Detailed Proof of Lemmas and Theorems

1 Proof of Lemma 2

Proof Define the formation errors z;(t) = z;(t) —xo(t)—zf,i = 1,2, - - N, with Zo(t) = —a§ = 0.
The Filippov solution of #;(t) is defined as the absolutely continuous solution of the differential
inclusion

Ti(t) €K | filt, x5(t)) — fo(t, zo(t)) — asgn{ R AAGE ij(t)}}] ,Vi=1,2,--- /N. (1)

JEN:

Based on Assumption 1, one follower must receive information from other followers or the leader,
namely, it is connected with other followers or the leader. Define Z7(¢) as the maximal formation
error component which is connected with non-maximal error components of the followers or
connected with the component of the leader. Similarly, define 2~ (¢) as the minimal formation
error component which is connected with non-minimal error components of the followers or
connected with the component of the leader. Suppose that, at any time ¢, 7 (t) is the kth error
component of agent ¢, and Z~ (¢) is the {th error component of agent j, where,7 € {1,2,--- | N},
k,l € {1,2,--- ,n}. The Filippov solutions of Z*(¢) and ™ (¢) can be described by

it (t) ezcl PR m(t) = fE(E, mo(t)) — asgn{ > an[Tt(t) - i"ﬁ(f)]H,

reN;

(0 €K | .50 - At - @] 3 anla (0 - o]} | )

SENj

Based on Assumptions 2 and 3, for any ¢ = 1,2,--- , N and each t € R", one has



I fit, i(t)) = folt, zo(t)) ||
= |1 fi(t, 2:(1)) = fi(t, 20(8)) + fult, 20 (1)) + fo(t, zo()) |
< it 2a(8)) = it 2o(®) |+ 1] it 2o() | + 1 folt, 20(2) |
< filt wi(®) = filt, o) | + | filt, zo(®)) = filt,2") | + || folt, zo(t)) = folt, =) ||
)

<Lj || wi(t) = zo(t) || +L5 || @o(t) — 2 | +LF || wo(t) — a5 ||

<LE (N i) = wo(t) = 27 || + | 2 | + Il 2o(t) — 2 | ) + LY || zo(t) — 2§ |

<Lj (Vimax{| #(t) .| 27 () [} + _max {[| a7 || + [ 2 [} +5) + L5( | o | +5).  (3)

Let

P(t) = 1 (Vimax(| 7 (0) |13 (6) [} + e (s |+ 12 3 +5) + 25 (1 2 ) +5)
(4)
If a > P(t),Vt € RY, then o >|| f;(t,2;(t)) — fo(t,zo(t)) ||,Vt € R*,Vi=1,2,--- N,

Now, it can be proved that if & > P(0) then a > P(t), Vt € R*. Because a > P(0) and
P(t) are continuously changing, suppose that ¢, € R is the first time at which o = P(t). Since
a, || =8 ||, B, LY, L% and _max {H 1 + || zF ||} are constants, one has max{| 27 (¢;) |, |
T (t1) |} > max{| z7(0) |, | T ( ) |}. So, there must exist a t5 € [0,1) such that the derivative
of max{| z%(¢) |,| Z7(¢) |} is greater than zero.

Now, consider the following three cases.

e Case (1): {z7(t) > 0,27 (t) > 0}.

In this case, max{| z7(¢) |,| 27 (¢) |} = 27(t), and the derivative of max{| Z7(¢) |,| 27 (¢) |}
is #+(t). Since Assumption 1 holds and #*(¢) > 0, one has ¥,cn: @i [3(t) — #¥(¢)] > 0. Thus,

FH() €K [t w(t) — £5(t,70(t)) — o
If the derivative of max{| Z*(¢) |,| Z~(t) |} is greater than zero at t, € [0,1), one has 2 (t3) > 0.
Then, there must exist i € {1,2,--- ,N} and k € {1,2,---,n} such that fF(ty,z;(ts)) —
T¥(ty, zo(t2)) > 0 and the positive constant o < | fF(ty, 2;(t2)) — f¥(ts, 20(t2)) |. Since |
fE(ta, 2i(ta)) — i (ta, 20(t2)) | < || fulta, wi(ta)) — foltz, zo(t2)) ||, one has a < || fita, wi(t2)) —
fo(ta, zo(t2)) || It follows that v < P(t2) based on (3). Because o > P(0) and P(t) are continu-

ously changing, there must be a t3 € [0, t3) such that & = P(t3). It contradicts the assumption
that ¢, € R is the first time at which a = P(t).
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e Case (i1): {zH(t) <0,z (t) < 0}.
In this case, max{| Z7(¢) |,| 27 (¢) |} = =2~ (¢), and the derivative of max{| 27 (¢) |,| 27 (¢) |}
is —2(t). Since Assumption 1 holds and #~(t) < 0, one has Ssen; sl (t) = Z4(t)] < 0. Thus,

i (1) €K |£i(t,25(8) = foltwo(t)) + o

If the derivative of max{| Z*(¢) |,| 2~ () |} is greater than zero at t, € [0,1), one has z~ (t5) < 0.
Then, there must exist j € {1,2,---,N} and [ € {1,2,---,n} such that fi(ty,z;(ts)) —
fo(ta, wo(t2)) < 0 and the positive constant o < | fH(tg, x;(t2)) — fi(t2,z0(t2)) |- Since |
fita, 25(t2)) — folta, zo(t2)) | < | filta, 25(t2)) — foltz, zo(tz)) ||, one has o < || fi(t2, 2;(t2)) —
fo(ta, zo(t2)) || It follows that o < P(t2) based on (3). Because a > P(0) and P(t) are continu-
ously changing, there must be a t3 € [0, ¢3) such that « = P(t3). It contradicts the assumption
that t; € R* is the first time at which a = P(t).

e Case (w1): {z7(t) > 0,27 (t) < 0}.

(i) If {&*(t) > —z(t)}, then max{| 2% (¢) |,| (¢) |} = 2" (¢). So, the proof is the same as
that in Case (i).

(i) If {7 (t) < =2~ (¢)}, then max{| Z7(¢) |,| Z7(¢t) |} = =2 (¢). So, the proof is the same
as that in Case (ii).

Combining the above three cases, it can be concluded that the derivative of max{| Z7(¢) |,
| Z7(t) |} will not be greater than zero. Hence, if a > P(0), i.e., Assumption 4 holds, then
a > P(t), Vt € R*. Tt follows that a > || fi(t,z;(t)) — fo(t,20(t)) ||,Vt € RT,Vi=1,2,--- N,
based on (3).

The proof is now completed.

2 Proof of Lemma 3

Proof Six cases are discussed as follows:



o Case (i): (F+(t), 7 (1)), (@ (), & (1)) € Dy.

I V(@E (@), 2 (1) = V(@ @),z @)

=) -z (@) |
< E @) -2 M+ @) -2 @) |
V2| @), e 0))" - @), e @) -

o Case (id): (&+(t),7 (1)), (F* (), 5 (t)) € D.

V(@ (),2- 1) - VE (), 2 1)) |
=@ M- @)@ @) -2 @))|
<[zt -z |+ 1z @) -2 @)
<V2 @), & @) — @@, @) .

o Case (iii): (3*(t),@ (), (#+(t), i (t)') € Ds.

V@ @), 2 @) = V@E @),z @)

o Case (iv): (i*(t),i(t)) € Dy, (it (t), 3 (t)') € Dy,
V(@ (@), 2 (1) — V(@ @),z )) |
=[z"(t) = @) =2 ()) |
<@t -zt @) [+ 1z @) |-
For (&+(t),#(t)) € Di, (& (), (t)') € Dy , one has @ (t) > 0, ()’ < 0, thus
lz=@) <[z @) -2 @)

Hence,
V(ET@), 2 (t) - V@ @),z @)) |
<[ar@) - @ [+ 12|
<ar@) -2t @) I+ —-2 @) |

<V2 | (@), ()T — @), a@)) .

4



e Case (v): (Z1(t), 27 (t)) € Dy, (T*(t)', 2 (t)") € Ds.

I V(@E (@), 2 (1) = V@ @),z @) |
=) — (=2 ®)) |

<@+l

For (7 (t),z(t)) € Dy, (Z7(t),27(t)") € D3 , one has +(t) > 0,2 (t) > 0,27 (¢t) < 0,27 (t) <
0, thus

@) [ <[l27(@) — 27 () |,
and
lz=@)' <z @ -2 @ |-
Hence,
V(@ @),z (1) - V(@ @).z-@)) |
<[zt @ I+ 1z @) |
<@t @) -t @) [+ 1z @) -2 ()|
<V2 | @ (), & @) = @), @) .
o Case (vi): (#*(t),i (t)) € Do, (#+(t), i ()') € Ds.
V(@ @),z (1) V(@ @),z-@)) |
=@ () -z @) - (-=2"@)) |

<lzr@l+ 1z @-20)"1.
For (7 (t),z(t)) € Dy, (Z7(t)!,2~(t)") € D3 , one has % (t) > 0,27 (¢t)’ <0, thus
27 | <[ 27() —27()" | -
Hence,
V@™ (), 27 () = V(@ (1), 2= (¢)) |
<fz@ I+ -2
<&@ - [+ &) -3 ()|

<V2 | (@), 7 ()T — @), a@)) .
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Combining the above six cases, it can be concluded that, for every (z*(¢), 27 (t)), (27 (t), 27 (t)') €

D, one has

V@), 27 (1) = V(@ @), 2 )) |
V2| @), & 0))" - @), @) |-

Therefore, V' is a locally Lipschitz function on D.

The proof is now completed.

3 Proof of Lemma 4

Proof 1f a function is continuously differentiable at x, it is regular at x. Since V' is continuously
differentiable everywhere except for {z7(¢) > 0,27 (¢t) = 0}, {21 (¢t) = 0,27 (t) < 0} and {2+ (¢) =
0,2~ (t) = 0}, it needs to show that V' is regular on these three sets.

Let y = (2*(t),#(t))" and v = (vy,v2)". The right directional derivative of V at y € R* in
the direction v € R” is defined as

V(EH(t) + hoy, () + huy) — V(EF (1), 5 (1))
h—0t h '

The general directional derivative of V' at y in the direction v is defined as

Vo(y; U) — lim sup V(Zl + hUl, 2o + hvg) — V(Zl, 22)

5%81 z€B(y,9) h
=0T helo,e)

e Case (i): {z(t) > 0,27 (t) = 0}.

If v; > 0,v9 >0, then (21 (t) + hvy, hvg), 0+ € Dy, hence

For z € B(y,d), when 06 — 0", z € Dy and z € D, are possible, hence

Vo(y;v) = li :
(v:v) 5:%+ZESB%5,5){ h h
e—0% hel0,e)

(21 + ho)) — 21 (21 + hoy) — (22 + hws)) — (21 — 22) }

= V1.



So, V'(y;v) = V°(y; v).
If v; <0,vy <0, then (27 () + hvy, hvg) o+ € Ds, hence

Vi) — tim (E0 - hv) = hes) =30

h—0+ h

= V1 — Va.

For z € B(y,d), when § — 0%, 2z € Dy and z € D, are possible, hence

(21 + hUl) — 21 ((21 + h’Ul) — (ZQ + hUg)) - (21 — ZQ)

Vo(y;v) = lim  sup
6—0T z€B(y,9)
e=0% he(0,)

h ’ h
= V1 — V2.

So, V'(y;v) = V(y;v).
If v; < 0,vy >0, then (Z1(t) 4+ hvy, hvg), o+ € D1, hence

(ZT(t) + hoy) — &7 (t)

For z € B(y,d), when 06 — 0", z € Dy and z € D, are possible, hence

(z1 + hvy) — 21 ((z1 + hvy) — (20 + hvy)) — (21 — 29)

Vo(y;v) = lim  sup {

Y
(5—>Oir 2€B(y,5) h h
€207 helo,e)
= V1.

So, V'(y;v) = V°(y;v).

If v; > 0,09 <0, then (Z7(¢) + hvy, hv)p o+ € Ds, hence

((ZT(t) + hvy) — hvy) — (1)

h—0+ h

For z € B(y,d), when § — 0%, 2z € Dy and z € D, are possible, hence

(21 + hUl) — 21 ((Zl + h’l)l) — (ZQ + hUg)) — (21 — ZQ)

Vo(y;v) = lim  sup
§—07T z€B(y,9)
0% he(0,)

h ’ h

= V1 — V2.

|

|
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So, V'(y;v) = V°(y; v).
e Case (u1): {z7(t) =0, (t) < 0}.

If v; > 0,v9 >0, then (hvy, 2~ (t) + hvy)po+ € Da, hence

oy — (i 01 = (@ (1) + hva)) = (=27 (1))
Vi) = fiy ;

= V1 — V2.

For z € B(y,d), when § — 0%, 2z € Dy and z € Dj are possible, hence

{((zl +hoy) = (22 + hvy)) = (21— 2) —((22 + hwn)) — <—<22>>}

Vo(y;v) = lim  sup
§—0t 2€B(y,5)
e—0" helo,e)

h ’ h
= U1 — Va.
So, V'(y;v) = V°(y; v).
If v; <0,vy <0, then (hvy, 27 (t) + hva)p_o+ € D3, hence

Vo) — i SO0+ h)) = (23 (0)

h—0t h

= —V3.

For z € B(y,d), when 06 — 0", z € Dy and z € D3 are possible, hence

{((zl +hvy) — (20 + hvy)) = (21 — 2) —((22 + hwn)) — <—<22>>}

Vo (y;v) = lim su
(5;0) §—0* 263(5,6)
=0 he(0,¢)

h ’ h
= —Vs.
So, V'(y;v) = V°(y;v).
If v; < 0,0y >0, then (hvy, 7 (t) + hvg)p_o+ € D3, hence

ey — (i (@ () + hva)) = (= (1))
Vi) = i h

= —Ua.

For z € B(y,d), when § — 0%, 2 € Dy and z € Dj are possible, hence

((21 + hvy) — (20 + hvg)) — (21 — 22) —((22 + hvy)) — (—(2’2))}
h ’ h

Vo(y;v) = lim  sup
§—0T z€B(y,9)
e=0% heio,0)

= —Us.



So, V'(y;v) = V°(y; v).
If v1 > 0,v9 <0, then (hvy, Z~(t) 4+ hvy)p_o+ € Do, hence

ooy — (i 01 = (E (1) + hva)) = (=27 (1))
Vi) = i ;

= V1 — V2.

For z € B(y,d), when 06 — 0", z € Dy and z € D3 are possible, hence

h ’ h

307 2€B(y,0)
=07 he(0,¢)

Volyi) = lim  sup {((21+hvl)—(22+h’02))—(21—22) —<<22+hv2>>—<—<zQ>>}

= U1 — Va.

So, V'(y;v) = V°(y;v).
o Case (iii): {F*(t) =0, (t) = 0}.

If v; > 0,vy > 0, then (hvy, hvg), o+ € D1, hence

hor —
V'(y;v) = lim =0

h—0+ h

= V1.

For z € B(y,d), when § — 0%, 2 € Dy, 2 € Dy and z € D3 are all possible, hence

Ve(y;v) = lim  sup {(zﬁ ho) = 21 (214 hvy) = (22 + hwg)) — (21— 2)

+ h ) h )
i
—((22 + hva)) = (=(2))
h
= V1.

So, V'(y;v) = V°(y;v).

If v1 <0,v9 <0, then (hvy, hvy)p_o+ € D3, hence

—h'UQ—O
1y _ 1
Vi) = fiy =
= —s.



For z € B(y,d), when § — 0%, z € Dy,z € Dy and z € Dj are all possible, hence

Vo(y;v) = lim  sup
5*01 z€B(y,0)
=0 hel0,e)

—((2 + hwy)) — <—<z2>>}
h

{ (21 + hot) — 21 (21 + hor) — (20 + hu)) — (21 — 22)
h ’ h ’

= —V9g.

So, V'(y;v) = V°(y; v).
The case of v; < 0,v9 > 0 is impossible for % (t) > Z7(¢).
If v; > 0,09 <0, then (hvy, hvg)j,_o+ € Ds, hence

. hUl — hUg
/ . _
Vi(ysv) = lim ———

= U1 — V2.

For z € B(y,d), when 6 — 0%, z € D1,z € Dy and z € D3 are all possible, hence

Vo(y;v) = lim  sup {<Zl+h”1>—zl (21 + hon) — (22 + how)) = (21— 2)

=0T e B(y,6 h ’ h ’
e—0F }EE[E]?E))
—((22 + hvn)) — (=(22))
h
= V1 — Va.

So, V'(y;v) = Vo(y; v).
For all the cases, the right directional derivative of V is equal to the generalized directional
derivative of V', i.e., V'(y;v) = V°(y;v). Therefore, the function V' is regular on D.

The proof is now completed.

4 Proof of Lemma 5

Proof 1f 27 (t) =0and 2~ (t) =0, then V =0. If () > 0 and 27 (¢t) > 0, i.e., (Z7(¢),27(¢)) €
Di\ {(0,0)}, then V. = z%(t) > 0. If 27(¢t) > 0 and Z(t) < 0, i.e., (Z7(t),27(t)) € Ds,
then V.= Z7(t) — 27 (t) > 0. If 7(¢t) < 0 and 2~ (t) < 0, i.e., (Z7(¢),27(t)) € D3, then
V =—27(t) > 0. So, V is globally positive definite.
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If (*(t),2~(t)) € Dy, then as either 2% — oo or both 27,7~ — oo, one has V' = 21 (t) — oc.
If (z%(t),2(t)) € Dy, then as either Z+ — oo or £~ — —oo, or both, one has V' = z1(¢t) —
T7(t) = oo. If (z7(t),27(t)) € D3, then as either % — —oo or both Z7, 7~ — —oo, one has
V = —& (t) — oco. So, V is radially unbounded.

The proof is now completed.

5 Proof of Lemma 6

Proof If Assumptions 1 - 4 hold, then Lemma 2 holds, i.e., a >|| f;(¢,z;(t)) — fo(t, zo(2)) ||, Vt €
R Vi=1,2,---,N. Five cases are discussed as follows:
e Case (i): ™(t) > 0 and Z~(t) > 0.
Since Z*(t) > 0 and Assumption 1 holds, one has 3,cx: a;[27 () — Z%(¢)] > 0, and for
OV(Z™ (), 2 (1)) = {(1,0)},
one has
LV = K[t 2i(1)) = f3 (8 20(1) — al.

Since | fz‘k(tvxi(t)) - f(l)c(ta$0(t)) | < H fi<t7xi(t)) - fO(t’xU(t)) ||7Vt € R+vVi =12,---,N, Vk =

1,2,--- ,n, it follows from Lemma 2 that
max ﬁ;V < 0.

e Case (ii): ™ (t) >0 and 2~ (t) < 0.
Since () > 0,27 (t) < 0 and Assumption 1 holds, one has Y,.cn;, air[Z1(t) — Z5(¢)] >

0, Ve, ajs[#(t) — #(t)] < 0, and for
oV (z*(t), 2 (t) = {(1, 1)},
one has
LV =K [(fFtw:0) = f5(t,20(t) — @) = (5t 25(8) = fo(t, m0(1)) + )] -

Since | fE(t, 2:(t)) — f5 (¢, zo(t)) | < || fi(t, 2i(t)) — fo(t, zo(t)) ||Vt € RT,Vi=1,2,--- N, Vk =

1,2,--- ,n, it follows from Lemma 2 that

max LV < 0.
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e Case (111): +(t) <0 and 2~ (¢) < 0.
Since Z~(t) < 0 and Assumption 1 holds, one has >.cn; a;s[Z7(t) — Z4(t)] < 0, and for

OV (& (t), 2 (t)) = {(0, = 1)},

one has
LV =K |=(fi(t,z;(t)) — fi(t, 2o(t) + )] .

Since | fj(t, z;(t)) = fo(t, zo(t)) | < || f5(t,2;() = fo(t, 2o()) ||Vt € RT,Vj =1,2,-- N, VI =

1,2,--- . n, it follows from Lemma 2 that
max Z;V < 0.

e Case (w): z%(t) >0 and 27 (t) = 0.

Since () > 0,27 (t) = 0 and Assumption 1 holds, one has 3.y, @i [Z7(t) — Z5(t)] >
0, Y sen; ajs[T7(t) — #L(t)] < 0. So, if v € F(zT(t),27(t)), then vI' = (vy,vy) with v; €
KL (b)) — f5 (8 zo(t) — o] and ve € K[fj(t,2;(t) — fo(t, 20(t)) + o] U K[f(t,2;(t)) —
fo(t, zo(t))]. For

oV (@™ (t), 7" (1)) = {1} x [-1,0],
if € OV (27 (t),27(t)), then ¢T = (1,y) with y € [-1,0]. Therefore,
CTU = v + Yvs.

If there exists an element a satisfying that (Tv = a for all y € [—1,0], then vy = 0. So, if vy # 0,
one has L7V = (); if v, = 0, one has L7V = K[f5(t, z;(t)) — f&(t, zo(t)) — o], and then it follows

from Lemma 2 that max L7V < 0. Thus, max LV < 0 or LV = () in this case.

e Case (v): 27(t) =0 and 7 (¢) < 0.
Since () = 0,27 (t) < 0 and Assumption 1 holds, one has Y ,.cn; a;[T7(t) — Z5(t)] >
0, sen; ajs[(t) — Z4(t)] < 0. So, if v € F(&*(t),77(t)), then v = (vi,vp) with v €
KCLF (b, a(8)) — F5 0, olt)) — ) OKCLFEh, a(8)) — F5 ¢, o)) amd v € KCLAL(E, 5 (4)) — F(H, () +
al. For

OV(E* (1), & (1)) = [0,1] x {~1},
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if €V (z*(t),2(t)), then ¢T = (y, —1) with y € [0, 1]. Therefore,
Mo = yuy — vs.

If there exists an element a satisfying that (Tv = a for all y € [0, 1], then v; = 0. So, if v; # 0,
one has L7V = (); if v; = 0, one has L7V = —K[fi(t, x;(t)) — fi(t, xo(t)) + a], and then it

follows from Lemma 2 that max E}‘V < 0. Thus, max £~;V <0or E;V = () in this case.

Combining the above five cases, it can be concluded that max £,V < 0 for all (7 (t), % (t)) €

DA\{(0,0)}.

The proof is now completed.

6 Proof of Theorem 1

Proof The nonsmooth function V', which was given by (6) in the manuscript, is chosen as the
Lyapunov function. If Assumptions 1 - 4 hold, then Lemma 6 holds. By using Lemma 1, it
follows from Lemmas 3 - 6 that (Z7(¢), 27 (¢)) = (0,0) is a globally stable equilibrium point for
system (2).

Next, the maximal converging time is considered.

e Case (i): ¥ (t) > 0 and 2~ (t) > 0.

In this case, V = Z*(t) and L7V = K [fik(t,xi(t)) — fE(t, 2o(t)) — a] By the proof of
Lemma 2, one has || fi(t,z;(t)) — fo(t,20(t)) | < P(t), P(t) < P(0),Vt € R*,Vi=1,2,--- ,N.
Since | f5(t,2i(8)) — FE(E a0(0) | < || filt2i(8)) — folt, wo() Il € RY, Vi = 1,2, , N, ¥k =
1,2,--- ,n, one has

max LrV < —(a — P(t))
< —(a — P(0)).

Therefore, the converging time satisfies

T

I
IS h
Jr
=

e Case (i): 7 (t) >0 and 2~ (t) < 0.
In this case, V = #7(t) — & (t) and LV = IC[(fik(t, zi(t)) — [t zo(t)) — ) — (fit, z;(t)) —
fit, zo(t)) + a)] By the proof of Lemma 2, one has || fi(t,z;(t)) — fo(t, zo(t)) || < P(t), P(t) <
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P(0),Vt € R",Vi=1,2,---  N. Since | ff(t,z;(t)) — f5 (£, 20(t)) | < || fit,2:(t)) — fo(t, zo(t)) ||
NteR"Vi=1,2,--- ,N,Vk=1,2,--- ,n, one has

max LV < —2(a — P(t))

< —2(a — P(0)).

Therefore, the converging time satisfies

e Case (#1): 7 (t) <0 and 27 (t) < 0.

In this case, V' = —77(t). Since 7~ (¢) < 0 and Assumption 1 holds, one has 3=, a;s[T7 () —
iL(t)] < 0, then L7V = IC{ — (fi(t, () — fo(t,zo(t)) + a)}. By the proof of Lemma 2,
one has || fi(t,x;(t)) — fo(t,zo(t)) || < P(t), P(t) < P(0),vt € R",Vj = 1,2,---,N. Since
| fi(t () = filt,zo() | < || fi(tzi(8) — folt.zo() |Vt € RT,Vj = 1,2,--- NVl =

1,2,--- . n, one has

max LV < —(a — P(t))

< —(a — P(0)).

Therefore, the converging time satisfies

o
T3 < —m:c (0).

Combining the above three cases, the maximal converging time is obtained as

- ! k k xk
' mﬁ%%-}-(w{‘ 7 (0) = 25(0) — 27" [}

k=12 n

The proof is now completed.

7 Supplementary Lemma i

Supplementary Lemma ¢ If Assumptions 1, 5 and 6 hold, then o >|| fi(¢, z;(t))—fo(t, zo(t)) ||
Vte RYVi=1,2,--- ,N.
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Proof Based on Assumption 5, for any i = 1,2,--- , N and each t € R*, one has

I filt, zi(t)) — folt, zo(t)) ||
= [l fo(t, zi(t)) = folt, zo(t)) ||
<Lj (Il z:(t) = mo(t) )

) =

<Lj (|l wlt

<1 (Vamax{| #(0) 150 [} +_max {12 11}) @

wo(t) — i || + [l =7 )

Let
Q) =L} (Vamax{| (@) |5 (60) [} + _max 7). 0

If a > Q(t),vt € RT, then o >|| fi(t,x;(t)) — fo(t,zo(t)) ||,Vt € R, Vi=1,2,---  N.

Now, it can be proved that if @ > Q(0) then a > Q(¢), Vt € R*. Because a > Q(0) and
Q(t) are continuously changing, suppose that ¢; € R" is the first time at which o = Q(#). Since
a, L% and z:{%aXN{H x; ||} are constants, one has max{| *(¢1) |,| 27 (1) |} >
max{| 2"(0) |,| Z7(0) |}. So, there must exist a t € [0,;) such that the derivative of max{|
Tt(t) |,| 7 (t) |} is greater than zero.

Now, consider the following three cases.

e Case (1): {z7(t) > 0,27 (t) > 0}.

In this case, max{| z7(¢) |,| Z7(¢) |} = 27(t), and the derivative of max{| Z7(¢) |,| 27 (¢) |}

is #+(t). Since Assumption 1 holds and #*(¢) > 0, one has ¥,cn: @i [#(t) — #¥(¢)] > 0. Thus,

i (1) € K[t ai(t) = f5 (¢ 2o(t) — o]

If the derivative of max{| Z*(t) |,| 2~ () |} is greater than zero at t, € [0,¢,), one has 2 (t3) > 0.
Then, there must exist i € {1,2,--- N} and k € {1,2,---,n} such that fF(ts, z;(ts)) —
J¥(ty, xo(t2)) > 0 and the positive constant a < | fF(ty, 2;(t2)) — fE(ts, x0(t2)) |. Since |
fE(ta,2i(t2)) — fo (B2, 20(t2)) | < || filta, 2i(t2)) — fo(ta, @o(t2)) ||, one has o < || fi(ts, 2i(t2)) —
fo(ta, xo(t2)) || It follows that o < Q(t2) based on (5). Because a > Q(0) and Q(t) are continu-
ously changing, there must be a t3 € [0, ¢3) such that « = Q(t3). It contradicts the assumption
that t; € R* is the first time at which a = Q(¢#).
e Case (i1): {z7(t) <0,z (t) < 0}.
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In this case, max{| Z7(¢) |,| 2~ (t) |} = =2~ (¢), and the derivative of max{| 27 (¢) |,| Z~(¢) |}
is —2~(t). Since Assumption 1 holds and () < 0, one has Ssen; @js[Z7(t) = ZL(t)] < 0. Thus,

F(1) €K [fi(t25(8) = f(t wo(t)) + @] -

If the derivative of max{| #*(t) |,| Z=(t) |} is greater than zero at t, € [0,%;), one has ™ (t5) < 0.
Then, there must exist j € {1,2,---,N} and [ € {1,2,---,n} such that f}(ts,z;(t2)) —
fo(ta, mo(t2)) < 0 and the positive constant o < | fi(ta, z;(t2)) — fi(t2, z0(t2)) |. Since |
filta, 25(t2)) — filta, zo(ta)) | < || fita, 25(t2)) — fo(ta, zo(t2)) ||, one has o < || f(t2, 24(ta)) —
fo(ta, xo(t2)) ||. It follows that o < Q(t2) based on (5). Because a > Q(0) and Q(t) are continu-
ously changing, there must be a t3 € [0,3) such that @ = Q(t3). It contradicts the assumption
that t; € R* is the first time at which o = Q(¢).

e Case (u1): {z7(t) > 0,27 (t) < 0}.

(i) If {z*(t) > =2 (¢)}, then max{| z*(¢) |,| = (¢) |} = &7 (¢). So, the proof is the same as
that in Case (i).

(ii) If {2+ (t) < —2~ ()}, then max{| Z7(¢) |,| Z7(¢) |} = =2~ (t). So, the proof is the same
as that in Case (ii).

Combining the above three cases, it can be concluded that the derivative of max{| Z*(¢) |,
| 27(t) |} will not be greater than zero. Hence, if o > Q(0), i.e., Assumption 6 holds, then
a > Q(t), Vt € R*. Tt follows that a > || fi(t,z;(t)) — fo(t,x0(t)) ||,Vt € RT Vi=1,2,--- N,
based on (5).

The proof is now completed.

8 Supplementary Lemma ii

Supplementary Lemma it Let F denote the set-valued map. If Assumptions 1, 5 and 6
hold, then the set-valued Lie derivative LV of V with respect to F satisfies that max £V < 0
for all (z7(¢),27(t)) € D\ {(0,0)}.

Proof If Assumptions 1, 5 and 6 hold, then Supplementary Lemma i holds, i.e., a >
filt, (1)) = folt, zo(2)) I

Vte RY,Vi=1,2,---,N. Five cases are discussed as follows:

e Case (i): ™ (t) > 0 and Z7(t) > 0.
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Since 71 (t) > 0 and Assumption 1 holds, one has 3,cn; @i [Z7(¢) — ZF(¢)] > 0, and for
OV(™ (), 2 (1)) = {(1,0)},
one has
LV = K[t 2i(1) — [yt 20(1) — al.

Since | fF(t,x;(t)) — fEt, 2o(t)) | < || fi(t, 2i(8)) — fo(t,x0(t)) ||,Vt € RT,Vi=1,2,--- | N,Vk =

1,2,--- ,n, it follows from Supplementary Lemma i that
max L £V < 0.

e Case (i1): 7 (t) > 0 and 27 (t) < 0.
Since () > 0,27(t) < 0 and Assumption 1 holds, one has Y.cn, @i [Z7(t) — Z5(¢)] >

0, sen; a5l (1) — Z4(t)] < 0, and for
OV(&™(t), (1)) = {(L, -1},
one has
LrV =K [(fFt,2i(8) = f5 (8, 20(8) — @) = (fj (1) = fo(t 2o()) + )]

Since | fF(t,x;(t)) — fEt, 2o(t)) | < || fi(t, 2i(8)) — fo(t,0(2)) ||,V € RT,Vi=1,2,--- ,N,Vk =

1,2,--- ,n, it follows from Supplementary Lemma i that
max L £V < 0.

e Case (i11): T+(t) < 0and 2~ (¢) < 0.

Since 7~ () < 0 and Assumption 1 holds, one has Y.cy, a;,[#(f) — #(t)] < 0, and for
oV (z™(t), 7~ (1) = {(0,-1)},
one has
L5V = K [(fit,25(0)) — fi(t, zolt)) + )]

Since | f]l‘(t7xj<t)) - f(l)(t7x0(t)> | < H fj(t7xj(t)) - f0<t,l‘0(t)) ||7Vt S R+7Vj =12, 7N7VZ =

1,2,--- ,n, it follows from Supplementary Lemma i that

max LV < 0.
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e Case (i): 2%(t) > 0 and = (t) = 0.

Since () > 0,27 (t) = 0 and Assumption 1 holds, one has Y,.cn, air[T1(t) — Z5(¢)] >
0, sen; sl () — Z4(t)] < 0. So, if v € F(z¥(t),77(t)), then v" = (vi,vy) with v, €
KIfEE 2i(t) — fo(t20(t) — o] and vy € K[fj(t,2;(t) — folt, 20(t)) + o] U K[fi(t,2;(t)) —

f4(t, zo(t))]. For
oV (z™(t), 7" (t)) = {1} x [-1,0],
if ¢ € OV (3+(t), i (1)), then ¢T = (1,y) with y € [~1,0]. Therefore,
Mo = vy + yu,.

If there exists an element a satisfying that (Tv = a for all y € [—1,0], then vy = 0. So, if vy # 0,
one has LV = (); if v, = 0, one has LV = K[f5(t, z:(t)) — fE(t, zo(t)) — ], and then it follows

from Supplementary Lemma i that max £V < 0. Thus, max L7V < 0 or LV = @ in this case.

e Case (v): 2%(t) =0 and 2 (t) < 0.
Since () = 0,27 (t) < 0 and Assumption 1 holds, one has Y ,.cn; @i [TT(t) — Z(t)] >
0, sen; ajsl7(t) — Z4(t)] < 0. So, if v € F(z*(t),77(t)), then v" = (vi,vy) with v, €
KA @a(t) = 5 (t, 20(8)) — o] UKLLF (8, 24(t)) — fi (8, 2o(t))] and va € K[fj(t, 2;(2)) — fi(t, 20(t)) +
«a]. For
OV(Z™(t), 2™ (t)) = [0, 1] x {1},
if € V(27 (t),2(t)), then ¢T = (y,—1) with y € [0,1]. Therefore,

To = yvy — v,

If there exists an element a satisfying that (Tv = a for all y € [0, 1], then v; = 0. So, if v; # 0,
one has L7V = 0); if v; = 0, one has L7V = —K[f}(t, x;(t)) — fi(t, z0(t)) + ], and then it follows

from Supplementary Lemma i that max £V < 0. Thus, max £V < 0 or LV = @ in this case.

Combining the above five cases, it can be concluded that max £,V < 0 for all (#7(t), % (t)) €

D\ {(0,0)}.

The proof is now completed.
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9 Proof of Corollary 1

Proof The nonsmooth function V| which was given by (6) in the manuscript, is chosen as the
Lyapunov function. If Assumptions 1, 5 and 6 hold, then Supplementary Lemma ii holds. By
using Lemma 1, it follows from Lemmas 3 - 5 and Supplementary Lemma ii that (21 (¢),Z7(t)) =
(0,0) is a globally stable equilibrium point for system (2).

Next, the maximal converging time is considered.

e Case (i): ™ (t) > 0 and 2~ (t) > 0.

In this case, V = &t(t) and L7V = IC{ Pt (b)) — fo(t, mo(t)) — a}. By the proof of
Supplementary Lemma i, one has || f;(¢, z;(t))— fo(t, zo(t)) || < Q(t),Q(t) < Q(0),Vt € R* Vi =
1,2, N. Since | fF(t,2:(t)) — fo(t,zo(t)) | < || fi(t,2:(t) — fo(t,zo(t)) ||Vt € RT, Vi =
1,2,--- ,N,Vk=1,2,--- 'n, one has

max LV < —(a — Q(2))
< —(ar = Q(0)).

Therefore, the converging time satisfies

T

VAN
=2
+
—~
=

e Case (ii): ™ (t) >0 and 27 (t) < 0.

In this case, V = #7(t) — 2 (t) and LV = IC[(ff(t, i () = fE(t xo(t)) — ) — (fi(t, 2;(t)) —
fé(t,xo(t))—l—oz)}. By the proof of Supplementary Lemma i, one has || fi(t, z;(t)) — fo(t, zo(t)) || <
Qt),Q(t) < Q(0),vt € RY,Vi=1,2,---  N. Since | fF(t,2:(t)) = f5(t, 20(t)) | < || filt, 2:(t)) —
folt,zo(t)) ||,Vt € RY,Vi=1,2,--- ,N,Vk =1,2,--- n, one has

max LV < —2(a — Q(t))
< —2(a = Q(0)).
Therefore, the converging time satisfies
T < 5— - (@7(0) —27(0))
< o= 00) max{7*(0), =2~ (0)}.

e Case (iii): 7 (t) <0 and 27 (¢) < 0.
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In this case, V = —&(t) and L7V = IC{ — (it z;(t) — fo(t, zo(t)) + oz)}. By the proof
of Supplementary Lemma i, one has || f;(t,x;(t)) — fo(t,zo(t)) || < Q(t),Q(t) < Q(0),Vt €
RT.Vj = 1,2,--- N. Since | fi(t,z;(t)) — fo(t,xo(t)) | < || f5(t,2;(t)) — folt,0(t)) ||Vt €
R*Vj=1,2,--- ,NVI=1,2,--- .n, one has

max L7V < —(a — Q(t))
< —(a—Q(0)).
Therefore, the converging time satisfies

1
S NEoI)

Combining the above three cases, the maximal converging time is obtained as

7 (0).

T = gy e A 0) = h(0) )

k=12, n

The proof is now completed.

10 Proof of Lemma 7

Proof Define the formation position errors 7(t) = r;(t) — ro(t) — r} and the velocity errors
0;(t) = vi(t) —wo(t),s = 1,2,--- N, with 7o(t) = 0 and 9y(¢) = 0. Sliding mode is designed
as S;(t) = 7i(t) + 0;(t). The Filippov solution of S;(t) is defined as the absolutely continuous
solution of the differential inclusion
Sl(t) < ,C E(t,TZ(t), Uz(t)) — Fo(t, Tg(t), Uo(t)) — (asgn { Z CL”[SZ(t) — Sj(t)]}] s
JEN;
Vi=1,2,---,N.

Based on Assumption 1, one follower must receive information from other followers or the leader,
in other words, it is connected with other followers or the leader. Define ST (¢) as the maximal
error component which is connected with non-maximal error components of the followers or con-
nected with the component of the leader. Similarly, define S~(¢) as the minimal error component
which is connected with non-minimal error components of the followers or connected with the

component of the leader. Suppose that, at any time ¢, S*(¢) is the kth error component of agent
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i and S7(t) is the [th error component of agent j, where ¢,j € {1,2,--- , N}, k,l € {1,2,--- ,n}.
The Filippov solutions of S*(¢) and S™(¢) can be described by

reN;

SH(t) € | EF(trit), vilt)) — Fy(t, ro(t), vo(t)) — aSgn{ > ai[ST(t) — Sf(t)]}] :

S~(t) ek Fi(t, (1), v;(t)) — Fy(t,ro(t), vo(t)) — asgn{ > a[ST(t) - Sé(t)]}] .

seEN;

Based on Assumptions 7 and 8, for any ¢ = 1,2,--- , N and each ¢t € R", one has

| Es(t, 7i(), vilt)) = Folt, ro(t), vo(t)) ||

+vi(t) = fo(t,ro(t), vo(t)) — vo(t) |

= filt,;ro(t), vo(t)) + fi(t, ro(t), vo(£)) — fo(t,m0(t), vo(t)) + vi(t) — vo(t) ||
= filt;ro(t), vo (@) | + || fi(#, o(2), vo(t)) ||

stﬂ!n@)—rdtH—FHw()—vd)H)+L§(Hm@)—rfH%—Hw@)—fo)

+ L5 (Il ro(t) = & 1 + Il wo(t) = vg 1) + (Il vi(t) = vo() )

<LE (I ritt) = ro(®) = v |+ 177 1+ [ wa) = wo®) 1) + L5 (I o) = rZ 1| + Il wo(®) — vF |))
+ L5 (o) = 1|+ [ wo(t) = vg [1) + (Il vil®) = vo(t) )

<L || 7e) | +(E5 4 1) ) 0:t) [ +LEA w7 1+ 12 L+ of | 48, + By)

+ L5 g |+ L og | +8r + Bo)-
Let
=5 (_max {Irs |+ 172 4+ 0 1} 4+ B+ 8o) + LA v |+ 1 of 1| 46+ 5.

Clearly, G is a constant. Since 9;(t) = S;(t) — 74(t), one has || 0;(¢t) || < || S:(¢) || + || 7:(¢) |-
Thus,
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| Fit,mi(t), vi(t)) — Fo(t, mo(t), vo(t)) |

<L | #4(8) ||+ (L5 +1) || (Si(e) = 7(0) || +G

< (2L +1) |7 | + (L5 +1) | Sie) || +G

< (205 + 1) v _max {750 | SEO) |} + (L5 +1) v _max {|SEO [} +G (9)

k=12, n k=12, n
Let

M(t) = LY+ Vi _max {1 74(2) 1 SE) [} + (2 + Vv _max {1 8K [} + G-

k=12, m k=12, m
If « > M(t),vt € R", then o >| Fi(t,r(t),v;(t)) — Fo(t,ro(t),vo(t)) ||Vt € RT Vi =
1,2,--- . N.

Now, it can be proved that if & > M(0) then a > M(t), Vt € R". Because a > M(0) and
M (t) are continuously changing, suppose that t; € R* is the first time at which a = M(t).
Thus, M(t1) > M(0).

Now, consider the following two cases.

e Case (i): The signs of 7¥(t) and 9¥(t) are the same. In this case, | 7¥(¢) | will increase.
Since | 78(t) | + | 0F(t) | = | 7R (t) + 0F(¢) | = | SE(t) |, it follows that | 7¥(¢) | < | S¥(¢) |.

e Case (ii): The signs of 7¥(t) and ¥ (t) are opposite. In this case, one has | 7¥(t) | + | 0F(¢) |
= | 7F(t) — 0F(t) | > | SF(t) |. Both | 75(¢) | < | SF(t) | and | 7¥(¢) | > | S¥(t) | are possible. For
o8 (t) = 7#¥(t) and their signs are opposite, | 7¥(t) | must decrease.

Combining the above two cases, it can be concluded that | 7#(¢) | must be decreasing when

| 7F(t) | > | SF(t) |. Since o, L} and G are constants, if M (¢;) > M(0), then _max N{| SE(ty) |}
k=15,
must be larger than _max N{| S*(0) |}. So, there must exist a to € [0, ;) such that the derivative

k=12, n
of max{| ST(t) |,| S™(¢) |} is greater than zero.

Now, consider the following three cases.

e Case (1): {ST(t) > 0,5 (t) > 0}.

In this case, max{| S*(¢t) |,| S™(¢) |} = ST(t), and the derivative of max{| S*(¢) |,| S~(¢) |}
is S*(t). Since Assumption 1 holds and S*(t) > 0, one has 3,cxr @i, [S*(t) — S¥(¢)] > 0. Thus,

SH(t) € K [FE(t ra(t), vilt) — Fy (¢, mo(t), vo(t) — o

If the derivative of max{| S*(¢) |,| S~(¢) |} is greater than zero at t, € [0,#,), one has S*(t5) > 0.
Then, there must exist i € {1,2,--- N} and k € {1,2,--- ,n} such that FF(ty, r;(t2),vi(t2)) —
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FF(ta, ro(ta), vo(t2)) > 0 and the positive constant o < | FF¥(tq, 7;(ta), vi(ta))—F¥ (ta, ro(t2), vo(ta)) |.
Since | Fff(t2,7i(ta), vi(t2)) = Fy (2, 70(t2), vo(t2)) | < || Filta, ri(ta), vilta)) = Fo(ta, ro(t2), vo(t2)) I,
one has o < || Fi(ta, mi(t2),vi(t2)) — Fo(ta, mo(t2),v0(t2)) ||. It follows that o < M (t3) based on
(8). Because v > M(0) and M (t) are continuously changing, there must be a t3 € [0, ) such
that o = M(t3). It contradicts the assumption that ¢; € R is the first time at which o = M (¢).

e Case (11): {ST(t) <0,5(t) < 0}.

In this case, max{| S*(¢t) |,| S™(¢) |} = =S~ (t), and the derivative of max{| ST(¢) |,| S~ (¢) |
} is —S~(t). Since Assumption 1 holds and S~(t) < 0, one has Ssen; ajs[ST(t) — SL(t)] < 0.
Thus,

S7(t) € K [FJ(t,mi(1),v5(t) — Fy(t,ro(t), vo(t)) + o] .

If the derivative of max{| S*(¢) |,| S~ (t) |} is greater than zero at t, € [0,#;), one has S~ (t3) < 0.
Then, there must exist j € {1,2,---, N} and [ € {1,2,--- ,n} such that F}(ty,r;(t2),v;(t2)) —
F{(t2, mo(t2), vo(t2)) < 0 and the positive constant a < | F}(ta, 7;(ta), v;(t2))—F{(ta, mo(t2), vo(t2)) |.
Since | F}(t2, 7(t2), vj(t2)) = Fy(ta, 70(ta), vo(t2)) | < || Fj(ta, rj(t2), vj(t2))—Fo(tz, mo(t2), vo(ta)) Il
one has a < || Fj(ta, 7(t2), v;(t2)) — Folta, ro(t2), vo(t2)) ||. It follows that oo < M(t2) based on
(8). Because v > M(0) and M (t) are continuously changing, there must be a t3 € [0, ) such
that o = M(t3). It contradicts the assumption that t; € R is the first time at which o = M (¢).

e Case (w1): {ST(t) > 0,5 (t) < 0}.

(a) It {ST(t) > =S~ (t)}, then max{] ST(¢) |,| S™(¢) |} = S*(¢). So, the proof is the same
as that in Case (i).

(b) If {ST(t) < =S~ (t)}, then max{| ST(¢) |,| S™(¢) |} = =S~ (t). So, the proof is the same
as that in Case (ii).

Combining the above three cases, it can be concluded that the derivative of max{| S*(¢) |,
| S7(t) |} will not be greater than zero. Hence, if a > M(0), i.e., Assumption 9 holds, then
a > M(t), Vt € R*. Tt follows that o > || Fy(t,7(t),v;(t)) — Fo(t,mo(t),ve(t)) ||,Vt € R",Vi =
1,2,--- N, based on (8).

The proof is now completed.
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11 Proof of Lemma 8

Proof 1If Assumptions 1 and 7 - 9 hold, then Lemma 7 holds, i.e., o > || F;(t,r;(t),vi(t)) —
Fo(t,ro(t),vo(t)) ||,Vt € RT Vi =1,2,--- ,N. Based on (6) in the manuscript, the nonsmooth
function V(S*(t),S~(t)) : R* — R is

S*() S*(t) =20,57(t) =0
V(ST(t), 5 (t) = ST@t)—S~(t) ST({t)>0,5(t) <0 (9)
—S~(t) SH(t) < 0,5 () < 0.

Five cases are discussed as follows:
e Case (i): ST(t) >0 and S~(t) > 0.
Since Assumption 1 holds and ST (¢) > 0, one has 3,ex; @i [ST(t) — SE(t)] > 0, and for

oV (S*(t),57(1) = {(1,0)},
one has
LFV =K [FF(tri(t), vi(t) — Fy (¢, 70(t), vo(t) — ]

Since | FF(t,ri(t), vi(t)) — FF(t,ro(t),v0() | < || Filt,ri(t), vi(t)) — Fo(t,ro(t),v0(t)) ||Vt €
R"Vi=1,2,--- N,Vk=1,2,--- ,n, it follows from Lemma 7 that

max ﬁ;V < 0.

e Case (i1): ST(t) >0 and S~ (t) < 0.
Since ST(t) > 0,57(t) < 0 and Assumption 1 holds, one has ¥,cp; ai[ST(t) — SF(t)] >
0, X sen; ajs[S™(t) — SL(#)] < 0, and for

OV (ST(t),S™(t)) = {(1,-1)},
one has
LFV = K[(FF(tri(t), vi(t) — F§ (£, 7o(t), vo(t) — @)
— (F(t, (), v;(t)) — Fo(t, ro(t), vo(t)) + CY)}-

Since | Ff(t,ri(t), vi(t)) — Fg(t,mo(t),vo(t)) | < || Fi(t,ri(t),vi(t)) — Fo(t,mo(t), vo(t)) ||Vt €
R* Vi=1,2,--- ,N,Vk=1,2,--- ,n, it follows from Lemma 7 that

max LV < 0.
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e Case (i11): ST(t) <0and S™(t) <0
Since S~ (t) < 0 and Assumption 1 holds, one has 3¢y, a;s[S™(t) — Si(t)] < 0, and for

OV (ST(t),S™(1)) = {(0, = 1)},
one has
L5V = K [~(ELt.ri(8), 05()) — Fi(t, (), volt)) + )]

Since | F}(t,r;(t), v;(t)) — Fg(t,ro(t), vo(t)) | < || Fj(t,r5(t),v5(t)) — Fo(t,ro(t), vo(t)) ||,V €
R*"Vj=1,2,--- ,NVI=1,2,--- ,n, it follows from Lemma 7 that

max Z;V < 0.

e Case (w): ST(t) >0 and S~(t) =0.

Since ST(t) > 0,57(t) = 0 and Assumption 1 holds, one has ¥,cp; air[ST(t) — SF(t)] >
0, sen; ajs[S™(t) — SL(t)] < 0. So, if v € F(ST(t),S(t)), then v = (v1,vy) with v, €
KIFf(E,ri(t), vi(t) = Fg(tro(t), vo(t) — af and vy € K[F}(t,7;(t),v;(8)) — Fy(t,mo(t), vo(t)) +
o] UK[F}(t,7;(t), v(t)) — Fy(t,mo(t), vo(t))]. For

(@
(

OV (S™(1), S (1)) = {1} x [-1,0],
if ¢ € V(ST (), S™(¢)), then ¢T = (1,y) with y € [—1,0]. Therefore,
CT’U = U1 + Yyvs.

If there exists an element a satisfying that (Tv = a for all y € [—1,0], then vy = 0. So, if vy # 0,
one has LV = 0); if v, = 0, one has LV = KC[EF(t,r:(t), vi(t)) — FE(t, ro(t), vo(t)) — o], and

then it follows from Lemma 7 that max £V < 0. Thus, max L7V < 0 or LV = ) in this case.

e Case (v): ST(t) =0and S™(t) <

Since ST(t) = 0,57(t) < 0 and Assumption 1 holds, one has Y,.cn; ai[ST(t) — S¥(2)]
0, sen; as[S™(t) — SL(t)] < 0. So, if v € F(ST(t),S(t)), then v" = (v,v) with v; €
KLt rit), vilt)) — Fg (£, ro(t), vo(t)) — o] U K[FE(t,ri(t), vi(t)) — F§(t,mo(t), vo(t))] and vy €
lC[F;(t, ri(t),v;(t)) — Fi(t,ro(t), vo(t)) + o]. For

v

OV (S*(1), S7(1)) = [0.1] x {~1},

25



if ( € OV(S*(t),S(t)), then (T = (y,—1) with y € [0,1]. Therefore,
Mo = yvy — vs.

If there exists an element a satisfying that (Tv = a for all y € [0, 1], then v; = 0. So, if v; # 0,
one has L7V = 0; if v; = 0, one has L7V = —K[F}(t,r;(t), v(t)) — F§(t, ro(t), vo(t)) + ], and

then it follows from Lemma 7 that max £V < 0. Thus, max LV < 0 or LV = ) in this case.

Combining the above five cases, it can be concluded that max £V < 0 for all (S*(t), S~ (t)) €

D\ {(0,0)}.

The proof is now completed.

12 Proof of Theorem 2

Proof The nonsmooth function V(S (¢),S7(¢)) in (9) is chosen as the Lyapunov function. If
Assumptions 1 and 7 - 9 hold, then Lemma 8 holds. By Lemma 1, it follows from Lemmas 3 -
5 and 8 that (S*(¢),S~(t)) = (0,0) is a globally stable equilibrium point for system (7).

Solving

one has

where ¢ is a constant determined by the initial conditions. Therefore, the errors 7;(t) and v;(t)
converge to zero exponentially; that is, the second-order multi-agent system achieves the desired
formation asymptotically.

The proof is now completed.

13 Supplementary Lemma iii

Supplementary Lemma it If Assumptions 1, 10 and 11 hold, then o >|| F;(t,7:(t),v;(t)) —
Fo(t,ro(t),v0(t)) ||,Vt € R, Vi = 1,2,--- | N, where Fy(t,7;(t),v;(t)) = v;(t) + fi(t,7:(t), v;(¢))
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and F()(t, To(t), Uo(t)) = ’U()(t) + fo(t, To(t), Uo(t)>
Proof Based on Assumption 10, for any i = 1,2,--- , N and each t € R, one has

| Fi(t,ri(t), vilt
= || filt,ra(t), 0i(?)
= || folt,mi(t), wilt
(t,7i(t)

< || fo(t,ri(t),vi(t

3

)
ro(t) —ri [+ L 1+ [ wi) = wo(8) )+ 1| vil#) — wo(2) |
<L m@) T+ 1y I+ o) D+ 1 o) |

<Lj(|| ri(t

(

(
<Lj(|lri(t) — ro(t

) —

)

Since 0;(t) = S;(t) — 74(t), one has || v;(¢) || < || Si(¢) || + || 7:(¢) ||. Thus,

| F5(t,mi(t), vi(t)) — Fo(t, mo(t), vo(t)) ||
<SQLG + 1) | 7:() | +(LF + 1) | Silt) [| +L5 [ 77 |
<@LE+ )V {740 1] SO [} + (L5 + Dy _max {1 SK0) |

k=1.2,-n k=12, n
L .
b max (175 1) (10
Let

W) =L + Vv _max {1 75) 1] S5 [}

k=12, n
L k L *
H(LE+ )V {SEO) [} L5 _max (17 )
k=12, n

If « > W(),Vt € RY, then o >| Fi(t,r;(t),v;(t)) — Fo(t,ro(t),vo(t)) ||Vt € R Vi =
1,2,--- . N.

Now, it can be proved that if & > W(0) then a > W (t), ¥Vt € R". Because a > W(0) and
W (t) are continuously changing, suppose that t; € R" is the first time at which o = W (¢).
Thus, W (t;) > W(0).

Now, consider the following two cases.

e Case (i): The signs of 7¥(t) and 9¥(t) are the same. In this case, | 7¥(¢) | will increase.

Since | 7F(t) [ + | 08(t) | = | 75(t) + 0F(t) | = | SF(2) |, it follows that [ 7(t) [ < | SE(t) |-
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e Case (ii): The signs of 7¥(t) and ©F(¢) are opposite. In this case, one has | 7¥(¢) | 4+ | 9¥(¢) |
= | 7F(t) — 0F(t) | > | SF(t) |. Both | 7%(t) | < | SF(t) | and | 7¥(¢) | > | S¥(t) | are possible. For
o8 (t) = 7#¥(t) and their signs are opposite, | 7¥(t) | must decrease.

Combining the above two cases, it can be concluded that | 7%(¢) | must be decreasing when
| 78(t) | > | S¥(t) |. Since a, L% and z:{%axN{H ri ||} are constants, if W(t;) > W(0), then

_max N{] Sk(t1) |} must be larger than _max N{] Sk(0) |}. So, there must exist a to € [0,)
k=13, n k=13 m
such that the derivative of max{| S*(¢) |,| S™(¢) |} is greater than zero.

Now, consider the following three cases.

e Case (i): {ST(t) > 0,5 (t) > 0}.

In this case, max{| S*(¢t) |,| S™(¢) |} = ST(t), and the derivative of max{| ST(¢) |,| S~(¢) |}
is S*(t). Since Assumption 1 holds and S*(t) > 0, one has Y,cp; @i [ST(t) — S*()] > 0. Thus,

SH(t) € K[FF(t,mit), vilt) — F(t,mo(t),vo(t) — o]

If the derivative of max{| ST(t) |,| S=(t) |} is greater than zero at t5 € [0,t,), one has S*(t5) > 0.
Then, there must exist ¢ € {1,2,--- ,N} and k € {1,2,--- ,n} such that FF(ty,r;(ts),vi(t2)) —
Fl(ty, ro(ta), vo(t2)) > 0 and the positive constant o < | FF¥(to, 7:(t), vi(t2))—F¥ (ta, ro(t2), vo(ta)) |.
Since | Ff(tz, 7i(t2), vi(t2)) = Fy (t2, ro(t2), vo(t2)) | < [| Fi(ta, mi(t2), vi(t2)) = Fo(tz, ro(t2), vo(t2)) ||,
one has a < || Fi(te, ri(t2), vi(ta)) — Folta, ro(ta), vo(t2)) ||. It follows that o < W (ts) based on
(10). Because a > W (0) and W (t) are continuously changing, there must be a t3 € [0,t3) such
that o = W (t3). It contradicts the assumption that ¢; € R is the first time at which o = W (¢).

e Case (i1): {ST(t) <0,5(t) < 0}.

In this case, max{| ST(¢) |,| S~ (¢) |} = =S~ (¢), and the derivative of max{| ST(¢) |,| S™(¢) |
}is —S~(t). Since Assumption 1 holds and S~(t) < 0, one has Ssen; a5s[S7(t) = Si(t)] < 0.
Thus,

S7(t) € K [FJ(t,m(1),v5(t) — Fy(t,ro(t), vo(t)) + a] -

If the derivative of max{| S*(¢) |,| S~(t) |} is greater than zero at t, € [0,#,), one has S~ (t;) < 0.
Then, there must exist i € {1,2,--- ,N} and k € {1,2,--- ,n} such that F}(t2,7;(t2), v;(t2)) —
F{(ta,mo(t2), vo(t2)) < 0 and the positive constant o < | FJ(ta, 7;(t2), v(t2))—F{(ta, 70(t2), vo(t2)) |.
Since | F}(ta,1j(t2), vj(t2)) = Fi(ta, ro(t2), vo(t2)) | < || Fy(ta, rj(t2), vj(t2)) = Folta, ro(t2), vo(t2)) I,
one has o < || Fj(ta, rj(t2),v;(t2)) — Fo(ta, ro(t2), vo(t2)) ||. It follows that o < W (t2) based on
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(10). Because v > W (0) and W (t) are continuously changing, there must be a t3 € [0,¢2) such
that o = W (t3). It contradicts the assumption that ¢; € R is the first time at which o = W (¢).

e Case (11): {ST(t) > 0,5 (t) < 0}.

(a) If {ST(t) > =S (t)}, then max{| ST(¢) |,| S™(¢) |} = St(¢). So, the proof is the same
as that in Case (i).

(b) If {ST(t) < =S~ (t)}, then max{| ST(¢) |,| S™(¢) |} = =S~ (t). So, the proof is the same
as that in Case (ii).

Combining the above three cases, it can be concluded that the derivative of max{| S*(¢) |,
| S7(t) |} will not be greater than zero. Hence, if a > W(0), i.e., Assumption 11 holds, then
a>W(t), vVt € R*. Tt follows that o > || Fy(t,7:(t),vi(t)) — Fo(t,mo(t),ve(t)) ||,Vt € R",Vi =
1,2,--- )N, based on (10).

The proof is now completed.

14 Supplementary Lemma iv

Supplementary Lemma v Let F denote the set-valued map. If Assumptions 1, 10 and 11
hold, then the set-valued Lie derivative LV of V with respect to F satisfies that max £V < 0
for all (ST(t),S~(t)) € D\ {(0,0)}.
Proof If Assumptions 1, 10 and 11 hold, then Supplementary Lemma iii holds, ie., a >
| Fi(t,ri(t),vi(t) — Fo(t,ro(t),vo(t)) |I,Vt € RT,Vi = 1,2,--- | N. The nonsmooth function
V(S*(t),S(t)) : R* = R was given by (9).

Five cases are discussed as follows:

e Case (i): ST(t) >0 and S~(t) > 0.

Since Assumption 1 holds and ST (¢) > 0, one has 3,ex; @i [ST(t) — SE(t)] > 0, and for

OV (ST(t),S™(t) = {(1,0)},
one has
LFV =K [FF(tmi(t), vi(t) — F§ (¢, r0(t), vo(t) — ]

Since | FF(t,ri(t),vs(t)) — FE(t,ro(t),vo(t)) | < || Fi(t,ri(t),vi(t)) — Fo(t,ro(t), vo(t)) ||,Vt €
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R* Vi=1,2,--- ,N,Vk=1,2,--- ,n, it follows from Supplementary Lemma iii that
max LV < 0.

e Case (ii): ST(t) >0 and S~(t) < 0.
Since S*(¢) > 0,57 (t) < 0 and Assumption 1 holds, one has ¥,cp; a;[ST(t) — SF(t)] >
0, sen; a;s[S™(t) — SL(t)] < 0, and for

oV (ST(t), 57(1) = {(1,-1)},
one has
LrV = K|(FE(t, (1), vi(t)) — Fr(t,ro(t),v(t)) — a)
— (Fj(t (), v5(t)) = Fy(t,mo(t), vo(t)) + ) |

Since | Ff(t,ri(t),vi(t)) — Fy(t,ro(t),v0(t)) | < || Falt,ri(t), vilt)) — Fo(t,ro(t),v0(t)) ||, V¢ €
R*" Vi=1,2,--- ,N,Yk=1,2,--- ,n, it follows from Supplementary Lemma iii that

max/jFV < 0.

e Case (71): ST(t) < 0and S~(t) <O0.
Since S™(t) < 0 and Assumption 1 holds, one has e, a;s[S™(t) — Si(t)] < 0, and for

OV(SH(1),S(1)) = {(0,—1)},
one has
LeV =K |=(FJ(t,r5(£), v5(t)) = Fy(t,7o(), v0(t)) + @) .

Since | Fj(t,r;(t),v;(t)) — Fo(t,ro(t),v0(t)) | < I Fj(t,m5(8), v;(t)) — Fo(t,ro(t), vo(t)) [I,Vt €
R*"Vj=1,2,--- ,N,VI=1,2,--- n, it follows from Supplementary Lemma iii that

maXﬁFV < 0.

e Case (iw): ST(t) >0 and S~(t) = 0.
Since S*(¢) > 0,57 (t) = 0 and Assumption 1 holds, one has ¥,cp; a;[ST(t) — SF(t)] >
0, sen; ajs[S™(t) = SL(t)] < 0. So, if v € F(ST(t),S(t)), then vT = (v1,v) with v; €
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KE(t,ri(t), vit)) — F§(t,mo(t), vo(t)) — o] and vy € K[Fj(t,r;(t),v;(t)) — Fi(t,ro(t), vo(t)) +
a] U K[Fj(t,;(t),v;(t)) — Fj(t, ro(t), vo(t))]. For

OV(S™(t), 5™ (1)) = {1} x [=1,0],
if ¢ € V(ST (), S™(¢)), then ¢T = (1,y) with y € [-1,0]. Therefore,
Tv = vy + yu,.

If there exists an element a satisfying that (Tv = a for all y € [—1,0], then vy = 0. So, if vy # 0,
one has L7V = 0; if v, = 0, one has L7V = K[EF(t,r:(t), vi(t)) — FEF(t,70(t), vo(t)) — a], and
then it follows from Supplementary Lemma iii that max £V < 0. Thus, max £V < 0 or
L7V =0 in this case.

e Case (v): ST(t) =0 and S~(t) <O.

Since ST(t) = 0,57(t) < 0 and Assumption 1 holds, one has Y,.cn; ai[ST(t) — S¥(2)]
0, sen; ajs[S™(t) = SL(t)] < 0. So, if v € F(ST(t),S(t)), then v = (v,v) with v; €
KIEf(t,ri(t),vi(t)) — Fg (t,ro(t), vo(t)) — o] U K[EF (¢, mi(t), vi(t)) — Fg (t,70(t), vo(t))] and vy €
KIF}(t, r;(t), v;(t)) — F§(t,ro(t), vo(t)) + a]. For

v

OV(ST(t),S7(1) = [0,1] x {1},
if ¢ € OV(ST(t),S(t)), then ¢T = (y,—1) with y € [0, 1]. Therefore,
To = yuy — vs.
If there exists an element a satisfying that (Tv = a for all y € [0, 1], then v; = 0. So, if v; # 0,
one has LV = 0; if v; = 0, one has L7V = —K[F}(t,r;(t),v;(t)) — F§(t, ro(t), vo(t)) + o], and
then it follows from Supplementary Lemma iii that max £V < 0. Thus, max £V < 0 or

L7V = in this case.
Combining the above five cases, it can be concluded that max £V < 0 for all (S*(t), S~ (t)) €

D\ {(0,0)}.

The proof is now completed.

15 Proof of Corollary 2

Proof The nonsmooth function V(S (¢), S (¢)) in (9) is chosen as the Lyapunov function. If

Assumptions 1, 10 and 11 hold, then Supplementary Lemma iv holds. By Lemma 1, it follows
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from Lemmas 3 - 5 and Supplementary Lemma iv that (ST (¢),S™(t)) = (0,0) is a globally
stable equilibrium point for system (7).

Solving
SF(t) = Fi(t) + 75 (t) = 0,
one has

Rt) = ce” R (t) = —ce,

’ 0

where ¢ is a constant determined by the initial conditions. Therefore, the errors 7;(t) and v;(t)
converge to zero exponentially; that is, the second-order multi-agent system achieves the desired
formation asymptotically.

The proof is now completed.
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