot
be well defined by a set of linear equations of any kind.
Dynamical system is used as a synonym of a mathematical
or physical system, in which the output behavior evolves
with time and/or with other varying system parameters
(10).

In general, a continuous-time dynamical system is de-
scribed by a differential equation,

�̇� = 𝐟
(
𝐱, 𝑡; 𝐩

)
𝑡 ∈ [𝑡0,∞) (1)

where 𝐱 = 𝐱(𝑡) is the state of the system, 𝐩 is a vector of
variable system parameters, and 𝑓 and 𝑔 are continuous
or smooth (differentiable) nonlinear functions of compara-
ble dimensions, which have an explicit formulation for a
specified physical system in interest.

In the discrete-time setting, a nonlinear dynamical sys-
tem is described by either a difference equation,

𝐱𝑘+1 = 𝐟𝑘
(
𝐱𝑘;𝐩

)
, 𝑘 = 0, 1,… (2)

or a map,

𝐹 ∶ 𝐱𝑘 → 𝑔𝑘

(
𝐱𝑘;𝐩

)
, 𝑘 = 0, 1,… (3)

where notation is similarly defined. Repeatedly iterat-
ing the discrete map 𝐹 backward yields

𝐱𝑘 = 𝐹
(
𝐱𝑘−1

)
= 𝐹

(
𝐹 (𝑥𝑘−2)

)
= ⋯ = 𝐹𝑘

(
𝐱0
)

where the map can also be replaced by a function 𝐟 , if the
system is given via a difference equation, leading to

𝐱𝑘 = 𝐟◦⋯◦𝐟
⏟⏟⏟
𝑘 times

(
𝐱0
)
= 𝐟𝑘

(
𝐱0
)

where “◦” denotes composition operation of functions or
maps.

Dynamical system (eq. 1) is said to be nonautonomous
when the time variable 𝑡 appears separately in the system
function 𝐟 (e.g. a system with an external time-varying
force input); otherwise, it is said to be autonomous and is
expressed as

�̇� = 𝐟
(
𝐱; 𝐩

)
, 𝑡 ∈ (𝑡0,∞) (4)

1.2. Classification of Equilibria

For illustration, consider a general two-dimensional au-
tonomous system: ⎧⎪⎨⎪⎩

�̇� = 𝑓 (𝑥, 𝑦)

�̇� = 𝑔(𝑥, 𝑦)
(5)

with given initial conditions (𝑥0, 𝑦0), where 𝑓 and 𝑔 are
two smooth nonlinear functions that together describe the
vector field of the system.

The path traveled by a solution of system (eq. 5), start-
ing from the initial state (𝑥0, 𝑦0), is a solution trajectory, or
orbit, of the system, and is sometimes denoted 𝜑𝑡(𝑥0, 𝑦0).
For autonomous systems, two different orbits will never
cross each other (i.e., never intersect) on the x–y plane.
This 𝑥–𝑦 coordinate plane is called the (generalized) phase
plane (phase space, in the higher dimensional case). The
orbit family of a general autonomous system, correspond-
ing to all possible initial conditions, is called solution flow
in the phase space.

Equilibria, or fixed points, of system (eq. 5), if they exist,
are the solutions of two homogeneous equations:

𝑓 (𝑥, 𝑦) = 0 and 𝑔(𝑥, 𝑦) = 0

An equilibrium is denoted (�̄�, �̄�). It is stable if all the
nearby orbits of the system, starting from any initial con-
ditions, approach it; it is unstable, if the nearby orbits are
moving away from it. Equilibria can be classified, accord-
ing to their stabilities, as stable or unstable node or focus,
and saddle point or center, as summarized in Figure 1. The
type of equilibria is determined by the eigenvalues, 𝜆1,2,
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Figure 1. Classification of two-dimensional equilibria: stabilities are determined by Jacobian eigenvalues.

of the system Jacobian, 𝐽 ∶=

[
𝑓𝑥 𝑓𝑦

𝑔𝑥 𝑔𝑦

]
, with 𝑓𝑥 ∶= 𝜕𝑓∕𝜕𝑥,

𝑓𝑦 ∶= 𝜕𝑓∕𝜕𝑦, and so on, all evaluated at (�̄�, �̄�). If the two
Jacobian eigenvalues have real partsℜ{𝜆1,2} ≠ 0, the equi-
librium (�̄�, �̄�), at which the linearization was taken, is said
to be hyperbolic.

Theorem 1 (Grobman–Hartman) If (�̄�, �̄�) is a hyper-
bolic equilibrium of the nonlinear dynamical system (eq.
5), then the dynamical behavior of the nonlinear system is
qualitatively the same as (topologically equivalent to) that

of its linearized system,

[
�̇�

�̇�

]
= 𝐽

[
𝑥

𝑦

]
, in a neighborhood

of the equilibrium (�̄�, �̄�).

This theorem guarantees that for the hyperbolic case,
one can study the linearized system instead of the original
nonlinear system, with regard to the local dynamical be-
havior of the system within a (small) neighborhood of the
equilibrium (�̄�, �̄�). In general, “dynamical behavior” refers
to such nonlinear phenomena as stabilities and bifurca-
tions, chaos and attractors, equilibria and limit cycles,
and so on. In other words, there exist some homeomorphic
maps that transform the orbits of the nonlinear system
into orbits of its linearized system in a (small) neighbor-
hood of the equilibrium. Here, a homeomorphic map (or a
homeomorphism) is a continuous map whose inverse ex-
ists and is also continuous. However, in the nonhyperbolic
case, the situation is much more complicated, where such
local topological equivalence does not hold in general.

1.3. Limit Sets and Attractors

The most basic problem in studying the general nonlinear
dynamical system (eq. 1) is to understandand/or to analyze
the system solutions. The asymptotic behavior of a system

solution, as 𝑡 → ∞, is called the steady state of the solution,
while the solution trajectory between its initial state and
the steady state is the transient state.

For a given dynamical system, a point 𝐱𝜔 in the state
space is an 𝜔-limit point of the system state orbit 𝐱(𝑡) if, for
every open neighborhood 𝑈 of 𝑥𝜔, the trajectory of 𝐱(𝑡) will
enter 𝑈 at a (large enough) value of 𝑡. Consequently, 𝐱(𝑡)
will repeatedly enter 𝑈 infinitely many times, as 𝑡 → ∞.
The set of all such 𝜔-limit points of 𝐱(𝑡) is called the 𝜔-
limit set of 𝐱(𝑡), and is denoted Ω𝑥. An 𝜔-limit set of 𝐱(𝑡)
is attracting, if there exists an open neighborhood 𝑉 of Ω𝑥

such that whenever system orbit enters 𝑉 , it will approach
Ω𝑥 as 𝑡 → ∞. The basin of attraction of an attracting point
is the union of all such open neighborhoods. An 𝜔-limit set
is repelling, if the system orbits always move away from
it.

For a givenmap 𝐹 and a given initial state 𝐱0, an𝜔-limit

set is obtained from the orbit
{
𝐹𝑘(𝑥0)

}
as 𝑘 → ∞. This 𝜔-

limit set Ω𝑥 is an invariant set of the map, in the sense
that 𝐹 (Ω𝑥) ⊆ Ω𝑥. Thus, 𝜔-limit sets include equilibria and
periodic orbits.

An attractor is an 𝜔-limit set having the property that
all orbits nearby have it as their 𝜔-limit sets. Thus, a col-
lection of isolated attracting points is not an attractor.

1.4. Periodic Orbits and Limit Cycles

A solution orbit 𝐱(𝑡) of the nonlinear dynamical system
(eq. 1) is a periodic solution if it satisfies 𝐱(𝑡 + 𝑡p) = 𝐱(𝑡)
for some constant 𝑡p > 0. The minimum value of such 𝑡p is
called the (fundamental) period of the periodic solution,
while the solution is said to be 𝑡p periodic.

A limit cycle of a dynamical system is a periodic solution
of the system that corresponds to a closed orbit on the
phase plane and possesses certain attracting (or repelling)
properties. Figure 2 shows some typical limit cycles: (a) an
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Figure 2. Periodic orbits and limit cycles.

inner limit cycle, (b) an outer limit cycle, (c) a stable limit
cycle, (d) an unstable limit cycle, and (e and f), saddle limit
cycles.

1.5. Poincaré Maps

Assume that the general 𝑛-dimensional nonlinear au-
tonomous system (eq. 4) has a 𝑡p periodic orbit, Γ, and
let 𝐱∗ be a point on the periodic orbit and Σ be an (𝑛 − 1)-
dimensional hyperplane transversal to Γ at 𝐱∗, as shown
in Figure 3. Since Γ is 𝑡p periodic, the orbit starting from
𝐱∗ will return to 𝐱∗ in time 𝑡p. Any orbit starting from a
point 𝐱 in a small neighborhood 𝑈 of 𝐱∗ on Σ will return
and hit Γ at a point, denoted 𝑃 (𝐱), in the vicinity 𝑉 of 𝐱∗.
Therefore, a map 𝑃 ∶ 𝑈 → 𝑉 can be uniquely defined by
Σ, along with the solution flow of the autonomous system.
This map is called the Poincaré map associated with the
system and the cross section Σ. For different choices of the
cross section Σ, Poincaré maps are similarly defined.

Note that a Poincaré map is only locally defined and is
a diffeomorphism, that is, a differentiable map that has
an inverse and the inverse is also differentiable. If a cross
section is suitably chosen, the orbit will repeatedly return
and pass through the section. The Poincaré map together
with the first return orbit is particularly important, which
is called the first return Poincaré map. Poincaré maps can
also be defined for non-autonomous systems in a similar
way where, however, each return map depends on the ini-
tial time in a non-uniform fashion.

1.6. Homoclinic and Heteroclinic Orbits

Let 𝐱∗ be a hyperbolic equilibrium of a diffeomorphism
𝑃 ∶ 𝑅𝑛 → 𝑅𝑛, which can be of either unstable, center, or
saddle type, 𝜑𝑡(𝐱) be a solution orbit passing through 𝐱∗,
and Ω𝑥∗ be the 𝜔-limit set of 𝜑𝑡(𝐱). The stable manifold of
Ω𝑥∗ , denoted 𝑀s, is the set of such points 𝑥∗ that satisfy
𝜑𝑡(𝐱∗) → Ω𝑥∗ as 𝑡 → ∞; the unstable manifold of Ω𝑥∗ , 𝑀u, is
the set of such points x∗ that satisfy𝜑𝑡(𝑥∗) → Ω𝑥∗ as 𝑡 → −∞.

P (x)

Γ

Σ

x

x*

Figure 3. Illustration of the Poincaré map and cross section.

Suppose that Σs(𝐱∗) and Σu(𝐱∗) are cross sections of the
stable and unstable manifolds of 𝜑𝑡(𝐱), respectively, which
intersect at 𝐱∗. This intersection always includes one con-
stant orbit, 𝜑𝑡(𝐱) = 𝐱∗. A nonconstant orbit lying in the in-
tersection is called a homoclinic orbit, as illustrated in
Figure 4a. For two equilibria, �̄�1 ≠ �̄�2, of either unstable,
center, or saddle type, an orbit lying in Σs(�̄�1) ∩ Σu(�̄�2) or in
Σu(�̄�1) ∩ Σs(�̄�2), is called a heteroclinic orbit. A heteroclinic
orbit is depicted in Figure 4b, which tends to one equi-
librium as 𝑡 → ∞ but converges to another equilibrium as
𝑡 → −∞.

(a) b)(

x*
x1 x2

Figure 4. Illustration of homoclinic and heteroclinic orbits
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Γ

Figure 5. Illustration of a S̆il’inkov-type homoclinic orbit.

Note that if a stable and an unstable manifold inter-
sect at a point, 𝐱0 ≠ 𝐱∗, then they will do so at infinitely
many points, denoted {𝐱𝑘}∞𝑘=−∞, counted in both forward
andbackward directions, which contains 𝐱0. This sequence,
{𝐱𝑘}, is a homoclinic orbit in which each 𝐱𝑘 is called a homo-
clinic point. This special structure is called a homoclinic
structure, in which the two manifolds usually do not in-
tersect transversally. Hence, this structure is unstable in
the sense that the connection can be destroyed by a very
small perturbation. If they intersect transversally, how-
ever, the transversal homoclinic point will imply infinitely
many other homoclinic points. This eventually leads to
a picture of stretching and folding of the two manifolds.
Such complex stretching and folding of manifolds are key
to chaos. This generally implies the existence of a com-
plicated Smale horseshoe map, which is supported by the
following mathematical theory.

Theorem 2 (Smale–Birkhoff) Let 𝑃 ∶ 𝑅𝑛 → 𝑅𝑛 be a dif-
feomorphism with a hyperbolic equilibrium 𝐱∗. If the cross
sections of the stable and unstable manifolds, Σs(𝐱∗) and
Σu(𝐱∗), intersect transversally at a point other than 𝐱∗, then
𝑃 has a horseshoe map embedded within it.

For three-dimensional autonomous systems, the case of
an equilibriumwith one real eigenvalue 𝜆 and two complex
conjugate eigenvalues 𝛼 ± 𝑗 𝛽 is especially interesting. For
example, the case with 𝜆 > 0 and 𝛼 < 0 gives a S̆il’nikov-
type of homoclinic orbit, as illustrated in Figure 5.

Theorem 3 (Sil’nikov) Let 𝜑𝑡 be the solution flow of a
three-dimensional autonomous system that has a S̆il’nikov-
type homoclinic orbit Γ. If |𝛼| < |𝜆|, then 𝜑𝑡 can be extremely
slightly perturbed to �̃�𝑡, such that �̃�𝑡 has a homoclinic orbit
Γ̃, near Γ, of the same type, and the Poincaré map defined
by a cross section, transversal to Γ̃, has a countable set of
Smale horseshoes.

1.7. Stabilities of Systems and Orbits

Stability theory plays a central role in both dynamical sys-
tems and automatic control. Conceptually, there are differ-
ent types of stabilities, among which Lyapunov stabilities
and the orbital stability are essential for chaos and bifur-
cations control.

Lyapunov Stabilities. In the following discussion of Lya-
punov stabilities for the general nonautonomous system
(eq. 1), the parameters are not indicated explicitly for sim-
plicity. Thus, consider the general nonautonomous nonlin-

ear system:

�̇� = 𝐟(𝐱, 𝑡) , 𝐱(𝑡0) = 𝑥0 (6)

and, by changing variables if necessary, assume that the
origin, 𝐱 = 0, is an equilibrium of the system. Lyapunov
stability theory concerns with various types of stabilities
of the zero equilibrium of system (eq. 6).

Stability in the Sense of Lyapunov. The equilibrium �̄� = 0
of system (eq. 6) is said to be stable in the sense of Lyapunov
if, for any 𝜀 > 0 and any initial time 𝑡0 ≥ 0, there exists a
constant, 𝛿 = 𝛿(𝜀, 𝑡0) > 0, such that||𝐱(𝑡0)|| < 𝛿 ⟹ ||𝑥(𝑡)|| < 𝜀 , ∀ 𝑡 ≥ 𝑡0 (7)

Here and throughout, || ⋅ || denotes the standardEuclidean
norm of a vector.

It should be emphasized that the constant 𝛿 in the above
generally depends on both 𝜀 and 𝑡0. It is particularly im-
portant to point out that, unlike autonomous systems, one
cannot simply assume the initial time 𝑡0 = 0 for a nonau-
tonomous system in a general situation. The stability is
said to be uniform with respect to the initial time, if this
constant, 𝛿 = 𝛿(𝜀), is indeed independent of 𝑡0 over the en-
tire time interval (0,∞).

Asymptotic Stability. In both theoretical studies and
practical applications, the concept of asymptotic stability
is of most importance.

The equilibrium �̄� = 0 of system (eq. 6) is said to be
asymptotically stable, if there exists a constant, 𝛿 = 𝛿(𝑡0)
> 0, such that||𝐱(𝑡0)|| < 𝛿 ⟹ ||𝐱(𝑡)|| → 0 as 𝑡 → ∞ (8)

This asymptotical stability is said to be uniform, if the ex-
isting constant 𝛿 is independent of 𝑡0 over [0,∞), and is said
to be global, if the convergence (||𝐱|| → 0) is independent
of the initial point 𝑥(𝑡0) over the entire domain on which
the system is defined (i.e., when 𝛿 = ∞).

Orbital Stability. The orbital stability differs from the
Lyapunov stabilities in that it concerns with the structural
stability of a system orbit under perturbation.

Let 𝜑𝑡(𝐱0) be a 𝑡p periodic solution of the autonomous
system:

�̇�(𝑡) = 𝐟(𝐱) , 𝐱(𝑡0) = 𝑥0 (9)

and let Γ be the closed orbit of 𝜑𝑡(𝐱0) in the phase space,
namely,

Γ =
{
𝑦 | 𝑦 = 𝜑𝑡(𝐱0) , 0 ≤ 𝑡 < 𝑡p

}
The solution trajectory 𝜑𝑡(𝐱0) is said to be orbitally stable
if, for any 𝜀 > 0, there exits a 𝛿 = 𝛿(𝜀) > 0 such that for any
𝐱0 satisfying

𝑑(𝐱0,Γ) ∶= inf
𝑦∈Γ

||𝐱0 − 𝑦|| < 𝛿

the solution 𝜑𝑡(𝐱0) of the autonomous system satisfies

𝑑(𝜑𝑡(𝐱0),Γ) < 𝜀 , ∀ 𝑡 ≥ 𝑡0
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Lyapunov Stability Theorems. Two cornerstones in the
Lyapunov stability theory for dynamical systems are the
Lyapunov first (or indirect) method and the Lyapunov sec-
ond (or direct) method.

The Lyapunov first method, known also as the Jacobian
or local linearization method, is applicable to autonomous
systems. This method is based on the fact that the sta-
bility of an autonomous system, in a neighborhood of an
equilibrium of the system, is essentially the same as its
linearized model operating at the same point, and under
certain conditions local system stability and associated dy-
namical behavior are qualitatively the same as (topologi-
cally equivalent to) that of its linearized model (in some
sense, similar to the Grobman–Hartman theorem). The
Lyapunov first method provides a theoretical justification
for applying linear analysis and linear feedback controllers
to nonlinear autonomous systems in the study of asymp-
totic stability and stabilization.

The Lyapunov second method, on the other hand, orig-
inated from the concept of energy decay (i.e., dissipation)
associated with a stable mechanical or electrical system,
is applicable to both autonomous and nonautonomous sys-
tems. Hence, the second method is more powerful, also
more useful, for global stability analysis of dynamical sys-
tems.

For the general autonomous system (eq. 9), under the
assumption that 𝐟 ∶ D → 𝑅𝑛 is continuously differentiable
in a neighborhood, D, of the origin in 𝑅𝑛, the following
theorem of stability for the Lyapunov first method is con-
venient to use.

Theorem 4 (Lyapunov first method) (for continuous-
time autonomous systems)

In equation 9, let

𝐽0 =
𝜕𝐟
𝜕𝑥

|||||𝑥=x̄=0
be the Jacobian of the system at the equilibrium �̄� = 0. Then

(i) �̄� = 0 is asymptotically stable if all the eigenvalues of
𝐽0 have negative real parts;

(ii) �̄� = 0 is unstable if one of the eigenvalues of 𝐽0 have
positive real part.

Note that the region of asymptotic stability given in this
theorem is local. It is important to emphasize that this
theorem cannot be applied to non-autonomous systems in
general, not even locally.

For a general nonautonomous system (eq. 6), the follow-
ing criterion can be used.

Theorem 5 (Lyapunov second method) (for
continuous-time nonautonomous systems)

Let �̄� = 0 be an equilibrium of the nonautonomous sys-
tem (6). Let

K =
{
𝑔(𝑡) ∶ 𝑔(𝑡0) = 0, 𝑔(𝑡) is continuous and nondecreasing on [𝑡0 ,∞)

}
The zero equilibrium of the system is globally (over the

domain D ⊆ 𝑅𝑛 containing the origin), uniformly (with re-
spect to the initial time), and asymptotically stable, if there

exists a scalar-valued function 𝑉 (𝐱, 𝑡) defined on D × [𝑡0,∞)
with three functions 𝛼(⋅), 𝛽(⋅), 𝛾(⋅) ∈ K, such that

(i) 𝑉 (0, 𝑡0) = 0;
(ii) 𝑉 (𝐱, 𝑡) > 0, for all 𝐱 ≠ 0 in D and all 𝑡 ≥ 𝑡0;
(iii) 𝛼 (||𝐱||) ≤ 𝑉 (𝐱, 𝑡) ≤ 𝛽 (||𝐱||), for all 𝑡 ≥ 𝑡0;
(iv) �̇� (𝐱, 𝑡) ≤ − 𝛾 (||𝐱||) < 0, for all 𝑡 ≥ 𝑡0.

In this theorem, the uniform stability is usually neces-
sary since the solution of a nonautonomous system may
depend on the initial time, often sensitively. As a special
case for autonomous systems, the above theorem reduces
to the following version.

Theorem 6 (Lyapunov second method) (for
continuous-time autonomous systems)

Let �̄� = 0 be an equilibrium for the autonomous system
(eq. 9). This zero equilibrium is globally (over the domain
D ⊆ 𝑅𝑛 containing the origin) and asymptotically stable, if
there exists a scalar-valued function 𝑉 (𝐱) defined onD such
that

(i) 𝑉 (0) = 0;
(ii) 𝑉 (𝐱) > 0, for all 𝐱 ≠ 0 in D;
(iv) �̇� (𝐱) < 0, for all 𝐱 ≠ 0 in D.

In the above two theorems, the function 𝑉 is called a
Lyapunov function, which is generally not unique for a
given system.

Similar stability theorems can be established for
discrete-time systems (via properly replacing derivatives
with differences).

To this end, it is important to remark that the Lyapunov
theorems only offer sufficient conditions for determining
the asymptotic stability. Yet, the power of the Lyapunov
second method lies in its generality: It works for all kinds
of dynamical systems (linear and nonlinear, continuous-
time and discrete-time, autonomous and nonautonomous,
time-delayed, functional, etc.), and it does not require any
knowledge of the solution formula of the underlying sys-
tem. In a particular application, the key is to construct
a working Lyapunov function for the system, which can
be technically difficult if the system is higher dimensional
and complicated.

2. CHAOS

Nonlinear systems have various complex behaviors that
would never be anticipated in the (finite-dimensional) lin-
ear systems. Chaos is a typical one of this kind.

In the development of chaos theory, the first evidence
of physical chaos is Edward Lorenz’s discovery in 1963
(11). The first underlying mechanism within chaos was
observed by Mitchell Feigenbaum, who in 1976 found that
“when an ordered system begins to break down into chaos,
a consistent pattern of rate doubling occurs” (3).
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2.1. What Is Chaos

There is no unified, universally accepted, rigorous defini-
tion of chaos in the current scientific literature.

The term chaos was first introduced into mathematics
by Li and Yorke (12). Since then, there have been several
different but closely related proposals for defining chaos,
amongwhichDevaney’s definition is perhaps themost pop-
ular one (13). It states that a map 𝐹 ∶ 𝑆 → 𝑆, where 𝑆 is a
set, is said to be chaotic, if

(1) 𝐹 is transitive on 𝑆: For any pair of nonempty open
sets 𝑈 and 𝑉 in 𝑆, there is an integer 𝑘 > 0 such that
𝐹𝑘(𝑈 ) ∩ 𝑉 ≠ 𝜙.

(2) 𝐹 has sensitive dependence on initial conditions:
There is a real number 𝛿 > 0, depending only on 𝐹
and 𝑆, such that in every nonempty open subset of 𝑆
there is a pair of points that, through iterations under
𝐹 , are eventually separated by a distance of at least
𝛿.

(3) The periodic points of 𝐹 are dense in 𝑆.

Another definition requires the set 𝑆 be compact, but
drops condition (3) from the above. There even is a view
that only the transitivity property is essential in this defi-
nition, while another view is that the sensitivity to initial
conditions is so.

Although a precise and rigorous mathematical defini-
tion of chaos does not seem to be available any time soon,
some fundamental features of chaos are well understood,
which can be used to signify or identify chaos inmost cases,
especially from an application perspective.

2.2. Features of Chaos

A hallmark of chaos is its fundamental property of ex-
treme sensitivity to initial conditions. Other features of
chaos include the embedding of a dense set of unsta-
ble periodic orbits in its strange attractor, positive lead-
ing (maximal) Lyapunov exponent, finite Kolmogorov–
Sinai entropy or positive topological entropy, continuous
power spectrum, positive algorithmic complexity, ergodic-
ity and mixing (Arnold’s cat map), Smale horseshoe map,
a statistical-oriented definition of S̆hil’nikov, and some un-
usual (strange) limiting properties (5).

Extreme Sensitivity to Initial Conditions. The first signa-
ture of chaos is its extreme sensitivity to initial conditions,
associated with its bounded (or compact) region of orbital
patterns. It implies that two sets of slightly different initial
conditions can lead to two dramatically different asymp-
totic states of the system orbit after some time. This is the
so-called butterfly effect, which is a metaphor saying that
a single flap of a butterfly’s wings in China todaymay alter
the initial conditions of the global weather dynamical sys-
tem, thereby leading to a significantly different weather
pattern in Argentina at a future time. In other words, for
a dynamical system to be chaotic, it must have a (large)
set of such “unstable” initial conditions that cause orbital
divergence within a bounded region in the phase space of
the system.

Positive Leading Lyapunov Exponents. The sensitive
dependence on initial conditions for chaotic systems
possesses exponential growth rate in general. This expo-
nential growth is related to the existence of at least one
positive Lyapunov exponent, the leading (largest) one.
Among all main characteristics of chaos, positive leading
Lyapunov exponent is perhaps the most convenient one to
verify in engineering applications.

To introduce this concept, consider an 𝑛-dimensional
discrete-time dynamical system described by a smooth
map 𝐟 , or the Poincaré map of a continuous-time system.
The 𝑖th Lyapunov exponent of the orbit {𝐱𝑘}∞𝑘=0, generated
by the iterations of the map starting from any given initial
state 𝐱0, is defined to be

𝜆𝑖(𝐱0) = lim
𝑘→∞

1
𝑘

ln |||𝜇𝑖(𝐽𝑘(𝐱𝑘)⋯ 𝐽0(𝐱0)
) ||| , 𝑖 = 1,⋯ , 𝑛 (10)

where 𝐽𝑖 = 𝐟 ′(𝐱𝑖) is the Jacobian and 𝜇𝑖(⋅) denotes the 𝑖th
eigenvalue of a matrix (numbered in the decreasing order
of magnitudes).

Lyapunov exponents are generalization of eigenvalues
of linear systems, which provide a measure for the mean
convergence or divergence rate of neighboring orbits of a
dynamical system. For an 𝑛-dimensional continuous-time
system, depending on the direction (but not the position)
of the initial state vector, its 𝑛 Lyapunov exponents, 𝜆1 ≥
⋯ ≥ 𝜆𝑛, describe different types of attractors. For example,
for nonchaotic attractors (e.g., limit sets),

𝜆𝑖 < 0, 𝑖 = 1,… , 𝑛 ⟹ stable equilibrium
𝜆1 = 0, 𝜆𝑖 < 0, 𝑖 = 2,… , 𝑛 ⟹ stable limit cycle
𝜆1 = 𝜆2 = 0, 𝜆𝑖 < 0, 𝑖 = 3,… , 𝑛 ⟹ stable two − torus
𝜆1 = ⋯ = 𝜆𝑚 = 0, 𝜆𝑖 < 0, 𝑖 = 𝑚 + 1,… , 𝑛 ⟹ stable 𝑚 − torus

Here, a two-torus is a bagel-shaped surface in the three-
dimensional space, and an 𝑚-torus is its geometrical gen-
eralization in the (𝑚 + 1)-dimensional space.

Note that for a three-dimensional continuous-time dy-
namical system, the only possibility for chaos to exist is
that the three-system Lyapunov exponents satisfy

(+, 0,−) ∶= (𝜆1 > 0, 𝜆2 = 0, 𝜆3 < 0) and 𝜆3 < −𝜆1
Intuitively, this means that the system orbit in the phase
space expands in one direction but shrinks in another di-
rection, thereby yielding complex (stretching and folding)
dynamical dynamics within a bounded region. Discrete-
time case is different, however. A prominent example is
the one-dimensional logistic map, discussed in more de-
tail below, which is chaotic but has (the only) one posi-
tive Lyapunov exponent. For four-dimensional continuous-
time systems, there are only three possibilities for chaos
to emerge:

(1) (+, 0,−,−): 𝜆1 > 0, 𝜆2 = 0, 𝜆4 ≤ 𝜆3 < 0; leading to chaos.
(2) (+,+, 0,−): 𝜆1 ≥ 𝜆2 > 0, 𝜆3 = 0, 𝜆4 < 0; leading to “hy-

perchaos.”
(3) (+, 0, 0,−): 𝜆1 > 0, 𝜆2 = 𝜆3 = 0, 𝜆4 < 0; leading to a

“chaotic two-torus.”

Simple Zero of the Melnikov Function. TheMelnikov the-
ory for chaotic dynamics deals with the saddle points of
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Poincaré maps of continuous solution flows in the phase
space. The Melnikov function provides a measure of the
distance between the stable and the unstable manifolds
near a saddle point.

To introduce the Melnikov function, consider a nonlin-
ear oscillator described by a Hamiltonian system:

⎧⎪⎨⎪⎩
�̇� = − 𝜕𝐻

𝜕𝑞
+ 𝜀 𝑓1

�̇� = 𝜕𝐻

𝜕𝑝
+ 𝜀 𝑓2

where 𝐟 ∶= [𝑓1(𝑝, 𝑞, 𝑡) , 𝑓2(𝑝, 𝑞, 𝑡)]⊤ has state variables
(𝑝(𝑡), 𝑞(𝑡)), 𝜀 > 0 is small, and 𝐻 = 𝐻(𝑝, 𝑞) = 𝐸K + 𝐸P is the
Hamilton function for the undamped, unforced (when
𝜀 = 0) oscillator, in which 𝐸K and 𝐸P are the kinetic and
potential energies of the system, respectively.

Suppose that the unperturbed (unforced and un-
damped) oscillator has a saddle-node equilibrium (e.g., the
undamped pendulum), and that 𝐟 is 𝑡p periodic with phase
frequency 𝜔 > 0. When the forced motion is described in
the three-dimensional phase space (𝑝, 𝑞, 𝜔𝑡), the Melnikov
function is defined by

𝐹 (𝑑∗) = ∫
∞

−∞

[
∇𝐻(�̄�, 𝑞)

]
𝐟∗ 𝑑𝑡 (11)

where (�̄�, 𝑞) is the solution of the unperturbed homo-
clinic orbit starting from the saddle point of the orig-
inal Hamiltonian system, 𝐟∗ = 𝐟(�̄�, 𝑞, 𝜔𝑡 + 𝑑∗), and ∇𝐻 =
[𝜕𝐻∕𝜕𝑝 , 𝜕𝐻∕𝜕𝑞]. The variable 𝑑∗ gives a measure of the
distance between the stable and unstable manifolds near
the saddle-node equilibrium.

The Melnikov theory states that chaos is possible if
the two manifolds intersect, which corresponds to that the
Melnikov function has a simple zero: 𝐹 (𝑑∗) = 0 at a single
point, 𝑑∗.

Strange Attractors. Attractors are typical in nonlinear
systems. The most interesting attractors, very closely re-
lated to chaos, are strange attractors. A strange attrac-
tor is a bounded attractor, which exhibits sensitive depen-
dence on initial conditions but cannot be decomposed into
two invariant subsets contained in disjoint open sets. Most
chaotic systems have strange attractors; however, not all
strange attractors are associated with chaos.

Generally speaking, a strange attractor is not any of
the stable equilibria or limit cycles, but rather consists of
some limit sets associatedwith some kind of Cantor sets. In
other words, it has a “strange” and complicated structure
that may possess a noninteger dimension (fractals), and
have some special properties of a Cantor set. For instance,
a chaotic orbit usually appears to be “strange” in that the
orbit moves toward a certain point (or limit set) for some
time but then moves away from it for some other time,
although the orbit repeats this process infinitely andmany
time it never settles anywhere. Figure 6 shows a typical
Chua attractor that has such strange behavior.

Fractals. An important concept that is related to Lya-
punov exponent is the Hausdorff dimension. Let 𝑆 be a set
in 𝑅𝑛 and 𝐶 be a covering of 𝑆 by countably many balls

Figure 6. A typical example of strange attractor: the double
scroll of Chua’s circuit response.

of radii 𝑑1, 𝑑2,…, satisfying 0 < 𝑑𝑘 < 𝜀 for all 𝑘. For a con-
stant 𝜌 > 0, consider

∑∞
𝑘=1 𝑑

𝜌
𝑘
for different coverings, and

let inf
C

∑
𝑑𝜌
𝑘
be the smallest value of the sum over all such

coverings. In the limit 𝜀 → 0, this value will diverge if 𝜌 < ℎ
but tends to zero if 𝜌 > ℎ for some constant ℎ (need not be
an integer). This value ℎ is called the Hausdorff dimen-
sion of the set 𝑆. If the above limit exists for 𝜌 = ℎ, then
the Hausdorff measure of the set 𝑆 is defined to be

𝜇h(𝑆) ∶= lim
𝜀→0

inf
C

∞∑
𝑘=1

𝑑𝜌
𝑘

There is an interesting conjecture that the Lyapunov
exponents {𝜆𝑘} (indicating the dynamics) and the Haus-
dorff dimension ℎ (indicating the geometry) of a strange
attractor have the relation

ℎ = 𝑘 + 1|||𝜆𝑘+1|||
𝑘∑
𝑖=1

𝜆𝑖

where 𝑘 is the largest integer that satisfies
∑𝑘

𝑖=1 𝜆𝑖 > 0. This
formula has been mathematically proved for large fami-
lies of three-dimensional continuous-time autonomous sys-
tems and of two-dimensional discrete-time systems.

A notion that is closely related to Hausdorff dimension
is fractal, which was first conned and defined by Mandel-
brot in the 1970s, to be a set with Hausdorff dimension
strictly greater than its topological dimension, where the
latter is always an integer. Roughly, a fractal is a set that
has a fractional Hausdorff dimension and possesses cer-
tain self-similarities. An illustration of the concept of self-
similarity and fractal is given in Figure 13.

There is a strong connection between fractal and chaos.
Chaotic orbits often possess fractal structures in the phase
space. For conservative systems, the Kolmogorov–Arnold–
Moser (KAM) theorem implies that the boundary between
the region of regular motion and that of chaos is fractal.
However, some chaotic systems have nonfractal limit sets,
and some fractal structures are not chaotic.
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Finite Kolmogorov–Sinai Entropy. Another important
feature of chaos and strange attractors is quantified by
the Kolmogorov–Sinai (KS) entropy, a concept based on
Shannon’s information theory.

The classical statistical entropy is defined by

𝐸 = − 𝑐
∑
𝑘

𝑃𝑘 ln (𝑃𝑘)

where 𝑐 is a constant and 𝑃𝑘 is the probability of the sys-
tem state being at the stage 𝑘 of the process. According to
Shannon’s information theory, this entropy is ameasure of
the amount of information needed to determine the state
of the system. This idea can be used to define a measure
for the intensity of a set of system states, which gives the
mean loss of information at the state of the system when
it evolves with time. To do so, let 𝑥(𝑡) be a system orbit and
partition its 𝑚-dimensional phase space into cells of small
volumes, 𝜀𝑚. Let 𝑃𝑘𝑖 be the probability of the sampling or-
bital state, 𝑥(𝑘), with sampling time 𝑡s > 0, that belongs to
the 𝑘𝑖th cell at instant 𝑘 = 𝑖𝑡s, 𝑖 = 0, 1,… , 𝑛. Similarly, 𝑃𝑘0⋯𝑘𝑖
denotes the probability of the orbital statemoving from the
𝑘0th cell through the 𝑘𝑖th cell. Then, Shannon defined the
information index to be

I𝑛 ∶= −
∑

𝑘0 ,⋯,𝑘𝑛

𝑃𝑘0…𝑘𝑛
ln (𝑃𝑘0⋯𝑘𝑛

)

which is proportional to the amount of the informa-
tion needed to determine the orbit, if the probabilities
are known. Consequently, I𝑛+1 − I𝑛 gives additional in-
formation for predicting the state 𝑥(𝑘𝑛+1), if the states
𝑥(𝑘0),… , 𝑥(𝑘𝑛) are known. This difference is also the in-
formation lost during the process. The KS entropy is then
defined by

𝐸KS ∶ = lim
𝑡s→0

lim
𝜀→0

lim
𝑛→∞

1
𝑛𝑡s

𝑛−1∑
𝑖=0

(I𝑖+1 − I𝑖)

= − lim
𝑡s→0

lim
𝜀→0

lim
𝑛→∞

1
𝑛𝑡s

∑
𝑘0 ,…,𝑘𝑛

𝑃𝑘0⋯𝑘𝑛
ln (𝑃𝑘0⋯𝑘𝑛

) (12)

This entropy, 𝐸KS, quantifies the degree of disorder: (i)
𝐸KS = 0 indicates regular attractors, such as stable equilib-
ria, limit cycles, and tori; (ii) 𝐸KS = ∞ implies totally ran-
dom dynamics, which have no correlations in the phase
space; (iii) 0 < 𝐸KS < ∞ signifies strange attractors and
chaos.

It is interesting to note that there is a connection be-
tween the Lyapunov exponents and the KS entropy:

𝐸KS ≤ ∑
𝑖

𝜆+
𝑖

where 𝜆+𝑖 are positive Lyapunov exponents of the same
system.

2.3. Chaos in Control Systems

Chaos is ubiquitous, indeed. Chaotic behaviors have been
found in many typical mathematical maps such as the lo-
gistic map, Arnold’s circle map, Hénon map, Lozi map,
Ikeda map, and Bernoulli shift; in various physical sys-
tems, including the Duffing oscillator, van der Pol oscil-
lator, forced pendula, hopping robot, brushless DC motor,

rotor with varying mass, Lorenz model, and Rössler sys-
tem, electrical and electronics systems (e.g., Chua’s circuit
and electric power systems), digital filters, celestial me-
chanics (the three-body problem), fluid dynamics, lasers,
plasmas, solid states, quantum mechanics, nonlinear op-
tics, chemical reactions, neural networks, fuzzy systems,
economic and financial systems, biological systems (heart,
brain, and population models), and various Hamiltonian
systems (5).

Chaos also exists in many engineering processes
and, perhaps unexpectedly, in some continuous-time and
discrete-time feedback control systems. For instance,
in the continuous-time case, chaos has been found in
very simple dynamical systems such as a first-order au-
tonomous feedback system with a time-delay feedback
channel, surge tank dynamics under a simple liquid level
control system with time-delayed feedback, and several
other types of time-delayed feedback control systems. It
also exists in automatic gain control loops, which are
very popular in industrial applications such as in most
receivers of communication systems. Most fascinating of
all, very simple pendula can display complex dynami-
cal phenomena; in particular, pendula subject to linear
feedback controls can exhibit even richer bifurcations and
chaotic behaviors. As an example, pendulum controlled by
a proportional-derivative controller can behave chaotically
when the tracking signal is periodic, with energy dissipa-
tion, even for the case of small controller gains. In addi-
tion, chaos has been found in many engineering applica-
tions such as in the designs of control circuits for switched
mode power conversion equipment, high-performance dig-
ital robot controllers, second-order systems containing a
relay with hysteresis, and in various biochemical control
systems.

Chaos occurs also frequently in discrete-time feedback
control systems due to sampling, quantization, and round-
off effects. Discrete-time linear control systems with dead-
zone nonlinearity have global bifurcations, unstable peri-
odic orbits, scenarios leading to chaotic attractors, crisis
of chaotic attractors reducing to periodic orbits, and so on.
Chaos also exists in digitally controlled systems, feedback-
type of digital filtering systems (either with or without
control), and even the linear Kalman filter when numeri-
cal issues are involved.

Many adaptive systems are inherently nonlinear, thus
bifurcations and chaos in such systems are often in-
evitable. The instances of chaos in adaptive control sys-
tems usually come from several possible sources: the non-
linearities of the plant and the estimation scheme, exter-
nal excitation or disturbances, the adaptationmechanism,
and so on. Chaos can occur in typical model-referenced
adaptive control (MRAC) and self-tuning adaptive control
(STAC) systems, as well as some other classes of adaptive
feedback control systems of arbitrary order that contain
unmodeled dynamics and disturbances. In such adaptive
control systems, typical failure modes include convergence
to undesirable local minima and nonlinear self-oscillation,
such as bursting, limit cycling, and chaos. In indirect adap-
tive control of linear discrete-time plants, strange system
behaviors can arise due to unmodeled dynamics (or distur-
bances), bad combinations of parameter estimation and/or
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control laws, and lack of persistency of excitation. As an
example, chaos is found in setpoint tracking control of a
linear discrete-time system of unknown order, where the
adaptive control scheme is either to estimate the order of
the plant or to directly track the reference.

Chaos also emerges from various types of neural net-
works. Similar to biological neural networks, most arti-
ficial neural networks can display complex dynamics, in-
cluding bifurcations, strange attractors, and chaos. Even
a very simple recurrent two-neuron model with only one
self-interaction can produce chaos. A simple three-neuron
recurrent neural network can also create period-doubling
bifurcations leading to chaos. A four-neuron network and
multi-neuron networks, of course, have more chances to
produce complex dynamical patterns such as bifurcations
and chaos. A typical example in point is the cellular neural
networks, which have very rich complex dynamical behav-
iors.

Chaos has also been experienced in some fuzzy con-
trol systems. The fact that fuzzy logic can produce com-
plex dynamics is more or less intuitive, inspired by the
nonlinear nature of the fuzzy systems. This has been jus-
tified, not only experimentally but also both mathemati-
cally and logically. Chaos has been observed, for example,
from a coupled simple fuzzy control system, among others.
The change in the shapes of the fuzzy membership func-
tions can significantly alter the dynamical behavior of a
fuzzy control system, potentially leading to the occurrence
of chaos.

Many specific examples of chaos in control systems can
be given. Therefore, controlling chaos is not only interest-
ing as a subject for scientific research but also very much
relevant to the objectives of traditional control and sys-
tems engineering. Simply put, it is not an issue that can
be treated with ignorance or neglect.

3. BIFURCATIONS

Associated with chaos is bifurcation, another typical phe-
nomenon of nonlinear dynamical systems that quantifies
the change of system properties (such as the number and
the stabilities of the system equilibria) due to the variation
of system parameters. Chaos and bifurcations have a very
strong connection; oftentimes they coexist in a complex
dynamical system.

3.1. Basic Types of Bifurcations

To illustrate various bifurcation phenomena, it is conve-
nient to consider a two-dimensional parameterized non-
linear dynamical system:{

�̇� = 𝑓 (𝑥, 𝑦; 𝑝)
�̇� = 𝑔(𝑥, 𝑦; 𝑝)

(13)

where 𝑝 is a real and variable system parameter.
Let (�̄�, �̄�) =

(
�̄�(𝑡; 𝑝0), �̄�(𝑡; 𝑝0)

)
be an equilibriumof the sys-

temwhen 𝑝 = 𝑝0, atwhich 𝑓 (�̄�, �̄�; 𝑝0) = 0 and 𝑔(�̄�, �̄�; 𝑝0) = 0. If
the equilibrium is stable (respectively, unstable) for 𝑝 > 𝑝0
but unstable (respectively, stable) for 𝑝 < 𝑝0, then 𝑝0 is a
bifurcation value of 𝑝, and (0, 0; 𝑝0) is a bifurcation point

0

x

t

p

Figure 7. The transcritical bifurcation.

in the parameter space, (𝑥, 𝑦, 𝑝). A few examples are given
below to distinguish several typical bifurcations.

Transcritical Bifurcation. The one-dimensional system

�̇� = 𝑓 (𝑥; 𝑝) = 𝑝 𝑥 − 𝑥2

has two equilibria: �̄�1 = 0 and �̄�2 = 𝑝. When 𝑝 is varied,
there emerge two equilibrium curves as shown in Figure 7.
Since the Jacobian for this one-dimensional system is sim-
ply 𝐽 = 𝑝, it is clear that for 𝑝 < 𝑝0 = 0, the equilibrium
�̄�1 = 0 is stable, but for 𝑝 > 𝑝0 = 0 it changes to be unstable.
Thus, (�̄�1, 𝑝0) = (0, 0) is a bifurcation point. In the figure,
the solid curves indicate stable equilibria and the dashed
curves, the unstable ones. Likewise, (�̄�2, 𝑝0) is another bi-
furcation point. This type of bifurcation is called the tran-
scritical bifurcation.

Saddle-Node Bifurcation. The one-dimensional system

�̇� = 𝑓 (𝑥; 𝑝) = 𝑝 − 𝑥2

has an equilibrium �̄�1 = 0 at 𝑝0 = 0, and an equilibrium
curve �̄�2 = 𝑝 at 𝑝 ≥ 0, where �̄�2 =

√
𝑝 is stable and �̄�3 = −

√
𝑝

is unstable for 𝑝 > 𝑝0 = 0. This bifurcation, as shown in
Figure 8, is called the saddle-node bifurcation.

Pitchfork Bifurcation. The one-dimensional system

�̇� = 𝑓 (𝑥; 𝑝) = 𝑝 𝑥 − 𝑥3

has an equilibrium �̄�1 = 0 at 𝑝0 = 0, and an equilibrium
curve �̄�2 = 𝑝 at 𝑝 ≥ 0. Here, �̄�1 = 0 is unstable for 𝑝 > 𝑝0 = 0
and stable for 𝑝 < 𝑝0 = 0, and the entire equilibrium curve
�̄�2 = 𝑝 is stable for all 𝑝 > 0 at which it is defined. This
situation, as depicted in Figure 9, is called the pitchfork
bifurcation.

0

x
x2 = p

p

Figure 8. The saddle-node bifurcation.
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x
x2 = p

0 p

Figure 9. The pitchfork bifurcation.

Note, however, that not all nonlinear parameterized dy-
namical systems have bifurcations. A simple example is

�̇� = 𝑓 (𝑥; 𝑝) = 𝑝 − 𝑥3

that has an entire stable equilibrium curve �̄� = 𝑝1∕3, which
does not have any bifurcation.

Hysteresis Bifurcation. The dynamical system{
�̇�1 = −𝑥1
�̇�2 = 𝑝 + 𝑥2 − 𝑥32

has equilibria

�̄�1 = 0 and 𝑝 − �̄�2 + �̄�32 = 0

According to different values of 𝑝, there are either one
or three equilibrium solutions, where the second equation
yields one bifurcation point at 𝑝0 = ±2

√
3∕9, but three equi-

libria for |𝑝0| < 2
√
3∕9.

The stabilities of the equilibriumsolutions are shown in
Figure 10. This type of bifurcation is called the hysteresis
bifurcation.

Hopf Bifurcation and Hopf Theorems. In addition to the
bifurcations described above, called static bifurcations, the
parameterized dynamical system (eq. 13) can have another
type of bifurcation, the Hopf bifurcation (or dynamical bi-
furcation).

Hopf bifurcation corresponds to the situation where,
as the parameter 𝑝 is varied to pass the critical value 𝑝0,
the system Jacobian has one pair of complex conjugate
eigenvalues moving from the left-half plane to the right,
crossing the imaginary axis, while all the other eigenval-
ues remain to be stable. At the moment of the crossing,

–p0 p0

x2

p

Figure 10. The hysteresis bifurcation.
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Figure 11. Two types of Hopf bifurcations illustrated in the
phase plane.

the real parts of the eigenvalue pair are zero, and the sta-
bility of the existing equilibrium changes to opposite, as
shown in Figure 11. In the meantime, a limit cycle will
emerge. As indicated in the figure, Hopf bifurcation can
be classified as supercritical (respectively, subcritical), if
the equilibrium is changed from stable to unstable (re-
spectively, from unstable to stable). The same terminology
of supercritical and subcritical bifurcations applies also to
other non-Hopf types of bifurcations.

Hopf Bifurcation Theorems. Consider a general nonlin-
ear parameterized autonomous system,

�̇� = 𝐟(𝐱; 𝑝) , 𝐱(𝑡0) = 𝑥0 (14)

where 𝐱 ∈ 𝑅𝑛, 𝑝 is a real variable parameter, and 𝐟 is dif-
ferentiable.

The most fundamental result on the Hopf bifurcation of
this system is the following theorem, which is stated here
only for the special two-dimensional setting.

Theorem 7 (Poincaré–Andronov–Hopf) Suppose that
the two-dimensional system (eq. 14) has a zero equilibrium,

�̄� = 0, and assume that its associate Jacobian �̄� = 𝜕𝑓

𝜕𝑥

||||𝑥=�̄�=0
has a pair of purely imaginary eigenvalues, 𝜆(𝑝) and 𝜆∗(𝑝).
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If

dℜ{𝜆(p)}
d p

|||||𝑝=𝑝0 > 0

for some 𝑝0, whereℜ{⋅} denotes the real part of the complex
eigenvalues, then

(i) 𝑝 = 𝑝0 is a bifurcation point of the system;
(ii) for close enough values of 𝑝 < 𝑝0, the equilibrium �̄� = 0

is asymptotically stable;
(iii) for close enough values of 𝑝 > 𝑝0, the equilibrium �̄� = 0

is unstable;
(iv) for close enough values of 𝑝 ≠ 𝑝0, the equilibrium �̄� = 0

is surrounded by a limit cycle of magnitude 𝑂(
√|𝑝|).

Graphical Hopf Bifurcation Theorem. The Hopf bifurca-
tion can also be analyzed in the frequency domain setting
(14). In this approach, the nonlinear parameterized au-
tonomous system (eq. 14) is first rewritten in the following
Lur’e form: ⎧⎪⎨⎪⎩

�̇� = 𝐴(𝑝)𝐱 + 𝐵(𝑝) 𝑢
𝐲 = −𝐶(𝑝) 𝐱
𝐮 = 𝑔(𝑦; 𝑝)

(15)

where the matrix 𝐴(𝑝) is chosen to be invertible for all
values of 𝑝, and 𝐠 ∈ 𝐶4 depends on the chosen matrices
𝐴, 𝐵, and 𝐶. Assume that this system has an equilibrium
solution, �̄�, satisfying

�̄�(𝑡; 𝑝) = −𝐻(0; 𝑝) 𝑔(�̄�(𝑡; 𝑝); 𝑝)

where

𝐻(0; 𝑝) = −𝐶(𝑝)𝐴−1(𝑝)𝐵(𝑝)

Let 𝐽 (𝑝) = 𝜕𝐠∕𝜕𝐲
||||𝐲=�̄� and let 𝜆 = 𝜆(𝑗 𝜔; 𝑝) be the eigenvalue

of the matrix [𝐺(𝑗 𝜔; 𝑝)𝐽 (𝑝)] that satisfies

𝜆(𝑗 𝜔0; 𝑝0) = −1 + 𝑗 0 , 𝑗 =
√
−1

Then, fix 𝑝 = �̃� and let 𝜔 vary. In so doing, a trajectory of
the function 𝜆(𝜔; �̃�), the “eigenlocus,” can be obtained. This
locus traces out from the frequency 𝜔0 ≠ 0. In much the
same way, a real zero eigenvalue (a condition for the static
bifurcation) is replaced by a characteristic gain locus that
crosses the point (−1 + 𝑗 0) at frequency 𝜔0 = 0.

For illustration, consider a single-input single-output
(SISO) system. In this case, the matrix [𝐻(𝑗 𝜔; 𝑝)𝐽 (𝑝)] is
merely a scalar, and

𝑦(𝑡) ≈ �̄� +ℜ

{
𝑛∑

𝑘=0
𝑦𝑘 e𝑗 𝑘𝜔𝑡

}
where �̄� is the equilibrium solution and the complex coeffi-
cients {𝑦𝑘} are determined as follows. For the approxima-
tion with 𝑛 = 2, first define an auxiliary vector:

𝜉1(�̃�) =
−𝐥⊤

[
𝐻(𝑗 �̃�; 𝑝)

]
𝐡1

𝐥⊤𝐫 (16)

where 𝑝 is the fixed value of the parameter 𝑝, 𝐥⊤ and 𝐫 are
the left and right eigenvectors of [𝐻(𝑗 �̃�; 𝑝)𝐽 (𝑝)], respec-
tively, associated with the eigenvalue 𝜆(𝑗 �̃�; 𝑝), and

𝐡1 =
[
𝐷2

(
𝐳02 ⊗ 𝐫 + 1

2
𝐫∗ ⊗ 𝐳22

)
+ 1

8
𝐷3𝐫 ⊗ 𝐫 ⊗ 𝐫∗

]
where ∗ denotes the complex conjugate, �̃� is the frequency
of the intersection between the 𝜆 locus and the negative
real axis that is closest to the point (−1 + 𝑗 0), ⊗ is the
tensor product operator, and

𝐷2 =
𝜕2𝐠(𝑦; 𝑝)
𝜕𝑦2

|||||𝑦=�̄�
𝐷3 =

𝜕3𝐠(𝑦; 𝑝)
𝜕𝑦3

|||||𝑦=�̄�
𝐳02 = −1

4

[
1 +𝐻(0; 𝑝)𝐽 (𝑝)

]−1
𝐺(0; 𝑝)𝐷2𝐫 ⊗ 𝐫∗

𝐳22 = −1
4

[
1 +𝐻(2𝑗 �̃�; 𝑝)𝐽 (𝑝)

]−1
𝐻(2𝑗 �̃�; 𝑝)𝐷2𝐫 ⊗ 𝐫

𝑦0 = 𝐳02 |𝑝 − 𝑝0|
𝑦1 = 𝐫 |𝑝 − 𝑝0|1∕2
𝑦2 = 𝐳22 |𝑝 − 𝑝0|

The graphical Hopf bifurcation theorem (for SISO sys-
tems) formulated in the frequency domain, based on the
generalized Nyquist criterion, is stated as follows.

Theorem 8 (Graphical Hopf Bifurcation Theorem)
Suppose that, whenever 𝜔 is varied, the vector 𝜉1(�̃�) ≠

0. Assume also that the half-line, starting from −1 + 𝑗 0
and pointing to the direction parallel to that of 𝜉1(�̃�), first
intersects the locus of the eigenvalue 𝜆(𝑗 𝜔; 𝑝) at the point

𝑃 = 𝜆(�̂�; 𝑝) = −1 + 𝜉1(�̃�) 𝜃2

at which 𝜔 = �̂� and the constant 𝜃 = 𝜃(�̂�) ≥ 0, as shown in
Figure 12. Suppose, furthermore, that the above intersec-
tion is transversal, namely,

det
⎡⎢⎢⎢⎣

ℜ{𝜉1(𝑗 �̂�)} ℑ{𝜉1(𝑗 �̂�)}

ℜ
{

𝑑

𝑑𝜔
𝜆(𝜔; 𝑝)

||||𝜔=�̂�
}

ℑ
{

𝑑

𝑑𝜔
𝜆(𝜔; 𝑝)

||||𝜔=�̂�
}⎤⎥⎥⎥⎦ ≠ 0

Then

(i) The nonlinear system (eq. 15) has a periodic solu-
tion (output) 𝑦(𝑡) = 𝑦(𝑡; �̄�). Consequently, there exists a
unique limit cycle for the nonlinear equation ̇𝐱 = 𝐟(𝐱),
in a ball of radius 𝑂(1) centered at the equilibrium �̄�.

(ii) If the total number of anticlockwise encirclements of
the point 𝑝1 = 𝑃 + 𝜀𝜉1(�̃�), for a small enough 𝜀 > 0, is
equal to the number of poles of [𝐺(𝑠; 𝑝)𝐽 (𝑝)] that have
positive real parts, then the limit cycle is stable.



12 Chaos, Bifurcations, and Their Control
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Figure 12. The frequency domain version of the Hopf bifurcation
theorem.

3.2. Period-Doubling Bifurcations to Chaos

There are several routes to chaos from a regular state of
a nonlinear system, provided that the system is chaotic in
nature.

One route is that after three Hopf bifurcations a regular
motion can become highly unstable, leading to a strange
attractor and then to chaos. Actually, even pitchfork and
saddle-node bifurcations can be routes to chaos under cer-
tain circumstances. For motion on a normalized two-torus,
if the ratio of the two fundamental frequencies 𝜔1∕𝜔2 = 𝑝∕𝑞
is rational, then the orbit returns to the same point after
a 𝑞-cycle; but if the ratio is irrational, then this (quasiperi-
odic) orbit never returns to the starting point. Quasiperi-
odic motion on a two-torus provides another common route
to chaos.

Period-doubling bifurcation is perhaps the most typical
route that leads system dynamics to chaos. Consider, as
an example, the logistic map

𝑥𝑘+1 = 𝑝 𝑥𝑘

(
1 − 𝑥𝑘

)
(17)

where 𝑝 > 0 is a variable parameter. With 0 < 𝑝 < 1, the
origin 𝑥 = 0 is stable, so the orbit approaches it as 𝑘 →
∞. However, for 1 < 𝑝 < 3, all points converge to another
equilibrium, denoted �̄�.

The evolution of the system dynamics, as 𝑝 is gradually
increased from 3.0 to 4.0 by small steps, is mostly interest-
ing, which is depicted in Figure 13. The figure shows that
at 𝑝 = 3, a (stable) period-two orbit is bifurcated out of �̄�,
which becomes unstable at that moment, and, in addition
to 0, there emerge two (stable) equilibria:

�̄�1,2 =
(
1 + 𝑝 ±

√
𝑝2 − 2𝑝 − 3

)/
(2𝑝)

When 𝑝 continues to increase to the value of 1 +
√
6 =

3.544090… , each of these two points bifurcates to other
two, as can be seen from the figure. As 𝑝 moves conse-
quently through the values 3.568759… , 3.569891… , … ,
an infinite sequence of bifurcations is generated by such
period-doubling, which eventually leads to chaos:

period 1 → period 2 → period 4 → ⋯ period 2𝑘

→ ⋯ → chaos

It is also interesting to note that in certain regions (e.g.,
the three windows magnified in the figure) of the logistic

0.0
2.8 3.0 +1+1  

3.56994

+1+1  

4.0

0.5

1.0

xn

α

Figure 13. Period-doubling of the logistic system with self-
similarity.

map, it appears self-similarity of the bifurcation diagram
of the map, which is a typical fractal structure.

Figure 14 shows the Lyapunov exponent 𝜆 versus the
parameter 𝑝, over the interval of [2.5, 4]. This figure corre-
sponds to the period-doubling diagram shown in Figure 13.

The most significant discovery about the phenomenon
of period-doubling bifurcation route to chaos is Feigen-
baum’s observation in 1978: The convergence of the period-
doubling bifurcating parameters has a geometric rate,
𝑝∞ − 𝑝𝑘 ∝ 𝛿−𝑘, where

𝛿𝑘 ∶=
𝑝𝑘+1 − 𝑝𝑘
𝑝𝑘+2 − 𝑝𝑘+1

→ 𝛿 = 4.6692... (𝑘 → ∞)

which is known as a universal number for a large class of
chaotic dynamical systems.

3.3. Bifurcations in Control Systems

Not only chaos but also bifurcations can exist in feed-
back and adaptive control systems. Generally speaking,
local instability and complex dynamical behavior can re-
sult from feedback and adaptive mechanisms when ad-

λ

–3.00

–2.00

–1.00

0.00

1.00

4.003.633.25
p

2.882.50

Figure 14. Lyapunov exponent versus parameter 𝑝 for the logis-
tic map.
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equate process information is not available for feedback
transmission or parameter estimation. In this situation,
one or more poles of the linearized closed-loop transfer
function may move to cross over the stability boundary,
thereby causing signal divergence as the control process
continues. However, this sometimes may not lead to global
unboundedness, but rather to self-excited oscillations or
self-stabilization, leading to very complex dynamical phe-
nomena.

Real examples of bifurcations in feedback control sys-
tems include the automatic gain control loop system, which
has bifurcations transmitting to Smale horseshoe chaos
and the common route of period-doubling bifurcations to
chaos. Surprising enough, in some situations even a single
pendulum controlled by a linear proportional-derivative
controller can display rich bifurcations in addition to
chaos.

Adaptive control systems are more likely to produce
bifurcations than a simple feedback control system, due
to the changes of stabilities in adaptation. The complex
dynamics emerging from an adaptive control system is of-
ten caused by estimation instabilities. Moreover, certain
prototypes of MRAC systems can experience various bifur-
cations.

Bifurcation theory has been employed for analyzing
complex dynamical systems. For instance, in an MRAC
system, a few pathways leading to estimator instability
have been identified via bifurcation analysis:

(i) A sign change in the adaptation law, leading to a
reversal of the gradient direction as well as an infinite
linear drift.

(ii) The instability caused by high control gains, leading
to global divergence through period-doubling bifurca-
tions.

(iii) A Hopf bifurcation-type of instability, leading to pa-
rameter drift and bursting in a bounded regime
through a sequence of global bifurcations.

Both instabilities of types (i) and (ii) can be avoided by
gain-tuning or simple algorithmic modifications. The third
instability, however, is generally due to the unmodeled
dynamics and a poor signal-to-noise ratio, and so cannot
be avoided by simple tuning methods. This instability is
closely related to the presence of a degenerate set and a
period-two attractor.

Similarly, in the discrete-time case, a simple adaptive
control system can have rich bifurcation phenomena such
as period-doubling bifurcation (due to high adaptive con-
trol gains) and Hopf and global bifurcations (due to insuf-
ficient excitations).

Like the omnipresent chaos, bifurcations exist in many
physical systems (5). For instance, power systems gener-
ally have various bifurcation dynamics. When the con-
sumers’ demands for power reach peaks, the stability of
an electric power network may move to its margin, lead-
ing to serious oscillations and stability bifurcations, which
may quickly result in voltage collapse. As another exam-
ple, a typical double pendulum can display bifurcations
as well as chaotic motions. Some rotational mechanical

systems also have similar behavior. Even a common road
vehicle driven by a pilot with driver steering control can
have Hopf bifurcation when its stability is lost, which may
also develop chaos and even hyperchaos. A hopping robot,
or a simple two-degree-of-freedom flexible robot arm, can
respond to strange vibrations undergoing period-doubling
bifurcations, which eventually lead to chaos. An aircraft
stalls for flight below a critical speed or over a critical
angle-of-attack can respod to various bifurcations.Dynam-
ics of a ship can exhibit stability bifurcation according to
wave frequencies that are close to the natural frequency
of the ship, which creates oscillations and chaotic motions
leading to ship capsize. Simple nonlinear circuits are rich
sources of different types of bifurcations as well as chaos.
Other systems that have bifurcation properties include
cellular neural networks, lasers, aeroengine compressors,
weather systems, and biological population dynamics, to
name but a few.

4. CONTROLLING CHAOS

Understanding chaos has long been the main focus of re-
search in the field of nonlinear science. The idea that chaos
can in fact be controlled is perhaps counterintuitive. In-
deed, the extreme sensitivity of a chaotic system to initial
conditions once led to the impression and argument that
chaotic motion is in general neither predictable nor con-
trollable.

However, recent research effort has shown that not only
(short term) prediction but also (long term) control of chaos
are possible. It is now well known that most conventional
control methods and many special techniques can be used
for controlling chaos (5,15,16). In this pursuit, no matter
the purpose is to reduce “bad” chaos or to introduce “good”
ones, numerous control strategies have been proposed, de-
veloped, tested, and applied to many case studies. Numeri-
cal and experimental simulations have demonstrated that
chaotic physical systems respond quite well to these con-
trols. In about the same time, applications are proposed in
such diverse fields as biology, medicine, physiology, chemi-
cal engineering, laser physics, electric power systems, fluid
mechanics, aerodynamics, circuits and electronic devices,
signal processing and communications, and so on. The fact
that researchers from vast scientific and engineering back-
grounds are joining together and aiming at one central
theme – bringing order to chaos – indicates that the study
of nonlinear dynamics and their control has progressed
into a new era. Much has been accomplished in the past
decade, and yet much more remains a challenge for the
near future.

Similar to conventional systems control, the concept of
“controlling chaos” is first tomean suppressing chaos in the
sense of stabilizing chaotic system responses, oftentimes
unstable periodic outputs. However, controlling chaos has
also encompassed many nontraditional tasks, particularly
those in creating or enhancing chaos when it is useful. The
process of chaos control is now understood as a transition
between chaos and order and, sometimes, the transition
from chaos to chaos, depending on the application at hand.
In fact, the notion of chaos control is neither exclusive of
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nor conflicting with the purposes of conventional control
systems theory. Rather, it targets at better managing the
dynamics of a nonlinear system on a wider scale, with
the hope that more benefits may thus be derived from the
special features of chaos.

4.1. Why Chaos Control

There are many practical reasons for controlling or order-
ing chaos. First of all, “chaotic” (messy, irregular, or disor-
dered) system response with little useful information con-
tent is unlikely to be desirable. Second, chaos can lead sys-
tems to harmful or even catastrophic situations. In these
troublesome cases, chaos should be reduced as much as
possible, or be totally suppressed. Traditional engineer-
ing design always tries to reduce irregular behaviors of a
system and, therefore, completely eliminates chaos. Such
“over-design” is needed in the aforementioned situations.
However, this is usually accomplished at the price of loos-
ing great opportunities and benefits in achieving high per-
formance near the stability boundaries or at the expense
of radically modifying the original system dynamics.

Conversely, recent research has shown that chaos can
actually be useful under certain circumstances, and there
is growing interest in utilizing the very nature of chaos (5).
For example, it was observed (17) that a chaotic attractor
typically has embedded within it a dense set of unstable
periodic orbits. Thus, if any of these periodic orbits can
be stabilized, it may be desirable to select one that gives
rise to a certain maximal system performance. In other
words, when the design of a dynamical system is intended
for multiple usages, purposely building chaotic dynamics
into the system may allow for the desired flexibilities. A
control design of this kind is certainly nonconventional.

Fluid mixing is a good example in which chaos is not
only useful but actually necessary (18). Chaos is desirable
inmany applications of liquidmixing, where two fluids are
to be thoroughly mixed while the required energy is min-
imized. For this purpose, it turns out to be much easier if
the dynamics of the particle motion of the two fluids are
strongly chaotic, since it is difficult to obtain rigorous mix-
ing properties otherwise, due to the possibility of invariant
two-tori in the flow. This has been one of the main subjects
in fluidmixing, known as “chaotic advection.” Chaotic mix-
ing is also important in applications involving heating,
such as plasma heating for a nuclear fusion reactor. In
such plasma heating, heat waves are injected into the re-
actor, for which the best result is obtained when the heat
convection inside the reactor is chaotic.

Within the context of biological systems, the controlled
biological chaos seems to be important with the way a hu-
man brain executes its tasks. For years, scientists have
been trying to unravel how our brains endow us with
inference, thought, perception, reasoning and, most fas-
cinating of all, emotion such as happiness and sadness.
There were experimental suggestions that human brain
can process massive information in almost no time, in
which chaotic dynamics could be a fundamental reason:
“The controlled chaos of the brain is more than an acciden-
tal by-product of the brain complexity, including itsmyriad
connections,” but rather “it may be the chief property that

makes the brain different from an artificial-intelligence
machine” (19). The idea of anticontrol of chaos has been
proposed for solving the problem of driving the system
responses of a human brain model away from the stable
direction, and hence away from the stable (saddle-type)
equilibrium. As a result, the periodic behavior of neuronal
population bursting can be prevented (20). Control tasks
of this type are also nontraditional.

Other potential applications of chaos control in biologi-
cal systems have reached out from the brain to elsewhere,
particularly to the human heart. In physiology, healthy
dynamics has been regarded as regular and predictable,
whereas disease, such as fatal arrhythmias, aging, and
drug toxicity, are commonly assumed to produce disorder
and even chaos. However, recent laboratory studies have
seemingly demonstrated that the complex variability of
healthy dynamics in a variety of physiological systems has
features reminiscent of deterministic chaos, and a wide
class of disease processes (including drug toxicities and ag-
ing) may actually decrease (yet not completely eliminate)
the amount of chaos or complexity in physiological sys-
tems, known as “decomplexification.” Thus, in contrast to
the common belief that healthy heartbeats are completely
regular, a normal heart rate may fluctuate in a highly er-
ratic fashion, even at rest, andmay actually be chaotic (21).
It has also been observed that, in the heart, the amount of
intracellular Ca is closely regulated by coupled processes
that cyclically increase or decrease this amount, in a way
similar to a system of coupled oscillators. This cyclical fluc-
tuation in the amount of intracellular Ca is a cause of
after-depolarizations,which triggers activities in the heart
— the so-called arrhythmogenic mechanism. Medical evi-
dence reveals that controlling (while not completely elim-
inating) the chaotic arrhythmia can be a new, safe, and
promising approach to regulating heartbeats (22,23).

The sensitivity of chaotic systems to small perturba-
tions can be used to direct system trajectories to a desired
target quickly with very low (or minimum) control energy.
As an example, NASA scientists used small amounts of
residual hydrazine fuel to send the spacecraft ISEE-3/IEC
more than 50millionmiles across the solar system, achiev-
ing the first scientific cometary encounter. This control ac-
tion utilized the sensitivity to small perturbations of the
three-body problem of celestial mechanics, which would
not be possible in a nonchaotic system since it normally
requires a huge control effort (24).

4.2. Chaos Control: An Example

To appreciate the challenge of chaos control, consider the
one-dimensional logistic map (eq. 17) with the period-
doubling bifurcations route to chaos as shown in Figure 13.

Chaos control problems in this situation include, but
not limited to, the following:

Is it possible (and, if so, how) to design a simple
controller, 𝑢𝑘, for the given system, in the form of

𝑥𝑘+1 = 𝑝 𝑥𝑘

(
1 − 𝑥𝑘

)
+ 𝑢𝑘

such that
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(i) the limiting chaotic behavior of the period-
doubling bifurcations process is suppressed?

(ii) the first bifurcation is delayed to take place, or
some bifurcations are changed either in form or
in stability?

(iii) when the parameter 𝑝 is currently not in the
bifurcating range, the asymptotic behavior of
the system becomes chaotic?

Many of such nonconventional control problems emerg-
ing from chaotic dynamical systems have posed a real
challenge to both nonlinear dynamics analysts and con-
trol engineers — they have become, in effect, motivation
and stimuli for the current endeavor devoted to the new
research direction in control systems: controlling bifurca-
tions and chaos.

4.3. Some Distinctive Features of Chaos Control

At this point, it is illuminating to highlight some distinc-
tive features of chaos control theory and methodology, in
contrast to other conventional approaches regarding such
issues as objectives, perspectives, problem formulations,
and performance measures.

1. The targets in chaos control are usually unstable peri-
odic orbits (including equilibria and limit cycles), per-
haps of higher periods. The controller is designed to
stabilize some of these unstable orbits or to drive the
trajectories of the controlled system to switch from one
orbit to another. This inter-orbit switching can be ei-
ther chaos → order, chaos → chaos, order → chaos, or
order→ order, depending on the application in interest.
Conventional control, on the other hand, does not nor-
mally investigate such inter-orbit switching problems
of a dynamical system, especially not those problems
that involve guiding a system trajectory to an unstable
or chaotic state by any means.

2. A chaotic system typically has embedded within it a
dense set of unstable orbits, and is extremely sensitive
to tiny perturbations to its initial conditions and system
parameters. Such a special property, useful for chaos
control, is not available in nonchaotic systems and is
not utilized in any forms by conventional control.

3. Most conventional control schemes work within the
state space framework. In chaos control, however, one
more often deals with parameter space and phase space.
Poincaré maps, delay-coordinates embedding, paramet-
ric variation, entropy reduction, bifurcationmonitoring,
and so on, are some typical but nonconventional tools
for design and analysis.

4. In conventional control, a target for tracking is usually a
constant vector in the state space, with very few excep-
tions such as some model-referenced control schemes.
This target is generally not a state of the given (uncon-
trolled) system (otherwise, perhaps no control is needed
or can be easily achieved). Also, the terminal time for
the control is usually finite (e.g., the fundamental con-
cept of “controllability” is typically defined using a fi-
nite, and often fixed, terminal time, at least for lin-

ear systems and affine-nonlinear systems). However,
in chaos control, a target for tracking is not limited to
constant vectors in the state space but often is an un-
stable periodic orbit of the given system. In addition,
the terminal time for chaos control is usually infinite to
be meaningful and practical, because many nonlinear
dynamical behaviors such as steady states, limit cycles,
attractors, and chaos are asymptotic properties.

5. Depending on different situations or purposes, the per-
formancemeasure in chaos control can be different from
those for conventional controls. Chaos control generally
uses criteria like Lyapunov exponents, Kolmogorov–
Sinai entropy, power spectra, ergodicity, bifurcation
changes, and so on, whereas conventional controls nor-
mally emphasize on robustness of the system stability
or control performance, optimality of control energy or
time, ability of disturbances rejection, and so on.

6. Chaos control includes a unique task — anticontrol,
required by some unusual applications such as those
in biomedical engineering mentioned above. This anti-
control tries to create, maintain, or enhance chaos for
improving system performance. Bifurcation control is
another example of this kind, where a bifurcation point
is expected to be delayed in case it cannot be avoided
or stabilized. This delay can significantly extend the
operating time (or system parameter range) for a time-
critical process such as chemical reaction, voltage col-
lapse of electric power systems, and compressor of stall
of gas turbine jet engines. These are in direct contrast
to traditional control tasks such as the typical problem
of stabilizing an equilibriumposition of a nonlinear sys-
tem.

7. Due to the inherent association of chaos and bifurca-
tions with various related issues, the scope of chaos
control and the variety of problems that chaos control
deals with are quite diverse, including creation and/or
management of self-similarity and symmetry, pattern
formation, amplitudes of limit cycles and size of attrac-
tor basins, birth and change of bifurcations and limit
cycles, and so on, in addition to some conventional tasks
such as target tracking and system regulation.

It is also worth mentioning an additional distinctive
feature of a controlled chaotic system that differs from an
uncontrolled chaotic system. When the controlled chaotic
system is non-autonomous, it cannot be reformulated as
an autonomous system by defining the control input as a
new state variable, since the control input is physically not
a system state variable and, moreover, it has to be deter-
mined via design for performance specifications. Hence, a
controlled chaotic system is intrinsically much more dif-
ficult to design than it appears; for instance, many in-
variant properties of autonomous systems are no longer
valid. This observation raises the question of extending
some existing theories and techniques from autonomous
system dynamics to nonautonomous controlled dynamical
systems, including such complex phenomena as degener-
ate bifurcations and hyperchaos in the system dynamics
when a controller is involved. Unless suppressing complex
dynamics in a process is the only purpose for control, un-
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derstanding and utilizing the rich dynamics of a controlled
chaotic system are very important for design and applica-
tions.

4.4. Representative Approaches to Chaos Control

There are various conventional and nonconventional con-
trol methods available for bifurcations and chaos control
(5,15,16). To introduce a few representative control tech-
niques, two major categories of methodologies are briefly
described.

Parametric Variation Control. This approach to control-
ling a chaotic dynamical system, proposed byOtt et al. (17),
known as the OGY method, is to stabilize one of its unsta-
ble periodic orbits embedded in an existing chaotic attrac-
tor, via small time-dependent perturbations of a variable
system parameter. This methodology utilizes the special
feature of chaos that a chaotic attractor typically has em-
bedded within it a dense set of unstable periodic orbits.

To introduce this control strategy, consider a general
continuous-time parameterized nonlinear autonomous
system:

�̇�(𝑡) = 𝐟(𝐱(𝑡), 𝑝) (18)

where, for illustration, 𝐱 = [𝑥 𝑦 𝑧]⊤ denotes the state vec-
tor and 𝑝 is a system parameter accessible for adjustment.
Assume that when 𝑝 = 𝑝∗ the system is chaotic, and it is de-
sired to control the system orbit, 𝐱(𝑡), to reach a saddle-type
equilibrium (or periodic orbit), Γ, which otherwise would
not be able to arrive by the system orbits due to its unstable
nature.

Suppose that within a small neighborhood of 𝑝∗, that is,

𝑝∗ − Δ𝑝max < 𝑝 < 𝑝∗ + Δ𝑝max (19)

where Δ𝑝max > 0 is the maximum allowable perturbation,
both the chaotic attractor and the target orbit Γ do not
disappear (i.e., within this small neighborhood of 𝑝∗, there
are no bifurcation points of the periodic orbit Γ). By the
structural stability of chaotic systems, this can be guaran-
teed. Then, let 𝑃 be the underlying Poincaré map and Σ
be a surface of cross section of Γ. For simplicity, assume
that this two-dimensional hyperplane is orthogonal to the
third axis, and thus is given by

Σ =
{ [

𝛼 𝛽 𝛾
]⊤

∈ 𝑅3 ∶ 𝛾 = 𝑧0 (a constant)
}

Moreover, let 𝜉 be the coordinates of the surface of cross
section, that is, a vector satisfying

𝜉𝑘+1 = 𝑃 (𝜉𝑘, 𝑝𝑘)

where

𝑝𝑘 = 𝑝∗ + Δ𝑝𝑘 , |Δ𝑝𝑘| ≤ Δ𝑝max

At each iteration, 𝑝 = 𝑝𝑘 is chosen to be a constant.
Many distinct unstable periodic orbits within the

chaotic attractor can be determined by the Poincaré map.
Suppose that an unstable period-one orbit 𝜉∗

𝑓
has been

selected, which maximizes certain desired system perfor-

mance with respect to the dynamical behavior of the sys-
tem. This target orbit satisfies

𝜉∗
𝑓
= 𝑃 (𝜉∗

𝑓
, 𝑝∗)

The iterations of the map near the desired orbit are then
observed, and the local properties of this chosen periodic
orbit are obtained. To do so, the map is first locally lin-
earized, yielding a linear approximation of 𝑃 near 𝜉∗

𝑓
and

𝑝∗, as

𝜉𝑘+1 ≈ 𝜉∗
𝑓
+ 𝐿𝑘(𝜉𝑘 − 𝜉∗

𝑓
) + 𝐯𝑘(𝑝𝑘 − 𝑝∗) (20)

or

Δ𝜉𝑘+1 ≈ 𝐿𝑘Δ𝜉𝑘 + 𝐯𝑘Δ𝑝𝑘 (21)

where

Δ𝜉𝑘 = 𝜉𝑘 − 𝜉∗
𝑓
, Δ𝑝𝑘 = 𝑝𝑘 − 𝑝∗

𝐿𝑘 = 𝜕𝑃 (𝜉∗
𝑓
, 𝑝∗)

/
𝜕𝜉𝑘 , 𝐯𝑘 = 𝜕𝑃 (𝜉∗

𝑓
, 𝑝∗)

/
𝜕𝑝𝑘

The stable and unstable eigenvalues, 𝜆s,𝑘 and 𝜆u,𝑘 satisfying|𝜆s,𝑘| < 1 < |𝜆u,𝑘|, can be calculated from the Jacobian 𝐿𝑘.
Let𝑀s and𝑀u be the stable andunstablemanifolds,whose
directions are specified by the eigenvectors 𝑒s,𝑘 and 𝑒u,𝑘 that
are associated with 𝜆s,𝑘 and 𝜆u,𝑘, respectively. If 𝑔s,𝑘 and 𝑔u,𝑘
are the basis vectors defined by

𝐠⊤s,𝑘𝐞s,𝑘 = 𝐠⊤u,𝑘𝐞u,𝑘 = 1

𝐠⊤s,𝑘𝐞u,𝑘 = 𝐠⊤u,𝑘𝐞s,𝑘 = 0

then the Jacobain 𝐿𝑘 can be expressed as

𝐿𝑘 = 𝜆u,𝑘𝐞u,𝑘𝐠⊤u,𝑘 + 𝜆s,𝑘𝐞s,𝑘𝐠⊤s,𝑘 (22)

To start the parametric variation control scheme, one
may open a window covering the target equilibrium, and
wait until the system orbit travels into the window (i.e., till
𝜉𝑘 falls close enough to 𝜉∗

𝑓
). Due to the ergodicity of chaos,

this is always possible. To that end, the nominal value of
the parameter 𝑝𝑘 is adjusted by a small amount,Δ𝑝𝑘, using
a control formula given below. In so doing, both the loca-
tion of the orbit and its stable manifold are changed, such
that the next iteration, represented by 𝜉𝑘+1 in the surface of
cross section, is forced toward the local stable manifold of
the original equilibrium point. Since the system has been
linearized, this control action is usually unable to bring
the moving orbit to the target at one iteration step. As
a matter of fact, the controlled orbit will leave the small
neighborhood of the equilibrium, and continue to wander
chaotically as if there was no control on it at all. However,
since the chaotic attractor has a dense set of unstable pe-
riodic orbits embedded within it, sooner or later the orbit
returns to the window again, but would be closer to the
target due to the control effect. Then, the next cycle of it-
eration is applied, with an even smaller control action, to
nudge the orbit to move toward the target.

For the case of a saddle-node equilibrium target, this
control procedure is illustrated by Figure 15.

Now, suppose that 𝜉𝑘 has approached sufficiently close
to 𝜉𝑓 , so that (eq. 20) holds. For the next iteration, 𝜉𝑘+1,
to fall onto the local stable manifold of 𝜉∗

𝑓
, the parameter
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Figure 15. Schematic diagram for the parametric variation con-
trol method.

𝑝𝑘 = 𝑝∗ + Δ𝑝𝑘 has to be chosen such that

𝐠⊤u,𝑘 Δ𝜉𝑘+1 = 𝐠⊤u,𝑘 (𝜉𝑘+1 − 𝜉∗
𝑓
) = 0

This simplymeans that the direction of the next iteration is
perpendicular to the direction of the current local unstable
manifold. For this purpose, taking the inner product of
equation 21 with 𝑔𝑢,𝑘 and using equation 22 yields

Δ𝑝𝑘 = −𝜆u,𝑘
𝐠⊤u,𝑘Δ𝜉𝑘
𝐠⊤u,𝑘𝐯𝑘

(23)

where it is assumed that 𝑔⊤u,𝑘𝑣𝑘 ≠ 0. This is the control for-
mula for determining the variations of the adjustable sys-
tem parameter 𝑝 at each step, 𝑘 = 1, 2,…. The controlled
orbit thus is expected to approach 𝜉∗

𝑓
at a geometrical

rate, 𝜆s.
Note that this calculated Δ𝑝𝑘 is used to adjust the pa-

rameter 𝑝 only if Δ𝑝𝑘 ≤ Δ𝑝max. When Δ𝑝𝑘 > Δ𝑝max, however,
one should setΔ𝑝𝑘 = 0. Also, when 𝜉𝑘+1 falls on a local stable
manifold of 𝜉∗

𝑓
, one setΔ𝑝𝑘 = 0, because the stablemanifold

would lead the orbit directly to the target.
Note also that the above derivation is based on the as-

sumption that the Poincaré map, 𝑃 , always possesses a
stable and an unstable direction (saddle-type orbits). This
may not be the case in many systems, particularly those
with higher periodic orbits. Moreover, it is necessary that
the number of accessible parameters for control is at least
equal to the number of unstable eigenvalues of the periodic
orbit to be stabilized. In particular, when some of such key
system parameters are unaccessible, the algorithm is not
applicableor has to bemodified. Also, if a systemhasmulti-
attractors, the system orbitmay never return to the opened
window but, instead, move to another nontarget (attract-
ing) limit set. In addition, the technique is successful only
if the control is applied after the system orbit moves into
the small window covering the target orbit, over which the
local linear approximation is still valid. In this case, the
waiting time can be quite long for some chaotic systems.
To improve this situation, a method called targeting may
help persuade the system dynamics to quickly approach

the region of control. While this algorithm is effective, it
generally requires good knowledge of the equations gov-
erning the system, so that computing Δ𝑝𝑘 by (eq. 23) is
possible. In the case where only time series data from the
system are available, the delay-coordinate technique may
be used to construct a faithful dynamical model for control
(25).

Engineering Feedback Controls. From a control theoretic
point of view, if only suppression of chaos is concerned,
chaos control may be considered as a particular nonlinear
control problem, and so may not be much harder than con-
ventional nonlinear systems control. This was not clear a
few years ago, however, since even if chaos could be con-
trolled was questionable in the old days.

A distinctive characteristic of control engineering is
that it always employs some kind of feedback mechanism.
In fact, feedback is pervasive in modern control theories
and technologies. For instance, the parametric variation
control method discussed above is a special type of feed-
back control method by its very nature. In engineering con-
trol systems, conventional feedback controllers are used
to be designed for non-chaotic systems. In particular, lin-
ear feedback controllers are typically designed for linear
systems. It has been widely experienced that with care-
ful designs of various conventional controllers, controlling
chaotic systems using feedback strategies is not only pos-
sible but indeed quite successful. One basic reason for the
success is that chaotic systems, although nonlinear and
sensitive to initial conditions with complex dynamical be-
haviors, belong to deterministic systems without stochas-
tic components or random parameters.

Some Features of Feedback Control. Feedback is one of
the most fundamental principles prevalent in the world.
The idea of using feedback, originated from Isaac Newton
andGottfried Leibniz some 300 years ago, has been applied
in various forms to natural science andmodern technology.

One basic feature of conventional feedback control is,
while achieving target tracking, that it can guarantee the
stability of the controlled system even if the original uncon-
trolled system is unstable. This implies its intrinsic robust-
ness against external disturbances or internal variations
to a certain extent, which is desirable and often necessary
for the well performance of a control system. The intu-
ition of feedback control always consuming strong control
energy perhaps lead to a false impression that feedback
mechanism may not be suitable for chaos control due to
the extreme sensitive nature of chaos. However, feedback
control under certain optimality criteria, such as a min-
imum control energy requirement, can provide the best
possible performance including the lowest control energy
consumption. This is not only supported by theory but also
confirmed by experiments with comparison.

Another advantage of using feedback control is that it
normally does not change the structure and parameters
of the given system and, whenever the feedback is dis-
connected, the given system retains the original form and
dynamics without modification. In most engineering ap-
plications, the system parameters are not accessible or not
allowed for direct tuning and modifying. In such cases,
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parameter variation method cannot be used, but feedback
control provides a practical approach.

An additional advantage of feedback control is its
automatic fashion in processing control tasks without
further human interference after being designed and
implemented. As long as a feedback controller is correctly
designed to satisfy the stability criteria and performance
specifications, it works off hand. This is important for au-
tomation, reducing the dependence on human operator’s
skills and avoiding human errors in monitoring control.

A shortcoming of feedback control methods employing
tracking errors is the explicit or implicit use of reference
signals. This has never been a problem in conventional
feedback control of non-chaotic systems where the refer-
ence signals are always some designated, well-behaved
ones. However, in chaos control, typically a reference sig-
nal is an unstable equilibrium or unstable limit cycle,
which is difficult if not impossible to be implemented phys-
ically as a reference input. This critical issue has stimu-
lated some new research efforts, for instance, to use an
auxiliary reference as control input in a self-tuning feed-
back manner.

Engineering feedback control approaches have seen an
alluring future inmore advanced theories and applications
in controlling complex dynamics. Utilization of feedback is
among the most inspiring concepts that engineering mind
has ever contributed to modern sciences and advanced
technologies.

A Typical Feedback Control Problem. Only the simple
tracking control problem of suppressing chaos is discussed
here for illustration.

A general feedback approach to controlling a dynamical
system, not necessarily chaotic nor even nonlinear, can be
illustrated by starting from the following general form of
an 𝑛-dimensional control system:

�̇�(𝑡) = 𝐟(𝐱, 𝐮, 𝑡) , 𝐱(0) = 𝐱0 (24)

where 𝐱(𝑡) is the system state, 𝐮 is the controller, 𝐱0 is
a given initial state, and 𝐟 is a piecewise continuous or
smooth nonlinear function.

Given a reference signal, 𝐫(𝑡), which can be either a con-
stant (set point) or a function (time-varying trajectory),
the automatic feedback control problem is to design a con-
troller in the following state-feedback form:

𝐮(𝑡) = 𝐠(𝐱, 𝑡) (25)

where 𝐠 is generally a piecewise continuousnonlinear func-
tion, such that the feedback-controlled system

�̇�(𝑡) = 𝐟
(
𝐱, 𝐠(𝐱, 𝑡), 𝑡

)
(26)

can achieve the goal of tracking:

lim
𝑡→∞

|| 𝐱(𝑡) − 𝐫(𝑡) || = 0 (27)

For discrete-time systems, the problemandnotation are
similar. More precisely, for a system

𝐱𝑘+1 = 𝐟𝑘(𝐱𝑘,𝐮𝑘) (28)

Figure 16. Configuration of a general feedback control system.

with a given target trajectory {𝐫𝑘} and initial state 𝐱0, find
a (nonlinear) controller

𝐮𝑘 = 𝐠𝑘(𝐱𝑘) (29)

to achieve the tracking-control goal:

lim
𝑘→∞

|| 𝐱𝑘 − 𝑟𝑘 || = 0 (30)

A closed-loop continuous-time feedback control system
has a configuration as shown in Figure 16, where 𝐞𝐱 ∶=
𝐫 − 𝐱 is the tracking error, 𝐟 is the given system, and 𝐠 is
the feedback controller to be designed, in which 𝐟 and 𝐠
can be either linear or nonlinear. In particular, for a linear
system in the state-space form in connection with a linear
state-feedback controller, namely,

�̇� = 𝐴 𝐱 + 𝐵 𝐮 = 𝐴 𝐱 + 𝐵𝐾c

(
𝐫 − 𝐱

)
,

where 𝐾c is a constant control gain matrix to be deter-
mined, the closed-loop configuration is shown in Figure 17.

A Control Engineer’s Perspective. In controllers design,
particularly in finding a nonlinear controller for a system,
it is important to emphasize that the designed controller
should be (much) simpler than the given system to make
sense of the world.

For instance, suppose that one wants to find a nonlin-
ear controller, 𝑢(𝑡), in the continuous-time setting, to guide

the state vector 𝐱(𝑡) =
[
𝑥1(𝑡),… , 𝑥𝑛(𝑡)

]⊤
of a given nonlinear

control system:

⎧⎪⎪⎨⎪⎪⎩

�̇�1(𝑡) = 𝑥2(𝑡)
�̇�2(𝑡) = 𝑥3(𝑡)
⋮

�̇�𝑛(𝑡) = 𝑓
(
𝑥1(𝑡),… , 𝑥𝑛(𝑡)

)
+ 𝑢(𝑡)

to a target state, 𝑦, namely,

𝐱(𝑡) → 𝐲 as 𝑡 → ∞ .

Figure 17. Configuration of a state feedback control system.
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It is then mathematically straightforward to use the “con-
troller”

𝑢(𝑡) = −𝑓
(
𝑥1(𝑡),… , 𝑥𝑛(𝑡)

)
+ 𝑘c

(
𝑥𝑛(𝑡) − 𝑦𝑛

)
with an arbitrary constant 𝑘c < 0. This controller leads to

�̇�𝑛(𝑡) = 𝑘c

(
𝑥𝑛(𝑡) − 𝑦𝑛

)
which yields 𝑒𝑛(𝑡) ∶= 𝑥𝑛(𝑡) − 𝑦𝑛 → 0 as 𝑡 → ∞. Overall, it re-
sults in a completely controllable linear system, so that
𝐱(𝑡) → 𝐲 as 𝑡 → ∞.

Another example is that for the control system

�̇�(𝑡) = 𝐟
(
𝐱(𝑡), 𝑡

)
+ 𝐮(𝑡) ,

use

𝐮(𝑡) = −𝐟(𝐱(𝑡), 𝑡) + �̇�(𝑡) +𝐾
(
𝐱(𝑡) − 𝐲(𝑡)

)
with a stable constant gainmatrix𝐾, to drive its trajectory
to the target 𝐲(𝑡) directly.

This kind of “design,” however, is unimplementable, be-
cause the controller is even more complicated than the
given system. Physically, it needs to cancel the nonlinear
elements in the given system, which means to remove part
of the given machine, and then put a new part into the
given system, which will change the given system to an-
other one.

In the discrete-time setting, for a given nonlinear sys-
tem, 𝐱𝑘+1 = 𝐟𝑘(𝐱𝑘) + 𝐮𝑘, one may also find a similar nonlin-
ear feedback controller, or even simpler, use 𝐮 = −𝐟𝑘(𝐱𝑘) +
𝐠𝑘(𝐱𝑘) to achieve any desired dynamics satisfying 𝐱𝑘+1 =
𝐠𝑘(𝐱𝑘) in just one step!

Simple “mathematical tricks” like these are certainly
not of any engineering design, nor any valuable method-
ology, for any real-world application other than illusive
computer simulations.

Therefore, in designing a feedback controller, it is very
important to come out with a simplest possible working
controller: If a linear controller can be designed to do the
job, use a linear controller; otherwise, try the simplest
possible nonlinear controllers (starting, for example, from
piecewise linear or quadratic controllers). Whether or not
can one find a simple, physically meaningful, easily im-
plementable, low-cost, and effective controller for a desig-
nated control task can be quite technical, which relies on
the designer’s theoretical background and practical expe-
rience.

A General Approach to Feedback Control of Chaos. To
outline the basic idea of a general feedback approach to
chaos suppression and tracking control, consider system
(eq. 24) that is now assumed to be chaotic and possess an
unstable periodic orbit (or equilibrium), �̄�, of period 𝑡p > 0,
namely, �̄�(𝑡 + 𝑡p) = �̄�(𝑡), 𝑡0 ≤ 𝑡 < ∞. The task is to design a
feedback controller in the form of equation 25, such that
the tracking control goal (eq. 26), with 𝐫 = �̄� therein, is
achieved.

Since the target periodic orbit �̄� is itself a solution of the
original system, it satisfies

̇̄𝐱 = 𝐟(�̄�, 𝑡) (31)

Subtracting equation 31 from equation 24 yields the error
dynamics:

�̇�𝐱 = 𝐟𝐞(𝐞𝐱, ̄𝑚𝑎𝑡ℎ𝑏𝑓𝑥, 𝑡) (32)

where

𝐞𝐱(𝑡) = 𝐱(𝑡) − �̄�(𝑡) , 𝐟𝐞(𝐞𝐱, �̄�, 𝑡) = 𝐟
(
𝐱, 𝐠(𝐱, �̄�(𝑡), 𝑡)

)
− 𝐟(�̄�, 𝑡)

Here, it is important to note that in order to perform
correct stability analysis later on, in the error dynamical
system (eq. 32) the function 𝐟𝐞 must not explicitly contain 𝐱;
if so, 𝐱 should be replaced by 𝐞𝐱 + �̄�. This is because system
(eq. 32) should only contain the dynamics of 𝐞𝐱 but not 𝐱,
while the system may contain �̄� that merely is a specified
time function but not a system variable.

Thus, the design problem becomes to determine the con-
troller, 𝐮(𝑡), such that

lim
𝑡→∞

|| 𝐞𝐱(𝑡) || = 0 (33)

which implies that the goal of tracking control described
by equation 27 is achieved.

It is clear from equations 32 and 33 that if zero is an
equilibrium of the error dynamical system (eq. 32), then
the original control problem has been converted to the
asymptotic stability problem for this equilibrium. As a re-
sult, Lyapunov stability methods and theorems can be di-
rectly applied or modified to obtain rigorous mathematical
techniques for the controllers design, as discussed in more
detail in the following section.

Chaos Control via Lyapunov Methods. The key in apply-
ing the Lyapunov second method to a nonlinear dynamical
system is to construct a Lyapunov function that describes
some kind of energy governing the system motion. If this
function is constructed appropriately, so that it decays
monotonically to zero as time evolves, then the system
motion, which falls on the surface of this decaying func-
tion, will be asymptotically stabilized to zero. A controller,
then, may be designed to force this Lyapunov function of
the system, stable or not originally, to decay to zero. As
a result, the stability of tracking error equilibrium, hence
the original goal of trajectory tracking, is achieved.

For a chaos control problem with a target trajectory �̄�,
typically an unstable periodic solution of the given system,
a design can be carried out by determining the controller
𝑢(𝑡) via the Lyapunov second method such that the zero
equilibriumof the error dynamics, 𝐞𝐱 = 0, is asymptotically
stable. In this approach, since a linear feedback controller
alone is usually not sufficient for the control of a nonlinear
system, particularly a chaotic one, it is desirable to find
some criteria for the design of simple nonlinear feedback
controllers.

In so doing, consider the feedback controller candidate
of the form

𝐮(𝑡) = 𝐾c(𝐱 − �̄�) + 𝐠(𝐱 − �̄�,𝐤c, 𝑡) (34)

where 𝐾c is a constant matrix, which can be zero, and 𝐠
is a simple nonlinear function with constant parameters
𝐤𝑐 , satisfying 𝐠(0, 𝑘𝑐, 𝑡) = 0 for all 𝑡 ≥ 𝑡0. Both 𝐾c and 𝐤c are
determined in the design. Adding this controller to the
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given system gives

�̇� = 𝐟(𝐱, 𝑡) + 𝐮 = 𝐟(𝐱, 𝑡) +𝐾c(𝐱 − �̄�) + 𝐠(𝐱 − �̄�,𝐤c, 𝑡) (35)

The controller is required to drive the orbit of the controlled
system (eq. 35) to approach the target trajectory �̄�.

The error dynamics (eq. 32) now takes the following
form:

�̇�𝑥 = 𝐟𝐞(𝐞𝐱, 𝑡) +𝐾c𝐞𝑥 + 𝐠(𝑒𝑥,𝐤c, 𝑡) (36)

where

𝐞𝐱 = 𝐱 − �̄� , 𝐟𝐞(𝐞𝐱, 𝑡) = 𝐟(𝑒𝐱 + �̄�, 𝑡) − 𝐟(�̄�, 𝑡)

It is clear that 𝐟𝐞(0, 𝑡) = 0 for all 𝑡 ∈ [𝑡0,∞), namely, 𝐞𝑥 = 0
is an equilibrium of the tracking-error dynamical system
(eq. 36).

Next, Taylor expand the right-hand side of the con-
trolled system (eq. 36) at 𝐞𝐱 = 0 (i.e., at 𝐱 = �̄�) and remem-
ber that the nonlinear controller will be designed to satisfy
𝐠(0, 𝐤c, 𝑡) = 0. Then, the error dynamics are reduced to

�̇�𝐱 = 𝐴(�̄�, 𝑡)𝐞𝐱 + 𝐡(𝐞𝐱, 𝐾c,𝐤c, 𝑡) (37)

where

𝐴(�̄�, 𝑡) =
[
𝜕𝐟𝐞(𝑒𝐱, 𝑡)
𝜕𝐞𝐱

]
𝐞𝐱=0

and 𝐡(𝐞𝐱, 𝐾c,𝐤c, 𝑡) contains the rest of the Taylor expansion.
The design is then to determine both the constant con-

trol gains 𝐾c and 𝐤c as well as the nonlinear function
𝐠(⋅, ⋅, 𝑡), based on the linearized model (eq. 37), such that
𝐞𝐱 → 0 as 𝑡 → ∞. When this controller is applied to the orig-
inal system, the goal of both chaos suppression and target
tracking will be achieved.

For illustration, two controllability conditions estab-
lished based on the boundedness of the chaotic attractors
as well as the Lyapunov first and second methods, respec-
tively, are summarized below (5).

In system (eq. 37), suppose that 𝐡(0, 𝐾c, 𝑡) = 0 and
𝐴(�̄�, 𝑡) = 𝐴 is a constantmatrix with eigenvalues hav-
ing negative real parts, and let 𝑃 be the positive defi-
nite and symmetric matrix solution of the Lyapunov
equation:

𝑃𝐴 + 𝐴⊤𝑃 = −𝐼

where 𝐼 is the identity matrix. If 𝐾c is designed to
satisfy

||𝐡(𝐞𝐱, 𝐾c, 𝐤c, 𝑡) || ≤ 𝑐 || 𝐞𝐱||
for a constant 𝑐 < 1

2
𝜆max(𝑃 ) for 𝑡0 ≤ 𝑡 < ∞, where

𝜆max(𝑃 ) is the maximum eigenvalue of 𝑃 , then the
controller 𝐮(𝑡), defined in equation 34, will drive the
orbits 𝐱 of the controlled system (eq. 35) to the target
trajectory, �̄�, as 𝑡 → ∞.

For system (eq. 37), since �̄� is 𝑡p periodic, associated
with the matrix 𝐴(�̄�, 𝑡), there always exist a 𝑡p periodic
nonsingular matrix 𝑀(�̄�, 𝑡) and a constant matrix 𝑄, such

that the fundamental matrix (consisting of 𝑛 independent
solution vectors) has the expression

Φ(�̄�, 𝑡) = 𝑀(�̄�, 𝑡) 𝑒𝑡𝑄

The eigenvalues of the constant matrix 𝑒𝑡p𝑄 are called the
Floquet multipliers of the system matrix 𝐴(�̄�, 𝑡).

In system (eq. 37), assume that 𝐡(0, 𝐾c,𝐤c, 𝑡) = 0 and
𝐡(𝐞𝐱, 𝐾c, 𝐤c, 𝑡) and 𝜕𝐡(𝐞𝐱, 𝐾c,𝐤c, 𝑡)∕𝜕𝐞𝐱 both are contin-
uous in a bounded neighborhood of the origin in 𝑅𝑛.
Assume also that

lim||𝐞𝐱||→0

|| 𝐡(𝑒𝐱, 𝐾c,𝐤c, 𝑡) |||| 𝑒𝐱|| = 0

uniformly with respect to 𝑡 ∈ [𝑡0,∞). If the nonlinear
controller (eq. 34) is designed such that all Floquet
multipliers {𝜆𝑖} of the system matrix 𝐴(�̄�, 𝑡) satisfy||| 𝜆𝑖(𝑡) ||| < 1 , 𝑖 = 1,… , 𝑛 , ∀ 𝑡 ∈ [𝑡0,∞)

then the controller will drive the chaotic orbit 𝐱 of the
controlled system (eq. 35) to the target trajectory, �̄�,
as 𝑡 → ∞.

Various Feedback Methods for Chaos Control. In addi-
tion to the general nonlinear feedback control approach
described above, adaptive and intelligent controls are two
large classes of engineering feedback control methods
that have been shown to be effective for chaos control.
Other successful feedback control methods include optimal
control, sliding-mode, and robust controls (e.g., 𝐻∞ con-
trol), digital controls, occasionally proportional and time-
delayed feedback controls, and so on. Linear feedback con-
trols are also useful, but generally for simple chaotic sys-
tems. Various variants of classical control methods that
have demonstrated great potentials for controlling chaos
include distortion control, dissipative energy method, ab-
sorber as a controller, external weak periodic forcing,
Kolmogorov–Sinai entropy reduction, stochastic controls,
chaos filtering, and so on (5).

Finally, it should be noted that there are indeed many
valuable ideas and methodologies that, by their nature
and forms, cannot be well classified into any of the afore-
mentioned categories, not to mention that many novel ap-
proaches are still emerging, improving, and developing (5).

5. CONTROLLING BIFURCATIONS

Ordering chaos via bifurcations control has never been a
subject in conventional control studies. This seems to be a
unique approach valid only for those nonlinear dynamical
systems that possess some special characteristics with a
route to chaos from bifurcations.

5.1. Why Bifurcation Control

Bifurcation and chaos are often twins and, in particu-
lar, period-doubling bifurcation is a route to chaos. Hence,
by monitoring and managing bifurcations, one can expect
achieving certain type of control over chaotic dynamics.
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Even bifurcation control itself is very important. In
some physical systems such as a stressed system, delay-
ing bifurcations offers an opportunity to obtain stable op-
erating conditions for the machine beyond the margin of
operability in a normal situation. Also, relocating and en-
suring stability of bifurcated limit cycles can be applied
to some conventional control problems, such as thermal
convection, to obtain better results. Other examples in-
clude stabilization of some critical situations for tethered
satellites, magnetic bearing systems, voltage dynamics of
electric power systems, and compressor stall in gas turbine
jet engines (5).

Bifurcation control essentially means to design a con-
troller for a system to obtain some desired behaviors such
as stabilization of bifurcated dynamics, to modify some
properties of bifurcations, or to tame chaos via controlling
bifurcations. Typical examples include delaying the onset
of an inherent bifurcation, relocating an existing bifurca-
tion, changing the shape or type of a bifurcation, introduc-
ing a bifurcation at a desired parameter value, stabilizing
(at least locally) a bifurcated periodic orbit, optimizing the
performance near a bifurcation point for a system, or a
combination of some of these. Such tasks have practical
values and great potentials in many nontraditional real-
world applications.

5.2. Bifurcation Control via Feedback

Bifurcations can be controlled by differentmethods, among
which the feedback strategy is especially effective.

For illustration, consider a general discrete-time para-
metric nonlinear system:

𝐱𝑘+1 = 𝐟
(
𝐱𝑘; 𝑝

)
, 𝑘 = 0, 1,… (38)

where 𝐟 is assumed to be sufficiently smoothwith respect to
both the state 𝐱𝑘 ∈ 𝑅𝑛 and the parameter 𝑝 ∈ 𝑅, and has an
equilibrium at (�̄�, �̄�) = (0, 0). In addition, assume that the
Jacobian of the linearized system of equation 38, evaluated
at the equilibrium that is the continuous extension of the
origin, has an eigenvalue 𝜆1(𝑝) satisfying 𝜆1(0) = −1 and
𝜆′(0) ≠ 0, while all remaining eigenvalues have magnitude
strictly less than 1. Under these conditions, the nonlinear
function has a Taylor expansion:

𝐟
(
𝐱; 𝑝

)
= 𝐽 (𝑝) 𝐱 +𝑄(𝐱, 𝑥; 𝑝) + 𝐶(𝐱, 𝐱, 𝐱; 𝑝) +⋯

where 𝐽 (𝑝) is the parametric Jacobian, and 𝑄 and 𝐶 are
quadratic and cubic terms in symmetric bilinear and tri-
linear forms, respectively.

This system has the following property (8): A period-
doubling orbit can bifurcate from the origin of system (eq.
38) at 𝑝 = 0; the period-doubling bifurcation is supercritical
and stable if 𝛽 < 0 but is subcritical and unstable if 𝛽 > 0,
where

𝛽 = 2 𝐥⊤
[
𝐶0(𝐫, 𝐫, 𝐫; 𝑝) − 2𝑄0

(
𝐫, 𝐽−

0 𝑄0(𝐫, 𝐫; 𝑝)
) ]

in which 𝐥⊤ is the left eigenvector and 𝐫 is the right
eigenvector of 𝐽 (0), respectively, both associated with the
eigenvalue −1, and

𝑄0 = 𝐽 (0)𝑄(𝐱, 𝐱; 𝑝) +𝑄
(
𝐽 (0)𝐱, 𝐽 (0)𝐱; 𝑝

)
𝐶0 = 𝐽 (0)𝐶(𝐱, 𝐱, 𝐱; 𝑝)

+2𝑄
(
𝐽 (0)𝐱, 𝑄(𝐱, 𝐱; 𝑝)

)
+𝐶

(
𝐽 (0)𝐱, 𝐽 (0)𝐱, 𝑄(𝐱, 𝐱; 𝑝); 𝑝

)
𝐽−
0 =

[
𝐽⊤(0)𝐽 (0) + 𝐥 𝐥⊤

]−1
𝐽⊤(0)

Now, consider system (eq. 38) with a control input:

𝐱𝑘+1 = 𝐟
(
𝐱𝑘; 𝑝, 𝑢𝑘

)
, 𝑘 = 0, 1,…

which is assumed to satisfy the same assumptions when
𝐮𝑘 = 0. If the critical eigenvalue −1 is controllable for the
associated linearized system, then there is a feedback con-
troller, 𝐮𝑘(𝐱𝑘), containing only third-order terms in the
components of 𝐱𝑘, such that the controlled system has a
locally stable bifurcated period-two orbit for 𝑝 near zero.
Also, this feedback stabilizes the origin for 𝑝 = 0. If, how-
ever, −1 is uncontrollable for the associated linearized sys-
tem, then generically there is a feedback controller, 𝐮𝑘(𝐱𝑘),
containing only second-order terms in the components of
𝐱𝑘, such that the controlled system has a locally stable
bifurcated period-two orbit for 𝑝 near 0. Moreover, this
feedback controller stabilizes the origin for 𝑝 = 0 (8).

5.3. Bifurcation Control via Harmonic Balance

For continuous-time systems, limit cycles in general can-
not be expressed in analytic forms, and so limit cycles cor-
responding to period-two orbits in the period-doubling bi-
furcation diagramhave to be approximated in analysis and
applications. In this case, the harmonic balance approxi-
mation technique (14) can be applied, which is also useful
for controlling bifurcations such as delaying or stabilizing
the onset of period-doubling bifurcations (26).

Consider a feedback control system in the Lur’e form
described by

𝐟 ∗
(
𝐠◦𝐲 +𝐾c 𝑦

)
+ 𝐲 = 0

where ∗ and ◦ represent the convolution and composition
operations, respectively, as shown in Figure 18.

First, suppose that a system 𝑆 = 𝑆(𝐟 , 𝐠) is given as
shown in the figure without the feedback controller, 𝐾c.
Assume also that two system parameter values, 𝑝h and 𝑝c,
are specified, which define a Hopf bifurcation and a su-
percritical predicted period-doubling bifurcation, respec-
tively. Moreover, assume that the system has a family of
predicted first-order limit cycles, which are stable within
the range of 𝑝h < 𝑝 < 𝑝c.

Under this framework, the objective now is to de-
sign a feedback controller, 𝐾c, added to the system as
shown in Figure 18, such that the controlled system,
𝑆∗ = 𝑆∗

(
𝐟 , 𝐠, 𝐾c

)
, has the following properties:

(i) 𝑆∗ has a Hopf bifurcation at 𝑝∗h = 𝑝h.
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Figure 18. A feedback system in the Lur’e form.

(ii) 𝑆∗ has a supercritical predicted period-doubling bi-
furcation for 𝑝∗c > 𝑝c.

(iii) 𝑆∗ has a one-parameter family of stable predicted
limit cycles for 𝑝∗h < 𝑝 < 𝑝∗c .

(iv) 𝑆∗ has the same set of equilibria as 𝑆.

Only the one-dimensional case is discussed here for il-
lustration. First, one can design a washout filter with the
transfer function 𝑠∕(𝑠 + 𝑎), where 𝑎 > 0, such that it pre-
serves the equilibria of the given nonlinear system. Then,
note that any predicted first-order limit cycle can be well
approximated by

𝑦(1)(𝑡) = 𝑦0 + 𝑦1 sin(𝜔𝑡)

In so doing, the controller transfer function becomes

𝐾c(𝑠) = 𝑘c

𝑠
(
𝑠2 + 𝜔2(𝑝h)

)
(𝑠 + 𝑎)3

where 𝑘c is the constant control gain and 𝜔(𝑝h) is the fre-
quency of the limit cycle emerged from the Hopf bifur-
cation at the point 𝑝 = 𝑝h. This controller also preserves
the Hopf bifurcation at the same point. More importantly,
since 𝑎 > 0, the controller is stable, so by continuity in a
small neighborhood of 𝑘c, the Hopf bifurcation of 𝑆∗ not
only remains supercritical but also has a supercritical pre-
dicted period-doubling bifurcation (say, at 𝑝c(𝑘c), close to
𝑝h) and a one-parameter family of stable predicted limit
cycles for 𝑝h < 𝑝 < 𝑝c(𝑘c).

The design is then to determine 𝑘c such that the pre-
dicted period-doubling bifurcation can be delayed to a de-
sired parameter value 𝑝∗c . For this purpose, the harmonic
balance approximation method (14) is useful, which leads
to a solution of 𝑦(1) by obtaining values of 𝑦0, 𝑦1, and 𝜔
(they are functions of 𝑝, depending on 𝑘c and 𝑎, within the
range 𝑝h < 𝑝 < 𝑝∗c). The harmonic balance also yields con-
ditions, in terms of 𝑘c, 𝑎, and a new parameter, for the
period-doubling prediction to occur at the point 𝑝∗c . To this
end, the controller design can be completed by choosing a
suitable value for 𝑘c to satisfy such conditions (26).

5.4. Controlling Multiple Limit Cycles

As indicated by the Hopf bifurcation theorem, limit cycles
are frequently associated with bifurcations. In fact, one
type of degenerate (or singular) Hopf bifurcations (when
some of the conditions stated in the Hopf theorems are not
satisfied) determines the birth of multiple limit cycles un-
der system parameters variation. Hence, the appearance
of multiple limit cycles can be controlled by managing the
corresponding degenerate Hopf bifurcations. This task can

be conveniently accomplished in the frequency domain set-
ting.

Again, consider the feedback system (eq. 15), which can
be illustrated by a variant of Figure 18. For harmonic ex-
pansion of the system output, 𝐲(𝑡), the first-order formula
is (14)

𝐲1 = 𝜃 𝐫 + 𝜃3𝑧13 + 𝜃5𝐳15 +⋯

where 𝜃 is shown in Figure 12, 𝑟 is defined in equation
16, and 𝐳13,… , 𝑧1,2𝑚+1 are some vectors orthogonal to 𝐫, 𝑚 =
1, 2,…, given by explicit formulas (14).

Observe that for a given value of �̂�, defined in the graph-
ical Hopf theorem, the SISO system transfer function sat-
isfies

𝐻(𝑗 �̂�) = 𝐻(𝑠) + (−𝛼 + 𝑗 𝛿𝜔)𝐻 ′(𝑠) + 1
2
(−𝛼 + 𝑗 𝛿𝜔)2𝐻 ′′(𝑠) +⋯

(39)

where 𝛿𝜔 = �̂� − 𝜔, with 𝜔 being the imaginary part of the
bifurcating eigenvalues, and 𝐻 ′(𝑠) and 𝐻 ′′(𝑠) are the first
and second derivatives of 𝐻(𝑠), defined in equation 15,
respectively. On the other hand, with the higher order ap-
proximations, the following equation of harmonic balance
can be derived:

[𝐻(𝑗 𝜔)𝐽 + 𝐼]
𝑚∑
𝑖=0

𝐳1,2𝑖+1𝜃2𝑖+1 = −𝐻(𝑗 𝜔)
𝑚∑
𝑖=1

𝐫1,2𝑖+1𝜃2𝑖+1

where 𝐳11 = 𝐫 and 𝐫1,2𝑚+1 = 𝐡𝑚, 𝑚 = 1, 2,…, in which 𝐡1 has
the formula shown in equation 16, and the others also have
explicit formulas (14).

In a general situation, the following equation has to be
solved:

[𝐻(𝑗 �̂�)𝐽 + 𝐼]
(
𝐫 𝜃 + 𝑧13 𝜃

3 + 𝐳15 𝜃5 +⋯
)

= −𝐻(𝑗 �̂�)
[
𝐡1 𝜃

3 + 𝐡2 𝜃
5 +⋯

]
. (40)

In so doing, by substituting equation 39 into equation 40,
one obtains the expansion

(𝛼 − 𝑗 𝛿𝜔) = 𝛾1 𝜃
2 + 𝛾2 𝜃

4 + 𝛾3 𝜃
6 + 𝛾4 𝜃

8 +𝑂(𝜃9) (41)

in which all the coefficients 𝛾𝑖, 𝑖 = 1, 2, 3, 4, can be calculated
explicitly (14). Then, taking the real part of equation 41
gives

𝛼 = −𝜎1 𝜃2 − 𝜎2 𝜃
4 − 𝜎3 𝜃

6 − 𝜎4 𝜃
8 −⋯

where 𝜎𝑖 = −ℜ{𝛾𝑖} are the curvature coefficients of the ex-
pansion.

To this end, notice thatmultiple limit cycles will emerge
when the curvature coefficients are varied near the value
zero, after alternating the signs of the curvature coeffi-
cients in increasing (or decreasing) order. For example, to
have four limit cycles in the vicinity of a type of degener-
ate Hopf bifurcation that has 𝜎1 = 𝜎2 = 𝜎3 = 0 but 𝜎4 ≠ 0 at
the criticality, the system parameters have to be varied in
such a way that, for example, 𝛼 > 0, 𝜎1 < 0, 𝜎2 > 0, 𝜎3 < 0,
and 𝜎4 > 0. This condition suggests a methodology for con-
trolling the birth of multiple limit cycles associated with
degenerate Hopf bifurcations.

One advantage of this methodology is that there is no
need to modify the feedback control path by adding any
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nonlinear components, in order to drive the system orbit
to a desired region: One can simply modify the system pa-
rameters, a kind of parametric variation control, accord-
ing to the expressions of the curvature coefficients, so as
to achieve the goal of controlling bifurcations and limit
cycles.

6. ANTICONTROL OF CHAOS

Anticontrol of chaos, in contrast to the main stream of
ordering or suppressing chaos, is to make a nonchaotic dy-
namical system chaotic, or to retain/enhance the existing
chaos of a chaotic system. Anticontrol of chaos as one of
the unique features of chaos control has emerged as a the-
oretically attractive and potentially useful new subject in
systems control theory and time-critical or energy-critical
high-performance applications.

6.1. Why Anticontrol of Chaos

Chaos has long been considered as a disaster phenomenon
and so is very fearsome to many. However, chaos “is dy-
namics freed from the shackles of order and predictabil-
ity.” Under good conditions or suitable control, it “permits
systems to randomly explore their every dynamical possi-
bility. It is exciting variety, richness of choice, a cornucopia
of opportunities” (27).

Today, chaos theory has been anticipated to be poten-
tially useful in many novel and time- or energy-critical
applications. In addition to those potential utilization of
chaos that mentioned earlier in the discussion of chaos
control, to name but a few more, it is worth mentioning
navigation in the multibody planetary system, secure in-
formation processing via chaos synchronization, dynamic
crisis management, critical decision-making in political,
economical, as well as military events, and so on In par-
ticular, it has been observed that a transition of a bio-
logical system’s state from being chaotic to being patho-
physiologically periodic can cause the so-called dynamical
disease, and so is undesirable. Examples of dynamical dis-
eases include cell counts in hematological disorder, stim-
ulant drug-induced abnormalities in time of the patterns
of brain enzymes, receptors, and animal explorations in
space, cardiac interbeat interval patterns in a variety of
cardiac disorders, the resting record in a variety of signal-
sensitive biological systems following desensitization, ex-
perimental epilepsy, hormone release patterns correlated
with the spontaneous mutation of a neuroendocrine cell to
a neoplastic tumor, prediction of immunological rejection
of heart transplants, electroencephalographic behaviors of
the human brain in the presence of neurodegenerative
disorder, neuroendocrine, cardiac, and electroencephalo-
graphic changes with aging, and imminent ventricular fib-
rillation in human subjects, and so on (28). Hence, preserv-
ing chaos in these cases is important and healthy, which
presents a real challenge for creative research on anticon-
trol of chaos (5).

6.2. Some Approaches to Anticontrolling Chaos

Anticontrol of chaos is a new research direction, which has
just started to develop. Different methods for anticontrol-
ling chaos are quite possible (5), but only two preliminary
approaches are presented here for illustration.

Preserving Chaos by Small Control Perturbations. Con-
sider an 𝑛-dimensional discrete-time nonlinear system:

𝐱𝑘+1 = 𝐟
(
𝐱𝑘, 𝑝, 𝑢𝑘

)
where 𝐱𝑘 is the system state, 𝑢𝑘 is a scalar-valued control
input, 𝑝 is a variable parameter, and 𝐟 is a locally invertible
nonlinear map. Assume that with 𝑢𝑘 = 0, the system orbit
behaves chaotically at some value of 𝑝, and that when 𝑝
increases and passes a critical value, 𝑝c, inverse bifurcation
emerges leading the chaotic state to becoming periodic.

Within the biological context, such a bifurcation is of-
ten undesirable: There are many cases where the loss of
complexity and the emergence of periodicity are associated
with pathology (dynamical disease). The question, then, is
whether it is possible (and, if so, how) to keep the system
state chaotic even if 𝑝 > 𝑝c, by using small control inputs,
{𝑢𝑘}.

It is known that there are at least three common bi-
furcations that can lead chaotic motions directly to low-
periodic attracting orbits: (i) crises, (ii) saddle-node type of
intermittency, and (iii) inverse period-doubling type of in-
termittency. Here, crises refer to a sudden change caused
by the collision of an attractor with an unstable periodic or-
bit; intermittency is a special route to chaos, where regular
orbital behavior is intermittently interrupted by a finite-
duration “burst,” in which the orbit behaves in a decidedly
different fashion; inverse period-doubling bifurcation has
a diagram in reverse form as that shown in Figure 13 (i.e.,
from chaos back to less and less bifurcating points, leading
back to a periodic motion), while the parameter remains
increasing.

In all these cases, one can identify a loss region, 𝐺,
which has the property that after the orbit falls into 𝐺,
it is rapidly drawn to a periodic orbit. Thus, a strategy to
retain chaos for 𝑝 > 𝑝𝑐 is to avoid this from happening by
successively iterating 𝐺 in such a way that

𝐺1 = 𝐟−1
(
𝐺, 𝑝, 0

)
𝐺2 = 𝑓−1

(
𝐺1, 𝑝, 0

)
= 𝐟−2

(
𝐺, 𝑝, 0

)
⋮

𝐺𝑚 = 𝐟−𝑚
(
𝐺, 𝑝, 0

)
As 𝑚 increases, the width of 𝐺𝑚 in the unstable direction(s)
has a general tendency to shrink exponentially. This sug-
gests the following control scheme (28):

Pick a suitable value of 𝑚, denoted 𝑚0. Assume that
the orbit initially starts from outside the region
𝐺𝑚0+1 ∪ 𝐺𝑚0

∪⋯ ∪ 𝐺1 ∪ 𝐺. If the orbit lands in 𝐺𝑚0+1
at iterate 𝓁, the control 𝑢𝓁 is applied to kick the orbit
out of 𝐺𝑚0

at the next iterate. Since 𝐺𝑚0
is thin, this

control can be very small. After the orbit is kicked
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out of 𝐺𝑚0
, it is expected to behave chaotically, until

it falls again into 𝐺𝑚0+1, and at that moment another
small control is applied, and so on. This procedure
can keep the motion chaotic.

Anticontrol of Chaos via State Feedback. An approach to
anticontrol of discrete-time systems can be made math-
ematically rigorous by means of applying the engineer-
ing feedback control strategy. This anticontrol technique
is first to make the Lyapunov exponents of the controlled
system either strictly positive, or arbitrarily assigned (pos-
itive, zero, and negative in any desired order), and then ap-
plying the simple mod-operations, which keeps the orbits
to remain bounded (5,29). This task can be accomplished
for any given higher dimensional discrete-time dynamical
system that could be originally nonchaotic or even asymp-
totically stable. The argument used is purely algebraic and
the design procedure is completely schematic, in which no
approximations are needed.

Specifically, consider a nonlinear dynamical system, not
necessarily chaotic nor unstable to start with, in the gen-
eral form of

𝐱𝑘+1 = 𝐟𝑘(𝐱𝑘) (42)

where 𝐱𝑘 ∈ 𝑅𝑛, 𝐱0 is given, and 𝑓𝑘 is assumed to be con-
tinuously differentiable, at least locally in the region of
interest.

The anticontrol problem for this dynamical system is to
design a linear state-feedback control sequence, 𝐮𝑘 = 𝐵𝑘𝐱𝑘,
with uniformly bounded constant control gain matrices,||𝐵𝑘||s ≤ 𝛾u < ∞, where || ⋅ ||s is the spectral norm for a ma-
trix, such that the output states of the controlled system,

𝐱𝑘+1 = 𝐟𝑘(𝐱𝑘) + 𝐮𝑘

behaves chaotically within a bounded region. Here, chaotic
behavior is in the mathematical sense of Devaney de-
scribed above, namely, the controlled map (i) is transitive,
(ii) has sensitive dependence on initial conditions, and (iii)
has a dense set of periodic solutions.

In the controlled system

𝐱𝑘+1 = 𝐟𝑘(𝐱𝑘) + 𝐵𝑘𝐱𝑘

let

𝐽𝑘(𝐱𝑘) = 𝐟 ′
𝑘
(𝐱𝑘) + 𝐵𝑘

be the system Jacobian, and let

𝑇𝑘(𝐱0) ∶= 𝑇𝑗 (𝐱0,… , 𝐱𝑘) = 𝐽𝑘(𝑥𝑘)⋯𝐽1(𝐱1)𝐽0(𝐱0) , 𝑘 = 0, 1, 2,…

Moreover, let 𝜇𝑘
𝑖
= 𝜇𝑖(𝑇 ⊤

𝑘
𝑇𝑘) be the 𝑖th eigenvalue of the 𝑘th

product matrix
[
𝑇 ⊤
𝑘
𝑇𝑘

]
, where 𝑖 = 1,… , 𝑛 and 𝑘 = 0, 1, 2,….

The first attempt is to determine the constant control
gain matrices, {𝐵𝑘}, such that the Lyapunov exponents of
the controlled system orbit can be arbitrarily assigned:

𝜆𝑖(𝐱0) = 𝜎𝑖 (arbitrarily given) , 𝑖 = 1,… , 𝑛

where each value 𝜎𝑖 may be positive, zero, or negative. It
turns out that this is possible under a natural condition

that all the Jacobians 𝐟 ′
𝑘
(𝐱𝑘) are uniformly bounded:

sup
0≤𝑘≤∞

|||||| 𝐟 ′𝑘(𝐱𝑘) |||||| ≤ 𝛾
f
< ∞ (43)

To come up with a design methodology, first observe

that if
{
𝜃(𝑘)𝑖

}𝑛

𝑖=1
are the singular values of thematrix 𝑇𝑘(𝐱0),

then 𝜃(𝑘)𝑖 ≥ 0 for all 𝑖 = 1,… , 𝑛 and 𝑘 = 0, 1,…, with the re-
lationship

𝜎𝑖 = lim
𝑘→∞

1
𝑘

ln 𝜃(𝑘)𝑖

(
for 𝜃(𝑘)𝑖 > 0

)
, 𝑖 = 1,… , 𝑛

Clearly, if 𝜃(𝑘)𝑖 = e(𝑘+1)𝜎𝑖 is used in the design, then all 𝜃(𝑘)𝑖

will not be zero for any finite values of 𝜎𝑖, for all 𝑖 = 1,… , 𝑛
and 𝑘 = 0, 1,…. Thus, 𝑇𝑘(𝐱0) is always nonsingular. Con-
sequently, a control-gain sequence {𝐵𝑘} can be designed
such that the singular values of the product matrix 𝑇𝑘(𝐱0)
are exactly equal to

{
𝑒𝑘𝜎𝑖

}𝑛

𝑖=1
: at the 𝑘th step, 𝑘 = 0, 1, 2,…,

one may choose the control gain matrix to be

𝐵𝑘 = − 𝐟 ′
𝑘
(𝐱𝑘) +

⎡⎢⎢⎢⎣
𝑒𝜎1

⋱

𝑒𝜎𝑛

⎤⎥⎥⎥⎦ , 𝑘 = 0, 1,…

where {𝜎𝑖}𝑛𝑖=1 are the desired Lyapunov exponents.
Actually, if the objective is only to have all the resulting

Lyapunov exponents of the controlled system orbit be finite
and strictly positive:

0 < 𝑐 ≤ 𝜆𝑖(𝐱0) < ∞ , 𝑖 = 1,… , 𝑛 (44)

then one can simply use

𝐵𝑘 =
(
𝛾
f
+ 𝑒𝑐

)
𝐼𝑛 , for all 𝑘 = 0, 1, 2,…

where the constants 𝑐 and 𝛾
f
are given in equations 44 and

43, respectively (29).
Finally, in conjunction with the above-designed con-

troller, that is,

𝐮𝑘 = 𝐵𝑘𝐱𝑘 =
(
𝛾
f
+ 𝑒𝑐

)
𝐱𝑘

anti-control is accomplished by imposing the mod-
operation onto the controlled system:

𝐱𝑘+1 = 𝐟𝑘(𝐱𝑘) + 𝐮𝑘 (mod 1)

This results in the expected chaotic system with trajecto-
ries remaining within a bounded region in the phase space
and, moreover, satisfying the aforementioned three basic
properties that together define discrete chaos.

This approach yields rigorous anticontrol of chaos for
any given discrete-time systems, including all higher di-
mensional, linear time-invariant systems, that is, with
𝐟𝑘(𝐱𝑘) = 𝐴 𝐱𝑘 in system (eq. 42), where the constant matrix
𝐴 can be arbitrary (even asymptotically stable).

Although 𝐮𝑘 = 𝐵𝑘𝐱𝑘 is a linear state-feedback controller,
the mod-operation is inherently nonsmooth. Recently,
other types of (smooth) feedback controllers have been de-
veloped for rigorous anticontrol of chaos, particularly for
continuous-time dynamical systems (30) and hyperchaotic
systems (31,32).
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