一位足够好的高龄诺贝尔奖获得者

陈关荣 (香港城市大学)

1982 年春, 我来到美国德克萨斯大学奥斯汀分校, 开始了博士留学生涯。我到校不久 便获知, 当时有两位诺贝尔奖获得者尚在校内任职任教: 获得 1977 年诺贝尔化学奖的 俄罗斯裔比利时籍化学家伊利亚·普里高津(Ilya R. Prigogine, 1917-2003)和获得 1979 年诺贝尔物理学奖的美国物理学家史蒂文·温伯格(Steven Weinberg, 1933-2021)。后来知道,历史上这间学校已经有六位诺贝尔奖获得者。我翌年转校离开之 后至今,他们又增加了七个获奖者,其中一位是本文要介绍的主人公--2019 年诺贝 尔化学奖获得者约翰·古迪纳夫(John Bannister Goodenough, 1922年7月25日— 2023年6月25日)。

图 1 约翰·古迪纳夫荣获 2019 年诺贝尔化学奖

古迪纳夫本人和他的英文名字一样,确实是"足够好"(Good enough)——你看他活到 101 岁,在 97 岁时获诺贝尔化学奖。他是目前诺贝尔奖最年长的一位得主,刷新了 2018 年美国贝尔实验室亚瑟·阿什金(Arthur Ashkin, 1922-2020)在 96 岁时获诺贝尔物理学奖的纪录。

如果你尚觉得这些还不是"足够好"的话,那么告诉你吧:没有他,你今天就没有手机和笔记本电脑用了,路上没有电动车跑了,天上也没有无人机飞了。事实上,目前众多的无线电子产品及设备都在使用锂电池——那主要是古迪纳夫的发明,他因此与英国裔美国化学和材料科学家斯坦利·惠廷厄姆爵士(Sir Michael Stanley Whittingham,1941-)和日本化学家吉野彰(Akira Yoshino,1948-)共同分享了 2019 年诺贝尔化学奖,表彰他们对锂离子电池开发的奠基性贡献。

古迪纳夫的博士学位是物理学,毕业后在麻省理工学院林肯实验室研究半导体 24年。 1976年,他 54岁时改行研究锂离子电池,58岁时开发出钴酸锂、磷酸铁锂等锂电池 正极材料,75岁时研发出磷酸铁锂电池,94岁时设计制造出全固态电池。他的研究彻 底改变了锂电池的发展方向,让他被尊为"锂电池之父"并在97岁时赢得诺贝尔奖。

图 2 少年古迪纳夫 (1930)

古迪纳夫完全不是我们心目中的那种天才人物。他出生在德国耶拿(Jena)市,父母都是美国人。父亲埃尔温·古迪纳夫(Erwin Ramsdell Goodenough, 1893-1965)是耶鲁大学宗教史教授,母亲名叫海伦·米里亚姆·刘易斯(Helen Miriam Lewis, 1891-1984)。他有一个哥哥沃德(Ward Goodenough, 1919-2013),后来成为宾夕法尼亚大学(UPenn)人类学教授。古迪纳夫儿时患阅读障碍症(Dyslexia),在耶鲁大学所在地纽黑文(New Haven)市一所私立寄宿学校(Groton School)读书。开始几年,他的全部科目都是 B等,但最后一年升到 A 甚至 A+。古迪纳夫童年时生活在一个父母极度不和的家庭里,考大学前父母便离婚了。他考上耶鲁大学,但需缴纳 900 美元的学费,而父亲只能给他提供 35 美元作全部费用。于是他不得不靠奖学金和当家教

支付学费和维持生活。他多年后在接受《化学与工程新闻》采访时,回忆说自己在大学期间"每周工作21个小时,只为那21顿饭",并说在节假日常常到同学家蹭饭。

古迪纳夫上大学时根本不知道自己要学什么。他换过三个专业,先修读古典文学,然后改为哲学,最终完成了数学学士学位。古迪纳夫大学毕业时,第二次世界大战爆发,他加入了军队。也许是在大学修读过气象学课程,他被派到缅因州霍尔顿(Houlton,Maine)空军基地进行气象数据处理和天气预测,为各种空军战事包括著名的法国诺曼底登陆 D-Day 战役服务。期间,他阅读了阿尔弗雷德·怀特海德(Alfred N. Whitehead,1861-1947)写的书《科学与现代世界》(Science and the Modern World),很受鼓舞。这位怀特海德曾经和哲学家、数学家伯特兰·罗素(Bertrand A. W. Russell,1872-1970)出版过一套名著《数学原理》(Principia Mathematica)。古迪纳夫后来在自传中写道:"一天晚上读着那本书,我突然意识到,我们这一代人的大部分思想活力都将集中在科学领域,而物理学是科学的基础。那天晚上我就觉得,如果战后有机会读研究生,我应该去学物理。"

图 3 空军上尉和芝加哥大学研究生古迪纳夫

1946 年退役后, 古迪纳夫来到了芝加哥大学, 申请入读物理学研究生。当时, 原子物理学家约翰·辛普森(John A. Simpson, 1916-2000)对他直言: "我真搞不懂你们这些退伍兵。你难道不知道, 任何在物理学上做出过重大贡献的人, 在像你这种年纪的时候就已经做出成绩来了。你还想现在才开始吗?!"当年, 学术界持有这种看法十分自然, 因为读研究生是准备做科学研究的, 但人家爱因斯坦 26 岁时已经提出了相对论, 古迪纳夫后来的博士导师克拉伦斯·齐纳(Clarence Melvin Zener, 1905-1993)在 30 岁时就发明了半导体二极管。不过, 古迪纳夫执意狐行, 要攻读物理学。他第一次去找齐纳时, 齐纳便同意了。但导师仅简短地说了一句话: "你只有两个问题: 第一是找到问题. 第二是解决问题。下次再见吧。"

在芝加哥大学期间,古迪纳夫选修了一些著名学者的课程,包括诺贝尔奖获得者恩里科·费米 (Enrico Fermi, 1901-1954)的原子物理和量子力学以及美国科学院院士约翰·辛普森的普通物理。他还修读过"氢弹之父"爱德华·特勒 (Edward Teller, 1908-2003)的一门现代物理,但这位教授在整个学期只讲了三节课,其余时间让学生们自学。1951年,古迪纳夫与艾琳·威斯曼 (Irene Wiseman, 1924-2016)结婚,后来两人没有孩子。1952年,古迪纳夫获博士学位。他的博士论文研究金属合金在电流作用下发生的复杂动力学变化。该研究有助于加深对材料在电流作用下动力学行为的理解。后来的材料科学和电化学发展表明,这种认知对众多应用技术的进步至关重要。

毕业后,古迪纳夫在麻省理工学院林肯实验室获得了一份工作,主要任务是研究半导体。1963年,他出版了自己的第一本著作《磁性和化学键》(Magnetism and the Chemical Bond)。1967年,他应邀负责福特公司的钠硫电池研究项目,首次接触到电池和电化学。古迪纳夫在林肯实验室工作了24年。在那里,他参与开发计算机中使用的第一个随机存取存储器(RAM),在磁学研究方面也取得一些重要进展,和日本物理学家金森順次郎(Junjiro Kanamori,1930-2012)共同设计了关于磁超交换的一条"古迪纳夫-金森规则",并发现了超导性和磁阻现象,即磁场引起的电阻变化。后来,他在2016年的一次新闻访谈中回忆道:"在林肯实验室,为了解决问题,我们必须将物理、化学与工程结合起来。"

1976年,54岁的古迪纳夫获得了英国牛津大学的工作聘书,出任无机化学实验室主任,在那里开始转行研究锂电池。

就在古迪纳夫前往牛津之际,在埃克森美孚能源公司(Exxon)工作的化学和材料科学家斯坦利·惠廷厄姆爵士在《自然》杂志上发表了一篇论文,描述一种采用锂负极和二硫化钛正极的电池。该电池具有高能量密度,并且锂离子向二硫化钛正极的扩散是可逆的,因此电池可充电。此外,二硫化钛具有极快的锂离子向晶格扩散速率。但是,这种使用二硫化钛作为正极材料的电池容易爆炸,因此埃克森美孚能源公司没有继续开发这项技术。

1980 年,在牛津大学实验室,58 岁的古迪纳夫找到了二硫化钛的替代材料——钴酸锂,让锂电池更加安全稳定而且重量减半。可惜当时牛津大学以应用前景渺茫为由,拒绝为他申请专利,结果让日本索尼公司轻松地买走了那项技术。1980 年代末期,索尼公司的化学家吉野彰研发出石墨负极材料,与古迪纳夫研发出的正极材料完美搭配,开发出新型锂电池。索尼等企业立即将这种锂电池应用于手机、笔记本电脑、便携式摄像机等无线电子产品中,把新技术广泛商业化,盈利收益飙升。

1984年,61岁的古迪纳夫发现了另一种更为稳定和便宜的材料——锰酸锂,再次把锂电池的研究推进了一大步。尽管古迪纳夫在牛津大学很有成就,但当年牛津大学有67岁强制退休的传统,于是他决定离开。1987年,64岁的古迪纳夫来到德克萨斯大学奥斯汀分校,任职科克雷尔工程学讲座教授(Virginia H. Cockrell Centennial Chair Professor of Engineering)。在那里他工作了37年,直至去世。

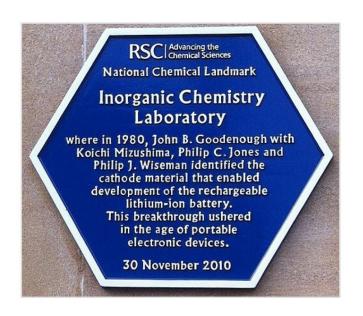


图 4 英国皇家化学会嘉奖古迪纳夫研究小组制成锂电池的匾牌

古迪纳夫来到德克萨斯大学不久,德国物理学家乔治·贝德诺兹(J. Georg Bednorz,1950-)和瑞士物理学家亚历克斯·穆勒(K. Alexander Müller,1927-2023)因在氧化铜中发现高温超导而获得诺贝尔物理学奖。他们的发现让古迪纳夫大受启发。他想起了自己曾在林肯实验室研究过的钙钛矿相关结构过渡金属氧化物里,从局域电子行为到流动金属电子行为的转变过程中所遇到的不寻常的物理特性。此后,古迪纳夫经过十多年的努力,终于在1997年75岁时开发出磷酸铁锂这种极其优越的电池正极材料。磷酸铁锂比锰酸锂更稳定、寿命更长、充电更快、成本更低,工作温度范围更广。这种新材料的出现马上催生了多种新颖便携式电子设备的广泛使用。

古迪纳夫对燃料电池和蓄电池中高效能量转换和储存材料的研发作出了重要而影响深远的贡献。他本人自述:"作为一个受过固体物理学训练的材料科学家,与固体化学家和陶瓷家合作,在材料工程、物理学和化学之间架起了一座桥梁"。事实上,无论如何去作评价,古迪纳夫的贡献都极其巨大,居功至伟。他因而获得许多的荣誉和奖励。2002年,他获得日本奖(Japan Prize),2009年,他获得费米奖(Enrico Fermi Award)以及由英国皇家化学学会颁布、以他名字命名的"约翰·古迪纳夫奖"(John B. Goodenough Award)。2013年,古迪纳夫获得美国前总统奥巴马亲自颁发的美国国家科学奖章。此后,他于2014年获德雷珀工程学奖(Charles Stark Draper Prize for Engineering),2017年获韦尔奇化学奖(Robert A. Welch Award in Chemistry),2018年获富兰克林化学奖章(Benjamin Franklin Medal in Chemistry)和英国皇家学会颁发的科普利奖章(Copley Medal)。2022年,美国电化学学会也设立了另一个"约翰·古迪纳夫奖"(John B. Goodenough Award),表彰在电化学材料方面做出杰出贡献的科学家和工程技术人员。

古迪纳夫先后被选为多个科学院及工程院院士: 美国国家工程院院士(1976年)、法国科学院院士(1992年)、印度科学院荣誉院士(1992年)、英国皇家学会院士(2010年)、美国国家科学院院士(2012年)、美国国家发明家科学院院士(2016年)。

图 5 古迪纳夫 2013 年获时任总统奥巴马颁发美国国家科学奖章

2016年, 鲐背之年的古迪纳夫研发成功全固态电池, 那是一种使用固体电极和固体电解质的电池。该技术采用锂和钠制成的玻璃化合物作为传导物质, 取代以往锂电池的电解液, 其能量密度至少是当时锂离子电池的三倍, 而且不易燃烧, 循环寿命更长, 同时充电速率也从几小时大幅缩短到几分钟。这是一项极其重大的突破性的技术发明, 应用前途无量。

古迪纳夫曾经说过,他要"做一只爬得最持久的乌龟。保持学习、保持好奇。即使慢一点,遇到一点困难,只要最后能到达终点,那又有什么关系呢。毕竟人生没有白走的路,每一步都算数。如果你不对生活失望,生活也不会让你失望。"看来,尽管所有人生都有终点,但是很多人生并没有起跑线。

2017 年, 斯坦利·惠廷厄姆爵士发表了一封题为"约翰·古迪纳夫应该获得诺贝尔奖的公开信"(Open Letter: John Goodenough Deserves A Nobel Prize)。他写道:

[我]致函支持将诺贝尔化学奖授予 30 多年前发明锂离子电池的约翰·古迪纳 夫 它[锂电池]直接促成了两次技术和社会革命:

- 手机用户现已达到 46 亿,占全球人口的 60%。其中 20 亿人使用智能手机,从而可以利用互联网的多种资源。移动电话为人类互联提供了最佳途径,正如吉卜林(Rudyard Kipling, 1865-1936)在颂扬海底电报电缆的诗句中所预示的那样——"它让我们成为一体!"
- 全球电动汽车和商用车的数量现在已超过一百万辆。它们预期的快速增长对于能源转型的成功至关重要,因此也对我们能否听从阿伦尼乌斯(Svante Arrhenius, 1859-1927)在1896年提出的关于人类造成气候变化的预言至关重要。

如果这些还不够的话, 锂离子电池正在引领家庭储能的普及, 充分利用太阳 能电池板的优势, 并在世界各地传统电力公司的董事会中引起警觉。它们还 将支持太阳能发电在数百万最贫困人口居住的村庄中普及。

结果,两年之后,97岁的古迪纳夫和78岁的惠廷厄姆以及71岁的吉野彰三人分享了当年的诺贝尔化学奖。这份姗姗来迟的奖项,足以让实至名归的古迪纳夫彪炳史册。获奖后,古德纳夫表示"很感激能获得这个荣誉,这实在是太美好了。但是,我还是以前的我。"他俏皮地说:"活到97岁之后,你就能随心所欲了。"事实上,98岁高龄的他,依然坚持经常去实验室工作,依然在寻找电池技术的下一个突破。

图 6 古迪纳夫在他的办公室(UT Austin)

作为一名科学家,古迪纳夫并不擅长维护自己的技术专利。他直接把专利授权交给了德克萨斯大学,而大学又把专利卖给了德国南方化工和加拿大魁北克水电公司。后来这两家公司获利不少,但其收入与古迪纳夫毫无关系。在2018年的一次访谈中,记者问古迪纳夫是否后悔交出了专利技术?他淡淡地回答说: "我从来没想过它会这么值钱。我只是想做出一款电池和一种可以与内燃机车匹敌的电动汽车。"事实上,古迪纳夫研发出的磷酸铁锂电池的确非常值钱。据 2022 年国际市场研究机构 Markets and Markets 公布的数字. 当年全球磷酸铁锂电池市场规模高达 130 亿美元。

古迪纳夫曾经表示: "我想在去世前解决这个能源问题。我才 90 多岁,还有时间。"他说: "我的目标是减少世界各地公路和海上航线的分布式气体排放。这些气体排放会加剧化石燃料燃烧造成的全球变暖。"他声称: "我不认为现代社会对化石燃料能源的依赖是可持续的。"最后,他留下一个未了遗愿: "我只想解决汽车的问题。我想让汽车尾气从全世界的高速公路上消失。我希望死前能看到这一天。"

容易想像, 锂电池的设计、制造和改进是一门大型综合性的高端技术, 需要许多人长期的努力和合作。古迪纳夫深知他个人的成就是建筑在许多人和各种阶段性的成果之

上。获诺贝尔奖后,他谦虚而诚恳地说:"总而言之,我经历了一段非凡的旅程。我感谢多年来与我共事的众多同事,是他们让这段旅程变得如此非凡。是他们进行了许多实验,并且每个人都保持着开放的对话:他们旨在教会我尽可能多的东西,就像我努力教会他们许多东西那样。"

图 7 古迪纳夫和他的研究团队(UT Austin 2019)

古迪纳夫去世后,获得全世界的关注、嘉许和怀念。

德克萨斯大学奥斯汀分校的师生们一致认为古迪纳夫是一位备受推崇的导师、才华横溢而又无比谦虚的发明家。这位教授以"极富感染力的爽朗笑声"闻名。师生们常说,当你听到他的笑声在工程大楼回荡时,"你便会知道古迪纳夫什么时候将走到你的楼层"。几乎在每个后人关于他的故事里都穿插着关于他响亮的咯咯笑声的描述。那是一个如此显著的特点,以至于颇为严肃的《德克萨斯月刊》在刊登一篇关于他的人物简介中,也加插了许多的"哈哈哈哈哈!"

回顾他的学术生涯,古迪纳夫在牛津大学和德克萨斯大学奥斯汀分校先后指导了16名研究生和博士后研究员。他一生发表了约800篇论文和专著,H指数为207。

古迪纳夫是个虔诚的基督教徒,2008年写了一本自传《见证恩典》(Witness to Grace)。

英国广播公司(BBC)资深节目主持人约翰·汉弗莱斯(John Humphrys, 1943-)在2016年的一次访谈中问及古迪纳夫对于自己的研究改变了人类生活方式有何感受时,他随口回应道: "我很高兴为这世界提供了一些有用的东西。但我自己没有手机,因为我不喜欢被打扰。"

图 8 约翰·古迪纳夫获 2013 年美国国家科学奖章