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Over the last two decades, theoretical design and circuit implementation of various chaos genera-
tors have been a focal subject of increasing interest due to their promising applications in various
real-world chaos-based technologies and information systems. In particular, generating complex
multiscroll chaotic attractors via simple electronic circuits has seen rapid development. This arti-
cle offers an overview of the subject on multiscroll chaotic attractors generation, including some
fundamental theories, design methodologies, circuit implementations and practical applications.
More precisely, the article first describes some effective design methods using piecewise-linear
functions, cellular neural networks, nonlinear modulating functions, circuit component design,
switching manifolds, multifolded tori formation, and so on. Based on different approaches, com-
puter simulation and circuit implementation of various multiscroll chaotic attractors are then
discussed in detail, with some theoretical proofs and laboratory experiments presented for ver-
ification and demonstration. It is then followed by some discussion on potential applications of
multiscroll chaotic attractors, including secure and digital communications, synchronous predic-
tion, random bit generation, and so on. The article is finally concluded with some future research
outlooks, putting the important subject into engineering perspective.
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1. Introduction

Chaos theory has been intensively investigated
within the science, mathematics and engineering
communities for more than four decades (see, for
example [Chen & Dong, 1998; Chen & Lü, 2003;
Chen & Yu, 2003; Lü et al., 2002e], and many ref-
erences cited therein). In particular, Chua’s circuit
[Chua et al., 1996; Chua, 1998; Kennedy, 1993], as
a paradigm of chaos and a bridge between elec-
tronic circuits and the chaos theory, has been widely
studied and used as a platform for engineering
applications. Recently, extended from Chua’s cir-
cuit, theoretical design and hardware implementa-
tion of different kinds of chaotic oscillators have
attracted increasing attention, targeting real-world
applications of many chaos-based technologies and
information systems. It stimulates the current
research interest in creating various complex multi-
scroll chaotic attractors by using simple electronic
circuits and devices. After the rapid development in
more than a decade, multiscroll chaotic attractors
generation has become a relatively mature research
direction, and it is time to have an overview on this
important subject today.

In retrospect, Suykens and Vandewalle [1991,
1993a, 1993b] first introduced a family of n-
double scroll chaotic attractors from the so-called
quasi-linear function approach. Suykens and Van-
dewalle [1995] also designed a simple recurrent
neural network model that can produce a chaotic
attractor like the double-scroll attractor of Chua’s
circuit. Arena et al. [1995, 1996a, 1996b] real-
ized the generalized n-double-scroll Chua’s circuit
by using a three-state-controlled cellular neural
network (CNN) with a generalized piecewise-linear
(PWL) output function [Chua, 1998]. Later on,
Suykens et al. [1997] proposed a method for gen-
erating a more complete family of n-scroll instead
of n-double-scroll chaotic attractors. At about the
same time, Suykens and Chua [1997] also investi-
gated the n-double-scroll attractors produced by
hypercubes in one-dimensional (1D) CNNs. Aziz-
Alaoui [1999, 2000] then presented a PWL function

approach for creating multispiral chaotic attrac-
tors from both autonomous and nonautonomous
differential equations. Yalcin et al. [2000a] intro-
duced a technique for generating a family of
n-double-scroll hyperchaotic attractors. Yalcin
et al. [2001] also proposed a simple circuit model
for generating n-scroll chaotic attractors. The main
design idea of most of the aforementioned method-
ologies is the same — to add some additional break-
points into the PWL function of the nonlinear
resistor in Chua’s circuit, or other nonlinear circuits
[Yalcin, 2004; Han, 2004].

From a similar but different approach, Tang
et al. [2001b] introduced a sine function to generate
n-scroll chaotic attractors in a simple circuit. Sim-
ilarly, Özoǧuz et al. [2002] suggested a nonlinear
transconductor method for creating n-scroll chaotic
attractors [Salama et al., 2003]. Lü et al. [2002a,
2002f, 2003a, 2003b] presented a switching mani-
fold approach for generating chaotic attractors with
multiple-merged basins of attraction. Cafagna and
Grassi [2003a, 2003b] developed a coupling Chua’s
circuit method by using sine nonlinearity instead of
PWL nonlinearity for creating one-directional (1-D)
n-scroll, two-directional (2-D) n×m-grid scroll, and
three-directional (3-D) n × m × l-grid scroll hyper-
chaotic attractors. Yu et al. [2003a] proposed a fam-
ily of n-scroll hyperchaotic chaotic attractors in a
four-dimensional (4D) system, and Yu et al. [2005a,
2005d] introduced a novel nonlinear modulating
function approach for generating n-scroll chaotic
attractors based on a general jerk circuit, which
can arbitrarily design the swings, widths, slopes,
breakpoints, equilibriums, shapes, and even some
general phase portraits. Yu et al. [2004a, 2005c,
2005e] also constructed a family of multifolded torus
chaotic attractors, and Chen et al. [2004] devel-
oped a switching control technique for generating
chaotic torus attractors, which are quite unusual
in the chaotic circuit literature. Last but not least,
Ahmad [2005] created the n-scroll chaotic attractors
from the fractional order systems.

Regarding electronic circuits, it is well known
that step circuit, hysteresis circuit, and saturated
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circuit are the three types of basic circuits, which
have been intensively investigated and applied
[Fujiwara et al., 2003, Han et al., 2003a, 2003b,
2005; Nakagawa & Saito, 1996; Saito, 1990; Saito
& Nakagawa, 1995; Storace & Parodi, 1998]. Yal-
cin et al. [2002b] proposed a method using the
step circuit to generate a family of scroll-grid
chaotic attractors, including 1-D n-scroll, 2-D n ×
m-grid scroll, and 3-D n × m × l-grid scroll
chaotic attractors. Elwakil and Kennedy [1999,
2001] further investigated some hysteresis-based
chaotic oscillators. Lü et al. [2004d] introduced
a hysteresis circuit series approach for creating
1-D n-scroll, 2-D n×m-grid scroll, and 3-D n×m×l-
grid scroll chaotic attractors. Recently, Lü et al.
[2004b, 2004c] also initiated a saturated circuit
series approach for generating 1-D n-scroll, 2-D
n × m-grid scroll, and 3-D n × m × l-grid scroll
attractors.

Most, if not all, of the aforementioned mul-
tiscroll chaotic attractors were verified only by
numerical simulations. However, known to elec-
tronic engineers, it is much more difficult to physi-
cally realize these multiscroll chaotic attractors by
analog circuits [Arena et al., 1996a; Yalcin, 2004;
Zhong et al., 2002]. But great efforts have been
made by many. In this endeavor, Arena et al. [1996a,
1996b] experimentally verified some n-double-scroll
chaotic attractors by using a state-controlled CNN-
based circuit. Yalcin et al. [2000b] experimentally
confirmed the 3- and 5-scroll chaotic attractors in
a generalized Chua’s circuit. Yalcin et al. [1999a]
also physically realized a 6-scroll chaotic attrac-
tor in a generalized Chua’s circuit using a rescal-
ing breakpoints technique. Elwakil and Kennedy
[2000a, 2000b] presented a systematic circuit design
method for the realization of a class of hysteresis-
based chaotic oscillators [Elwakil, 2000; Elwakil
et al., 2000]. Tang et al. [2001b] designed an elec-
tronic circuit to experimentally produce 6, 7, 8,
9-scroll chaotic attractors in a modified Chua’s
circuit with the sine nonlinearity instead of the
PWL nonlinearity. It is interesting to notice that
the largest number of scrolls that could be exper-
imentally confirmed remained 9 until year 2001.
Hardware implementation of 10- or more-scroll
attractors needs a very large dynamic range in
hardware, requiring a very high voltage supply
and appropriate differential amplifiers, or a suit-
able scaling of voltages [Yalcin, 2004], but physi-
cal conditions always limit or even prohibit such
circuit realizations. Zhong et al. [2002] was the

first to experimentally produce and observe a 10-
scroll chaotic attractor on the oscilloscope, with
a systematic chaos generation method introduced.
Yu et al. [2005a, 2005d] then constructed a novel
block circuit to realize a maximum of 12-scroll
chaotic attractor in a generalized jerk circuit [Linz
& Sprott, 1999]. More recently, Yu et al. [2005c,
2005e] physically realized a maximum of 9-folded
torus chaotic attractor. Finally, it should be men-
tioned that Yu et al. [2005b] also experimentally
confirmed 3- and 4-scroll hyperchaotic attractors.

Worth mentioning is that it is very difficult to
physically realize multiple nonlinear resistors with
many segments simultaneously in an electronic cir-
cuit. To do so, the electronic device must have a very
wide dynamic range, and the corresponding slopes
of those segments and their breakpoints must be
adjustable, not only easily but also independently
toward achieving the simultaneous effect. Therefore,
the circuit implementation for generating chaotic
attractors of 1-D n-scroll with n ≥ 10, 2-D n × m-
grid scroll with n,m ≥ 10, and 3-D n × m × l-grid
scroll with n,m, l ≥ 10, is very difficult techni-
cally [Zhong et al., 2002; Lü et al., 2005a, 2005b,
2006]. In the realization of such multidirectional
multiscroll chaotic attractors, Yalcin et al. [2002b]
were able to experimentally generate and observe a
2-D 3× 3-grid scroll and a 3-D 2× 2× 2-grid scroll
chaotic attractors. Along this line, Lü et al. [2005a,
2006] were able to construct a novel block circuit
to experimentally verify a 2-D 3 × 11-grid scroll
and a 3-D 3 × 3 × 11-grid scroll hysteresis chaotic
attractors. Very recently, Lü et al. [2005a, 2006]
were even able to physically realize 1-D 14-scroll,
2-D 14 × 10-grid scroll and 3-D 10 × 10 × 10-grid
(1000) scroll chaotic attractors. It should be pointed
out that Lü et al. [2006] was the first to experi-
mentally produce and observe the 2-D n × m-grid
scroll with n,m ≥ 10 and 3-D n × m × l-grid scroll
with n,m, l ≥ 10 chaotic attractors on the oscil-
loscope. Moreover, Lü et al. [2005a, 2005b, 2006]
also provided a theoretical design principle for hard-
ware implementation of chaotic attractors with
multidirectional orientations and with a large num-
ber of scrolls simultaneously.

From a theoretical point of view, although
all the aforementioned multiscroll chaotic attrac-
tors could be confirmed via numerical simulation
and/or circuit implementation, it is more desir-
able to theoretically prove the existence of these
visible n-scroll chaotic attractors. This, however,
is another very difficult task, due to the complex
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dynamical behaviors of the multiscroll chaotic
attractors [Silva, 1993]. Nevertheless, Lü et al.
[2004d] firstly constructed a two-dimensional (2D)
Poincaré return map to rigorously prove the exis-
tence of the hysteresis multiscroll chaotic attractors.
Similarly, Lü et al. [2004b, 2004c] also theoretically
verified the chaotic behaviors of the saturated mul-
tiscroll chaotic attractors via another 2D Poincaré
return map. Furthermore, this constructive proof
approach can be easily extended to the proof of the
existence of many other complex multiscroll chaotic
attractors [Lü et al., 2004b, 2004c, 2004d].

To this end, it should be pointed out that
multiscroll chaotic attractors have many practi-
cal applications in, for example, broadband sig-
nal generation, CNNs, secure and digital commu-
nications, and perhaps efficient liquid mixing, to
name a few from among others. To increase the
complexity of the chaotic dynamics for higher secu-
rity [Wada et al., 1999], multiscroll chaotic attrac-
tors could be used for communication instead of
the general topologically simple chaotic attractors.
Suykens and Vandewalle [1998] used the 5-scrolls
chaotic attractor in their K. U. Leuven time-series
prediction competition. Eguchi et al. [1999] intro-
duced a new digital chaotic circuit for generating
multiscroll chaotic attractors, with potential appli-
cation in digital devices. Yalcin et al. [1999b] exper-
imentally verified a nonlinear H∞ synchronization
scheme with 5-scroll chaotic attractors. Tang et al.
[2001a] proposed a secure digital communication
system that can resist intrusion of eavesdroppers
during the transmission of signals and data, for
which multiscroll attractors may have better perfor-
mance. More recently, Yalcin et al. [2002a, 2004a,
2004b] also designed a novel “true random bit gen-
erator” based on a double-scroll chaotic attractor.

Given all the above-referred theoretical, numer-
ical and electronic developments in generation of
various multiscroll chaotic attractors, it is time to
have an overview of the related theories, method-
ologies and hardware implementation techniques,
as a stepping stone in the pursuit of a near
mature chaos-based technology that may soon have
a stimulating and promising future of practical
applications. This article is intended to offer such
a review, with the hope that it will at least benefit
the new comers in both historical literature search
and future research outlook.

The rest of the article is organized as follows. In
Sec. 2, several PWL function approaches are intro-
duced for generating n-scroll chaotic attractors,

along with their circuit realizations. Several non-
linear modulating function methods, including the
sine function, nonlinear transconductor, modulat-
ing function, adjustable sawtooth wave function,
adjustable triangular wave function, and adjustable
transconductor wave function, etc., for designing
n-scroll chaotic attractors generators, are discussed
in Sec. 3. In Sec. 4, three types of basic circuits:
the step circuit, hysteresis circuit and saturated cir-
cuit, are applied to the design of various multidi-
rectional multiscroll chaotic attractors. A couple of
switching manifold approaches are then presented
for creating multiscroll chaotic attractors in Sec. 5.
In Sec. 6, theoretical design and circuit implemen-
tation of multifolded torus chaotic attractors are
further studied. Some effective methods for gen-
erating hyperchaotic multiscroll chaotic attractors
are described in Sec. 7, while in Sec. 8 some other
techniques are explored for creating various multi-
scroll chaotic attractors. Topics on potential real-
world applications of multiscroll chaotic attractors,
as well as their digital implementation, control and
synchronization, are briefed in Sec. 9. Finally, con-
clusions with future research outlooks are given in
Sec. 10, putting this important research subject into
an engineering perspective.

2. Design of n-Scroll Chaotic
Attractors via PWL Functions

In this section, the multibreakpoint PWL function
approach is introduced, which can generate n-scroll
chaotic attractors from Chua’s circuit or other sim-
ple nonlinear systems.

2.1. Design of n-double-scroll
chaotic attractors using
quasi-linear functions

This subsection briefly describes the quasi-linear
function method for creating n-double-scroll chaotic
attractors.

This method is based on Chua’s circuit
[Kennedy, 1993; Chua et al., 1986], as shown in
Fig. 1, described by



dvC1

dt
=

1
RC1

(vC2 − vC1) −
1
C1

g(vC1)

dvC2

dt
=

1
RC2

(vC1 − vC2) +
1
C2

iL

diL
dt

= − 1
L

vC2 ,

(1)
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(a) Chua’s circuit

(b) PWL v − i function
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(c) Double-scroll chaotic attractor

Fig. 1. Chua’s circuit.

where

g(vC1) = m1vC1 +
1
2
(m0 − m1)

× (|vC1 + b1| − |vC1 − b1|) (2)

is a PWL function, as shown in Fig. 1(b).
Let

x =
vC1

b1
, y =

vC2

b1
, z =

RiL
b1

, τ =
t

C2R
,

α =
C2

C1
, β =

C2R
2

L
, m0 = m0R, m1 = m1R.

Then, system (1) can be written as


ẋ = α(−x + y − f(x))
ẏ = x − y + z

ż = −βy,

(3)

where

f(x) = m1x +
1
2
(m0 − m1)(|x + 1| − |x − 1|). (4)

When α = 10.0, β = 14.87, m0 = −0.68, m1 =
−1.27, the system produces a double-scroll chaotic
attractor, as shown in Fig. 1(c).

The quasi-linear function approach is a kind of
qualitative method, but it gives a global insight into
the dynamic behavior of a dynamical system and
it can be viewed as a complementary to the con-
ventional linearization approach. Suykens and
Vandewalle [1991, 1993a, 1993b] applied the quasi-
linear function approach to system (1).

First, the system is rewritten in the following
form:


ẋ

ẏ

ż


 =




−a − k(x) a 0
b −b 1
0 −c 0






x

y

z


 = A




x

y

z


,

(5)

where x = vC1 , y = vC2 , z = iL, a = 1/RC1, b =
1/RC2, c = 1/L, k(x) = g(x)/C1x.

Then, the characteristic equation of the
matrix A,

1 + k(x)
λ2 + bλ + c

λ3 + (a + b)λ2 + cλ + ca
= 0, (6)

leads to a root-locus for the parameter k(x).
To generate a 2-double-scroll chaotic attractor

from system (5), Suykens and Vandewalle [1991,
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1993a] modified k(x) as follows:

k2(x) =




−8
7
a 0 < x ≤ δ1

2a(x − δ1)
7(δ2 − δ1)

− 8
7
a δ1 ≤ x ≤ δ2

2a(x − δ2)
7(δ3 − δ2)

− 6
7
a δ2 ≤ x ≤ δ3

−8
7
a δ3 ≤ x ≤ δ4

a(−0.5x − 0.15|x + δ4| + 0.15|x − δ4|)
0.7x

x ≥ δ4,

where a, δ1, δ2, δ3, δ4 are design parameters deter-
mined in the design procedure.

The nonlinearities k2(x) and g2(x) for creating
the 2-double-scroll attractor are shown in the above
two sub-figures of Fig. 2 [Suykens & Vandewalle,
1993a], respectively.

Using the quasi-linear function method to ana-
lyze the stability of equilibrium points within
different regions, with δ1 = 5, δ2 = 7.5, δ3 = 10,
δ = 12, a = 7, system (5) produces a 2-double-scroll

chaotic attractor, as shown in Fig. 3(a) [Suykens &
Vandewalle, 1993a].

To generate n-double-scroll (n ≥ 2) chaotic
attractors, Suykens and Vandewalle [1991, 1993a]
further extended system (5) as follows:




ẋ = (−a − kn(x))x + ay

ẏ = bx − by + z

ż = −cy,

(7)
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Fig. 2. kn(x) and gn(x) of the n-double scroll chaotic attractors (n = 2, 4) [Suykens & Vandewalle, 1993a].



782 J. Lü & G. Chen

-6

-4

-2

0

2

4

6

-40 -30 -20 -10 0 10 20 30 40

x

y

(a) 2-Double-scroll attractor
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Fig. 3. n-Double-scroll attractors generated via quasi-linear function method [Suykens & Vandewalle, 1993a].

where

kn(x) =




α1 0 < |x| ≤ δ1

α2

|x| − δ1+3(i−2)

δ2+3(i−2) − δ1+3(i−2)
+ α1

δ1+3(i−2) ≤ |x| ≤ δ2+3(i−2)

2 ≤ i ≤ n

−α2

|x| − δ2+3(i−2)

δ3(i−1) − δ2+3(i−2)
+ α1 + α2

δ2+3(i−2) ≤ |x| ≤ δ3(i−1)

2 ≤ i ≤ n

α1
δ3(i−1) ≤ |x| ≤ δ1+3(i−1)

2 ≤ i ≤ n

α3

|x|(β1|x| + β2||x| + δ1+3(n−1)| + β3||x| − δ1+3(n−1)|) |x| ≥ δ1+3(n−1).

Let a = 7 and

δ2+3(i−2) + δ1+3(i−2)

δ2+3(i−2) − δ1+3(i−2)
= 5 for 2 ≤ i ≤ n.

Then, system (7) can generate n-double-scroll
chaotic attractors. For example, when δ1 = 4, δ2 =
6, δ3 = 6.5, δ4 = 8, δ5 = 12, δ6 = 13, δ7 =
18, δ8 = 27, δ9 = 30, δ10 = 32, a = 7, system
(7) has a 4-double-scroll chaotic attractor, as shown
in Fig. 3(b) [Suykens & Vandewalle, 1993a]. The
nonlinearities k4(x) and g4(x) for generating the
4-double-scroll attractor are shown in the lower two
sub-figures of Fig. 2 [Suykens & Vandewalle, 1993a],
respectively.

Note, however, that since the dimension of
those scrolls that are near the origin will become
very small, these scrolls are physically invisible for
larger n.

2.2. n-Scroll chaotic attractors from
a generalized Chua’s circuit

In this subsection, a generalized Chua’s cir-
cuit is introduced for generating n-scroll chaotic
attractors.

Suykens et al. [1997] proposed a generalized
Chua’s circuit, described by


ẋ = α(y − h(x))
ẏ = x − y + z

ż = −βy,

(8)

where n is a natural number, and

h(x) = m2n−1x +
1
2

2n−1∑
i=1

× (mi−1 − mi)(|x + ci| − |x − ci|).
System (8) is determined by the parameters set
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Fig. 4. n-Scroll chaotic attractors from a generalized Chua’s circuit.

{α, β,m, c}, where m = (m0 m1 · · · m2n−1)
and c = (c1 c2 · · · c2n−1).

When α = 9, β = 14.286, m = (−(1/7) 2/7
−(4/7) 2/7 −(4/7) 2/7), c = (1 2.15 3.6
8.2 13), system (8) has a 3-double-scroll chaotic
attractor, as shown in Fig. 4(a). When α = 9,
β = 14.286, m = (0.9/7 −3/7 3.5/7 −(2.4/7)
2.52/7 −(1.68/7) 2.52/7 −(1.68/7)), c = (1
2.15 3.6 6.2 9 14 25), this system has a 7-
scroll chaotic attractor, as shown in Fig. 4(b).

Remark 1. In the case of n-double-scroll attractors,
the components of vector m have alternating signs
and the sign of m0 is negative. In the case of n-scroll
attractors with an odd number of scrolls, the com-
ponents of vector m also have alternating signs, but
the sign of m0 is positive.

2.3. n-Scroll chaotic attractors
from the unfolded Chua’s circuit

This subsection introduces a family of n-scroll
chaotic attractors generated from the unfolded
Chua’s circuit.

Figure 5 shows the unfolded Chua’s circuit,
described by



dv1

dτ
=

1
C1

(G(v2 − v1) − f(v1))

dv2

dτ
=

1
C2

(G(v1 − v2) + i3)

di3
dτ

= − 1
L

(v2 + R0i3),

(9)

Fig. 5. Unfolded Chua’s circuit.

where

f(v1) = Gbv1 + 0.5(Ga − Gb)(|v1 + E| − |v1 − E|).
Let x = v1/E, y = v2/E, z = i3/EG, t =

τG/C2, m0 = Ga/G, m1 = Gb/G, α = C2/C1,
β = C2/LG2, γ = C2R0/GL. Then, the correspond-
ing dimensionless state equations are given by



dx

dt
= α(y − x − f2(x))

dy

dt
= x − y + z

dz

dt
= −βy − γz,

(10)

where

f2(x) = m1x +
1
2
(m0 −m1)[|x + 1| − |x− 1|]. (11)
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Fig. 6. Double-scroll attractor of the unfolded Chua’s
circuit.

When α = 9.365, β = 11.7, γ = 0.04, m0 = −(8/7),
m1 = −(5/7), system (10) has a chaotic attractor,
as shown in Fig. 6.

To create n-scroll chaotic attractors, Aziz-
Alaoui [1999] modified the unfolded Chua’s circuit
(10) as follows:




dx

dt
= α(y − x − fN (x))

dy

dt
= x − y + z

dz

dt
= −βy − γz,

(12)

where

fN(x) =
{

mkx + sgn(x)ξk if sk−1 ≤ |x| ≤ sk, k ∈ IN−2

mN−1x + sgn(x)ξN−1 if |x| ≥ sN−2,
(13)

in which N ≥ 2, IN = {0, . . . , N}, I∗N = {1, . . . ,
N}, (mk)k∈IN−1

, and (ξk)k∈IN−1
are two finite

real sequences, (sk)k∈IN−2
is a finite positive real

sequence that is strictly increasing. Moreover,
assume that s−1 = 0, s0 = 1, sN = +∞, ξ0 = 0.
The parameters mk for k ∈ IN−1 are the slopes
of fN in each of the linear segments [−s0, s0] and
[sk−1, sk] for k ∈ I∗N−1.

Remark 2. The function fN is continuous if the
parameters (ξ)k∈IN−1

satisfy the following condition
[Aziz-Alaoui, 1999]:

ξk+1 = (mk − mk+1)sk + ξk

for ∀ ξ0 ∈ R and ∀ k ∈ I∗N−2.

Therefore,

ξk = ξ0 +
k∑

j=1

(mj−1 − mj)sj−1

for ∀ ξ0 ∈ R and ∀ k ∈ I∗N−2.

System (12) is determined by the parameters
set BC

N = {α, β, γ} ∪ BN ⊂ R2N+2, where BN =
{(sk)k∈IN−2

, (mk)k∈IN−1
}. To obtain an even num-

ber of scrolls, one may use the following parameters
set: α = 9.365, β = 11.79, γ = 0.04, m2j = m0 =
−(8/7) and m2j+1 = m1 = −(5/7) for j = 1, 2, . . . .
On the other hand, to obtain an odd number of
scrolls, use α = 10.40, β = 12.5709, γ = 0.005,

m2j = m0 = −(5/7) and m2j+1 = m1 = −(8/7) for
j = 1, 2, . . . .

When BC
12 = {α = 9.365, β = 11.79, γ = 0.04,

s0 = 1, s1 = 1.8, s2 = 2.7, s3 = 3.36, s4 = 5.0,
s5 = 5.6, s6 = 6.6, s7 = 7.15, s8 = 9.0, s9 = 9.95,
s10 = 10.75}, system (12) has a 12-scroll chaotic
attractor, as shown in Fig. 7(a) [Aziz-Alaoui, 1999].
When BC

21 = {α = 10.40, β = 12.5709, γ = 0.005,
s0 = 1, s1 = 4.5, s2 = 5.8, s3 = 7.8, s4 = 9.0,
s5 = 11.8, s6 = 12.9, s7 = 14.5, s8 = 15.43,
s9 = 17.7, s10 = 18.7, s11 = 20.2, s12 = 21.5,
s13 = 23.3, s14 = 24.2, s15 = 25.8, s16 = 26.5,
s17 = 28.2, s18 = 29.12, s19 = 31.0}, system
(12) has a 21-scroll chaotic attractor, as shown in
Fig. 7(b) [Aziz-Alaoui, 1999].

2.4. Multiscroll chaotic attractors from
the modified Brockett system

In this subsection, a modified Brockett system
is introduced, which can generate n-scroll chaotic
attractors.

The so-called Brockett system is described by
[Aziz-Alaoui, 1999, 2000, 2001]


ẋ = y

ẏ = z

ż = −βy − γz + g(x),
(14)
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Fig. 7. n-Scroll chaotic attractors from the unfolded Chua’s
circuit [Aziz-Alaoui, 1999].

where

g(x) =



−Kx if |x| < 1
2Kx − 3k sgn(x) if 1 < |x| < 3
3K sgn(x) if |x| > 3.

When K = −1.8, system (14) has a double-scroll
chaotic attractor.

Since the region |x| > 3 does not play any role
in the dynamics of system (14) [Aziz-Alaoui, 1999],
one can replace g(x) by

f2(x) = m1x +
1
2
(m0 − m1)[|x + 1| − |x − 1|]. (15)

When m0 = −K = 1.8, m1 = 2K, the modified
system (14) with (15) shows a similar double-scroll
chaotic attractor.

To generate n-scroll chaotic attractors, Aziz-
Alaoui [1999] extended system (14) to obtain the

following modified Brockett system:


ẋ = y

ẏ = z

ż = −βy − γz + fN (x),
(16)

where fN (x) is given in (13).
Define the following parameters set:

BB
N = {β, γ} ∪ BN ⊂ R2N+1,

where BN = {(sk)k∈IN−2
, (mk)k∈IN−1

} ⊂ R2N−1,
and let m0 = m2i = −K and m1 = m2i+1 = 2K for
i = 1, 2, . . ..

Figure 8(a) displays a 4-scroll chaotic attractor
[Aziz-Alaoui, 1999], where s0 = 1.0, K = −1.99 and
BB

4 = {β = 1.06, γ = 0.827, s1 = 1.65,
s2 = 2.1}. Figure 8(b) shows a 6-scroll chaotic
attractor [Aziz-Alaoui, 1999], where s0 = 1.0, K =
−1.99 and BB

6 = BB
4 ∪ {s3 = 2.5, s4 = 4.1}.

2.5. Circuit realization of n-scroll
chaotic attractors

In this subsection, some recent advances in cir-
cuit realization of n-scroll chaotic attractors are
reviewed and discussed.

2.5.1. State-controlled CNN realization

Arena et al. [1996a, 1996b] experimentally con-
firmed an n-double scroll chaotic attractor by a
state-controlled CNN-based circuit.

Consider the generalized Chua’s circuit:


dx

dt
= α(y − h(x))

dy

dt
= x − y + z

dz

dt
= −βy − γz,

(17)

where h(x) is a PWL function defined by

h(x) = m2n−1x+
2n−1∑
k=1

mk−1 − mk

2
(|x+bk|−|x−bk |),

in which α, β, γ, the 2n coefficients mk, and the
2n − 1 breakpoints bk, are all system parameters.

It was proved [Arena et al., 1996a, 1996b] that
system (17) was equivalent to a single-layer three-
cell state-controlled CNN with the following param-
eters: C1,2 = α, C1,1 = 1 − αm2n−1, A1,1 = 1,
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Fig. 8. n-Scroll chaotic attractors from the modified Brockett system [Aziz-Alaoui, 1999].

C3,3 = 1 − γ,C2,1 = C2,3 = 1, C3,2 = −β, using the
following nonlinear output function:

yj =
1
2

2n−1∑
k=1

nk (|xj + bk| − |xj − bk|),

where nk = α(mk − mk−1) for k = 1, . . . , 2n − 1.
Figure 9 shows a 2-double-scroll chaotic attrac-

tor by using the state-controlled CNN realization
[Arena et al., 1996a, 1996b].

2.5.2. Circuit realization of 3- and 5-scroll
chaotic attractors

Yalcin et al. [2000b] experimentally verified 3- and
5-scroll chaotic attractors in the generalized Chua’s
circuit (8).

To begin with, recall the circuit realization
of Chua’s circuit. Figure 10 shows the voltage-
controlled voltage-source (VCVS) implementation
of Chua’s circuit. For this type of realization, the
corresponding state equations are described by



dx

dt
= α(−(1 + δ)x + y + f(x))

dy

dt
= x − y + z

dz

dt
= −βy

(18)

with f(x) = −h(x)+(1+δ)x and δ = 1, where h(x)
is defined in (8).

Fig. 9. Observed 2-double-scroll chaotic attractor obtained
by using the state-controlled CNN realization (h-axis: x1;
v-axis: x2) [Arena et al., 1996a, 1996b].

Fig. 10. VCVS implementation of Chua’s circuit.
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Fig. 11. Circuit implementation of 5-scroll attractor from a generalized Chua’s circuit.

Yalcin et al. [2000b] designed the circuit dia-
gram (Fig. 11) for physically realizing a 5-scroll
chaotic attractor. The breakpoints are adjusted
with the gains of inverting/noninverting amplifiers,
as follows:

c1 =
Esat

1 +
R82

R81

, c2 =
Esat

1 +
R62

R61

,

c3 =
Esat

1 +
R42

R41

, c4 =
Esat

1 +
R22

R21

.

Moreover, the slopes are also adjusted with
the gains of inverting/noninverting amplifiers and
voltage branches, as follows:

m4 = − 1
R3

R2

R1

(
−R12

R11

)

m3 = − 1
R3

R2

R1

(
m4 +

(
−R22

R21

)
R31

R31 + R32

)

m2 = − 1
R3

R2

R1

(
m3 +

(
1 +

R42

R41

)
R52

R51 + R52

)

m1 = − 1
R3

R2

R1

(
m2 +

(
−R62

R61

)
R72

R71 + R72

)

m0 = − 1
R3

R2

R1

(
m1 +

(
1 +

R82

R81

)
R92

R91 + R92

)
.

By adjusting the value of R31 in 11 from
12280Ω to 12740Ω, a 3-scroll chaotic attractor can
be obtained, as shown in Fig. 12(a) [Yalcin et al.,
2000b]. When all parameters are set as Table 1 in
[Yalcin et al., 2000b], a 5-scroll chaotic attractor can
be generated, as shown in Fig. 12(b) [Yalcin et al.,
2000b].

2.5.3. Realization of n-scroll chaotic
attractors

By using the scaling properties of the nonlinear-
ity in a generalized Chua’s circuit, Yalcin et al.
[1999a] experimentally confirmed a 6-scroll chaotic
attractor.

According to (18), the equilibrium points of the
generalized Chua’s circuit satisfy


h(x) = 0
x = −z

y = 0,
(19)

with

m0c1 +
l−1∑
j=1

mj(cj+1 − cj) + · · · + ml(xeql − cl) = 0,

where l = 1, . . . , 2n−1. The equilibrium points xeql

are shown in Fig. 13.
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(a) 3-Scroll attractor with R31 = 12.280 Ω (h-axis: 0.5 V/
div; v-axis: 0.1 V/div)

(b) 5-Scroll attractor with R31 = 12.740 Ω (h-axis: 1V/div;
v-axis: 0.2 V/div)

Fig. 12. Experimental observations of 3- and 5-scroll chaotic attractors [Yalcin et al., 2000b].

Fig. 13. PWL nonlinearity of the generalized Chua’s circuit.

The Jacobi matrix, evaluated at the first equi-
librium point O = (0, 0, 0) and the ith equilibrium
point eqi± = (x±

eqi, 0, x
±
eqi), is respectively

J(0) =




0 α 0
1 −1 1
0 −β 0


+




−αm0 0 0
0 0 0
0 0 0




and

J(eqi±) =




0 α 0
1 −1 1
0 −β 0


+




−αmi 0 0
0 0 0
0 0 0


,

where i = 1, . . . , 2n − 1.
Yalcin et al. [1999a] rescaled the breakpoints of

the PWL function with a factor k in such a way that
all the slopes remain the same. After rescaling, the
PWL function is

h(x) = m2n−1x +
1
2

2n−1∑
i=1

(mi−1 − mi)

×
(∣∣∣x +

ci

k

∣∣∣− ∣∣∣x − ci

k

∣∣∣) .

Then, the new equilibrium points eqi± = (x±
eqi/k,

0,−x±
eqi/k) are rescaled with the same factor k,

as follows:

m0
c1

k
+

l−1∑
j=1

mj

(cj+1

k
− cj

k

)

+ · · · + ml

(xeql

k
− cl

k

)
= 0.

Figure 14 shows the circuit diagram for a 6-
scroll chaotic attractor. The values of all compo-
nents after rescaling current and time by a factor of
10 000 are listed in Table 1 in [Yalcin et al., 1999a].
Figure 15 [Yalcin et al., 1999a] displays the observed
6-scroll chaotic attractor.

2.5.4. A systematic design approach for
generating n-scroll chaotic attractors

Until 2000, the largest number of scrolls in a chaotic
attractor that could be experimentally verified was
only 6. Circuit implementation of more than 6-
scrolls needs a larger dynamic range of the device,
requiring higher voltage supply and appropriate
differential amplifiers or a convenient scaling of
voltages [Yalcin, 2004]. Lately, Zhong et al. [2002]
proposed a new circuit design method for experi-
mentally verifying a maximum of 10-scroll chaotic
attractors.

Consider again Chua’s circuit (1). By introduc-
ing additional breakpoints into the PWL function
(2), the v− i characteristic of the nonlinear resistor
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Fig. 14. Circuit diagram for generating a 6-scroll attractor
from the generalized Chua’s circuit.

Fig. 15. Observed 6-scroll chaotic attractor (h-axis: 1 V/div;
v-axis: 0.2 V/div) [Yalcin et al., 1999a].

is modified as follows:

f(vC1) = m2n−1vC1 +
1
2

2n−1∑
i=1

(mi−1 − mi)

× (|vC1 + bi| − |vC1 − bi|), (20)

where mi, bi are the slopes of the ith segment
and the ith breakpoint, respectively. Moreover,
attractors with an even number of 2n scrolls can
be created by using the nonlinearity (20) embedded
in Chua’s circuit. Similarly, attractors with an odd
number of 2n− 1 scrolls can be generated by using
the following nonlinear resistor:

f(vC1) = m2n−1vC1 +
1
2

2n−1∑
i=2

(mi−1 − mi)

× (|vC1 + bi| − |vC1 − bi|). (21)

From Chua’s diode shown in Fig. 16, it is clear
that there are two basic circuit cells: the left opera-
tion amplifier in cell I works in its linear region and
the right operation amplifier in cell II works in its
whole dynamic range, including the linear and satu-
rated regions. Moreover, the saturated point deter-
mines the breakpoint of the PWL function. There-
fore, the nonlinear resistors with multisegments can
be constructed by using the two cells, I and II, as
the basic building blocks of the circuit.

Figure 17 shows the circuit diagram for the non-
linear resistor with 19 segments. It is clear that four
pairs of cells biased by VCVS are connected in par-
allel with Chua’s diode. Moreover, two additional
breakpoints can be created by connecting one pair
of cells II with Chua’s diode. Thus, it can implement
the nonlinear resistor (20) with n = 5. Here, each
cell is offset by a VCVS for tuning suitable break-
points. Figure 19(a) displays the measured v − i
characteristic with 19 segments.

Figure 18 shows the circuit diagram for the non-
linear resistor with 17 segments, which is realized

Fig. 16. Chua’s diode.
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Fig. 17. Circuitry realizing the nonlinear resistor with 19 segments.

Fig. 18. Circuitry realizing the nonlinear resistor with 17 segments.

by removing the resistor R2 from Fig. 17. Then, it
can realize the nonlinear resistor (21) with n = 5.
Figure 19(b) displays the measured v− i character-
istic with 17 segments.

Zhong et al. [2002] experimentally verified some
chaotic attractors with 5, 6, 7, 8, 9, 10 scrolls,
respectively. Figures 20(a) and 20(b) show the

experimentally observed 9- and 10-scroll chaotic
attractors. All system parameters are listed in
Table 1 in [Zhong et al., 2002].

Remark 3. It is quite difficult to create attractors
with a large number of scrolls due to the limitation
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(a) Measured v − i characteristic with 19 segments (b) Measured v − i characteristic with 17 segments

Fig. 19. Measured v − i characteristic of the nonlinear resistor.

(a) 9-Scroll attractor (b) 10-Scroll attractor

Fig. 20. Phase portraits in vC1 − vC2 plane of n-scroll chaotic attractors with horizontal axis vC1: 2.5 V/div and vertical axis
vC2: 0.5 V/div.

of the real dynamic range of the available physical
devices.

2.5.5. An improved design approach
for generating n-scroll chaotic
attractors

Yu et al. [2003b] proposed an improved method
for generating n-scroll chaotic attractors. A gen-
eral recursive formula was derived for determining

the equilibrium points in voltage and breakpoints
in voltage. A 11-scroll chaotic attractor was exper-
imentally observed.

Consider Chua’s circuit (1), as shown in
Fig. 1(a). When L = 9.3 mH, C1 = 5.06 nF, C2 =
47.9 nF, G = 1/R = 0.6061 mS, m0 = −0.852 mS,
m1 = −0.32 mS, b1 = 0.2 V, system (1) has a
double-scroll chaotic attractor. To generate multi-
scroll chaotic attractors from (1), modify the PWL
function (2), as follows:
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f(vC1) =




m0vC1 0 ≤ |vC1 | ≤ b1

m1vC1 +
i∑

j=1

(mj−1 − mj)bj bi ≤ |vC1 | ≤ bi+1, 1 ≤ i ≤ n − 1

mnvC1 +
n∑

j=1

(mj−1 − mj)bj |vC1 | ≥ bn.

(22)

To create some uniform scrolls, assume that m0 = m2 = · · · and m1 = m3 = · · · . If the breakpoints bi

are the midpoints of various corresponding PWL segments, then

bi+1 =

2C1

i∑
j=1

(mj − mj−1)bj

G + mi
− bi,

Fig. 21. Circuit diagram for realizing 5 ∼ 11-scroll chaotic attractors [Yu et al., 2003b].
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where 1 ≤ i ≤ n − 1. Given parameters m0,m1, b1,
one can derive all breakpoints bi.

If n is an even number, assume that m0 =
m2 = · · · = mn = −0.32 mS and m1 = m3 =
· · · = mn−1 = −0.852 mS. Then, system (1) with
(22) can generate chaotic attractors with an odd
number (n + 1) of scrolls. If n is an odd num-
ber, assume that m0 = m2 = · · · = mn =
−0.852 mS and m1 = m3 = · · · = mn−1 =
−0.32 mS. Then, system (1) with (22) can generate
chaotic attractors with an even number (n + 1) of
scrolls.

Figure 21 [Yu et al., 2003b] displays the cir-
cuit diagram for implementing 5 ∼ 11-scroll chaotic
attractors. The block within the dotted line plays
the same role as the function with Chua’s diode
NR, as shown in Fig. 1(b). All operation ampli-
fiers are TL082. Note that every middle operational
amplifier and its additional resistors contribute to
a branch circuit of NR and generate a breakpoint
bi. All circuit parameters can be easily deduced,
as given by (12) and (16) in [Yu et al., 2003b].
When switches K1, K2, K3 are turned off, Fig.
21 shows the generated 5-scroll chaotic attractor;
when K1, K2 are turned off and K3 is turned on, it
can create a 7-scroll chaotic attractor; when K1 is
turned off and K2, K3 are turned on, it can generate
a 9-scroll chaotic attractor, as shown in Fig. 22(a)
[Yu et al., 2003b]; when K1, K2, K3 are turned on,
it can create a 11-scroll chaotic attractor, as shown
in Fig. 22(b) [Yu et al., 2003b].

(a) 9-Scroll attractor (h-axis: 0.8 V/div; v-axis: 1 V/div)

(b) 11-Scroll attractor (h-axis: 0.95 V/div; v-axis: 1V/div)

Fig. 22. Experimental observations of 9- and 11-scroll
chaotic attractors [Yu et al., 2003b].

3. Design of n-Scroll Chaotic
Attractors via Nonlinear
Modulating Functions

In the above section, the PWL function approach
was discussed, which can be used for generating
multiscroll chaotic attractors. The main idea there
was introducing additional breakpoints in the PWL
function. In this section, the nonlinear modulating
function method is introduced for creating n-scroll
chaotic attractors.

3.1. Sine function approach

Tang et al. [2001b] applied the sine function to
replace the nonlinear characteristic function of
Chua’s circuit and obtained a modified Chua’s cir-
cuit as follows:




ẋ = α(y − f(x))
ẏ = x − y + z

ż = −βy,

(23)

where

f(x) =




bπ

2a
(x − 2ac) x ≥ 2ac

−b sin
(πx

2a
+ d
)

−2ac < x < 2ac

bπ

2a
(x + 2ac) x ≤ −2ac,

and

d =
{

π for c is even
0 for c is odd,

in which α, β, a, b, c, d are real parameters.
Note that system (23) can generate (c + 1)-

scroll chaotic attractors. When α = 10.814, β =
14.0, a = 1.3, b = 0.11, system (23) can create
8-scroll and 9-scroll chaotic attractors with c = 7
and c = 8, as shown in Figs. 23(a) and 23(b),
respectively.

Tang et al. [2001b] also constructed an elec-
tronic circuit to experimental verify these n-scroll
chaotic attractors. Figure 24 shows the circuit
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(a) 8-Scroll chaotic attractor
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(b) 9-Scroll chaotic attractor

Fig. 23. n-Scroll chaotic attractors generated by the sine function method.

(a) Modified Chua’s circuit with g(x)

(b) Sine or cosine function generator inserted in A − B

Fig. 24. Circuit diagram for generating n-scroll chaotic attractors.
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diagram with dynamical equations


dv1

dt
=

1
RC1

(v2 − v1) − g(v1)
C1

dv2

dt
=

1
RC2

(v1 − v2) +
iL
C2

diL
dt

= −v2

L
,

(24)

where g(v1) = ((bπ/2a) − 1/R)v1 − (bπ/4a)(|v1 +
2ac| − |v1 − 2ac|) − b sin((πv1/2a) + d).

According to Fig. 24(a), the negative resis-
tor g(·) consists of two parts connected in paral-
lel: a one-port described by a v − i characteristic
with a linear negative slope, and a one-port with
a v − i characteristic described by a sine function.
A commercial trigonometric function chip AD639
was used for the circuit design. The original angu-
lar input range of AD639 was ±500◦ generating a
maximum of 4-scroll attractor.

To increase the range of the angular input, for
x ∈ [−(2m + 1)π, (2m + 1)π], one has

cos(x) = cos(|x|) = sin
(
mπ +

π

2
− |x|

)
= sin(y),

where y = mπ + (π/2)− |x| ∈ [−(2 + (1/2))π, (m +
(1/2))π]. It means that the number of scrolls gen-
erated by AD369 can be doubled by using an abso-
lute operation and a voltage shift. Figure 24(b)
is used for generating larger number of scrolls,
inserted into A − B in Fig. 24(a). Figure 25 dis-
plays the detailed circuit design for the gain, level
shifter, and absolute operation. Figure 26 shows the
experimental observations of 6,∼ 9-scroll chaotic
attractors.

3.2. Nonlinear transconductor method

In this subsection, the nonlinear transconductor
approach [Özoǧuz et al., 2002; Salama et al., 2003] is
introduced for creating n-scroll chaotic attractors.

Özoǧuz et al. [2002] introduced an n-scroll
chaotic attractors generator, whose nonlinearity
was the smooth hyperbolic tangent functions
[Salama et al., 2003], which is described by


ẋ

ẏ

ż


 =




0 1 0
0 0 1
0 −a −a






x

y

z


+




0
0

−af(x1)


,

(25)

where

f(x) =
M∑

j=−N

(−1)j−1 tanh k(x − oj) (26)

and M,N are odd integers. System (25) can gener-
ate a (M + N + 2)/2-scroll chaotic attractor.

When a = 0.25, M = 5, N = 3, k = 2 and
oj = 2j for j[−N,M ], system (25) has 5-scroll
chaotic attractors, as shown in Fig. 27(a).

Figure 28(a) [Özoǧuz et al., 2002; Salama et al.,
2003] displays the circuit diagram for generating
n-scroll chaotic attractors. It includes a unity gain
voltage buffer, a single current-feedback operational
amplifier (CFOA), and a transconductor g(VC1).
Figure 28(b) [Özoǧuz et al., 2002; Salama et al.,
2003] shows the transconductor, which is realized
by using alternating bipolar D-P cells.

It is noticed that the smooth hyperbolic tan-
gent function f(x) in (26) can be replaced by the
switching sign function, as follows [Salama et al.,
2003]:

f(x) =
M∑

j=−N

sgn k(x − oj). (27)

When a = 0.25, M = 5, N = 3, k = 2 and
oj = 2j for j[−N,M ], system (25) with (27) has
a 5-scroll chaotic attractor, as shown in Fig. 27(b).
To realize this square-wave-shaped nonlinearity, the

(a) Absolute operation (b) Level shifter (c) Gain

Fig. 25. Subcircuit diagram.
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(a) 6-Scrolls (b) 7-Scrolls

(c) 8-Scrolls (d) 9-Scrolls

Fig. 26. Experimental observations of the sine function method.

circuit diagram of Fig. 28(b) is modified as shown in
Fig. 29 [Salama et al., 2003]. Here, a high gain push-
pull inverter composed of two MOS transistors is
connected to create the sign function.

To generate n×m-grid scroll chaotic attractors,
Salama et al. [2003] further extended system (25),
as follows:


ẋ

ẏ

ż


 =




0 1 0
0 0 1
0 −a −a






x

y

z


+




−af(y)
0

−af(x)


,

(28)

where f(x), f(y) are defined by (26) or (27). When
a = 0.4, system (28) with the sign nonlinearity (27)

can generate a 2×2-grid scroll chaotic attractor, as
shown in Fig. 30 [Salama et al., 2003].

In Fig. 28, the CFOA and the buffer are both
realized by using the AD844 operational ampli-
fiers. The NPN transistors are obtained from the
LM3046 transistor array chips. The PNP transis-
tors are all BC557. The circuit is supplied by ±5V.
All capacitors are taken as 3.3 nF and R2 = 9kΩ,
R3 = 2.2 kΩ. The tail current ISS is set to 40µA.
The control voltages (V1, . . . , V9) are (−500 mV,
−380 mV, −200 mV, 0, 200 mV, 380 mV, 500 mV,
640 mV, 800 mV).

Figure 31(a) [Salama et al., 2003] displays the
observed 5-scroll chaotic attractor, generated by the
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(a) 5-scroll attractor generated via the hyperbolic tangent
function
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(b) 5-scroll attractor generated via the sign function

Fig. 27. 5-scroll chaotic attractors.

(a) Circuit diagram (b) Realization of g(VC1)

Fig. 28. Circuit diagram for generating n-scroll chaotic attractors [Özoǧuz et al., 2002; Salama et al., 2003].

Fig. 29. Realization of the square-wave transconductor
[Salama et al., 2003].

hyperbolic tangent nonlinear transconductor. Sim-
ilarly, Fig. 31(b) [Salama et al., 2003] shows the
observed 5-scroll chaotic attractor, generated by the
sign nonlinear transconductor.

3.3. General nonlinear modulating
function approach

This subsection presents a general nonlinear mod-
ulating function approach for generating n-scroll
chaotic attractors from a general jerk circuit [Linz
& Sprott, 1999; Yu et al., 2005a, 2005d].

The general jerk circuit considered here is
described by

···x + βẍ + γẋ = f(x), (29)



798 J. Lü & G. Chen

Fig. 30. 2 × 2-grid scroll chaotic attractor [Salama et al.,
2003].

where β, γ are real parameters, f(x) is a nonlinear
function, ẋ = dx/dτ is the velocity, ẍ = d2x/dτ2 is
the acceleration, and ···x = d3x/dτ3 is the jerk.

3.3.1. Modulating function method

To create n-scroll chaotic attractors from (29), Yu
et al. [2005a, 2005d] constructed a swing modu-
lating function of double sawtooth wave, which is
described by

f(x) = |F (x)|sgn(x) − x, (30)

where F (·) may be an autonomous function or a
nonautonomous function produced by outer signals.
Of course, F (·) can be a constant in the simplest
case. Here, assume that

|F (·)| = |A sin(ax)|,

where A, a > 0 are parameters.

3.3.2. Adjustable sawtooth wave function
approach

Yu et al. [2005a, 2005d] also applied the adjustable
sawtooth wave to generate n-scroll chaotic attrac-
tors from (29). It can be classified into two cases
with even and odd numbers of scrolls, respectively:

(a) f(x) is given by (26)

(b) f(x) is given by (27)

Fig. 31. Experimental observations of n-scroll chaotic
attractors (x-axis: 200 mV/div; y-axis: 50 mV/div) [Salama
et al., 2003].

(1) Even number of scrolls:

f1(x) = A0sgn(x)

+
M∑
i=1


Ai−1 + Ai

2
sgn


x − 2

B

i−1∑
j=0

Aj






+
M∑
i=1


Ai−1 + Ai

2
sgn


x +

2
B

i−1∑
j=0

Aj






−Bx,

where all parameters Ai > 0 (i = 0, 1, 2, . . .)
and B ∈ [0.7, 1.2], which can generate 2M +
2(M = 1, 2, 3, . . .) scrolls in the attractor.
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(2) Odd number of scrolls:

f2(x) =
M∑
i=1

{
Ai−1 + Ai

2

× sgn

[
x − 1

B

(
2

i−1∑
j=0

Aj − A0

)]}

+
M∑
i=1

{
Ai−1 + Ai

2

× sgn

[
x +

1
B

(
2

i−1∑
j=0

Aj − A0

)]}
− Bx,

where all parameters Ai > 0 (i = 0, 1, 2, . . .)
and B ∈ [0.7, 1.2], which can create 2M +
1 (M = 1, 2, 3, . . .) scrolls in the attractor.

3.3.3. Adjustable triangular wave
function method

Yu et al. [2005a, 2005d] furthermore introduced a
PWL function with varying breakpoints and slopes
to create n-scroll chaotic attractors from (29). It
includes two cases with even and odd numbers of
scrolls, respectively:

(1) Even number of scrolls:

f1(x) =
M∑

n=−M

A

2αn

[∣∣∣∣
(

x − 2An

B

)
+ αn

∣∣∣∣
−
∣∣∣∣
(

x − 2An

B

)
− αn

∣∣∣∣
]
− Bx,

where parameters A > 0, 0.8 ≤ B ≤ 1.2, αn ∈
(0, 3A/10B](n = 0,±1, . . . ,±M), M = 1, 2, . . .,
which can create 2M + 2 scrolls in the chaotic
attractor.

(2) Odd number of scrolls:

f2(x)

=
M∑

n=−M
n �=0

A

2αn

[∣∣∣∣
(

x − A

B

(
2n − |n|

n

))
+ αn

∣∣∣∣

−
∣∣∣∣
(

x − A

B

(
2n − |n|

n

))
− αn

∣∣∣∣
]
− Bx,

where parameters A > 0, 0.8 ≤ B ≤ 1.2, αn ∈
(0, 3A/10B](n = ±1,±2, . . . ,±M), M = 1,
2, . . . , which can create 2M + 1 scrolls in the
chaotic attractor.

3.3.4. Adjustable transconductor wave
function approach

Yu et al. [2005a, 2005d] then proposed an adjustable
transconductor wave method for generating n-scroll
chaotic attractors from (29). It consists of two
cases with even and odd numbers of scrolls, respec-
tively:

(1) Even number of scrolls:

f1(x) =
M∑

n=−M

A tanh
[
Cn

(
x − 2nA

B

)]
− Bx,

where A,B,Cn are adjustable parameters and
M ∈ N .

(2) Odd number of scrolls:

f2(x) =
M∑

n=−M
n �=0

A tanh

×
[
Cn

(
x −

(
2n − |n|

n

)
A

B

)]
− Bx,

where A,B,Cn are adjustable parameters and
M ∈ N .

For simplicity, define the following notation:
Type I: multiscroll attractors, with the sizes of the
scrolls gradually increasing from the center to both
sides; Type II: multiscroll attractors, with the sizes
of the scrolls gradually decreasing from the center to
both sides; Type III: multiscroll attractors, with the
scrolls alternating between small and large scrolls;
Type IV: multiscroll attractors, with all scrolls being
same in size.

Yu et al. [2005a, 2005d] finally designed a cir-
cuit diagram to physically realize various multiscroll
chaotic attractors. Figure 32 shows the circuitry. It
includes five function parts; that is, Part I: inte-
grator N0; Part II: sawtooth wave and triangular
wave generator N1; Part III: buffer N2; Part IV:
switch linkages, including K, K10, K11, K12, K13,
K14, K15; Part V: voltage–current conversion resis-
tors R10 ∼ R15.

Let R3j = 1kΩ and R2j = 200 kΩ for 0 ≤ j ≤ 5.
When K is switched on, N1 generates a triangular
wave; when K is switched off, N1 creates a saw-
tooth wave. All experimental parameters are given
in [Yu et al., 2005a]. Figure 33 shows the experi-
mental observations of 12-scroll chaotic attractors
with various sizes.
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Fig. 32. Circuit diagram for generating n-scroll attractors.

(a) Type I, x = 1.1 V/div, y = 0.4 V/div (b) Type II, x = 1.05 V/div, y = 0.5 V/div

(c) Type III, x = 0.8 V/div, y = 0.4 V/div (d) Type IV, x = 0.66 V/div, y = 0.33 V/div

Fig. 33. Experimental observations of 12-scroll chaotic attractors.
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Moreover, the systematic nonlinear modulating
function methodology reviewed here can be used
to design the swings, widths, slopes, breakpoints,
equilibriums and shapes of the n-scroll chaotic
attractors, as preferred, via the adjustable sawtooth
wave, triangular wave and transconductor wave
functions.

4. Design of Multidirectional
Multiscroll Chaotic Attractors
via Basic Circuits

It is well known that step circuit, hysteresis circuit
and saturated circuit are the three types of basic
circuits. This section introduces several approaches
for generating multidirectional multiscroll chaotic
attractors by using these basic circuits.

4.1. Step function approach

Yalcin et al. [2002b] constructed a new family of
scroll and grid-scroll attractors by using the step cir-
cuit, including 1-D n-scroll, 2-D n × m-grid scroll,
and 3-D n × m × l-grid scroll chaotic attractors.
The state equation of this family of systems is
given by

Ẋ = AX + Bσ(CX), (31)

where X = (x, y, z)T and

A =




0 1 0
0 0 1
−a −a −a


, B =




by 0 0
0 bz 0
0 0 a


,

C =




0 1 0
0 0 1
1 0 0


.

There are three different cases:

(i) 1-D n-scroll chaotic attractors:


by = bz = 0,

σ(·) =




0
0

f1(·)


,

where

f1(x) =
Mx∑
i=1

g−2i+1
2

(x) +
Nx∑
i=1

g 2i−1
2

(x), (32)

and

gθ(ζ) =




1, ζ ≥ θ θ > 0,
0, ζ < θ θ > 0,
0, ζ ≥ θ θ < 0,
−1, ζ < θ θ < 0,

which belongs to the sector [0, 2].
(ii) 2-D n × m-grid scroll chaotic attractors:



by = −1, bz = 0,

σ(·) =




f1(·)
0

f2(·)


,

where f1(·) is defined by (32),

f2(x) =
m−1∑
i=1

βgpi(x),

and

pi = My + 0.5 + (i − 1)(My + Ny + 1),
β = My + Ny + 1,

which belongs to the sector [0, ((My + Ny + 1)/
(My + 0.5))].

(iii) 3-D n × m × l-grid scroll chaotic attractors:


by = −1, bz = −1,

σ(·) =




f1(·)
f1(·)
f3(·)


,

where f1(·) is defined by (32),

f3(x) =
k−1∑
i=1

γgnl
(x),

and

nl = ρ+0.5+(l−1)(ρ+ζ +1), γ = ρ+ζ +1,

with

ρ =
∣∣∣min

i,j
{ueq,y

i + ueq,z
j }

∣∣∣,
ζ =

∣∣∣max
i,j

{ueq,y
i + ueq,z

j }
∣∣∣,

and ueq,y
i , ueq,z

j are the vectors for the y
and z variables related to the equilibrium
points, respectively, which belong to the sec-
tor [0, ((ζ + ρ + 1)/(ρ + 0.5))].

Figure 34(a) [Yalcin et al., 2002b] shows a
10-scroll chaotic attractor, where Mx = 0, Nx = 1,
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(a) 1-D 10-scroll attractor
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(b) 2-D 2 × 3-grid scroll attractor
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(c) 3-D 4 × 3 × 2-grid scroll attractor

Fig. 34. Numerical simulations of generating multiscroll chaotic attractors via step circuit [Yalcin et al., 2002b].

a = 0.8, M = 4, N = 5, X0 = [0.6721
0.8381 0.0196]. Figure 34(b) [Yalcin et al., 2002b]
displays a 2 × 3-grid scroll chaotic attractor, where
My = 0, Ny = 2, m = 2. Figure 34(c) [Yalcin et al.,
2002b] shows a 4×3×2-grid scroll chaotic attractor,
where My = 1, Ny = 1, Mx = 0, Nx = 1, k = 4.

Yalcin et al. [2002b] also designed a circuit
diagram for experimentally verifying the multi-
scroll chaotic attractors. Figure 35 shows the cir-
cuit diagram. The subcircuits within the dashed
lines located at the upper-left, upper-right, and
lower positions can generate multiscroll attrac-
tors in x, y, z-directions, respectively. CFOAs are
implemented using AD844 from analog circuits

where the types of comparators are LM311. The
voltages of electronic sources are ±15V and C1 =
C2 = C3 = 1nF, R1 = 5.1 kΩ. When R2 =
R4 = 8 kΩ, Rx1 = Rx2 = Rx3 = Rx4 = 70 kΩ,
the circuit diagram, modified by removing the sub-
circuits within the dashed lines located at upper-
right and lower positions, and adding two more
comparators in the subcircuit within the dashed
lines located at the upper-left position, can create
a 5-scroll chaotic attractor, as shown in Fig. 36(a)
[Yalcin et al., 2002b]. When R2 = R4 = 12kΩ,
Rx1 = 28kΩ, Rx2 = 30kΩ, Ry1 = 90kΩ, Ry2 =
80kΩ, the circuit diagram, modified by removing
the subcircuit within the dashed lines located at
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Fig. 35. Circuit diagram for realizing multiscroll attractors.

the lower position, and adding one comparator in
the subcircuit within the dashed lines located at
the upper-right position, can generate a 3 × 3-
scroll chaotic attractor, as shown in Fig. 36(b)
[Yalcin et al., 2002b]. When R2 = R4 = 8.3 kΩ,
Rx1 = 19 kΩ, Ry1 = 47 kΩ, Rz1 = 50 kΩ, the cir-
cuit diagram, modified by removing the compara-
tors compx2, compy2 and compz2 in the subcircuits,
can generate a 2× 2 × 2-scroll chaotic attractor, as
shown in Fig. 36(c) [Yalcin et al., 2002b].

4.2. Hysteresis series method

In this subsection, a systematic approach is intro-
duced for generating multidirectional multiscroll
chaotic attractors by using hysteresis series. It
includes two cases: the system to be controlled
is a 2D linear autonomous system, and is a
three-dimensional (3D) linear autonomous system,
respectively.

4.2.1. Two-dimensional hysteresis system

In the following, a design method is described for
creating multiscroll chaotic attractors from a 2D

linear autonomous system via hysteresis series. It
can generate 1-D n-scroll and 2-D n×m-grid scroll
chaotic attractors.

Han et al. [2005] proposed a 2D hysteresis mul-
tiscroll chaotic system, described by

Ẋ = AX + Bθ(CX), (33)

where X = (x, y)T and

A =
(

0 1
−a b

)
, B =

(−1 0
−b a

)
,

C =
(

0 1
1 0

)
.

There are three different cases outlined in the
following:

(i) 1-D horizontal n-scroll chaotic attractors:

θ(·) =
(

0
h(x, p1, q1)

)
,
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(a) 1-D 5-scroll (a = 0.64, x = 0.5 V/div, y = 0.5 V/div)

(b) 2-D 3 × 3-grid scroll (x = 1V/div, y = 0.5 V/div)

(c) 3-D 2 × 2 × 2-grid scroll (x = 1V/div, y = 2 V/div)

Fig. 36. Experimental observations of multiscroll chaotic
attractors generated via step circuit [Yalcin et al., 2002b].

where the hysteresis series function h(x, p1, q1)
is defined by

h(x, p1, q1)

=



−p1 if x < −p1 + 1

i if
i − 1 < x < i + 1
i = −p1 + 1, . . . , q1 − 1

q1 if x > q1 − 1.
(34)

Figure 37 shows the phase portrait of the hys-
teresis series. Here, all equilibria are located in
the x-axis.

(ii) 1-D vertical n-scroll chaotic attractors:

θ(·) =
(

h(y, p2, q2)
0

)
,

where h(y, p2, q2) is similarly defined by (34),
whose corresponding equilibria are located in
the y-axis.

(iii) 2-D n × m-grid scroll chaotic attractors:

θ(·) =
(

h(y, p2, q2)
h(x, p1, q1)

)
,

where h(x, p1, q1), h(y, p2, q2) are similarly
defined by (34), whose corresponding equilib-
ria are integer points in the x − y plane.

When a = 1, b = 0.125, p = q = 3, system
(33) has a 1-D horizontal 7-scroll chaotic attractor,
as shown in Fig. 38(a); when a = 1, b = 0.125,
p = q = 3, system (33) has a 1-D vertical 7-scroll
chaotic attractor, as shown in Fig. 38(b); when
a = 1, b = 0.125, p1 = q1 = 3, p2 = q2 = 1, system
(33) has a 2-D 7× 3-grid scroll chaotic attractor, as
shown in Fig. 38(c). Moreover, one can arbitrarily

Fig. 37. Hysteresis series.
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(a) 1-D horizontal 7-scroll attractor
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(b) 1-D vertical 7-scroll attractor
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(c) 2-D 7 × 3-grid scroll attractor

Fig. 38. Hysteresis chaotic attractors generated from a 2D linear autonomous system.

design the numbers and also the positions as well
as the orientations of the scrolls of the hysteresis
chaotic system (33).

Figure 39 displays the circuitry for physically
realizing n × m-grid scroll chaotic attractors. It
consists of two function parts: (a) hysteresis series
building block; (b) the second-order system [Han
et al., 2005]. The circuit parameters are: R1 = R2 =
R4 = R7 = R9 = R12 = 10 kΩ, R5 = R10 =
R25 = R26 = 100 kΩ, R22 = R23 = R28 = 220 kΩ,
R21 = R24 = 3.3MΩ, R3, R8 and R11 are poten-
tiometers of 50 kΩ, 50 kΩ and 20 kΩ, respectively,

V R1, V R2 and V R3 are potentiometers of 2MΩ,
300 kΩ and 300 kΩ, respectively, C1 = 0.01 µF, and
C2 = 0.001 µF. D1 and D2 are diodes. All the oper-
ational amplifiers are LM324. Figure 40 shows a
2-D 5× 3-grid scroll chaotic attractor generated by
this circuit.

4.2.2. Three-dimensional hysteresis system

Here, a new systematic approach is introduced
for generating multidirectional multiscroll chaotic
attractors from a 3D linear autonomous system
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(a) Hysteresis series building block

(b) Second-order system

Fig. 39. Circuitry for realizing n × m-grid scroll chaotic attractors.

Fig. 40. Observed 5 × 3-grid scroll chaotic attractor.

using hysteresis series [Lü et al., 2003b, 2004d,
2005a, 2005b, 2005c]. This includes 1-D n-scroll,

2-D n×m-grid scroll, and 3-D n×m× l-grid scroll
chaotic attractors. The system is described by [Lü
et al., 2004d]

Ẋ = AX + Bθ(X), (35)

where X = (x, y, z)T is the state vector, B = −A,
and

A =




0 1 0
0 0 1
−a −b −c


.

There are three different cases to consider:

(i) 1-D hysteresis n-scroll chaotic attractors:

θ(X) =




h(x, p1, q1)
0
0


,
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where the hysteresis series function h(x, p1, q1)
is given by (34).

(ii) 2-D hysteresis n × m-grid scroll chaotic
attractors:

θ(X) =




h(x, p1, q1)
h(y, p2, q2)

0


,

where the hysteresis series functions h(x, p1,
q1) and h(y, p2, q2) are similarly defined by
(34).

(iii) 3-D hysteresis n × m × l-grid scroll chaotic
attractors:

θ(X) =




h(x, p1, q1)
h(y, p2, q2)
h(z, p3, q3)


,

where the hysteresis series functions h(x, p1,
q1), h(y, p2, q2), and h(z, p3, q3) are similarly
defined by (34).

Figure 41 shows the multidirectional multi-
scroll chaotic attractors created by the hysteresis-
controlled system (35): (a) a 1-D 7-scroll chaotic
attractor, where a = 0.8, b = 0.72, c = 0.6,
p = q = 3; (b) a 2-D 5×7-grid scroll chaotic attrac-
tor, where a = 0.8, b = 0.7, c = 0.6, p1 = q1 = 2,
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(a) 1-D 7-scroll attractor
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(b) 2-D 5 × 7-grid scroll attractor
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(c) 3-D 5 × 8 × 3-grid scroll attractor in x − y plane
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(d) 3-D 5 × 8 × 3-grid scroll attractor in y − z plane

Fig. 41. Multiscroll chaotic attractors generated via hysteresis from a 3D linear autonomous system.
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Fig. 42. Hysteresis phase space.

p2 = q2 = 3; (c), (d) a 3-D 5 × 8 × 3-grid scroll
chaotic attractor, where a = 0.8, b = 0.72, c = 0.66,
p1 = q1 = 2, p2 = 3, q2 = 4, p3 = q3 = 1.

Figure 42 displays the dynamical behav-
iors of a 3-scroll hysteresis chaotic attractor. In
particular, Lü et al. [2004d] constructed a 2D
Poincaré return map to rigorously prove the chaotic
behaviors of this 3-scroll attractor. The map is
described by

f : Ω1 → Ω1,

(y0, z0) →
{

(y2, z2) for (y0, z0) ∈ H0

(−y3,−z3) for (y0, z0) ∈ H0,

(36)

where H0 = Ω1 −H0 and H0,Ω1 are defined in [Lü
et al., 2004d].

It should be pointed out that one can con-
struct the rigorously mathematical formulation for
this map by using an exact solution, as given
in [Lü et al., 2004d]. However, in actual calcu-
lations, one usually applies numerical methods,
such as the Newton–Raphson method, to solve the
equations.

The Jacobi matrix of this map f is given by

Df =







∂y2

∂y0

∂y2

∂z0

∂z2

∂y0

∂z2

∂z0


 for (y0, z0) ∈ H0

−




∂y3

∂y0

∂y3

∂z0

∂z3

∂y0

∂z3

∂z0


 for (y0, z0) ∈ H0.

Based on this Jacobi matrix, one can obtain exact
mathematical formulations for the Lyapunov expo-
nents λ1, λ2 (λ1 ≥ λ2) of the Poincaré map f . How-
ever, these formulations are rather complex. In real
calculations, one usually uses numerical methods,
such as that discussed in [Lü et al., 2002e], to cal-
culate λ1, λ2. When 0 < λ1 < +∞, the 3-scroll
hysteresis system (35) is chaotic. Similarly, one can
rigorously derive some conditions for generating a
2-D n×m-grid scroll and a 3-D n×m× l-grid scroll
chaotic attractors via constructing a 2D Poincaré
return map.

Lü et al. [2005a, 2006] also designed a novel
block circuit diagram for experimentally verifying
these multidirectional hysteresis multiscroll chaotic
attractors. Figure 43 shows the circuit diagram,
which can physically realize 1-D 5 ∼ 11-scroll,
2-D 3×5 ∼ 11-grid scroll, and 3-D 3×3×5 ∼ 11-grid
scroll chaotic attractors by operating the switches.

It should be pointed out that this was the first
time the experimental verification was reported for
2-D 3 × 11-grid scroll and 3-D 3 × 3 × 11-grid
scroll chaotic attractors. Furthermore, this design
approach indicates a theoretical principle for hard-
ware implementation of such chaotic attractors in
multidirections with a large number of scrolls.

When the switches K1, K2, K3, K4 are
switched off, the circuit shown in Fig. 43 can gen-
erate the 1-D 5 ∼ 11-scroll chaotic attractors;
when the switches K1, K3 are switched on and
the switches K2, K4 are switched off, this circuit
can create the 2-D 3 × 5 ∼ 11-grid scroll chaotic
attractors; when the switches K1, K2, K3, K4
are switched on, the circuit can generate the
3-D 3 × 3 × 5 ∼ 11-grid scroll chaotic attractors.
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Fig. 43. Circuit diagram for realizing 3-D hysteresis multiscroll chaotic attractors.

Figure 44 displays the experimental observations of a 3-D 3 × 3 × 11-grid scroll chaotic attractor.

4.3. Saturated function series approach

This subsection briefly introduces a multidirectional saturated multiscroll chaotic system [Lü et al., 2004b,
2004c, 2005a, 2006].

Lü et al. [2004c] initiated a 3D saturated multiscroll chaotic system, described by

Ẋ = AX + Bϕ(CX), (37)
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(a) x − y plane, where x = 1.44 V/div, y = 0.8 V/div (b) x − z plane, where x = 1.44 V/div, z = 0.8 V/div

Fig. 44. Experimental observations of a 3-D 3 × 3 × 11-grid scroll chaotic attractor.

where X = (x, y, z)T is the state vector, and

A =




0 1 0
0 0 1
−a −b −c


, B =




0 −d2

b
0

0 0 −d3

c

d1 d2 d3


,

C =




1 0 0
0 1 0
0 0 1


.

This system can produce three different types of
attractors, as follows:

(i) 1-D saturated n-scroll chaotic attractors:

ϕ(CX) =




f(x; k1, h1, p1, q1)
0
0


,

where the saturated function series f(x; k1,
h1, p1, q1) is defined by

f(x; k1, h1, p1, q1) =




(2q1 + 1)k1, if x > q1h1 + 1

k1(x − ih1) + 2ik1, if
|x − ih1| ≤ 1
−p1 ≤ i ≤ q1

(2i + 1)k1, if
1 < x − ih1 < h1 − 1
−p1 ≤ i ≤ q1 − 1

−(2p1 + 1)k1, if x < −p1h1 − 1.

(38)

Fig. 45. Saturated function series with k = 1, h = 4.

Figure 45 displays a saturated function series
with k = 1, h = 4.

(ii) 2-D saturated n × m-grid scroll chaotic
attractors:

ϕ(CX) =




f(x; k1, h1, p1, q1)
f(y; k2, h2, p2, q2)

0


,

where f(x; k1, h1, p1, q1) and f(y; k2, h2, p2,
q2) are similarly defined by (38).

(iii) 3-D saturated n × m × l-grid scroll chaotic
attractors:

ϕ(CX) =




f(x; k1, h1, p1, q1)
f(y; k2, h2, p2, q2)
f(z; k3, h3, p3, q3)


,
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where f(x; k1, h1, p1, q1), f(y; k2, h2, p2, q2),
and f(z; k3, h3, p3, q3) are similarly defined
by (38).

When a = b = c = d1 = 0.7, k1 = 9, h1 = 18,
p1 = 2, q1 = 2, system (37) has a 1-D 6-scroll
chaotic attractor, as shown in Fig. 46(a); when
a = b = c = d1 = d2 = 0.7, k1 = k2 = 50,
h1 = h2 = 100, p1 = q1 = p2 = q2 = 2, system
(37) has a 2-D 6 × 6-grid scroll chaotic attractor,
as shown in Fig. 46(b); when a = d1 = 0.7, b = c
= d2 = d3 = 0.8, k1 = 100, h1 = 200, k2 = k3 = 40,
h2 = h3 = 80, p1 = p2 = p3 = q1 = q2 = q3 = 2,

system (37) has a 3-D 6 × 6 × 6-grid scroll chaotic
attractor, as shown in Figs. 46(b) and 46(c).

Moreover, Lü et al. [2004c] also constructed a
2D Poincaré return map to rigorously prove the
chaotic behaviors of such saturated double-scroll
attractors. The map is described by

F : M1 → M1,

(y0, z0) →




(y1, z1) for (y0, z0) ∈ M1 − M−
1

(y2, z2) for (y0, z0) ∈ Γ
(−y3,−z3) for (y0, z0) ∈ M−

1 − Γ,

(39)
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(a) 1-D 6-scroll attractor
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(b) 2-D 6 × 6-grid scroll attractor
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(c) 3-D 6 × 6 × 6-grid scroll attractor in the x − y plane
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(d) 3-D 6 × 6 × 6-grid scroll attractor in the x − z plane

Fig. 46. Numerical simulations for saturated multiscroll chaotic attractors.
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where M1,M
−
1 ,Γ are defined in [Lü et al., 2004c]. Notice that one can deduce a rigorously mathematical

formulation for this map by using the exact solutions given in [Lü et al., 2004c].
The Jacobi matrix of this map F is given by

DF =







∂y1

∂y0

∂y1

∂z0

∂z1

∂y0

∂z1

∂z0


 for (y0, z0) ∈ M1 − M−

1




∂y2

∂y0

∂y2

∂z0

∂z2

∂y0

∂z2

∂z0


 for (y0, z0) ∈ Γ

−




∂y3

∂y0

∂y3

∂z0

∂z3

∂y0

∂z3

∂z0


 for (y0, z0) ∈ M−

1 − Γ.

Fig. 47. Block circuitry for realizing multidirectional saturated multiscroll chaotic attractors.



Generating Multiscroll Chaotic Attractors 813

Thus, one can obtain exact mathematical expres-
sions for the Lyapunov exponents LE1, LE2 of
the mapping F from the Jacobian of F . However,
these formulations are rather complex. In real cal-
culations, one often uses numerical methods, as
described in [Lü et al., 2002e], to calculate the max-
imum Lyapunov exponent LE1. If 0 < LE1 < +∞,
system (37) has a chaotic attractor. Furthermore,
one can also rigorously prove the chaotic behaviors
of the attractor by using the Homoclinic type of
Šilnikov Theorem [Chen & Lü, 2003; Silva, 1993].

More recently, Lü et al. [2006] designed a novel
block circuit diagram for generating multidirec-
tional saturated multiscroll chaotic attractors, as

shown in Fig. 47. The circuit consists of five dif-
ferent function parts: N1, N2, N3, N4, and the
switch sets. Here, N1 includes three integrators, two
inverter-amplifiers and two subtractor amplifiers;
N2 consists of the generator for the x-directional
current saturated function series ix(x) and the gen-
erator for the x-directional voltage saturated func-
tion series f1(x); N3 includes the generator for the
y-directional current saturated function series iy(y)
and the generator for the y-directional voltage satu-
rated function series f2(y); N4 consists of the gener-
ator for the z-directional current saturated function
series iz(z) and the generator for the z-directional
voltage saturated function series f3(z).

(a) 1-D 14-scroll attractor in the x − y plane, where
x = 1.4 V/div, y = 0.4 V/div

(b) 2-D 14 × 10-grid scroll attractor in the x − y plane,
where x = 1.4 V/div, y = 1.6 V/div

(c) 3-D 10× 10× 10-grid scroll attractor in the x− y plane,
where x = 1.0 V/div, y = 0.8 V/div

(d) 3-D 10× 10× 10-grid scroll attractor in the x− z plane,
where x = 1.0 V/div, z = 0.8V/div

Fig. 48. Experimental observations of saturated multiscroll chaotic attractors.
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All required circuit parameters are given in
[Lü et al., 2006] for generating various multiscroll
chaotic attractors. Figure 48 displays the experi-
mental observations of some saturated multiscroll
chaotic attractors.

The designed block circuitry can physically
realize 1-D 10, 12, 14-scroll, 2-D 10, 12, 14 × 10-grid
scroll, and 3-D 10×10×10-grid scroll chaotic attrac-
tors via operating the switches. Particularly, it was
the first time in the literature to report the experi-
mental verification of 1-D 14-scroll, 2-D 14×10-grid
scroll and 3-D 10×10×10-grid (1000) scroll chaotic
attractors. It should be pointed out that hardware
implementation of 1-D n-scroll with n ≥ 10, 2-D
n × m-grid scroll with n,m ≥ 10, and 3-D n × m
× l-grid scroll with n,m, l ≥ 10 chaotic attractors is
very difficult technically. The above circuit design
method provides a theoretical principle for hard-
ware implementation of such chaotic attractors with
multidirectional orientations and a large number of
scrolls.

5. Design of Multiscroll Chaotic
Attractors via Switching Manifolds

This section introduces several basic approaches for
generating multiscroll chaotic attractors from some
simple linear systems by using switching-manifold
control.

5.1. Design of chaotic attractors
with multiple merged basins of
attraction via switching control

This subsection presents a switching control method
for creating n-scroll chaotic attractors from a 3D
linear autonomous system [Lü, 2003; Lü et al.,
2002a, 2002b, 2002f, 2003a, 2004b].

Lü et al. [2002f; 2003a] proposed a system-
atic switching PWL function control approach for
generating chaotic attractors with multiple merged
basins of attraction from the following 3D linear
controlled system:

Ẋ = AX + U(X), (40)

where X = (x, y, z)T ,

A =




a b 0
−b a 0
0 0 c


,

and

U(X) = f1(X) =




k




−x

−y

d


, if z +

√
x2 + y2 > k,

0, otherwise,

in which a, b, c, d, k are real parameters. System (40)
with controller U(X) = f1(X) can create chaotic
attractors within a wide range of parameter values.

To generate two chaotic attractors simultane-
ously from system (40), the controller U(X) is mod-
ified as follows:

f2(X) =




k




−x

−y

d


, if

z > 0,

z +
√

x2 + y2 > k,

m




−x

−y

e


, if

z < 0,

z −
√

x2 + y2 < −m,

0, otherwise,

where a, b, c, d, e, k, m are real parameters.
Furthermore, system (40) with controller

U(X) = f2(X) can simultaneously create two
chaotic attractors, an upper-attractor and a lower-
attractor, within a wide range of parameter val-
ues. Notice that z = 0 is the invariant manifold of
system (40) with controller U(X) = f2(X). When
a = 3, b = 20, c = −20, d = 10, e = −10, k = 4,
m = 4, system (40) with controller U(X) = f2(X)
has an upper and a lower chaotic attractors simul-
taneously, as shown in Fig. 49.

Remark 3. In a similar way, one can easily construct
n different chaotic attractors simultaneously with
different initial values in the switching system (40)
via parallel displacement and rotation transforma-
tions. Since all the chaotic attractors are bounded
by a finite sphere, one can partition the whole
space into n disjoint subspaces, and then duplicate
the original attractor — the upper-attractor or the
lower-attractor — into every subspace. It should be
pointed out that the above n attractors are inde-
pendent of one another; that is, there is no sys-
tem orbit that connects any two different attractors
together.

When n = 2, to connect together the orbits of
the upper- and lower-attractors, so as to obtain a
single chaotic attractor, one can design a controller
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Fig. 49. Upper-attractor and lower-attractor.

to force the orbit of the upper-attractor to go
through the invariant manifold z = 0 from above
and then enter into the subspace {(x, y, z)| z < 0}.
At the same time, this controller should have the
function to force the orbit of the lower-attractor to

go through the invariant manifold z = 0 from below
and then return to the subspace {(x, y, z)| z > 0}.
Based on this idea, one uses δ (0, 0,−sign(z))� to
substitute for 0 in the controller f2(X), thereby
yielding the modified controller as follows:

f3(X) =




k




−x

−y

d


, if

z > 0,

z +
√

x2 + y2 > k,

m




−x

−y

e


, if

z < 0,

z −
√

x2 + y2 < −m,

δ




0
0

−sign(z)


, otherwise,

where a, b, c, d, e, k,m, δ are all real parameters.
When a = 3, b = 20, c = −20, d = −e = 10,

k = m = 4, δ = 1, system (40) with controller
U(X) = f3(X) has a chaotic attractor with two
merged basins of attraction, the upper basin of
attraction and the lower basin of attraction, as
shown in Fig. 50(a). Notice that the controller
U(X) = f3(X) has three switching planes: S1, S2,
and z = 0, in which the two switching planes S1

and S2 are responsible for the generation of two
chaotic attractors, the upper chaotic attractor and
the lower chaotic attractor; while the switching
plane z = 0 is responsible for the connection of
these two chaotic attractors.

Furthermore, to generate a chaotic attractor
with three merged basins of attraction, by using
δ(0, 0,−sign(z−h)− ch/δ)�, one can construct the
controller U(X) as follows:
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(b) Attractor with three merged basins of attraction

Fig. 50. Chaotic attractors with multiple merged basins of attraction in the y − z plane.

f4(X) =




if z < h,


k




−x

−y

d


, if

z > 0,

z +
√

x2 + y2 > k,

m




−x

−y

e


, if

z < 0,

z −
√

x2 + y2 < −m,

δ




0
0

−sign(z)


, otherwise,

if z ≥ h,


k




−x

−y

d − ch

k


 , if z − h +

√
x2 + y2 > k,

δ




0
0

−sign(z − h) − ch

δ


, otherwise,

where a, b, c, d, e, k, m, h, δ are all real
parameters.

When a = 3, b = 20, c = −15, d = −e =
10, k = m = 4, h = 2, δ = 5, system (40) with
controller U(X) = f4(X) has a chaotic attractor

with three merged basins of attraction: two upper
basins of attraction and one lower basin of attrac-
tion, as shown in Fig. 50(b).

Similarly, one can generate chaotic attractors
with n merged basins of attraction. The formalized
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design approach is outlined as follows:

(1) Partition the whole space into n subspaces. For
convenience, one may partition the space along
the z-axis.

(2) Duplicate the original attractors, the upper-
attractor and the lower-attractor, to every
subspace.

(3) Use the switching controller to connect all the
n independent attractors, so as to form a single
chaotic attractor with multiple merged basins
of attraction, as depicted by Fig. 51.

Here, the switching controller can be chosen as
δ sign (z − hi), where the height hi (between two
neighboring subspaces) should be smaller than the
height of a single chaotic attractor.

Fig. 51. Illustrative sketch for the connection of orbit.

5.2. Design of multiscroll chaotic
attractors via step series
switching

This subsection briefly introduces the step series
switching approach for generating multiscroll
chaotic attractors from some simple linear systems.

Yang and Li [2003] proposed the following PWL
function switching system:

Ẋ = A[X− s(CTX− 4)B], (41)

where

s(η) =
{

1 η > 0
0 η ≤ 0

(42)

and

A =




0.5 10 0
−10 0.5 0
0 0 −10


, B =




b

4
4


, C =




0
1
1


.

When b = 0, system (41) has a double-scroll chaotic
attractor, as shown in Fig. 52(a).

To create n-scroll chaotic attractors, Yang and
Li [2003] modified the function s(η) defined in (42)
as follows:

s(η) =




h1 η ≤ a1

h2 ai−1 < η ≤ ai for 2 ≤ i ≤ n − 1
hn η > an,

where {a1, . . . , an} and {h1, . . . , hn} are strictly
increasing constant series. Thus, system (41)
becomes

Ẋ = A[X − s(CTX)B], (43)
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(a) Double-scroll chaotic attractor
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Fig. 52. n-Scroll chaotic attractors generated via step series switching.
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where

A =




α β 0
−β α 0
0 0 −γ


, B =




0
d

d


, C =




0
1
1


 .

When a1 = −0.5, a2 = 0.5, a3 = 1.5, a4 = 2.5,

h1 = −1, h2 = 0, h3 = 1, h4 = 2, h5 = 3, α = 0.5,
β = 10, γ = 5, d = 0.5, system (44) has a 5-scroll
chaotic attractor, as shown in Fig. 52(b).

Recently, Li et al. [2003] constructed a circuit
diagram, as shown in Fig. 53, for generating mul-
tiscroll chaotic attractors. The circuit equation is
described by




v̇1

v̇2

v̇3


 =

1
C




0
1

Rf21
0

− 1
Rf12

1
Rf22

0

0 0 − 1
Rf33







v1 − w(v1 + v3)
v2 − w(v2 + v3)

v3 − 0.5w(v1 + v3) − 0.5w(v2 + v3)


, (44)

Fig. 53. Circuit diagram for 7-scroll chaotic attractors.
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(a) 7-Scroll chaotic attractor obtained via numerical
simulation

(b) Experimental observation of 7-scroll chaotic attractor
[Li et al., 2003]

Fig. 54. 7-Scroll chaotic attractor.

where

w(ζ) =




0 ζ <
VCC

m

i
VCC

m
(2i − 1)

VCC

m
≤ ζ < (2i + 1)

VCC

m
for 1 ≤ i ≤ n − 1

n
VCC

m
ζ ≥ (2n − 1)

VCC

m
.

Let τ = t/τ0, 1/τ0 = 1/RC, R = 3kΩ, C = 100pF,
VBP = 1V, x = v1/VBp, y = v2/VBp, z = v3/VBp.
Then, one obtains a system of dimensionless state
equations as follows:


dx

dτ
= y − w(y + z)

dy

dτ
= −x + ay + w(x + z) − aw(y + z)

dz

dτ
= −z + bw(x + z) + bw(y + z),

(45)

where

w(ζ) =
1
2

n∑
i=0

u(ζ − 0.5 − i),

in which u(·) is the unit step function.
When a = 0.1, b = 0.5 and w(ζ) = 0.5u(ζ −

0.5) + 0.5u(ζ − 1.5), system (45) has a 7-scroll
chaotic attractor, as shown in Fig. 54(a). Let VCC =
5V, R = Rf12 = Rf21 = Rf33 = 3 kΩ, Rf22 =
30 kΩ, Ri = 30 kΩ, C1 = C2 = C3 = C =
100 pF, m = 10, n = 2. The power supply of the

operational amplifier is ±VCC and the power supply
of the comparator is −VCC ∼ 0. Figure 54(b) shows
the experimental observation of a 7-scroll chaotic
attractor.

6. Design of Multifolded Torus
Chaotic Attractors

In this section, a simple multifolded torus chaotic
system with PWL nonlinearity is presented.

6.1. A modified multifolded torus
chaotic system

Matsumoto et al. [1987] introduced a double-folded
torus chaotic circuit, called folded torus circuit
[Inaba, 1992; Matsumoto, 1987; Matsumoto et al.,
1987], described by


ẋ = −αg(y − x)
ẏ = −g(y − x) − z

ż = βy,

(46)

where g(y−x) = m1(y−x)+1/2(m0−m1)(|y−x+
x1|− |y−x−x1|) is a PWL odd function satisfying
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g(x − y) = −g(y − x). When α = 15, β = 1,
m0 = 0.1, m1 = −0.07, and x1 = 1, system (46)
has a double-folded torus chaotic attractor with the
maximum Lyapunov exponent 0.0270.

To generate multifolded torus chaotic attrac-
tors, Yu et al. [2004a, 2005c, 2005e] proposed
a modified multifolded torus circuit, described by


ẋ = −αg(y − x)
ẏ = −g(y − x) − z

ż = βy,

(47)

where α, β are real parameters, and g(y − x) =
mN−1(y−x)+1/2

∑N−1
i=1 (mi−1 −mi)(|y−x+xi|−

|y − x − xi|) is a PWL odd function satisfying
g(x − y) = −g(y − x).

Here, the PWL function g(y−x) can be rewrit-
ten as

g(y − x) =


if |y − x| < x1,

m0(y − x)
if xi ≤ |y − x| ≤ xi+1, 1 ≤ i ≤ N − 2,

mi(y − x) +
i∑

j=1

(mj−1 − mj)sgn(y − x)xj

if |y − x| > xn−1,

mN−1(y − x) +
N−1∑
j=1

(mj−1 − mj)sgn(y − x)xj ,

where mi(0 ≤ i ≤ N − 1) are the slopes of the
segments or radials in various piecewise subregions,

and ±xi(xi ≥ 0, 1 ≤ i ≤ N − 1) are the switching
points.

Assume that α = 14.5, β = 1.25, and x1 = 0.75.
When N = 4, m0 = 0.15, m1 = −0.17, m2 = 0.15,
m3 = −0.17, x2 = 2.0735, x3 = 3.5735, system (47)
has a 7-folded torus chaotic attractor, as shown in
Fig. 55(a). The maximum Lyapunov exponent of
this 7-folded torus chaotic attractor is 0.0901, calcu-
lated by the method available in [Lü et al., 2002e].
Similarly, when N = 5, m0 = −0.17, m1 = 0.15,
m2 = −0.17, m3 = 0.15, m4 = −0.17, x2 = 2.45,
x3 = 3.95, x4 = 5.65, system (47) has a 9-folded
torus chaotic attractor, as shown in Fig. 55(b).
The maximum Lyapunov exponent of this 9-folded
torus chaotic attractor is 0.0730, calculated by the
method available in [Lü et al., 2002e].

Note that system (47) can create a maximum of
(2N − 1)-folded torus chaotic attractor for N > 1.
In particular, every torus corresponds to a unique
segment or radial of the PWL function g(x). More-
over, theoretical analysis and numerical simulation
both show that the slopes of the two radials of the
PWL function g(x) must be negative.

6.2. Circuit implementation

Yu et al. [2005c, 2005e] also designed a circuit
diagram to experimentally verify the multifolded
torus chaotic attractors obtained above. Figure 56
shows the circuitry, where the subcircuitry NS is the
subtraction generator and its output is (vC2 − vC1),
and the subcircuitry NR is the generator of the
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(a) 7-Folded torus attractor

−8 −6 −4 −2 0 2 4 6 8
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

y

(b) 9-Folded torus attractor

Fig. 55. Numerical simulations for multifolded torus chaotic attractors.
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Fig. 56. Circuit diagram for multifolded torus chaotic attractors.

(a) 7-Folded torus, where x = 1.25 V/div and
y = 0.64 V/div

(b) 9-Folded torus, where x = 1.6 V/div and y = 0.9 V/div

Fig. 57. Experimental observations of multifolded torus chaotic attractors.
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PWL function f(vC2 − vC1) and its input and
output satisfy the condition IN = f(vC2 − vC1).
Furthermore, one can rigorously calculate the the-
oretical values of all resistors in NR by using the
recursive formulas available in [Yu et al., 2005c,
2005e]. The operational amplifier is selected to be
TL082, and the supply voltage of electrical source
is ±EC = ±15V. Thus, the saturating voltage of
the operational amplifier is Esat = 14.3 V. Figure 57
displays the experimental observations of 7, 9-folded
torus chaotic attractors.

7. Design of Hyperchaotic
Multiscroll Attractors

In this section, several typical approaches for
generating hyperchaotic multiscroll attractors are
discussed.

7.1. Hyperchaotic multiscroll
attractors from a simple
four-dimensional system

A simple 4D modified Chua’s circuit can be used
to generate complex n-scroll chaotic attractors [Yu
et al., 2003a, 2004b].

Yin [1996] introduced a modified Chua’s circuit,
as shown in Fig. 58(a), which is different from the
original Chua’s circuit in that a RC parallel circuit
consisting of R3 and C3 is added into the L-arm of
the original circuit. This modified Chua’s circuit is
described by



ẋ = α(y − x − g(x))
ẏ = x − y + z

ż = −β(y − w)
ẇ = −γ2(z + γ1w),

(48)

where

g(x) = m1x +
1
2
(m0 − m1)

× (|x + b1| − |x − b1|). (49)

When α = 9.934, β = 14.334, γ1 = 27.333, γ2 =
0.0497, m0 = −1.246, m1 = −0.6724, and b1 = 10,
system (48) has a double-scroll chaotic attractor, as
shown in Fig. 58(b).

Yu et al. [2003a, 2004b] further extended the
PWL function (49) of the 4D modified Chua’s cir-
cuit, for generating n-scroll chaotic attractors, as

(a) The modified Chua’s circuit
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(b) Double-scroll chaotic attractor

Fig. 58. The 4D modified Chua’s circuit.

follows:

g(x) = mN−1x +
1
2

N−1∑
i=1

× (mi−1 − mi)(|x + bi| − |x − bi|). (50)

When α = 9.934, β = 14.334, γ1 = 27.333,
γ2 = 0.0497, m0 = m2 = m4 = −1.246, m1 =
m3 = m5 = −0.6724, and b1 = 10, b2 = 29.2466,
b3 = 49.2466, b4 = 68.4931, b5 = 88.4931, system
(48) with (50) has a 6-scroll chaotic attractor, as
shown in Fig. 59(a); when α = 9.934, β = 14.334,
γ1 = 27.333, γ2 = 0.0497, m0 = m2 = m4 = m6 =
m8 = m10 = −1.246, m1 = m3 = m5 = m7

= m9 = m11 = −0.6724, and b1 = 12.4, b2 =
36.2657, b3 = 61.0657, b4 = 84.9315, b5 = 109.7315,
b6 = 133.5972, b7 = 158.3972, b8 = 182.2629,
b9 = 207.0629, b10 = 230.9287, b11 = 279.5944, sys-
tem (48) with (50) has a 12-scroll chaotic attractor,
as shown in Fig. 59(b).
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(a) 6-Scroll chaotic attractor
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Fig. 59. n-Scroll chaotic attractors from the 4D modified Chua’s circuit.

To experimentally verify the n-scroll chaotic
attractors simulated above, Yu et al. [2004b] recast
the modified Chua’s circuit (48) with (50) as
follows:


dVC1

dt
=

1
RC1

(
VC2 − VC1) − 1

C1
f(VC1)

)
dVC2

dt
=

1
RC2

(VC1 − VC2) +
1
C2

iL

diL
dt

= − 1
L

(VC3 − VC2)

dVC3

dt
= − 1

C3
iL − 1

R0C3
VC3,

(51)

where

f(VC1) =
mN−1

R
VC1 +

1
2

N−1∑
i=1

(mi−1

R
− mi

R

)

× (|VC1 + Ei| − |VC1 − Ei|)

= GN−1VC1 +
1
2

N−1∑
i=1

(Gi−1 − Gi)

× (|VC1 + Ei| − |VC1 − Ei|)

(52)

and C2/C1 = α, R2C2/L = β, R/R0 = γ1, C2/C3 =
γ2, VC1/BP = x, VC2/BP = y, iLR/BP = z,
VC3/BP = w, t/RC2 = τ , BP = 1V, f(VC1) =
g(VC1)/R, Ei = xiBP , Gi = mi/R.

Yu et al. [2004b] then constructed a circuit
to physically realize 4, 6-scroll chaotic attractors.

Figure 60 [Yu et al., 2004b] shows the circuit dia-
gram, where all operational amplifiers are TL082,
the function block within the dotted line is cor-
responding to a diode NR in Chua’s circuit, and
each operational amplifier and its associated resis-
tors contribute a subcurrent of NR with switching
voltage Ei(i = 1, 2, 3, 4, 5). When K is switched
on, the circuit generates a 6-scroll chaotic attractor;
when K is switched off, the circuit creates a
4-scroll chaotic attractor. The voltages of electronic
sources are ±15 V, and their corresponding saturat-
ing voltages are ±13.5 V. All circuit parameters are
shown in Fig. 60. Figures 61(a) and 61(b) [Yu et al.,
2004b] display the observed 4- and 6-scroll chaotic
attractors.

7.2. Hyperchaotic multiscroll
attractors from the modified
MCK circuit

Matsumoto et al. [1986] introduced the first hyper-
chaotic circuit, called MCK circuit, described by




C1
dvC1

dt
= g(vC2 − vC1) − iL1

C2
dvC2

dt
= −g(vC2 − vC1) − iL2

L1
diL1

dt
= vC1 + RiL1

L2
diL2

dt
= vC2 ,

(53)



824 J. Lü & G. Chen

Fig. 60. Circuit diagram of the 4D modified Chua’s circuit [Yu et al., 2004b].

(a) 4-Scroll chaotic attractor (b) 6-Scroll chaotic attractor

Fig. 61. Experimental observations of 4, 6-scroll chaotic attractors [Yu et al., 2004b].

where

g(vC2 − vC1) = m0(vC2 − vC1) + 0.5(m1 − m0)
× (|vC2 − vC1 − 1| − |vC2 − vC1 + 1|). (54)

Figure 62(a) [Matsumoto et al., 1986] shows
the MCK hyperchaotic circuit, where the nonlin-
ear resistor is characterized as shown in Fig. 62(b)
[Matsumoto et al., 1986], and all other electronic
devices are linear and passive except a negative
resistance −R. Figure 63(a) [Matsumoto et al.,
1986] realizes the MCK hyperchaotic circuit, where
N1 realizes the nonlinear resistor and N2 realizes
the negative resistance. When C1 = 0.5, C2 = 0.05,

L1 = 1, L2 = 2/3, R = 1, m0 = 3, m1 = −0.2,
the observed hyperchaotic attractor is shown in
Fig. 63(b) [Matsumoto et al., 1986]. The Lyapunov
exponents are λ1 = 0.24, λ2 = 0.06, λ3 = 0, λ4 =
−53.8 and the Lyapunov dimension is dL = 3.006.

The dimensionless state equation of the MCK
circuit (53) is given by




ẋ = α(g(y − x) − z)
ẏ = β(−g(y − x) − w)
ż = x + z

ẇ = γy,

(55)
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(a) MCK circuit (b) v − i characteristic of N1

Fig. 62. 4D MCK hyperchaotic circuit [Matsumoto et al., 1986].

(a) Circuit diagram (b) Experimental observation

Fig. 63. Realization of MCK hyperchaotic circuit [Matsumoto et al., 1986].

where

g(y − x) = m0(y − x) +
1
2
(m1 − m0)

× (|y − x + 1| − |y − x − 1|). (56)

To generate n-double scroll hyperchaotic
attractors from (55), Yalcin et al. [2000a] modified
the PWL characteristic (56) as follows:

g(y − x) = m0(y − x) +
1
2

2n−1∑
i=1

(mi − mi−1)

× (|y − x + ci| − |y − x − ci|). (57)

Moreover, Yu et al. [2004b, 2005b] further
extended (57) to create n-scroll hyperchaotic attrac-
tors, as follows:

g(y − x) = mN−1(y − x) +
1
2

N−1∑
i=1

(mi−1 − mi)

× (|y − x + ci| − |y − x − ci|). (58)

When α = 2, β = 20, γ = 1.5, m0 = m2 =
m4 = m6 = m8 = 3, m1 = m3 = m5 = −0.9,
m7 = −0.8, c1 = 1, c2 = 3.2105, c3 = 5.5205,
c4 = 8.1953, c5 = 10.9904, c6 = 14.2268, c7 =
17.7699, c8 = 22.9435, system (55) with (58) can
generate a 9-scroll hyperchaotic attractor, as shown
in Fig. 64(a); when α = 2, β = 20, γ = 1.5,
m0 = m2 = m4 = m6 = −0.9, m8 = −0.8,
m1 = m3 = m5 = m7 = m9 = 2.9, c1 = 1, c2 = 3.1,
c3 = 5.41, c4 = 7.951, c5 = 10.7461, c6 = 13.8207,
c7 = 17.2028, c8 = 21.2774, c9 = 16.9686, system
(55) with (58) can generate a 10-scroll hyperchoatic
attractor, as shown in Fig. 64(b).

Recently, Yu et al. [2005b] designed a novel cir-
cuit diagram to experimentally verify 2, 3, 4-scroll
hyperchaotic attractors. Figure 65 displays the cir-
cuitry, where N1 is the generator of the negative
resistor −R, and NR is the multiple PWL func-
tion generator satisfying IN = f(vC2 − vC1). All
operational amplifiers are TL082. The voltage of
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(a) 9-Scroll hyperchaotic attractor (b) 10-Scroll hyperchaotic attractor

Fig. 64. n-Scroll hyperchaotic attractors from the modified MCK circuit.

Fig. 65. Circuit diagram for the realization of 2, 3, 4-scroll hyperchaotic attractors.

the power supply is E = 15 V and the saturating
voltages of the operation amplifiers are Esat =
14.3 V. Let R1 = 100 kΩ, R2 = 0.2 kΩ, R31 = R51 =
R71 = 1kΩ, R11 = R21 = R41 = R61 = 10 kΩ.
According to Fig. 65, when K1, K2 are switched
on, K3, K4 are switched off, and R12 = 10 k,
R22 = 286 k, R32 = 12.4 k, the circuit can generate

a double-scroll hyperchaotic attractor; when K1,
K2, K3 are switched on, K4 is switched off, and
R12 = 10k, R22 = 78 k, R32 = 2.08 k, R42 = 276 k,
R52 = 10.29 k, the circuit can create a 3-scroll
hyperchaotic attractor, as shown in Fig. 66(a); when
K1, K2, K3, K4 are switched on and R12 = 9.3 k,
R22 = 47.3 k, R32 = 0.97 k, R42 = 83.5 k, R52 =
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(a) 3-Scroll hyperchaotic attractor (b) 4-Scroll hyperchaotic attractor

Fig. 66. Experimental observations of 3, 4-scroll hyperchaotic attractors.

2.9 k, R62 = 286 k, R72 = 10.9 k, the circuit can
generate a 4-scroll hyperchaotic attractor, as shown
in Fig. 66(b).

7.3. Hyperchaotic multiscroll
attractors from CNNs

Suykens and Chua [1997] introduced a 1D-CNN for
generating n-scroll hypercube attractors.

Assume that the CNN consists of m identi-
cal generalized Chua’s circuits (8), with unidirec-
tional coupling between the second equations of
cells, which is described by


ẋi = α(yi − h(xi))
ẏi = xi − yi + zi + ki−1(yi − yi−1)
żi = −βyi, i = 1, 2, . . . ,m,

(59)

or with diffusive coupling between the first equa-
tions of cells as


ẋi = α(yi − h(xi)) + dx(xi−1 − 2xi + xi+1)
ẏi = xi − yi + zi

żi = −βyi, i = 1, 2, . . . ,m,

(60)

or with diffusive coupling between second first equa-
tions of cells as


ẋi = α(yi − h(xi))
ẏi = xi − yi + zi + dy(xi−1 − 2xi + xi+1)
żi = −βyi, i = 1, 2, . . . ,m.

(61)

Moreover, assume that y0 = ym, k0 = 0, ki = k(i =
1, . . . ,m − 1) for (59) and x0 = xm, xm+1 = x1 for
(60) and (61).

Kapitaniank and Chua [Yalcin, 2004] also inves-
tigated the unidirectional coupling CNN with n = 1
for creating a double–double scroll attractor. In a
similar way, by using n-scroll attractors as cells,
Suykens and Chua [1997] obtained n-scroll hyper-
cube attractors (m ≥ 4) with weak unidirectional
and diffusive coupling in the common state sub-
space of the cells; that is, (x1, x2) for m = 2,
(x1, x2, x3) for m = 3, and so on. The dimension
of the hypercube is equal to the number of cells m
and hyperchaos is obtained for m > 2. The coupling
coefficients k, dx, dy are set as small as 0.01 and the
initial values are chosen close to the origin. Fig-
ure 67 shows the 2-double scroll square and cube
from a 1D-CNN of 2 and 3 cells, respectively, of
2-double scroll circuits with unidirectional coupling
k = 0.002 between the cells.

7.4. Hyperchaotic coupled
Chua’s circuits

Cafagna and Grassi [2003a, 2003b] introduced an
approach for generating 2-D and 3-D hyperchaotic
attractors from coupled Chua’s circuits with the
sine nonlinearity.

Two Chua’s circuits (23) [Cafagna & Grassi,
2003a] with sine nonlinearities are coupled in the
following form:
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Fig. 67. 1D-CNN of 2, 3 cells of 2-double scroll circuits with unidirectional coupling between the cells (k = 0.002).
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


ẋ1 = α(x2 − f1(x1))
ẋ2 = x1 − x2 + x3 + h(x5 − x2)
ẋ3 = −βx2

ẋ4 = α(x5 − f2(x4))
ẋ5 = x4 − x5 + x6 + h(x2 − x5)
ẋ6 = −βx5,

(62)

where

f1(x1) =




bπ

2a
(x1 − 2ac1) x1 ≥ 2ac1

−b sin
(πx1

2a
+ d1

)
−2ac1 < x1 < 2ac1

bπ

2a
(x1 + 2ac1) x1 ≤ −2ac1

and

f2(x4) =




bπ

2a
(x4 − 2ac2) x4 ≥ 2ac2

−b sin
(πx4

2a
+ d2

)
−2ac2 < x4 < 2ac2

bπ

2a
(x4 + 2ac2) x4 ≤ −2ac2.

Here, α, β, a, b, c1, c2, d1, d2 are real constants and
di(i = 1, 2) are given by

di =
{

π for ci is even
0 for ci is odd.

Figure 68 shows the coupling structure of two
Chua’s circuits with sine nonlinearities. Assume
that α = 10.814, β = 14.0, a = 1.3, b = 0.11,

h = 0.25 and c1, c2, d1, d2 are design parame-
ters. System (62) can generate 2-D m×n-grid scroll
hyperchaotic attractors for suitable design parame-
ters. When c1 = c2 = 5, d1 = d2 = 0, system (62)
has a 2-D 6 × 6-grid scroll hyperchaotic attractor,
as shown in Fig. 69(a). When c1 = c2 = 8, d1 =
d2 = π, system (62) has a 2-D 9 × 9-grid scroll
hyperchaotic attractor, as shown in Fig. 69(b).
For the 9 × 9-grid scroll attractor, the Lyapunov
exponent spectrum is LE1 = 0.334, LE2 =
0.172, LE3 = 0, LE4 = −0.169, LE5 = −1.347,
LE6 = −1.749.

Similarly, three Chua’s circuits (23) [Cafagna
& Grassi, 2003b] with sine nonlinearities can be
coupled in the following form:



ẋ1 = α(x2 − f1(x1))
ẋ2 = x1 − x2 + x3 + h(x8 − x2)
ẋ3 = −βx2

ẋ4 = α(x5 − f2(x4))
ẋ5 = x4 − x5 + x6 + h(x2 − x5)
ẋ6 = −βx5,

ẋ7 = α(x8 − f3(x7))
ẋ8 = x7 − x8 + x9 + h(x5 − x8)
ẋ9 = −βx8,

(63)

where

f1(x1) =




bπ

2a
(x1 − 2ac1) x1 ≥ 2ac1

−b sin
(πx1

2a
+ d1

)
−2ac1 < x1 < 2ac1

bπ

2a
(x1 + 2ac1) x1 ≤ −2ac1,

Fig. 68. Two-coupled Chua’s circuit with nonlinear sine resistors.
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(a) 2-D 6 × 6-grid scroll attractor
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(b) 2-D 9 × 9-grid scroll attractor

Fig. 69. Numerical simulations of 2-D m × n-grid scroll hyperchaotic attractors.

Fig. 70. Three-coupled Chua’s circuit forming a ring with nonlinear sine resistors.

f2(x4) =




bπ

2a
(x4 − 2ac2) x4 ≥ 2ac2

−b sin
(πx4

2a
+ d2

)
−2ac2 < x4 < 2ac2

bπ

2a
(x4 + 2ac2) x4 ≤ −2ac2,

and

f3(x7) =




bπ

2a
(x7 − 2ac3) x7 ≥ 2ac3

−b sin
(πx7

2a
+ d3

)
−2ac3 < x7 < 2ac3

bπ

2a
(x7 + 2ac3) x7 ≤ −2ac3.
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Fig. 71. 3-D 6 × 7 × 8-grid scroll hyperchaotic attractor.

Here, α, β, a, b, c1, c2, c3, d1, d2, d3 are real con-
stants and di(i = 1, 2, 3) are defined by

di =
{

π for ci is even
0 for ci is odd.

Figure 70 displays the coupling structure of
three Chua’s circuits forming a ring with sine non-
linearities. Assume that α = 10.814, β = 14.0,
a = 1.3, b = 0.11, h = 0.18 and c1, c2, c3, d1,
d2, d3 are design parameters. System (63) can cre-
ate 3-D m × n × l-grid scroll hyperchaotic attrac-
tors for suitable design parameters. When c1 = 5,
c2 = 6, c3 = 7, d1 = d3 = 0, d2 = π, system
(63) has a 3-D 6 × 7 × 8-grid scroll hyperchaotic

attractor, as shown in Fig. 71. For the 6×7×8-grid
scroll attractor, the Lyapunov exponent spectrum is
LE1 = 0.675, LE2 = 0.297, LE3 = 0.180, LE4 = 0,
LE5 = −0.127, LE6 = −0.718, LE7 = −1.078,
LE8 = −1.302, LE9 = −1.518.

8. Design of Multiscroll Chaotic
Attractors via Other Techniques

In this section, other techniques for generating mul-
tiscroll chaotic attractors are reviewed, including
the modified Lorenz system, the nth covers of the
proto-Lorenz system [Miranda & Stone, 1993], a
critical chaotic system, and several nonautonomous
continuous dynamical systems.
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8.1. Multiscroll chaotic attractors
from the modified Lorenz system

This subsection discusses a modified Lorenz sys-
tem [Elwakil et al., 2002; Lü et al., 2002c; Chen
& Lü, 2003], which can create a four-wing butterfly
chaotic attractor.

The classical Lorenz system [Chen & Lü, 2003]
is described by


ẋ = a(y − x)
ẏ = cx − y − xz

ż = xy − bz,

(64)

where a, b, c are constants and the nonlinear terms
xz, xy are responsible for chaos generation.

Elwakil et al. [2002] presented a novel Lorenz-
type system, which is free from the positive z con-
straint, given by


ẋ = a(y − x)
ẏ∓ = ∓Kz

ż± = ±|x| ∓ 1,
(65)

where

K =
{

1, x ≥ 0
−1, x < 0.

Here, 0 < a < 1. Comparing with the original
Lorenz system (64), the nonlinear terms xy, xz have
been replaced with the absolute value function |x|
and the sign function Kz, respectively. Moreover,
the threshold constant b and the damping constant
c have been removed in system (65).

System (65) is a dual system with two comple-
mentary modes of operation. Let S(−,+) denote
the case of ẏ = ẏ−, ż = ż+ and S(+,−) denote
the case of ẏ = ẏ+, ż = ż−. Note that the thresh-
old effect performed by b in (64) is now performed
by |x| in (65). Furthermore, in (65), it is not the
sign of (b − z) but the sign of z which changes at
the threshold, ultimately removing the constraint
inherited within the Lorenz system.

When a = 0.55, system (65) with the two
modes S(−,+) and S(+,−) can generate two-wing
butterfly attractors similar to the original Lorenz
system (64). Because the eigenvalue pattern is inde-
pendent of the mode in which the system operates,
one can utilize an external source to force switching
to occur between S(−,+) and S(+,−). Figure 72(a)
shows the four-wing butterfly chaotic attractor gen-
erated in this case, where a = 0.55 and a pulse
train with period TF = 250TS is used to drive the
switching.

(a) Numerical simulation of the four-wing butterfly chaotic
attractor

(b) Experimental observation of the four-wing butterfly
chaotic attractor [Elwakil et al., 2002]

Fig. 72. Four-wing butterfly chaotic attractors from the
modified Lorenz system.

Elwakil et al. [2002] also designed a circuit dia-
gram to experimentally verify the four-wing butter-
fly chaotic attractor. Figure 73 [Elwakil et al., 2002]
displays the circuit diagram. It mainly includes
three capacitors (CX , CY , CZ), twelve bilateral
MOS analog switches, six current feedback oper-
ational amplifiers (CFOA), an external voltage
source VP , and a reference voltage VR.
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Fig. 73. Circuit diagram for realization of the modified Lorenz system [Elwakil et al., 2002].

By selecting CX = CY = CZ = C, R1 =
R2 = R3 = R, Ra = R/a, defining x = VX/VR,
y = VY /VR, z = VZ/VR, and normalizing time with
respect to RC, it is easy to verify that the circuit
diagram shown in Fig. 73 indeed realizes system
(65). Figure 72(b) [Elwakil et al., 2002] shows the
experimental observation of the four-wing butterfly
chaotic attractor, where the frequency of the source
is 150 HZ and the center frequency of the circuit is
approximately 31 kHZ.

8.2. Multiscroll chaotic attractors
from the modified proto-Lorenz
system

This subsection briefly introduces the so-called
proto-Lorenz system [Miranda & Stone, 1993],
which is a quotient of the Lorenz system. Based on
the proto-Lorenz system, one can design and gen-
erate n-scroll chaotic attractors.

Recall the Lorenz system (64), where (x, y, z) ∈
X = R3. Obviously, the Lorenz system (64) is
invariant under the linear transformation L1 : (−x,
−y, z) → (x, y, z).

Define a map, π : X → Y , as follows:

u = π(x) = x2 − y2, v = π(y) = 2xy,

z = π(z) = z.
(66)

Since the Lorenz system (64) is invariant in X
under the transformation L1, it descends to a vec-
tor field F on the quotient Y . Miranda and Stone
[1993] derived the equation of this descended vector
field F on the orbit space Y , as follows:



u̇ = −(a + 1)u + (a − c + z)v
+ (1 − c)

√
u2 + v2

v̇ = (c − a)u − (a + 1)v

+ (a + c − z)
√

u2 + v2 − uz

ż =
1
2

v − bz,

(67)
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Fig. 74. Multiscroll chaotic attractors from the modified proto-Lorenz system.

which is called the proto-Lorenz system. It is
noticed that the proto-Lorenz system F is a con-
tinuous vector field on all of Y . However, it is not
differentiable because of the presence of the norm√

u2 + v2. Of course, it is differentiable away from
the z-axis.

According to the construction of the proto-
Lorenz system, the double cover F2 of this system
is the original Lorenz system. Moreover, the nth
cover Fn of the proto-Lorenz system has n scrolls.
The triple cover F3 [Miranda & Stone, 1993] is
described by




ṗ =
1
3
[−(a + 1)p + (a − c + z)q]

+
1

3
√

p2 + q2
[(1 − a)(p2 − q2)

+ 2(a + c − z)pq]

q̇ =
1
3
[(c − a − z)p − (a + 1)q]

+
1

3
√

p2 + q2
[2(a − 1)pq

+ (a + c − z)(p2 − q2)]

ż =
1
2
(3p2q − q3) − bz.

(68)

When a = 10, b = 8/3, c = 28, the triple-cover sys-
tem (68) has a 3-scroll chaotic attractor, as shown
in Fig. 74(a).

Similarly, the quartic cover F4 [Miranda &
Stone, 1993] is given by


ṡ =
1

2(s2 + t2)
[−as3 + (2a + c − z)s2t

+ (a − 2)st2 − (c − z)t3]

ṫ =
1

2(s2 + t2)
[(c − z)s3 + (a − 2)s2t

+ (−2a − c + z)st2 − at3]

ż = 2s3t − 2st3 − bz.

(69)

When a = 10, b = 8/3, c = 28, the quartic-cover
system (69) displays a 4-scroll chaotic attractor, as
shown in Fig. 74(b).

8.3. Multiscroll chaotic attractors
from a critical chaotic system

This subsection presents a 3D quadratic auto-
nomous critical chaotic system, which can display
(i) two 1-scroll chaotic attractors simultaneously,
with only three equilibria, and (ii) two 2-scroll
chaotic attractors simultaneously, with five equilib-
ria [Lü & Chen, 2002; Lü et al., 2002d, 2004a].

Lü et al. [2004a] introduced the following criti-
cal chaotic system:


ẋ = − ab

a + b
x − yz + c

ẏ = ay + xz

ż = bz + xy,

(70)

where a, b, c are real constants.
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Fig. 75. Multiscroll chaotic attractors from the critical chaotic system.

System (70) is found to be chaotic in a wide
parameter range and has many interesting com-
plex dynamical behaviors [Lü et al., 2004a]. Espe-
cially, when a = −10, b = −4, c = 18.1,
it displays two coexisting 1-scroll chaotic attrac-
tors, as shown in Fig. 75(a). The corresponding
Lyapunov exponent spectrum of system (70) is
λ1 = 0.253223, λ2 = 0, λ3 = −11.3944, and the
Lyapunov dimension is dL = 2.0221 for initial value
(1, 1, 1). Moreover, when a = −10, b = −4, c = 0,
system (70) displays two coexisting 2-scroll chaotic
attractors, as shown in Fig. 75(b). Similarly, the
corresponding Lyapunov exponent spectrum of sys-
tem (70) is λ1 = 1.1662, λ2 = 0, λ3 = −12.3090,
and the Lyapunov dimension is dL = 2.0947 for ini-
tial value (1, 1, 1). It should be pointed out that Liu
& Chen [2004] also proposed a similar but different
chaotic system, which can create two double-scroll
chaotic attractors that are extremely closely located
seemingly just like a four-scroll attractor.

8.4. Multiscroll chaotic and
nonchaotic attractors from the
quasi-periodically forced
system

This subsection introduces a general quasi-
periodically forced system, which can generate
multiscroll chaotic and nonchaotic attractors.

Kapitaniak [Aziz-Alaoui, 1999, 2000] once
investigated the dynamics of a nonautonomous cir-
cuit, which is a classical forced negative-resistance

oscillator and can generate a strange nonchaotic
two-frequency torus attractors. The circuit equation
is described by{

ẋ = y − f2(x)
ẏ = −β[x + (v + 1)y + A(sin(ω1t) + sin(ω2t))],

(71)

where

f2(x) = m1x +
1
2
(m0 − m1)[|x + 1| − |x − 1|],

(72)

and β, v, ω1, ω2, m0, m1, A are parameters.
To generate multiscroll chaotic or nonchaotic

attractors, Aziz-Alaoui [1999] replaced the function
f2 in (71) by the following function (13), obtaining{

ẋ = y − fN (x)
ẏ = −β[x + (v + 1)y + A(sin(ω1t) + sin(ω2t))].

(73)

Obviously, the parameters set satisfies

BK
N = {β, v, ω1, ω2, A} ∪ BN ⊂ R2N+4,

where BN = {(sk)k∈IN−2
, (mk)k∈IN−1

} ⊂ R2N−1.
Let m0 = m2i = · · · = −1.02 and m1 = m2i+1 =
· · · = −0.55 for i = 1, 2, . . . .

Figure 76(a) [Aziz-Alaoui, 1999] shows two
coexisting 3-scroll chaotic attractors for N = 6, A =
0.173,BK

6 ; Fig. 76(b) [Aziz-Alaoui, 1999] displays
the combination of these two chaotic attractors with
the formation of a double 3-scroll chaotic attractor
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(b) A double 3-scroll attractor for A = 0.18

Fig. 76. Multiscroll chaotic attractors from the quasi-periodically forced system [Aziz-Alaoui, 1999].

for N = 6, A = 0.18, BK
6 , where BK

6 = {β = 1.0,
v = 0.015, ω1 = 0.75, ω2 =

√
2, m0 = −1.02,

m2 = −0.55, s0 = 1.0, s1 = 1.11, s2 = 2.06,
s3 = 2.14, s4 = 3.06} ∪ {A}.

8.5. Multiscroll strange attractors in
the PWL van der Pol system

This subsection presents a general van der Pol sys-
tem with periodic forcing [Aziz-Alaoui, 1999], which
can create multiscroll strange attractors.

This van der Pol system with periodic forcing
is described by


ε
dx

dt
= y −

(
x2

3
− x

)

dy

dt
= −αx + b cos(t),

(74)

where α, ε are sufficiently small and b > 0.
The associated PWL system of (74) [Aziz-Alaoui,
1999] is 


ε
dx

dt
= y − f2(x)

dy

dt
= −αx + b cos(t),

(75)

where f2(x) is defined by (72) with m0 = −1,
m1 = 1. When α = ε = 0.167 and b = 0.59983,
system (74) exhibits a positive Lyapunov exponent.

However, the range of the parameter b correspond-
ing to this attractor is very narrow. Moreover, this
attractor is easily destroyed by a tiny perturbation.

To create n-scroll strange attractors, Aziz-
Alaoui [1999] modified system (75) as follows:




ε
dx

dt
= y − fN (x)

dy

dt
= −αx + b cos(t),

(76)

where fN (x) is defined by (13). Clearly, the param-
eters set satisfies

BV
N = {α, ε, b} ∪ BN ⊂ R2N+2,

where BN = {(sk)k∈IN−2
, (mk)k∈IN−1

} ⊂ R2N−1.
For simplicity, assume that m0 = m2i = · · · = −1.0
and m1 = m2i+1 = · · · = 1.0 for i = 1, 2, . . . .

Figure 77(a) [Aziz-Alaoui, 1999] displays a
strange attractor for N = 6 and s1 = 2.7, s2 =
3.0482, s3 = 4.028, s4 = 4.975; Fig. 77(b) [Aziz-
Alaoui, 1999] shows a strange attractor for N = 8
and s1 = 2.7, s2 = 3.0482, s3 = 4.028, s4 = 4.975,
s5 = 5.2, s6 = 6.1.

8.6. Multiscroll chaotic attractors
in the PWL-Duffing system

This subsection describes a general PWL-Duffing
system for generating multiscroll chaotic attractors.
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(b) A strange attractor for N = 8

Fig. 77. Multiscroll strange attractors from the general van der Pol system [Aziz-Alaoui, 1999].
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Fig. 78. Multiscroll chaotic attractors from the PWL-Duffing system [Aziz-Alaoui, 2000].

The classical Duffing system is described by{
ẋ = y

ẏ = x − x3 − εy + γ cos(ωt),
(77)

where x, y are the functions of time t. When ε =
0.25, γ = 0.3, ω = 1.0, system (77) has a chaotic
attractor.

The corresponding simplest PWL-Duffing
system [Aziz-Alaoui, 2000], obtained by replacing
x3 − x by f2(x), is{

ẋ = y

ẏ = −f2(x) − εy + γ cos(ωt),
(78)

where f2(x) is defined by (72). When ε = 0.25,
γ = 0.3, ω = 1.0, m0 = −0.0845, m1 = 0.66, system
(77) has a chaotic attractor.

To create n-scroll chaotic attractors, Aziz-
Alaoui [2000] extended system (78) as follows:{

ẋ = y

ẏ = −fN(x) − εy + γ cos(ωt),
(79)

where fN (x) is defined by (13).

Figure 78(a) [Aziz-Alaoui, 2000] displays a 4-
scroll chaotic attractor, where ε = 0.25, γ = 0.3,
ω = 1.0, m0 = m2 = −0.0845, m1 = m3 = 0.66,
s1 = 1.4, s2 = 2.7. Figure 78(b) [Aziz-Alaoui, 2000]
shows a 6-scroll chaotic attractor, where ε = 0.25,
γ = 0.3, ω = 1.0, m0 = m2 = m4 = −0.0845,
m1 = m3 = m5 = 0.66, s1 = 1.4, s2 = 2.7,
s3 = 3.67, s4 = 4.5.

8.7. Multiscroll chaotic attractors
in a nonautonomous chaotic
system

This subsection introduces a simple nonautonomous
chaotic system for creating n-scroll chaotic
attractors.

Aziz-Alaoui [1999] investigated the following
nonautonomous circuit:


C

dvC

dτ
= iL − g(vC )

L
diL
dτ

= −RiL − iC + VS sin(ωτ),

(80)
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Fig. 79. Circuit diagram of the n-scroll nonautonomous
circuit [Aziz-Alaoui, 1999].

where g(vC) is a PWL function defined by (2). The
circuit diagram is shown in Fig. 79 [Aziz-Alaoui,
1999].

Let x = vC/b1, y = iLR/b1, t = τ/RC,
Ω = ω/2πRC, α = CR2/L, K = VS/b1. Thus,
the corresponding dimensionless state equations are
described by




dx

dt
= y − f2(x)

dy

dt
= −α(x + y) + αK sin(2πΩt),

(81)

where f2(x) is defined by (72).
To generate n-scroll chaotic attractors from

(81), Aziz-Alaoui [1999] modified system (81) as

follows:


dx

dt
= y − fN (x)

dy

dt
= −α(x + y) + αK sin(2πΩt),

(82)

where fN (x) is defined by (13). Aziz-Alaoui [1999]
further investigated the equilibrium points and
eigenspaces of this system (82).

When N = 4 and BL
4 = {α = 0.81, K = 1.19,

Ω = 0.22, m0 = −1.45, m1 = 0.66, s1 = 1.45,
s2 = 2.49}, system (82) has a 4-scroll chaotic attrac-
tor, as shown in Fig. 80(a) [Aziz-Alaoui, 1999].
When N = 6 and BL

6 = {α = 0.81, K = 1.19,
Ω = 0.22, m0 = −1.45, m1 = 0.66, s1 = 1.45,
s2 = 2.49, s3 = 2.94, s4 = 4.1}, system (82) has
a 6-scroll chaotic attractor, as shown in Fig. 80(b)
[Aziz-Alaoui, 1999].

8.8. Multiscroll chaotic attractors
in a nonautonomous
pulse-driven system

In this subsection, a novel nonautonomous pulse-
driven chaotic oscillator is discussed, which is based
on the passive structure of Chua’s circuit [Elwakil,
2002].

It is well known that most nonautonomous
chaotic circuits are driven by sinusoidal exci-
tations. This implies that the equilibrium
points of these driven systems are time-varying.
Recently, Elwakil [2002] proposed a nonautonomous
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Fig. 80. n-Scroll chaotic attractors from the nonautonomous system [Aziz-Alaoui, 1999].
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Fig. 81. Pulse-driven nonautonomous chaotic oscillator [Elwakil, 2002].

pulse-driven chaotic oscillator with fixed equilib-
rium points in the phase space.

As seen from Fig. 81(a) [Elwakil, 2002], the cir-
cuit equation is described by


LİL = VC2

C2V̇C2 =
VC1

R
−
(

1
R

+
1

RS
+

1
RF

)
VC2

− IL +
VP

RS
+

VN

RF

C1V̇C1 =
VC2 − VC1

R
,

(83)

where

VN = VCCsgn(VC1) =
{

VCC VC1 ≥ 0
−VCC VC1 < 0

and VP = VCCsgn(sgn(ωP t)). Here, ωP is the fre-
quency of oscillation of the pulse-train.

Let X = VC1/VCC , Y = VC2/VCC , Z =
RIL/VCC , τ = ωP t, εc = C1/C2, α1 = LωP /R,
α2 = RC2ωP , βF = R/RF , βS = R/RS . Then, sys-
tem (83) becomes




εcẊ

Ẏ

Ż


 =




− 1
α2

1
α2

0

1
α2

−1 + βF + βS

α2
− 1

α2

0
1
α1

0







X

Y

Z




+




0
a

α2

0


, (84)

where α1, α2, βF , βS are real constants and the only
parameter a is defined by

a =
{

βF + βSP (τ) X ≥ 0
−βF + βSP (τ) X < 0,

(85)

in which

P (τ) = sgn(sin τ) =
{

1 sin τ ≥ 0
−1 sin τ < 0.

Figure 82(a) [Elwakil, 2002] displays the numer-
ical simulation result of a 3-scroll chaotic attractor,
where α1 = 0.05, α2 = 50, βF = βS = 3, τ = 0.1t
and εc = 0.2. Clearly, the three equilibrium points
are the origin and (0, 0,±6).

Elwakil [2002] constructed a circuit diagram,
as shown in Fig. 81(a), to verify the chaotic behav-
iors, where L = 1mH, C1 = 10 nF, C2 = 100 nF,
R = 5 kΩ, FF = 1 kΩ. Moreover, RS is a variable
5 kΩ resistor; the resonant frequency of the LC2

tank was approximately 16 kHz; the frequency of
the driving pulse generator was in the range of 1–
20 kHz; the TL082 operational amplifier was biased
from ±5 V supplies and the pulse generator out-
put was also fixed to ±5V. Figure 82(b) [Elwakil,
2002] displays the observed chaotic attractor in the
VC1 − VC2(X − Y ) plane, where RS = 1.636 kΩ.
Note that it is particularly difficult to measure the
current in the inductor IL(Z).

Recall that the passive structure of Chua’s
circuit is a two-node structure. In Fig. 81(a)
[Elwakil, 2002], it is chosen to excite one of these
nodes, namely, the one across C2. In the follow-
ing, the other node, namely, the one across C1,
is alternatively excited, as shown in Fig. 81(b)
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Fig. 82. Pulse-driven chaotic attractor [Elwakil, 2002].

[Elwakil, 2002]. The corresponding circuit equation
is described by




εcẊ

Ẏ

Ż


 =




1 −(1 + βF + βS) 0

1
α2

− 1
α2

− 1
α2

0
1
α1

0






X

Y

Z




+




a

0
0


, (86)

where a is defined in (85) with the switching condi-
tion dependent on y instead of x.

Figure 83 [Elwakil, 2002] displays the observed
4-scroll chaotic attractor, where εc = 0.1, α1 = 0.07,
α2 = 0.5 and βF = βS = 3. A single positive
Lyapunov exponent equal to 0.0089 is also calcu-
lated from the y time series.

8.9. Multiscroll chaotic attractors
in the fractional order
systems

In this subsection, one simple fractional order sys-
tem is constructed for generating n-scroll chaotic
attractors [Ahmad, 2005].

Recently, Ahmad [2005] introduced a simple
fractional chaotic oscillator described by



dxα
1

dtα
= x2

dx2

dt
= x3

dx3

dt
= −a(x1 + x2 + x3 − f(x1))

y = x1,

(87)

where dxα
1 /dtα is the fractional derivative of x1 with

order α, a is the control parameter for this oscilla-
tor, f(x1) = sgn(x1) is the nonlinearity, and y is the
system output.

Clearly, the order of system (87) is 2 + α. For
integer order case, system (87) can generate double-
scroll chaotic attractors for 0.49 < a < 1; for
fractional order case, the range of parameter a for
creating chaos depends on the given fractional
order. To create multiscroll chaotic attractors from
fractional system (87), Ahmad slightly modified the
nonlinearity f(x1) as follows:

f(x1) = sgn(x1) +
N∑

k=1

(sgn(x1 − k) + sgn(x1 + k)).

(88)
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Fig. 83. 4-Scroll chaotic attractor observed from the model of alternatively excited circuit [Elwakil, 2002].

Fig. 84. 6-Scroll chaotic attractor observed from integer
order system (87) with α = 1, a = 0.4 [Ahmad, 2005].

When α = 1, a = 0.4, system (87) with (88) has
integer order and a 6-scroll chaotic attractor as
shown in Fig. 84 [Ahmad, 2005]. When α = 0.5, a =
0.01, system (87) with (88) has fractional order 2.5
and a 6-scroll chaotic attractor as shown in Fig. 85
[Ahmad, 2005].

Fig. 85. 6-Scroll chaotic attractor observed from fractional
order system (87) with α = 0.5, a = 0.01 [Ahmad, 2005].

9. Implementation and Applications
of Multiscroll Chaotic Attractors

This section briefly summarizes digital implemen-
tation, control, synchronization and some poten-
tial real-world applications of multiscroll chaotic
attractors.
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9.1. Generating multiscroll chaotic
attractors via digital circuit
implementation

Eguchi et al. [1999] proposed a novel digital circuit
for generating multiscroll chaotic attractors.

Let x = vC1 , y = vC2 , z = iL, A′ = 1/R,
B′ = C1, C ′ = C2, D′ = L. Then, Chua’s circuit
(1) becomes



B′dx

dt
= A′(y − x) − g(x)

C ′dy

dt
= A′(x − y) + z

D′dz

dt
= −y,

with g(x) = m1x+1/2(m0−m1)(|x+b1|−|x−b1|).
Consider the following difference trans-

formation:

dx

dt
=

Xn+1 − Xn

2E
,

dy

dt
=

Yn+1 − Yn

2E
,

dz

dt
=

Zn+1 − Zn

2E
,

where E is an integer parameter. The correspond-
ing difference equation of the general Chua’s circuit
with multiple breakpoints is described by


Xn+1 = B
A

(Yn − Xn)
2m

− G(Xn)

2m−E
+ Xn

Yn+1 = C
Zn − A

Yn − Xn

2m

2m−E
+ Yn

Zn+1 = −D
Yn

2m−E
+ Zn,

(89)

Fig. 86. General circuit architecture of the digital chaotic circuit.

(a) 3-Scroll chaotic attractor (b) 4-Scroll chaotic attractor

Fig. 87. Numerical simulation of the digital circuit [Eguchi et al., 1999].
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where A = [A′2m], B = [1/B′], C = [1/C ′],
D = [1/D′], m are integer parameters on the
interval [0, 2m+1] and G(Xn) is a PWL function
with k breakpoints, in which [ · ] is the Gauss
integer function. For simplicity, denote Xn+1 =
F1(Xn, Yn, Zn), Yn+1 = F2(Xn, Yn, Zn), and Zn+1 =
F3(Xn, Yn, Zn). Finally, the complicated nonlin-
ear function G(Xn) is determined electronically by
using supervised learning based on a neuro-fuzzy
scheme.

Figure 86 displays the general circuit architec-
ture of the digital chaos circuit (89). It includes a
nonlinear function block, three operation blocks and
three delay blocks.

Eguchi et al. [1999] numerically confirmed the
validity of the circuit algorithm. In all numer-
ical simulations, the membership functions are
defined as

MS1 : µA1(x) = 2m+1 � 10x,

MS2 : µA2(x) =




10x if x <
2m

5

3 × 2m − 5x if x ≥ 2m

5
,

MS3 : µA3(x) =




5x � 2m if x < 3 × 2m
5

(5 × 2m) � 5x if x ≥ 3 × 2m

5
,

MS4 : µA4(x) =

{
5x � (3 × 2m) if x < 2m

2m+2 � 2x if x ≥ 2m,

MS5 : µA5(x) = 2x � 2m+1,

where x is the input variable and � is the bounded
difference operator. Figure 87 [Eguchi et al., 1999]
shows the simulated 3, 4-scroll chaotic attractors
obtained from the digital circuit.

Eguchi et al. [1999] also constructed an FPGA
chaotic circuit for creating n-scroll chaotic attrac-
tors (n = 1, . . . , 4) based on a CAD tool, Verilog-
HDL. Figure 88 [Eguchi et al., 1999] shows the
FPGA functional block allocation result for the syn-
thesized circuit, where the number of inference rules
k was set to 5, the parameter m was set to 14, and
the SRAM is excluded from the chip as an external
memory.

Fig. 88. The functional block allocation view of the FPGA implementing the digital circuit [Eguchi et al., 1999].
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9.2. Digitized n-scroll chaotic
attractors model for secure
communication

Tang et al. [2001a] proposed a secure digital com-
munication system using digitized n-scroll chaotic
attractors.

Consider Chua’s circuit (8) with h(x1) = ax1 +
bx1|x1|, where (x1, x2, x3)T is the state vector.
Using a bilinear transformation, the discrete-time
equation of (8) is obtained as


x1(k + 1)
x2(k + 1)
x3(k + 1)


 =




φ11 φ12 φ13

φ21 φ22 φ23

φ31 φ32 φ33






x1(k)
x2(k)
x3(k)




+




γ1

γ2

γ3


h(x1(k)), (90)

where

φ11 =
4αT 2 + ζ1

ζ1
, φ12 =

8αT

ζ1
, φ13 =

4αT 2

ζ1
,

φ21 =
8αT 3 + 4Tζ1

ζ1ζ2
, φ22 =

16αT 2 + (8 − ζ2)ζ1

ζ1ζ2
,

φ23 =
8αT 3 + 4Tζ1

ζ1ζ2
, φ31 =

4αβT 4 + 2βT 2ζ1

ζ1ζ2
,

φ32 =
8αβT 3 + 4βTζ1

ζ1ζ2
,

φ33 =
4αβT 4 + (ζ2 − 2βT 2)ζ1

ζ1ζ2
, γ1 =

−2αTζ2

ζ1
,

γ2 =
−4αT 2

ζ1
, γ3 =

−2αβT 3

ζ1
,

ζ1 = 8 + 4T (1 + αa) + 2T 2(β + α + αa) + αβaT 3,

ζ2 = 4 + 2T + βT 2,

h(x1(k)) = ax1(k) + bx1(k)|x1(k)|,
in which the sampling time T > 0, and α, β, a, b
are constant parameters. Denote (90) as x(k +1) =
Φx(k) + Γh(x1(k)).

To generate n-scroll chaotic attractors, Tang
et al. [2001a] extended the nonlinear function as
follows:

h(u(k)) = au(k) + bu(k)|u(k)|,
where, if x(k) in [−(2m − 1)|a|/b, (2m − 1)|a|/b]
for m = 0,±1, . . . ,±(n/2 − 1), then u(k) =
x(k) + 2ma/b; otherwise, u(k) = x(k) + (n− 2)a/b.

Fig. 89. Digital 8-scroll attractor from modified Chua’s
circuit.

Figure 89 displays a digital 8-scroll chaotic
attractor.

Next, consider the following two discrete-time
autonomous chaotic systems:

S1 : w(k + 1) = Φ1w(k) + Γ1h1(w(k))
S2 : v(k + 1) = Φ2v(k) + Γ2h2(v(k)),

(91)

where w(k),v(k) ∈ R3 are state vectors. More-
over, if ∃M ∈ R3×3, such that limk→∞ ‖w(k)−
Mv(k)‖ = 0, then subsystems S1, S2 are called
M-synchronization.

Tang et al. [2001a] designed a secure dig-
ital communication scheme using chaotic phase
shift keying (CPSK) method. Figure 90 shows the
transmitter Tr and the receiver Re. The transmitter
observer Tr is described by

w(k + 1) = M−1
i ΦMw(k) + M−1

i Γu(k), (92)

where w(k) ∈ R3 is the state vector of Tr at time
k, Φ ∈ R3×3 is a stable matrix, Γ ∈ R3×1, Mi ∈
R3×3 is a nonsingular synchronization matrix, and
u(k) ∈ R is a nonlinear feedback function.

The receiver Rc is given by

v(k + 1) = (Φ + HiηiM−1
i )v(k) + Γu(k)

−His(k), (93)

where Hi ∈ R3×1.
For each i, define the error function as follows:

ε2
i =

τ∑
k=τm

(s(k) − ηiM−1
i v(k))2, (94)

where τ is the signal interval and τm is the minimum
number of steps to realize synchronization.
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(a) Transmitter Tr

(b) Receiver Re

Fig. 90. Transmitter and receiver in M-CPSK.

Let η1 = η2 = [1 0 0] and

M1 =




2 0 0
0 4 0
0 0 2


, M2 =




−2 0 0
0 3 0
0 0 −2


.

At the receiver end, Hi ∈ Rn×1 is designed such
that the desired eigenvalues are (0, 0.001, −0.001)
and (0, 0.002, −0.002) for H1 and H2, respectively.

Figure 91(a) displays the error between ηi ×
M−1

i v and s. Figure 91(b) shows the relationship
of the probability bit error rate (BER) with the
signal-to-noise ratio (SNR).

9.3. Unidirectionally coupled
synchronization of multiscroll
chaotic attractors

Yu et al. [2004b] produced a unidirectionally cou-
pled synchronization scheme for n-scroll chaotic
attractors from the 4D modified Chua’s circuit
[Chen & Lü, 2002; Lü et al., 2002g; Makoto et al.,
1999].

The 6-scroll driving system is described by


ẋ1 = α(y1 − x1 − g(x1))
ẏ1 = x1 − y1 + z1

ż1 = −β(y1 − w1)
ẇ1 = −γ2(z1 + γ1w1),

(95)

where

g(x1) = m5x1 +
1
2

5∑
i=1

(mi−1 − mi)

× (|x1 + bi| − |x1 − bi|).
And the corresponding response system is given by


ẋ2 = α (y2 − x2 − g(x2)) + δx(x1 − x2)
ẏ2 = x2 − y2 + z2 + δy(y1 − y2)
ż2 = −β(y2 − w2)
ẇ2 = −γ2(z2 + γ1w2),

(96)

where

g(x2) = m5x2 +
1
2

5∑
i=1

(mi−1 − mi)

× (|x2 + bi| − |x2 − bi|).
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(a) Error between ηiM
−1
i v and s (b) BER under AWGH noisy transmission channel

Fig. 91. Numerical simulations of the M-CPSK scheme.

Here, assume that α = 9.934, β = 14.334,
γ1 = 27.333, γ2 = 0.0497, m0 = m2 = m4 =
ma = −1.246, m1 = m3 = m5 = mb = −0.6724,
and b1 = 10, b2 = 29.2466, b3 = 49.2466, b4 =
68.4931, b5 = 88.4931.

Yu et al. [2004b] derived the following condi-
tions for chaos synchronization.

Lemma 1 [Yu et al., 2004b]. Suppose that there
exist coupling coefficients δx > 0 and δy ≥ 0 such
that αma + δx + (α + αma + δx)δy > 0 in the uni-
directionally coupled systems (59) and (60). Then,
the response system (60) is globally asymptotically
synchronizing with the drive system (59).

When δx = 23, δy = 0, αma + δx + (α + αma +
δx)δy = 10.6222 > 0, from Lemma 1, systems (59)
and (60) can be synchronized; when δx = δy = 0,
systems (59) and (60) obviously cannot realize syn-
chronization since there is no coupling between
them.

Yu et al. [2004b] constructed a circuit diagram
to experimentally verify the unidirectionally cou-
pled synchronization. Figure 92 [Yu et al., 2004b]
shows the circuitry for the two unidirectionally
coupled identical 6-scroll systems, where NR is
the function part within the dotted line shown
in Fig. 60 [Yu et al., 2004b]. When the coupling
resistor RE = 0, the coupling coefficients δx =
(C2R/C1)RE = 0 and δy = 0, then the two 6-scroll
chaotic attractors cannot realize synchronization,
as shown in Fig. 93(a) [Yu et al., 2004b]. When
the coupling resistor RE = 0.7 kΩ, the coupling
coefficients δx = (C2R/C1)RE = 23 and δy = 0,

the two 6-scroll chaotic attractors can reach syn-
chronization, as shown in Fig. 93(b) [Yu et al.,
2004b].

Yu et al. [2004b] also investigated a unidirec-
tionally coupled synchronization scheme for n-scroll
hyperchaotic attractors generated from the MCK
circuit.

The 6-scroll hyperchaotic MCK drive system is
described by


ẋ1 = α(g(y1 − x1) − z1)
ẏ1 = β(−g(y1 − x1) − w1)
ż1 = x1 + z1

ẇ1 = γy1,

(97)

where

g(y1 − x1) = m5(y1 − x1) +
1
2

5∑
i=1

(mi−1 − mi)

× (|y1 − x1 + ci| − |y1 − x1 − ci|).
The corresponding response system is given by


ẋ2 = α(g(y2 − x2) − z2) + δx(x1 − x2)
ẏ2 = β(−g(y2 − x2) − w2) + δy(y1 − y2)
ż2 = x2 + z2 + δz(z1 − z2)
ẇ2 = γy2 + δw(w1 − w2),

(98)

where δx, δy, δz, δw are the coupling coefficients,
and

g(y2 − x2) = m5(y2 − x2) +
1
2

5∑
i=1

(mi−1 − mi)

× (|y2 − x2 + ci| − |y2 − x2 − ci|).



Generating Multiscroll Chaotic Attractors 847

Fig. 92. Circuitry for unidirectionally coupled synchronization between two 6-scroll chaotic attractors [Yu et al., 2004b].

(a) Asynchronous when there is no coupling (b) Synchronous when RE = 0.7 kΩ

Fig. 93. Experimental observation of unidirectionally coupled synchronization between two 6-scroll chaotic attractors [Yu
et al., 2004b].

Denote ex = x1 −x2, ey = y1−y2, ez = z1 − z2,
ew = w1 − w2. Then, g(y1 − x1) − g(y2 − x2) =
m(ey − ex), where −0.9 = ma ≤ m ≤ mb = 2.9.
Thus, one can recast the error system as follows:

ė = (A− K + M)e, (99)

where e = (ex, ey, ez , ew)T , and

A =




0 0 −α 0
0 0 0 −β

1 0 1 0
0 γ 0 0


,

K =




δx 0 0 0
0 δy 0 0
0 0 δz 0
0 0 0 δw


,

M =




−αm αm 0 0
βm −βm 0 0
0 0 0 0
0 0 0 0


.

Assume that α = 2, β = 20, γ = 1.5, m0 =
m2 = 0.9, m4 = −0.8, m1 = m3 = m5 = 2.9,
c1 = 1, c2 = 3.1, c3 = 5.4, c4 = 8.193, c5 = 12.0019.
Yu et al. [2004b] introduced the following unidirec-
tionally coupled synchronization conditions.

Lemma 2 [Yu et al., 2004b]. If there exists a posi-
tive definite symmetric constant matrix P such that

(A−K + M )TP + P(A−K + M ) ≤ µI < 0

uniformly for all x1, x2, y1, y2 in the phase space,
where I is the identity matrix and µ < 0, then
the error system (99) is globally exponentially stable
about zero.
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For example, when δx = 5, δy = 60, δz = 60,
δw = 6, one can select P= diag{0.15, 0.15, 0.15, 0.15}
and µ = −0.2 to satisfy the conditions of Lemma 2.
Figure 94 [Yu et al., 2004b] displays the numerical
simulation results.

9.4. Nonlinear H∞ synchronization
of n-scroll chaotic attractors

Yalcin et al. [1999b] experimentally confirmed
a nonlinear H∞ synchronization scheme for 5-
scroll chaotic attractors. Here, the synchronization

scheme has a master-slave configuration with vec-
tor field modulation of the master system by the
message signal, as shown in Fig. 95, which is
described by


M : Ẋt = AtXt + Btσ(CXt) + Ds(t)
Sc : Ẋr = ArXr + Br1σ(CXr)

+Br2σ(CXt) + KXt,

(100)

where Xt = (xt, yt, zt)T = (VC2 , VC1 , IL)T and
Xr = (xr, yr, zr)T = (V̂C2 , V̂C1 , ÎL)T are the state
vectors of the master system M and the slave sys-
tem Sc, respectively,

0 5 10 15 20 25 30
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0.1
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0.2
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0.3

t

e x

(a) ex

0 5 10 15 20 25 30
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

t

e y

(b) ey
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−0.05
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(c) ez
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−0.05

0

0.05

0.1
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0.2
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0.3

t

e w

(d) ew

Fig. 94. Numerical simulations of unidirectionally coupled synchronization between two 6-scroll hyperchaotic attractors.
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Fig. 95. Circuit implementation scheme for the generalized 5-scroll Chua’s circuit.

At =




−α(1 + δ) + a00αm5 α 0
1 −1 1
0 −β 0


, Ar =




−α(1 + δ) + a11αm5 α 0
1 −1 1
0 −β 0


,

Bt = αa00




(m0 − m1) 0 0
(m1 − m2) 0 0
(m2 − m3) 0 0
(m3 − m4) 0 0
(m4 − m5) 0 0




T

, Br1 = αa11




(m0 − m1) 0 0
(m1 − m2) 0 0
(m2 − m3) 0 0
(m3 − m4) 0 0
(m4 − m5) 0 0




T

,

C =




1 0 0
1 0 0
1 0 0
1 0 0
1 0 0


, Br2 = αa01




(m0 − m1) 0 0
(m1 − m2) 0 0
(m2 − m3) 0 0
(m3 − m4) 0 0
(m4 − m5) 0 0




T

, K =




αa01m5 0 0
0 0 0
0 0 0


 ,

D = (1, 0, 0)T , and σ = (σ1, σ2, σ3, σ4, σ5)T with
σi(x) = 1/2(|x + ci| − |x − ci|) for 1 ≤ i ≤ 5.

Let the system parameters be α = 18, β =
28.56, δ = 1, m = (1.7089, 2.5776, 1.7180, 2.5777,
1.6923), c = (0.5305, 0.9000, 2.0526, 3.1875, 4.5),
a00 = 1. Assume that a01 = a00−a11, E = Xt−Xr,
and the message signal s(t) is binary valued. Then,
the original message is recovered as

s̃(t) = sign(CcE)

with Cc = (1, 0, 0).
Therefore, the error system is

Ė = AE + B(σ(CXt) − σ(CXr)) + Ds, (101)

where B = Br1, and

A =




−α(1 + δ) + a11αm5 α 0
1 −1 1
0 −β 0


.

Rewrite (101) as follows:

Ė = AE + Bη(CE,CXr) + Ds,

where η satisfies the sector condition [0, 1] and
ηT Λ(η − CE) ≤ 0, ∀E,Xr, in which Λ is a diag-
onal matrix with positive diagonal elements. Thus,
the synchronization scheme is recast in a standard
form with tracking error defined by

v(t) = TE(t) − s(t),

where T = Cc and the message signal s(t) is con-
sidered as an exogenous input.
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Assume that q(s, v) = γ2s2 − v2 and φ(E) =
ETPE with P = PT > 0. Then, the dissipativity
with a finite L2-gain γ is obtained if

φ̇ ≤ q(s, v), ∀s, v.

Moreover, φ̇ − q(s, v) − 2ηT Λ(η − CE) < 0 which
is expressed as a quadratic form in (e, η, s). Conse-
quently,

Z =




ATP + PA + TT T PB + CT Λ PD− TT

BT P + ΛC −2Λ 0

DTP − T 0 −γ2 + 1




< 0.

This means that the maximal eigenvalue of Z = ZT

should be negative.
Thus, the nonlinear H∞ synchronization con-

sists of minimizing the L2 gain γ as follows:

min
a01,Q,Λ,γ

γ2 such that Z(a01,Q,Λ, γ) < 0,

where P = QT Q.
Yalcin et al. [1999b] also experimentally veri-

fied the nonlinear H∞ synchronization using 5-scroll
chaotic attractors, as shown in Fig. 96 [Yalcin et al.,
1999b].

9.5. Controlling n-scroll Chua’s circuit

Zou et al. [2003] introduced a simple proportional
and differential (PD) controller to control the n-
scroll Chua’s circuit to a stable equilibrium point
or a stable periodic orbit.

When α = 10.814, β = 14.0, a = 1.3, b = 0.11,
system (23) generates a 8-scroll chaotic attractor,
as shown in Fig. 23(a). Obviously, the equilibrium
points of (23) are (xE , 0, xE), where xE = 2ak and
k = 0,±1, . . . ,±c. According to the characteristics
of the eigenvalues of the system Jacobi matrix at
the equilibria, one can classify the equilibria into
two types as follows:

(1) Type I: when n is even and k is odd with k ≤ |c|,
or when n is odd and k is even with k ≤ |c|, the
corresponding eigenvalues of this kind of equi-
librium points are one negative real root and a
pair of complex conjugate roots with positive
real parts.

(2) Type II: when n is even and k is even with
k ≤ |c|, or when n is odd and k is odd with
k ≤ |c|, the corresponding eigenvalues of this
kind of equilibrium points are one positive real
root and a pair of complex conjugate roots with
negative real parts.

(a) Transmitter (VC1(t), VC2(t)) (0.1V/div−50mv/div)

(b) Receiver (V̂C1(t), V̂C2(t)) (0.2 V/div−50mv/div)

Fig. 96. Nonlinear H∞ synchronization using 5-scroll
attractors [Yalcin et al., 1999b].

Design a controller u = k1ẋ, where k1 is
an adjustable parameter, and add it to the sec-
ond equation of (23). Then, the controlled system
becomes 


ẋ = α(y − f(x))
ẏ = x − y + z + u

ż = −βy,

(102)

where

f(x) =




bπ

2a
(x − 2ac) x ≥ 2ac

−b sin
(πx

2a
+ d
)

−2ac < x < 2ac

bπ

2a
(x + 2ac) x ≤ −2ac.
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Theoretical analysis shows that the equilibria
of type I can be stabilized by using the above con-
troller u; however, the equilibria of type II can-
not be stabilized by using the same controller u.
For the equilibria of Type I, the corresponding
characteristic equations of the controlled system
(102) is

λ3 + (2.4373 − 10.814k1)λ2

+ 4.6233λ + 20.1226 = 0. (103)

According to the Routh–Hurwitz criterion, the
equilibria of type I can be stabilized for k1 <
−0.1771. If the controller is turned on as soon as
the orbit moves into the subspace of the ith scroll,
then the orbit can be stabilized to the equilibria in
the subspace of the ith scroll.

Furthermore, if the complex conjugate roots of
(103) satisfy the following conditions:

Re(λ)|k1=k0 = 0, Im(λ)|k1=k0 �= 0,

dλ

dk1

∣∣∣∣
k1=k0

�= 0,

where k0 is a critical value, then the controlled sys-
tem (102) has a Hopf bifurcation. For k0 = −0.1771,
the above conditions are satisfied and Hopf bifurca-
tion is generated, as shown in Fig. 97. Figure 98
shows the numerical simulation results of the con-
trolled 8-scroll Chua’s circuit.

Fig. 97. Period doubling bifurcation for the controlled 8-
scroll Chua’s circuit with −20 < x < −15.

9.6. Recurrent neural state-space
model for Chua’s double-scroll
chaotic attractor

Suykens and Vandewalle [1995] proposed a simple
discrete-time autonomous neural state-space model
for Chua’s circuit that can generate a double-scroll
chaotic attractor.

Consider xk+1 = f(xk) with state vector xk ∈
Rn, where f is a continuous function. Parameter-
izing f , by using a multilayer feedforward neural
network with one hidden layer, yields

x̂k+1 = W tanh(Vx̂k + β), x̂0 = x0, (104)
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(a) The stabilized equilibrium point (13, 0,−13) with
k1 = −0.4
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(b) The stabilized period-1 orbit with k1 = −0.4

Fig. 98. Numerical simulations of the controlled 8-scroll Chua’s circuit.
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where the interconnection matrices W ∈ Rn×nh ,
V ∈ Rnh×n, and bias vector β ∈ Rnh , with nh

being the number of hidden neurons. Denote (104)
as x̂k+1 = Φ(x̂k, α), where α is an element of the
unknown parameter vector θ = (W(:),V(:), β) with
“(:)” a columnwise scanning of a matrix to a vector.

Minimize the cost function offline, as follows:

min
θ

J(θ) =
1

2N

N∑
k=1

(xk − x̂k(θ))T (xk − x̂k(θ)).

The steepest descent algorithm

θ̂t+1 = θ̂t − η
∂J

∂θ
is called dynamic backpropagation. Here, η is the
learning rate and θ̂t is the tth iterate.

Consider Chua’s circuit (1)–(2), where param-
eters C1 = 1/9, C2 = 1, L = 1/7, R = 10/7,
m0 = −0.8, m1 = −0.5, b1 = 1. Moreover, the
time step h = 0.05 and the initial state x0 =
(0.9365,−0.0610,−0.1889)T . The training set to be

tracked consists of the first 1000 data points. Here,
the neural state-space model has three hidden neu-
rons and zero bias vector β.

Then, an ad hoc optimization procedure is car-
ried out:

(1) Create a random initial parameter vector θ0,
and set a := 1.

(2) Do, while a < afinal,

−θ∗ = argmin
θ

J(θ)

=
1

2a∆

a∆∑
k=1

(xk − x̂k)T (xk − x̂k)

−θ0 = θ∗ and a := a + 1.

Here, ∆ = 50, afinal = 20, θ0 is the starting point
for the optimization problem, and θ∗ is the local
optimal solution.

The neural state-space model is obtained as
follows:

W =




3.191701795026490e + 00 −3.961031505875602e + 00 −2.544300729387972e + 00
6.302937463967251e − 01 2.746315947131907e + 00 8.024248038305574e − 01

−1.411085817901605e + 00 8.436161546347900e + 00 3.174868294146957e + 00


.

V =




−2.446514424620466e − 01 1.557093499163188e + 00 −6.192223155626144e − 01
4.935534636051888e − 01 −9.111907179654775e − 01 6.785493890595847e − 01

−1.711046461663226e + 00 3.794433297552783e + 00 −2.105183558255941e + 00


.

Figure 99 [Suykens & Vandewalle, 1995] shows
a simple recurrent neural network emulator for gen-
erating a double-scroll attractor using the neural
state-space model. Obviously, the error becomes
larger behind the vertical line due to the nature
of the underlying chaotic system.

9.7. True random bit generation
via a double-scroll chaotic
attractor

Yalcin et al. [2002a, 2004a, 2004b] presented a novel
“true random bit generator” (TRBG) based on a
double-scroll chaotic attractor.

Consider the multiscroll system (31)–(32).
When a = 0.8, Mx = 1, Nx = 0, this sys-
tem can generate a double-scroll chaotic attrac-
tor. For given parameters c1, c2, the state space
of the above double-scroll attractor is divided into
three subspaces denoted by V0 = {(x, y, z)|x ≤ c2},

VT = {(x, y, z)|c1 < x < c2}, and V1 =
{(x, y, z)|x ≥ c1}. Figure 100 [Yalcin et al., 2004a,
2004b] shows the discretizing state space for c1 = 0
and c2 = −1. Here, the block S1 is described by

S1 :

σ1(x(t)) =

{
0 if x(t) < c1

1 if x(t) ≥ c1

σ0(x(t)) =

{
0 if x(t) > c2

1 if x(t) ≤ c2.

(105)

The bit generator block S2 is the first block in
the software part, which is described by

S2 : σi(σ0, σ1) =
{

0 if σ0 = 0, σ1 : 0 ↑1

1 if σ1 = 0, σ0 : 0 ↑1,
(106)

where σ0 : 0 ↑1 is a raising edge of σ0 and i ∈
{0, 1, 2, . . .}. In fact, the bit generation approach
aims at characterizing the jumps in signal x(t),
either from one scroll to the other, or staying in
the same scroll.
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Fig. 99. A simple recurrent neural network emulator for Chua’s circuit [Suykens & Vandewalle, 1995].
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Fig. 100. Discretizing the state space for c1 = 0 and c2 = −1 [Yalcin et al., 2004a, 2004b].

The de-skewing block S3 is described by

S3 : bi(σi, σi−1) =
{

0 if σi = 0 ∧ σi−1 = 1
1 if σi = 1 ∧ σi−1 = 0.

(107)

The above-proposed TRBG has a single output
denoted by B = {. . . , b(i−1), b(i), b(i+1), . . .}, with
b(i) ∈ {0, 1}. Since noise has maximum entropy, the
threshold value c2 is chosen such that the measured

entropy of the TRBG is maximal. The measured-
theoretical entropy of the proposed TRBG with
respect to a partition c2 is given by

hc2 = lim
n→∞

Hc2
n

n
,

where

Hc2
n = −

∑
Bn

P (Bn) ln P (Bn)
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n /n as a function of the threshold c2 for n =

3, . . . , 10 [Yalcin et al., 2004a, 2004b].

with P (Bn) being the probability of occurrence
of the binary subsequence (words {. . . , {b(i), b(i +
1), . . . , b(i+n−1)}, {b(i+n), . . . , b(i+2n−1)}, . . .})
of length n. Hc2

n achieves its maximum value when
the n-word sequences in the output sequence B of
the TRBG are equally distributed.

Figure 101 [Yalcin et al., 2004a, 2004b] displays
the values of Hc2

n /n for n = 3, 4, . . . , 10, and also
shows how the TRBG can approach the maximum
entropy ln 2. The threshold value c1 is set to 0 Volt
and that of c2 is set to −1.44 Volt. Yalcin et al.
[2004a, 2004b] also experimentally verified the ran-
domness of the TRBG by using the well-known test
set FIPS-140-1 and Diehard in cryptography.

10. Conclusion and Discussion

This paper has surveyed the recent main advances
in multiscroll chaotic attractors generation, includ-
ing some fundamental theories, design approaches,
and potential applications. Basic theoretical design
approaches developed over the last decade uti-
lized PWL functions, CNNs, nonlinear modulating
functions, fundamental circuits, switching mani-
folds, multifolded torus forming, and so on. The
dynamical mechanism of multiscroll chaotic attrac-
tors in the aforementioned methods is now well
understood, which can even be applied to design-
ing various multidirectional multiscroll chaotic or
hyperchaotic attractors.

In general, multiscroll chaotic attractors are
verified by numerical simulations, but lately this
has seen improvement in terms of theoretical proofs

and analog circuit realization. Despite the physi-
cal difficulties and limitations, today one is able
to physically implement up a maximum of 1-D 14-
scroll, 2-D 14× 10-grid scroll and 3-D 10× 10× 10-
grid (1000) scroll chaotic attractors by electronic
circuits. It remains a technical challenge to pro-
duce more scrolls via hardware implementation,
though numerical simulations can do much better.
On the other hand, rigorous theoretical proofs are
also quite difficult due to the complex dynamical
behaviors and the lack of suitable mathematical
tools, especially for switching systems. Therefore,
to physically realize and also theoretically prove
the existence of chaotic attractors with a multidi-
rectional orientation and a large number of scrolls
appears to be an important and stimulating subject
for future research.

It can be foreseen that multiscroll chaotic
attractors will have many unusual practical applica-
tions in such fields as digital and secure communi-
cations, synchronous prediction, random bit genera-
tion, information systems, and so on. Exploring the
promising potential of multiscroll chaotic attractors
for engineering applications calls for more efforts
and greater endeavors.

In summary, the subject of multiscroll chaotic
attractors generation has seen exciting development
over the last decade, not only in deeper and wider
theoretical studies but also in many newly found
real-world applications. It deserves further atten-
tion with continued pursuit from the communities of
engineering, physics, applied mathematics and elec-
tronic technology.
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Chen, G. & Lü, J. [2003] Dynamics of the Lorenz Sys-
tem Family: Analysis, Control and Synchronization
(in Chinese) (Science Press, Beijing).

Chen, G. & Yu, X. (eds.) [2003] Chaos Control:
Theory and Applications (Springer-Verlag, Berlin,
Heidelberg).

Chen, Q., Hong, Y. G. & Chen, G. [2004] “Genera-
tion of chaotic torus attractors via switching control
scheme,” submitted.
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