Supplementary material for the paper:

Naming Game on Networks: Let Everyone be Both Speaker and Hearer

Yuan Gao, Guanrong Chen and Rosa H. M. Chan

July 25, 2014

The small-world network by WS model with different initial connected neighbour K are investigated, the configuration properties are illustrated in Table S1.

Network	#Nodes	< D >	< PL >	< CC >
SW with $K = 20$ and $RP = 0.2 (WS - 20 - 0.2)$	1000	40.0	2.4651	0.3837
SW with $K = 30$ and $RP = 0.2 (WS - 30 - 0.2)$	1000	60.0	2.1621	0.3937
SW with $K = 50$ and $RP = 0.2 (WS - 50 - 0.2)$	1000	100.0	1.9140	0.4055

Table S1: Small-world Networks with differnt initial connected neighbour K. Where RP is the rewiring probability, < D > is average degree, < PL > is average path length and < CC > is average clustering coefficient.

The Success Ratio and the three metrics for various β on WS networks with different $\langle D \rangle$ and same N = 20 are shown in Figure S1 and Figure S2, respectively. From them, it can be observed that (i) both N_{total_max} and N_{diff_max} increases with $\langle D \rangle$, because the Success Ratio of mid-iteration is relatively smaller for networks with larger $\langle D \rangle$. (ii) N_{iter_cvg} decreases with $\langle D \rangle$ increasing, the reason is when $\langle D \rangle$ is small, each node in WS networks only connect with only a few number of its "nearest neighbour", i.e., the whole network are more "locally connected" and the intra-group consensus words are hard to be spread to far away, thus finally leads to a longer convergence time.

Figure S1: Success Ratio for each iteration with β equal to 0.1, 0.5, and 1 on WS networks with various $\langle D \rangle$. The group size N for all simulations are 20. The network configurations (in order of RED, BLACK, GLUE) are WS - 20 - 0.2, WS - 30 - 0.2, WS - 50 - 0.2. Columns from left to right are the Success Ratio for $\beta = 0.1$, 0.5 and 1, respectively.

The comparison of NGG and NGMH with different group size N equal to 10, 50, 100 can be found in Figure S3 - S5, respectively. The analysis of these results is consensus with that in the main text.

Figure S2: The three convergence metrics for group size N = 20 on WS networks with various $\langle D \rangle$. The network configurations (in order of RED, BLACK, GLUE) are WS-20-0.2, WS-30-0.2, WS-50-0.2. Columns from left to right indicates the illustrations for N_{total_max} , N_{diff_max} and N_{iter_cvg} (log-scale in Y-axis), respectively.

Figure S3: The convergence of the NGG model for group size N equal to 10. Both Number of Different Words vs. #Iteration and Number of Total Words vs. #Iteration are investigated. Three different β as well as NGMH are compared. The tested network configurations are RG - 0.05, WS - 20 - 0.2 and BA - 50.

Figure S4: The convergence of the NGG model for group size N equal to 50. Other parameters are same as Figure S3.

Figure S5: The convergence of the NGG model for group size N equal to 100. Other parameters are same as Figure S3.

The Success Ratio for various β from 0.1 to 0.9 on the network configurations of Table 1 are illustrated in Figure S6 - S8, for RG, WS, BA model respectively. The Success Ratio for all networks types increase monotonously with β

Figure S6: The Success Ratio for various β from 0.1 to 0.9 on the RG networks with various group size N. The tested samples are RG - 0.03 with N = 20, RG - 0.05 with $N = \{10, 20, 50, 100\}$, RG - 0.1 with N = 20.

Figure S7: The Success Ratio for various β from 0.1 to 0.9 on the WS networks with various group size N. The tested samples are WS - 20 - 0.1 with N = 20, WS - 20 - 0.2 with $N = \{10, 20, 50, 100\}$, WS - 20 - 0.3 with N = 20.

Figure S8: The Success Ratio for various β from 0.1 to 0.9 on the WS networks with various group size N. The tested samples are BA - 25 with N = 20, BA - 50 with $N = \{10, 20, 50, 100\}$, BA - 75 with N = 20.

For the comparison of three metrics \mathcal{M} (i.e., N_{total_max} , N_{diff_max} , N_{iter_cvg}) between NGMH and our method, the results of NGMH for the network configurations used in main text are listed in Table S2. All observations of Subsection *Convergence of NGG* hold when compare Table S2 with Figure 4 - 6.

Network Configurations	N_{total_max}	N_{diff_max}	N_{iter_cvg}
RG - 0.03, N = 20	3446.35	50.90	2177.65 ($\approx 10^{3.34}$)
RG - 0.05, N = 10	4944.00	101.95	$4809.15 \ (\approx 10^{3.68})$
RG - 0.05, N = 20	3722.50	49.95	$2080.85 \ (\approx 10^{3.32})$
RG - 0.05, N = 50	2706.75	21.80	$633.95 \ (\approx 10^{2.80})$
RG - 0.05, N = 100	2629.55	20.15	$619.05 \ (\approx 10^{2.79})$
RG - 0.1, N = 20	3793.75	49.55	$1843.25 \ (\approx 10^{3.27})$
$\overline{SW - 20 - 0.1, N} = 20$	1763.35	49.10	$8107.75 \ (\approx 10^{3.91})$
SW - 20 - 0.2, N = 10	2799.70	100.50	$8522.20 \ (\approx 10^{3.93})$
SW - 20 - 0.2, N = 20	2214.35	49.95	$4612.85 \ (\approx 10^{3.66})$
SW - 20 - 0.2, N = 50	1789.65	23.85	$1889.50 \ (\approx 10^{3.28})$
SW - 20 - 0.2, N = 100	1832.45	25.15	$1768.20 \ (\approx 10^{3.25})$
SW - 20 - 0.3, N = 20	2629.85	51.35	$3022.90 \ (\approx 10^{3.48})$
BA - 25, N = 20	3584.30	63.35	$2517.50 \ (\approx 10^{3.40})$
BA - 50, N = 10	5069.85	119.70	$6002.25 \ (\approx 10^{3.78})$
BA - 50, N = 20	3770.70	60.85	$2463.50 \ (\approx 10^{3.39})$
BA - 50, N = 50	2904.60	26.20	$771.20 \ (\approx 10^{2.89})$
BA - 50, N = 100	2235.55	17.15	$410.55 \ (\approx 10^{2.61})$
BA - 75, N = 20	3879.00	59.20	$2452.30 (\approx 10^{3.39})$

Table S2: The three metrics, N_{total_max} , N_{diff_max} and N_{iter_cvg} on the selected network configurations. The selected network configurations are same as these used in Figure 4 - 6, i.e., RG - 0.03 with N = 20, RG - 0.05 with $N = \{10, 20, 50, 100\}$, RG - 0.1 with N = 20 for RG networks; WS - 20 - 0.1 with N = 20, WS - 20 - 0.2 with $N = \{10, 20, 50, 100\}$, WS - 20 - 0.3 with N = 20 for WS networks; and BA - 25 with N = 20, BA - 50 with $N = \{10, 20, 50, 100\}$, BA - 75 with N = 20 for BA networks.

Figure S9: The numerical evidence for the analysis of the alteration of N_{total_max} and N_{diff_max} on RG networks. RG - 0.05 with N = 10, 20, 50 are chosen for illustration since the difference of SR among them are significant. β from 0.1 - 0.3 are used, because it is not too large to lead the saturation of SR in the initial iterations. Rows from top to bottom: the N_{total_max} , the SR and the N_{diff_max} of each iterations. Column from left to right: $\beta = 0.1, 0.2, 0.3$.

Figure S9 - S11 provides the numerial evidence of RG, SW, BA networks, respectively, for the analysis of the alteration of N_{total_max} and N_{diff_max} . The increase of N_{total_max} is kept roughly at βN^2 by each iteration without considering the elimation of words, because there is βN words to be transmitted and the group size is N. It is observed in Figure S9 - S11 that both N_{total_max} , N_{diff_max} are achieved at the mid-iterations, higher SR in late iterations does not affect the value of N_{total_max} , N_{diff_max} . And both N_{total_max} , N_{diff_max} are inversely proportional to the SR of mid-iterations.

Figure S10: The numerical evidence for the analysis of the alteration of N_{total_max} and N_{diff_max} on WS networks. WS - 20 - 0.2 with N = 10, 20, 50 are chosen for illustration, other parameters are same as Figure S9.

Figure S11: The numerical evidence for the analysis of the alteration of N_{total_max} and N_{diff_max} on BA networks. BA - 50 with N = 10, 20, 50 are chosen for illustration, other parameters are same as Figure S9.