
Detailed Proof of Lemmas and Theorems

1 Proof of Lemma 2

Proof Define the formation errors x̃i(t) = xi(t)−x0(t)−x∗i , i = 1, 2, · · ·N , with x̃0(t) = −x∗0 = 0.

The Filippov solution of x̃i(t) is defined as the absolutely continuous solution of the differential

inclusion

˙̃xi(t) ∈K

fi(t, xi(t))− f0(t, x0(t))− α sgn

∑
j∈Ni

aij[x̃i(t)− x̃j(t)]


 , ∀ i = 1, 2, · · · , N. (1)

Based on Assumption 1, one follower must receive information from other followers or the leader,

namely, it is connected with other followers or the leader. Define x̃+(t) as the maximal formation

error component which is connected with non-maximal error components of the followers or

connected with the component of the leader. Similarly, define x̃−(t) as the minimal formation

error component which is connected with non-minimal error components of the followers or

connected with the component of the leader. Suppose that, at any time t, x̃+(t) is the kth error

component of agent i, and x̃−(t) is the lth error component of agent j, where i, j ∈ {1, 2, · · · , N},

k, l ∈ {1, 2, · · · , n}. The Filippov solutions of x̃+(t) and x̃−(t) can be described by

˙̃x+(t) ∈K
[
fki (t, xi(t))− fk0 (t, x0(t))− α sgn

{ ∑
r∈Ni

air[x̃
+(t)− x̃kr(t)]

}]
,

˙̃x−(t) ∈K
[
f lj(t, xj(t))− f l0(t, x0(t))− α sgn

{ ∑
s∈Nj

ajs[x̃
−(t)− x̃ls(t)]

}]
. (2)

Based on Assumptions 2 and 3, for any i = 1, 2, · · · , N and each t ∈ R+, one has
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‖ fi(t, xi(t))− f0(t, x0(t)) ‖

= ‖ fi(t, xi(t))− fi(t, x0(t)) + fi(t, x0(t)) + f0(t, x0(t)) ‖

≤ ‖ fi(t, xi(t))− fi(t, x0(t)) ‖ + ‖ fi(t, x0(t)) ‖ + ‖ f0(t, x0(t)) ‖

≤ ‖ fi(t, xi(t))− fi(t, x0(t)) ‖ + ‖ fi(t, x0(t))− fi(t, xEi ) ‖ + ‖ f0(t, x0(t))− f0(t, xE0 ) ‖

≤LFJ ‖ xi(t)− x0(t) ‖ +LFJ ‖ x0(t)− xEi ‖ +LLJ ‖ x0(t)− xE0 ‖

≤LFJ
(
‖ xi(t)− x0(t)− x∗i ‖ + ‖ x∗i ‖ + ‖ x0(t)− xEi ‖

)
+ LLJ ‖ x0(t)− xE0 ‖

≤LFJ
(√

nmax{| x̃+(t) |, | x̃−(t) |}+ max
i=1,2,··· ,N

{‖ x∗i ‖ + ‖ xEi ‖}+ β
)

+ LLJ
(
‖ xE0 ‖ +β

)
. (3)

Let

P (t) = LFJ

(√
nmax{| x̃+(t) |, | x̃−(t) |}+ max

i=1,2,··· ,N
{‖ x∗i ‖ + ‖ xEi ‖}+ β

)
+ LLJ

(
‖ xE0 ‖ +β

)
.

(4)

If α > P (t),∀t ∈ R+, then α >‖ fi(t, xi(t))− f0(t, x0(t)) ‖,∀t ∈ R+,∀i = 1, 2, · · · , N .

Now, it can be proved that if α > P (0) then α > P (t), ∀t ∈ R+. Because α > P (0) and

P (t) are continuously changing, suppose that t1 ∈ R+ is the first time at which α = P (t). Since

α, ‖ xE0 ‖, β, LFJ , LLJ and max
i=1,2,··· ,N

{‖ x∗i ‖ + ‖ xEi ‖} are constants, one has max{| x̃+(t1) |, |

x̃−(t1) |} > max{| x̃+(0) |, | x̃−(0) |}. So, there must exist a t2 ∈ [0, t1) such that the derivative

of max{| x̃+(t) |, | x̃−(t) |} is greater than zero.

Now, consider the following three cases.

• Case (i): {x̃+(t) > 0, x̃−(t) ≥ 0}.

In this case, max{| x̃+(t) |, | x̃−(t) |} = x̃+(t), and the derivative of max{| x̃+(t) |, | x̃−(t) |}

is ˙̃x+(t). Since Assumption 1 holds and x̃+(t) > 0, one has
∑
r∈Ni

air[x̃
+(t)− x̃kr(t)] > 0. Thus,

˙̃x+(t) ∈K
[
fki (t, xi(t))− fk0 (t, x0(t))− α

]
If the derivative of max{| x̃+(t) |, | x̃−(t) |} is greater than zero at t2 ∈ [0, t1), one has ˙̃x+(t2) > 0.

Then, there must exist i ∈ {1, 2, · · · , N} and k ∈ {1, 2, · · · , n} such that fki (t2, xi(t2)) −

fk0 (t2, x0(t2)) > 0 and the positive constant α < | fki (t2, xi(t2)) − fk0 (t2, x0(t2)) |. Since |

fki (t2, xi(t2)) − fk0 (t2, x0(t2)) | ≤ ‖ fi(t2, xi(t2)) − f0(t2, x0(t2)) ‖, one has α < ‖ fi(t2, xi(t2)) −

f0(t2, x0(t2)) ‖. It follows that α < P (t2) based on (3). Because α > P (0) and P (t) are continu-

ously changing, there must be a t3 ∈ [0, t2) such that α = P (t3). It contradicts the assumption

that t1 ∈ R+ is the first time at which α = P (t).
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• Case (ii): {x̃+(t) ≤ 0, x̃−(t) < 0}.

In this case, max{| x̃+(t) |, | x̃−(t) |} = −x̃−(t), and the derivative of max{| x̃+(t) |, | x̃−(t) |}

is − ˙̃x−(t). Since Assumption 1 holds and x̃−(t) < 0, one has
∑
s∈Nj

ajs[x̃
−(t)− x̃ls(t)] < 0. Thus,

˙̃x−(t) ∈K
[
f lj(t, xj(t))− f l0(t, x0(t)) + α

]
.

If the derivative of max{| x̃+(t) |, | x̃−(t) |} is greater than zero at t2 ∈ [0, t1), one has ˙̃x−(t2) < 0.

Then, there must exist j ∈ {1, 2, · · · , N} and l ∈ {1, 2, · · · , n} such that f lj(t2, xj(t2)) −

f l0(t2, x0(t2)) < 0 and the positive constant α < | f lj(t2, xj(t2)) − f l0(t2, x0(t2)) |. Since |

f lj(t2, xj(t2)) − f l0(t2, x0(t2)) | ≤ ‖ fj(t2, xj(t2)) − f0(t2, x0(t2)) ‖, one has α < ‖ fj(t2, xj(t2)) −

f0(t2, x0(t2)) ‖. It follows that α < P (t2) based on (3). Because α > P (0) and P (t) are continu-

ously changing, there must be a t3 ∈ [0, t2) such that α = P (t3). It contradicts the assumption

that t1 ∈ R+ is the first time at which α = P (t).

• Case (iii): {x̃+(t) > 0, x̃−(t) < 0}.

(i) If {x̃+(t) ≥ −x̃−(t)}, then max{| x̃+(t) |, | x̃−(t) |} = x̃+(t). So, the proof is the same as

that in Case (i).

(ii) If {x̃+(t) < −x̃−(t)}, then max{| x̃+(t) |, | x̃−(t) |} = −x̃−(t). So, the proof is the same

as that in Case (ii).

Combining the above three cases, it can be concluded that the derivative of max{| x̃+(t) | ,

| x̃−(t) |} will not be greater than zero. Hence, if α > P (0), i.e., Assumption 4 holds, then

α > P (t), ∀t ∈ R+. It follows that α > ‖ fi(t, xi(t)) − f0(t, x0(t)) ‖,∀t ∈ R+, ∀i = 1, 2, · · · , N ,

based on (3).

The proof is now completed.

2 Proof of Lemma 3

Proof Six cases are discussed as follows:
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• Case (i): (x̃+(t), x̃−(t)), (x̃+(t)′, x̃−(t)′) ∈ D1.

‖ V (x̃+(t), x̃−(t))− V (x̃+(t)′, x̃−(t)′) ‖

= ‖ x̃+(t)− x̃+(t)′ ‖

≤ ‖ x̃+(t)− x̃+(t)′ ‖ + ‖ x̃−(t)− x̃−(t)′ ‖

≤
√

2 ‖ (x̃+(t), x̃−(t))T − (x̃+(t)′, x̃−(t)′)T ‖ .

• Case (ii): (x̃+(t), x̃−(t)), (x̃+(t)′, x̃−(t)′) ∈ D2.

‖ V (x̃+(t), x̃−(t))− V (x̃+(t)′, x̃−(t)′) ‖

= ‖ (x̃+(t)− x̃−(t))− (x̃+(t)′ − x̃−(t)′) ‖

≤ ‖ x̃+(t)− x̃+(t)′ ‖ + ‖ x̃−(t)− x̃−(t)′ ‖

≤
√

2 ‖ (x̃+(t), x̃−(t))T − (x̃+(t)′, x̃−(t)′)T ‖ .

• Case (iii): (x̃+(t), x̃−(t)), (x̃+(t)′, x̃−(t)′) ∈ D3.

‖ V (x̃+(t), x̃−(t))− V (x̃+(t)′, x̃−(t)′) ‖

= ‖ −x̃−(t)− (−x̃−(t)′) ‖

≤ ‖ x̃+(t)− x̃+(t)′ ‖ + ‖ x̃−(t)− x̃−(t)′ ‖

≤
√

2 ‖ (x̃+(t), x̃−(t))T − (x̃+(t)′, x̃−(t)′)T ‖ .

• Case (iv): (x̃+(t), x̃−(t)) ∈ D1, (x̃
+(t)′, x̃−(t)′) ∈ D2.

‖ V (x̃+(t), x̃−(t))− V (x̃+(t)′, x̃−(t)′) ‖

= ‖ x̃+(t)− (x̃+(t)′ − x̃−(t)′) ‖

≤ ‖ x̃+(t)− x̃+(t)′ ‖ + ‖ x̃−(t)′ ‖ .

For (x̃+(t), x̃−(t)) ∈ D1, (x̃
+(t)′, x̃−(t)′) ∈ D2 , one has x̃−(t) ≥ 0, x̃−(t)′ < 0, thus

‖ x̃−(t)′ ‖ ≤‖ x̃−(t)− x̃−(t)′ ‖ .

Hence,

‖ V (x̃+(t), x̃−(t))− V (x̃+(t)′, x̃−(t)′) ‖

≤ ‖ x̃+(t)− x̃+(t)′ ‖ + ‖ x̃−(t)′ ‖

≤ ‖ x̃+(t)− x̃+(t)′ ‖ + ‖ x̃−(t)− x̃−(t)′ ‖

≤
√

2 ‖ (x̃+(t), x̃−(t))T − (x̃+(t)′, x̃−(t)′)T ‖ .
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• Case (v): (x̃+(t), x̃−(t)) ∈ D1, (x̃
+(t)′, x̃−(t)′) ∈ D3.

‖ V (x̃+(t), x̃−(t))− V (x̃+(t)′, x̃−(t)′) ‖

= ‖ x̃+(t)− (−x̃−(t)′) ‖

≤ ‖ x̃+(t) ‖ + ‖ x̃−(t)′ ‖ .

For (x̃+(t), x̃−(t)) ∈ D1, (x̃
+(t)′, x̃−(t)′) ∈ D3 , one has x̃+(t) ≥ 0, x̃−(t) ≥ 0, x̃+(t)′ ≤ 0, x̃−(t)′ <

0, thus

‖ x̃+(t) ‖ ≤‖ x̃+(t)− x̃+(t)′ ‖,

and

‖ x̃−(t)′ ‖ ≤‖ x̃−(t)− x̃−(t)′ ‖ .

Hence,

‖ V (x̃+(t), x̃−(t))− V (x̃+(t)′, x̃−(t)′) ‖

≤ ‖ x̃+(t) ‖ + ‖ x̃−(t)′ ‖

≤ ‖ x̃+(t)− x̃+(t)′ ‖ + ‖ x̃−(t)− x̃−(t)′ ‖

≤
√

2 ‖ (x̃+(t), x̃−(t))T − (x̃+(t)′, x̃−(t)′)T ‖ .

• Case (vi): (x̃+(t), x̃−(t)) ∈ D2, (x̃
+(t)′, x̃−(t)′) ∈ D3.

‖ V (x̃+(t), x̃−(t))− V (x̃+(t)′, x̃−(t)′) ‖

= ‖ (x̃+(t)− x̃−(t))− (−x̃−(t)′) ‖

≤ ‖ x̃+(t) ‖ + ‖ x̃−(t)− x̃−(t)′ ‖ .

For (x̃+(t), x̃−(t)) ∈ D2, (x̃
+(t)′, x̃−(t)′) ∈ D3 , one has x̃+(t) > 0, x̃+(t)′ ≤ 0, thus

‖ x̃+(t) ‖ ≤‖ x̃+(t)− x̃+(t)′ ‖ .

Hence,

‖ V (x̃+(t), x̃−(t))− V (x̃+(t)′, x̃−(t)′) ‖

≤ ‖ x̃+(t) ‖ + ‖ x̃−(t)− x̃−(t)′ ‖

≤ ‖ x̃+(t)− x̃+(t)′ ‖ + ‖ x̃−(t)− x̃−(t)′ ‖

≤
√

2 ‖ (x̃+(t), x̃−(t))T − (x̃+(t)′, x̃−(t)′)T ‖ .
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Combining the above six cases, it can be concluded that, for every (x̃+(t), x̃−(t)), (x̃+(t)′, x̃−(t)′) ∈

D, one has

‖ V (x̃+(t), x̃−(t))− V (x̃+(t)′, x̃−(t)′) ‖

≤
√

2 ‖ (x̃+(t), x̃−(t))T − (x̃+(t)′, x̃−(t)′)T ‖ .

Therefore, V is a locally Lipschitz function on D.

The proof is now completed.

3 Proof of Lemma 4

Proof If a function is continuously differentiable at x, it is regular at x. Since V is continuously

differentiable everywhere except for {x̃+(t) > 0, x̃−(t) = 0}, {x̃+(t) = 0, x̃−(t) < 0} and {x̃+(t) =

0, x̃−(t) = 0}, it needs to show that V is regular on these three sets.

Let y = (x̃+(t), x̃−(t))T and v = (v1, v2)
T . The right directional derivative of V at y ∈ R2 in

the direction v ∈ R2 is defined as

V ′(y; v) = lim
h→0+

V (x̃+(t) + hv1, x̃
−(t) + hv2)− V (x̃+(t), x̃−(t))

h
.

The general directional derivative of V at y in the direction v is defined as

V o(y; v) = lim
δ→0+

ε→0+

sup
z∈B(y,δ)
h∈[0,ε)

V (z1 + hv1, z2 + hv2)− V (z1, z2)

h
.

• Case (i): {x̃+(t) > 0, x̃−(t) = 0}.

If v1 ≥ 0, v2 ≥ 0, then (x̃+(t) + hv1, hv2)h→0+ ∈ D1, hence

V ′(y; v) = lim
h→0+

(x̃+(t) + hv1)− x̃+(t)

h

= v1.

For z ∈ B(y, δ), when δ → 0+, z ∈ D1 and z ∈ D2 are possible, hence

V o(y; v) = lim
δ→0+

ε→0+

sup
z∈B(y,δ)
h∈[0,ε)

(z1 + hv1)− z1
h

,
((z1 + hv1)− (z2 + hv2))− (z1 − z2)

h


= v1.
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So, V ′(y; v) = V o(y; v).

If v1 ≤ 0, v2 < 0, then (x̃+(t) + hv1, hv2)h→0+ ∈ D2, hence

V ′(y; v) = lim
h→0+

((x̃+(t) + hv1)− hv2)− x̃+(t)

h

= v1 − v2.

For z ∈ B(y, δ), when δ → 0+, z ∈ D1 and z ∈ D2 are possible, hence

V o(y; v) = lim
δ→0+

ε→0+

sup
z∈B(y,δ)
h∈[0,ε)

(z1 + hv1)− z1
h

,
((z1 + hv1)− (z2 + hv2))− (z1 − z2)

h


= v1 − v2.

So, V ′(y; v) = V o(y; v).

If v1 < 0, v2 ≥ 0, then (x̃+(t) + hv1, hv2)h→0+ ∈ D1, hence

V ′(y; v) = lim
h→0+

(x̃+(t) + hv1)− x̃+(t)

h

= v1.

For z ∈ B(y, δ), when δ → 0+, z ∈ D1 and z ∈ D2 are possible, hence

V o(y; v) = lim
δ→0+

ε→0+

sup
z∈B(y,δ)
h∈[0,ε)

(z1 + hv1)− z1
h

,
((z1 + hv1)− (z2 + hv2))− (z1 − z2)

h


= v1.

So, V ′(y; v) = V o(y; v).

If v1 > 0, v2 < 0, then (x̃+(t) + hv1, hv2)h→0+ ∈ D2, hence

V ′(y; v) = lim
h→0+

((x̃+(t) + hv1)− hv2)− x̃+(t)

h

= v1 − v2.

For z ∈ B(y, δ), when δ → 0+, z ∈ D1 and z ∈ D2 are possible, hence

V o(y; v) = lim
δ→0+

ε→0+

sup
z∈B(y,δ)
h∈[0,ε)

(z1 + hv1)− z1
h

,
((z1 + hv1)− (z2 + hv2))− (z1 − z2)

h


= v1 − v2.
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So, V ′(y; v) = V o(y; v).

• Case (ii): {x̃+(t) = 0, x̃−(t) < 0}.

If v1 > 0, v2 ≥ 0, then (hv1, x̃
−(t) + hv2)h→0+ ∈ D2, hence

V ′(y; v) = lim
h→0+

(hv1 − (x̃−(t) + hv2))− (−x̃−(t))

h

= v1 − v2.

For z ∈ B(y, δ), when δ → 0+, z ∈ D2 and z ∈ D3 are possible, hence

V o(y; v) = lim
δ→0+

ε→0+

sup
z∈B(y,δ)
h∈[0,ε)

((z1 + hv1)− (z2 + hv2))− (z1 − z2)
h

,
−((z2 + hv2))− (−(z2))

h


= v1 − v2.

So, V ′(y; v) = V o(y; v).

If v1 ≤ 0, v2 < 0, then (hv1, x̃
−(t) + hv2)h→0+ ∈ D3, hence

V ′(y; v) = lim
h→0+

(−(x̃−(t) + hv2))− (−x̃−(t))

h

= −v2.

For z ∈ B(y, δ), when δ → 0+, z ∈ D2 and z ∈ D3 are possible, hence

V o(y; v) = lim
δ→0+

ε→0+

sup
z∈B(y,δ)
h∈[0,ε)

((z1 + hv1)− (z2 + hv2))− (z1 − z2)
h

,
−((z2 + hv2))− (−(z2))

h


= −v2.

So, V ′(y; v) = V o(y; v).

If v1 ≤ 0, v2 ≥ 0, then (hv1, x̃
−(t) + hv2)h→0+ ∈ D3, hence

V ′(y; v) = lim
h→0+

(−(x̃−(t) + hv2))− (−x̃−(t))

h

= −v2.

For z ∈ B(y, δ), when δ → 0+, z ∈ D2 and z ∈ D3 are possible, hence

V o(y; v) = lim
δ→0+

ε→0+

sup
z∈B(y,δ)
h∈[0,ε)

((z1 + hv1)− (z2 + hv2))− (z1 − z2)
h

,
−((z2 + hv2))− (−(z2))

h


= −v2.
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So, V ′(y; v) = V o(y; v).

If v1 > 0, v2 < 0, then (hv1, x̃
−(t) + hv2)h→0+ ∈ D2, hence

V ′(y; v) = lim
h→0+

(hv1 − (x̃−(t) + hv2))− (−x̃−(t))

h

= v1 − v2.

For z ∈ B(y, δ), when δ → 0+, z ∈ D2 and z ∈ D3 are possible, hence

V o(y; v) = lim
δ→0+

ε→0+

sup
z∈B(y,δ)
h∈[0,ε)

((z1 + hv1)− (z2 + hv2))− (z1 − z2)
h

,
−((z2 + hv2))− (−(z2))

h


= v1 − v2.

So, V ′(y; v) = V o(y; v).

• Case (iii): {x̃+(t) = 0, x̃−(t) = 0}.

If v1 ≥ 0, v2 ≥ 0, then (hv1, hv2)h→0+ ∈ D1, hence

V ′(y; v) = lim
h→0+

hv1 − 0

h

= v1.

For z ∈ B(y, δ), when δ → 0+, z ∈ D1, z ∈ D2 and z ∈ D3 are all possible, hence

V o(y; v) = lim
δ→0+

ε→0+

sup
z∈B(y,δ)
h∈[0,ε)

(z1 + hv1)− z1
h

,
((z1 + hv1)− (z2 + hv2))− (z1 − z2)

h
,

−((z2 + hv2))− (−(z2))

h


= v1.

So, V ′(y; v) = V o(y; v).

If v1 ≤ 0, v2 < 0, then (hv1, hv2)h→0+ ∈ D3, hence

V ′(y; v) = lim
h→0+

−hv2 − 0

h

= −v2.
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For z ∈ B(y, δ), when δ → 0+, z ∈ D1,z ∈ D2 and z ∈ D3 are all possible, hence

V o(y; v) = lim
δ→0+

ε→0+

sup
z∈B(y,δ)
h∈[0,ε)

(z1 + hv1)− z1
h

,
((z1 + hv1)− (z2 + hv2))− (z1 − z2)

h
,

−((z2 + hv2))− (−(z2))

h


= −v2.

So, V ′(y; v) = V o(y; v).

The case of v1 < 0, v2 ≥ 0 is impossible for x̃+(t) > x̃−(t).

If v1 > 0, v2 < 0, then (hv1, hv2)h→0+ ∈ D2, hence

V ′(y; v) = lim
h→0+

hv1 − hv2
h

= v1 − v2.

For z ∈ B(y, δ), when δ → 0+, z ∈ D1,z ∈ D2 and z ∈ D3 are all possible, hence

V o(y; v) = lim
δ→0+

ε→0+

sup
z∈B(y,δ)
h∈[0,ε)

(z1 + hv1)− z1
h

,
((z1 + hv1)− (z2 + hv2))− (z1 − z2)

h
,

−((z2 + hv2))− (−(z2))

h


= v1 − v2.

So, V ′(y; v) = V o(y; v).

For all the cases, the right directional derivative of V is equal to the generalized directional

derivative of V , i.e., V ′(y; v) = V o(y; v). Therefore, the function V is regular on D.

The proof is now completed.

4 Proof of Lemma 5

Proof If x̃+(t) = 0 and x̃−(t) = 0, then V = 0. If x̃+(t) > 0 and x̃−(t) ≥ 0, i.e., (x̃+(t), x̃−(t)) ∈

D1 \ {(0, 0)}, then V = x̃+(t) > 0. If x̃+(t) > 0 and x̃−(t) < 0, i.e., (x̃+(t), x̃−(t)) ∈ D2,

then V = x̃+(t) − x̃−(t) > 0. If x̃+(t) ≤ 0 and x̃−(t) < 0, i.e., (x̃+(t), x̃−(t)) ∈ D3, then

V = −x̃−(t) > 0. So, V is globally positive definite.
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If (x̃+(t), x̃−(t)) ∈ D1, then as either x̃+ →∞ or both x̃+, x̃− →∞, one has V = x̃+(t)→∞.

If (x̃+(t), x̃−(t)) ∈ D2, then as either x̃+ → ∞ or x̃− → −∞, or both, one has V = x̃+(t) −

x̃−(t) → ∞. If (x̃+(t), x̃−(t)) ∈ D3, then as either x̃+ → −∞ or both x̃+, x̃− → −∞, one has

V = −x̃−(t)→∞. So, V is radially unbounded.

The proof is now completed.

5 Proof of Lemma 6

Proof If Assumptions 1 - 4 hold, then Lemma 2 holds, i.e., α >‖ fi(t, xi(t))−f0(t, x0(t)) ‖,∀t ∈

R+,∀i = 1, 2, · · · , N . Five cases are discussed as follows:

• Case (i): x̃+(t) > 0 and x̃−(t) > 0.

Since x̃+(t) > 0 and Assumption 1 holds, one has
∑
r∈Ni

air[x̃
+(t)− x̃kr(t)] > 0, and for

∂V (x̃+(t), x̃−(t)) = {(1, 0)},

one has

L̃FV = K[fki (t, xi(t))− fk0 (t, x0(t))− α].

Since | fki (t, xi(t))− fk0 (t, x0(t)) | ≤ ‖ fi(t, xi(t))− f0(t, x0(t)) ‖,∀t ∈ R+,∀i = 1, 2, · · · , N,∀k =

1, 2, · · · , n, it follows from Lemma 2 that

max L̃FV < 0.

• Case (ii): x̃+(t) > 0 and x̃−(t) < 0.

Since x̃+(t) > 0, x̃−(t) < 0 and Assumption 1 holds, one has
∑
r∈Ni

air[x̃
+(t) − x̃kr(t)] >

0,
∑
s∈Nj

ajs[x̃
−(t)− x̃ls(t)] < 0, and for

∂V (x̃+(t), x̃−(t)) = {(1,−1)},

one has

L̃FV = K
[
(fki (t, xi(t))− fk0 (t, x0(t))− α)− (f lj(t, xj(t))− f l0(t, x0(t)) + α)

]
.

Since | fki (t, xi(t))− fk0 (t, x0(t)) | ≤ ‖ fi(t, xi(t))− f0(t, x0(t)) ‖,∀t ∈ R+,∀i = 1, 2, · · · , N,∀k =

1, 2, · · · , n, it follows from Lemma 2 that

max L̃FV < 0.
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• Case (iii): x̃+(t) < 0 and x̃−(t) < 0.

Since x̃−(t) < 0 and Assumption 1 holds, one has
∑
s∈Nj

ajs[x̃
−(t)− x̃ls(t)] < 0, and for

∂V (x̃+(t), x̃−(t)) = {(0,−1)},

one has

L̃FV = K
[
−(f lj(t, xj(t))− f l0(t, x0(t)) + α)

]
.

Since | f lj(t, xj(t))− f l0(t, x0(t)) | ≤ ‖ fj(t, xj(t))− f0(t, x0(t)) ‖,∀t ∈ R+,∀j = 1, 2, · · · , N,∀l =

1, 2, · · · , n, it follows from Lemma 2 that

max L̃FV < 0.

• Case (iv): x̃+(t) > 0 and x̃−(t) = 0.

Since x̃+(t) > 0, x̃−(t) = 0 and Assumption 1 holds, one has
∑
r∈Ni

air[x̃
+(t) − x̃kr(t)] >

0,
∑
s∈Nj

ajs[x̃
−(t) − x̃ls(t)] ≤ 0. So, if v ∈ F(x̃+(t), x̃−(t)), then vT = (v1, v2) with v1 ∈

K[fki (t, xi(t)) − fk0 (t, x0(t)) − α] and v2 ∈ K[f lj(t, xj(t)) − f l0(t, x0(t)) + α] ∪ K[f lj(t, xj(t)) −

f l0(t, x0(t))]. For

∂V (x̃+(t), x̃−(t)) = {1} × [−1, 0],

if ζ ∈ ∂V (x̃+(t), x̃−(t)), then ζT = (1, y) with y ∈ [−1, 0]. Therefore,

ζTv = v1 + yv2.

If there exists an element a satisfying that ζTv = a for all y ∈ [−1, 0], then v2 = 0. So, if v2 6= 0,

one has L̃FV = ∅; if v2 = 0, one has L̃FV = K[fki (t, xi(t))− fk0 (t, x0(t))−α], and then it follows

from Lemma 2 that max L̃FV < 0. Thus, max L̃FV < 0 or L̃FV = ∅ in this case.

• Case (v): x̃+(t) = 0 and x̃−(t) < 0.

Since x̃+(t) = 0, x̃−(t) < 0 and Assumption 1 holds, one has
∑
r∈Ni

air[x̃
+(t) − x̃kr(t)] ≥

0,
∑
s∈Nj

ajs[x̃
−(t) − x̃ls(t)] < 0. So, if v ∈ F(x̃+(t), x̃−(t)), then vT = (v1, v2) with v1 ∈

K[fki (t, xi(t))−fk0 (t, x0(t))−α]∪K[fki (t, xi(t))−fk0 (t, x0(t))] and v2 ∈ K[f lj(t, xj(t))−f l0(t, x0(t))+

α]. For

∂V (x̃+(t), x̃−(t)) = [0, 1]× {−1},
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if ζ ∈ ∂V (x̃+(t), x̃−(t)), then ζT = (y,−1) with y ∈ [0, 1]. Therefore,

ζTv = yv1 − v2.

If there exists an element a satisfying that ζTv = a for all y ∈ [0, 1], then v1 = 0. So, if v1 6= 0,

one has L̃FV = ∅; if v1 = 0, one has L̃FV = −K[f lj(t, xj(t)) − f l0(t, x0(t)) + α], and then it

follows from Lemma 2 that max L̃FV < 0. Thus, max L̃FV < 0 or L̃FV = ∅ in this case.

Combining the above five cases, it can be concluded that max L̃FV < 0 for all (x̃+(t), x̃−(t)) ∈

D \ {(0, 0)}.

The proof is now completed.

6 Proof of Theorem 1

Proof The nonsmooth function V , which was given by (6) in the manuscript, is chosen as the

Lyapunov function. If Assumptions 1 - 4 hold, then Lemma 6 holds. By using Lemma 1, it

follows from Lemmas 3 - 6 that (x̃+(t), x̃−(t)) = (0, 0) is a globally stable equilibrium point for

system (2).

Next, the maximal converging time is considered.

• Case (i): x̃+(t) > 0 and x̃−(t) ≥ 0.

In this case, V = x̃+(t) and L̃FV = K
[
fki (t, xi(t))− fk0 (t, x0(t))− α

]
. By the proof of

Lemma 2, one has ‖ fi(t, xi(t)) − f0(t, x0(t)) ‖ ≤ P (t), P (t) ≤ P (0), ∀t ∈ R+,∀i = 1, 2, · · · , N .

Since | fki (t, xi(t))− fk0 (t, x0(t)) | ≤ ‖ fi(t, xi(t))− f0(t, x0(t)) ‖,∀t ∈ R+,∀i = 1, 2, · · · , N,∀k =

1, 2, · · · , n, one has

max L̃FV ≤ −(α− P (t))

≤ −(α− P (0)).

Therefore, the converging time satisfies

T1 ≤
1

α− P (0)
x̃+(0).

• Case (ii): x̃+(t) > 0 and x̃−(t) < 0.

In this case, V = x̃+(t)− x̃−(t) and L̃FV = K
[
(fki (t, xi(t))−fk0 (t, x0(t))−α)− (f lj(t, xj(t))−

f l0(t, x0(t)) + α)
]
. By the proof of Lemma 2, one has ‖ fi(t, xi(t))− f0(t, x0(t)) ‖ ≤ P (t), P (t) ≤
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P (0),∀t ∈ R+,∀i = 1, 2, · · · , N . Since | fki (t, xi(t))− fk0 (t, x0(t)) | ≤ ‖ fi(t, xi(t))− f0(t, x0(t)) ‖

,∀t ∈ R+,∀i = 1, 2, · · · , N,∀k = 1, 2, · · · , n, one has

max L̃FV ≤ −2(α− P (t))

≤ −2(α− P (0)).

Therefore, the converging time satisfies

T2 ≤
1

2(α− P (0))
(x̃+(0)− x̃−(0))

≤ 1

α− P (0)
max{x̃+(0),−x̃−(0)}.

• Case (iii): x̃+(t) ≤ 0 and x̃−(t) < 0.

In this case, V = −x̃−(t). Since x̃−(t) < 0 and Assumption 1 holds, one has
∑
s∈Nj

ajs[x̃
−(t)−

x̃ls(t)] < 0, then L̃FV = K
[
− (f lj(t, xj(t)) − f l0(t, x0(t)) + α)

]
. By the proof of Lemma 2,

one has ‖ fj(t, xj(t)) − f0(t, x0(t)) ‖ ≤ P (t), P (t) ≤ P (0),∀t ∈ R+,∀j = 1, 2, · · · , N . Since

| f lj(t, xj(t)) − f l0(t, x0(t)) | ≤ ‖ fj(t, xj(t)) − f0(t, x0(t)) ‖, ∀t ∈ R+,∀j = 1, 2, · · · , N,∀l =

1, 2, · · · , n, one has

max L̃FV ≤ −(α− P (t))

≤ −(α− P (0)).

Therefore, the converging time satisfies

T3 ≤ −
1

α− P (0)
x̃−(0).

Combining the above three cases, the maximal converging time is obtained as

T =
1

α− P (0)
max

i=1,2,··· ,N
k=1,2,··· ,n

{| xki (0)− xk0(0)− x∗ki |}.

The proof is now completed.

7 Supplementary Lemma i

Supplementary Lemma i If Assumptions 1, 5 and 6 hold, then α >‖ fi(t, xi(t))−f0(t, x0(t)) ‖

,∀t ∈ R+,∀i = 1, 2, · · · , N .
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Proof Based on Assumption 5, for any i = 1, 2, · · · , N and each t ∈ R+, one has

‖ fi(t, xi(t))− f0(t, x0(t)) ‖

= ‖ f0(t, xi(t))− f0(t, x0(t)) ‖

≤LLJ (‖ xi(t)− x0(t) ‖)

≤LLJ (‖ xi(t)− x0(t)− x∗i ‖ + ‖ x∗i ‖)

≤LLJ
(√

nmax{| x̃+(t) |, | x̃−(t) |}+ max
i=1,2,··· ,N

{‖ x∗i ‖}
)
. (5)

Let

Q(t) =LLJ

(√
nmax{| x̃+(t) |, | x̃−(t) |}+ max

i=1,2,··· ,N
‖ x∗i ‖

)
. (6)

If α > Q(t),∀t ∈ R+, then α >‖ fi(t, xi(t))− f0(t, x0(t)) ‖,∀t ∈ R+,∀i = 1, 2, · · · , N .

Now, it can be proved that if α > Q(0) then α > Q(t), ∀t ∈ R+. Because α > Q(0) and

Q(t) are continuously changing, suppose that t1 ∈ R+ is the first time at which α = Q(t). Since

α, LLJ and max
i=1,2,··· ,N

{‖ x∗i ‖} are constants, one has max{| x̃+(t1) |, | x̃−(t1) |} >

max{| x̃+(0) |, | x̃−(0) |}. So, there must exist a t2 ∈ [0, t1) such that the derivative of max{|

x̃+(t) |, | x̃−(t) |} is greater than zero.

Now, consider the following three cases.

• Case (i): {x̃+(t) > 0, x̃−(t) ≥ 0}.

In this case, max{| x̃+(t) |, | x̃−(t) |} = x̃+(t), and the derivative of max{| x̃+(t) |, | x̃−(t) |}

is ˙̃x+(t). Since Assumption 1 holds and x̃+(t) > 0, one has
∑
r∈Ni

air[x̃
+(t)− x̃kr(t)] > 0. Thus,

˙̃x+(t) ∈ K
[
fki (t, xi(t))− fk0 (t, x0(t))− α

]
.

If the derivative of max{| x̃+(t) |, | x̃−(t) |} is greater than zero at t2 ∈ [0, t1), one has ˙̃x+(t2) > 0.

Then, there must exist i ∈ {1, 2, · · · , N} and k ∈ {1, 2, · · · , n} such that fki (t2, xi(t2)) −

fk0 (t2, x0(t2)) > 0 and the positive constant α < | fki (t2, xi(t2)) − fk0 (t2, x0(t2)) |. Since |

fki (t2, xi(t2)) − fk0 (t2, x0(t2)) | ≤ ‖ fi(t2, xi(t2)) − f0(t2, x0(t2)) ‖, one has α < ‖ fi(t2, xi(t2)) −

f0(t2, x0(t2)) ‖. It follows that α < Q(t2) based on (5). Because α > Q(0) and Q(t) are continu-

ously changing, there must be a t3 ∈ [0, t2) such that α = Q(t3). It contradicts the assumption

that t1 ∈ R+ is the first time at which α = Q(t).

• Case (ii): {x̃+(t) ≤ 0, x̃−(t) < 0}.
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In this case, max{| x̃+(t) |, | x̃−(t) |} = −x̃−(t), and the derivative of max{| x̃+(t) |, | x̃−(t) |}

is − ˙̃x−(t). Since Assumption 1 holds and x̃−(t) < 0, one has
∑
s∈Nj

ajs[x̃
−(t)− x̃ls(t)] < 0. Thus,

˙̃x−(t) ∈K
[
f lj(t, xj(t))− f l0(t, x0(t)) + α

]
.

If the derivative of max{| x̃+(t) |, | x̃−(t) |} is greater than zero at t2 ∈ [0, t1), one has ˙̃x−(t2) < 0.

Then, there must exist j ∈ {1, 2, · · · , N} and l ∈ {1, 2, · · · , n} such that f lj(t2, xj(t2)) −

f l0(t2, x0(t2)) < 0 and the positive constant α < | f lj(t2, xj(t2)) − f l0(t2, x0(t2)) |. Since |

f lj(t2, xj(t2)) − f l0(t2, x0(t2)) | ≤ ‖ fj(t2, xj(t2)) − f0(t2, x0(t2)) ‖, one has α < ‖ fj(t2, xj(t2)) −

f0(t2, x0(t2)) ‖. It follows that α < Q(t2) based on (5). Because α > Q(0) and Q(t) are continu-

ously changing, there must be a t3 ∈ [0, t2) such that α = Q(t3). It contradicts the assumption

that t1 ∈ R+ is the first time at which α = Q(t).

• Case (iii): {x̃+(t) > 0, x̃−(t) < 0}.

(i) If {x̃+(t) ≥ −x̃−(t)}, then max{| x̃+(t) |, | x̃−(t) |} = x̃+(t). So, the proof is the same as

that in Case (i).

(ii) If {x̃+(t) < −x̃−(t)}, then max{| x̃+(t) |, | x̃−(t) |} = −x̃−(t). So, the proof is the same

as that in Case (ii).

Combining the above three cases, it can be concluded that the derivative of max{| x̃+(t) |,

| x̃−(t) |} will not be greater than zero. Hence, if α > Q(0), i.e., Assumption 6 holds, then

α > Q(t), ∀t ∈ R+. It follows that α > ‖ fi(t, xi(t)) − f0(t, x0(t)) ‖,∀t ∈ R+,∀i = 1, 2, · · · , N ,

based on (5).

The proof is now completed.

8 Supplementary Lemma ii

Supplementary Lemma ii Let F denote the set-valued map. If Assumptions 1, 5 and 6

hold, then the set-valued Lie derivative L̃FV of V with respect to F satisfies that max L̃FV < 0

for all (x̃+(t), x̃−(t)) ∈ D \ {(0, 0)}.

Proof If Assumptions 1, 5 and 6 hold, then Supplementary Lemma i holds, i.e., α >‖

fi(t, xi(t))− f0(t, x0(t)) ‖,

∀t ∈ R+,∀i = 1, 2, · · · , N . Five cases are discussed as follows:

• Case (i): x̃+(t) > 0 and x̃−(t) > 0.
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Since x̃+(t) > 0 and Assumption 1 holds, one has
∑
r∈Ni

air[x̃
+(t)− x̃kr(t)] > 0, and for

∂V (x̃+(t), x̃−(t)) = {(1, 0)},

one has

L̃FV = K[fki (t, xi(t))− fk0 (t, x0(t))− α].

Since | fki (t, xi(t))− fk0 (t, x0(t)) | ≤ ‖ fi(t, xi(t))− f0(t, x0(t)) ‖,∀t ∈ R+,∀i = 1, 2, · · · , N,∀k =

1, 2, · · · , n, it follows from Supplementary Lemma i that

max L̃FV < 0.

• Case (ii): x̃+(t) > 0 and x̃−(t) < 0.

Since x̃+(t) > 0, x̃−(t) < 0 and Assumption 1 holds, one has
∑
r∈Ni

air[x̃
+(t) − x̃kr(t)] >

0,
∑
s∈Nj

ajs[x̃
−(t)− x̃ls(t)] < 0, and for

∂V (x̃+(t), x̃−(t)) = {(1,−1)},

one has

L̃FV = K
[
(fki (t, xi(t))− fk0 (t, x0(t))− α)− (f lj(t, xj(t))− f l0(t, x0(t)) + α)

]
.

Since | fki (t, xi(t))− fk0 (t, x0(t)) | ≤ ‖ fi(t, xi(t))− f0(t, x0(t)) ‖,∀t ∈ R+,∀i = 1, 2, · · · , N,∀k =

1, 2, · · · , n, it follows from Supplementary Lemma i that

max L̃FV < 0.

• Case (iii): x̃+(t) < 0 and x̃−(t) < 0.

Since x̃−(t) < 0 and Assumption 1 holds, one has
∑
s∈Nj

ajs[x̃
−(t)− x̃ls(t)] < 0, and for

∂V (x̃+(t), x̃−(t)) = {(0,−1)},

one has

L̃FV = K
[
−(f lj(t, xj(t))− f l0(t, x0(t)) + α)

]
.

Since | f lj(t, xj(t))− f l0(t, x0(t)) | ≤ ‖ fj(t, xj(t))− f0(t, x0(t)) ‖,∀t ∈ R+, ∀j = 1, 2, · · · , N,∀l =

1, 2, · · · , n, it follows from Supplementary Lemma i that

max L̃FV < 0.
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• Case (iv): x̃+(t) > 0 and x̃−(t) = 0.

Since x̃+(t) > 0, x̃−(t) = 0 and Assumption 1 holds, one has
∑
r∈Ni

air[x̃
+(t) − x̃kr(t)] >

0,
∑
s∈Nj

ajs[x̃
−(t) − x̃ls(t)] ≤ 0. So, if v ∈ F(x̃+(t), x̃−(t)), then vT = (v1, v2) with v1 ∈

K[fki (t, xi(t)) − fk0 (t, x0(t)) − α] and v2 ∈ K[f lj(t, xj(t)) − f l0(t, x0(t)) + α] ∪ K[f lj(t, xj(t)) −

f l0(t, x0(t))]. For

∂V (x̃+(t), x̃−(t)) = {1} × [−1, 0],

if ζ ∈ ∂V (x̃+(t), x̃−(t)), then ζT = (1, y) with y ∈ [−1, 0]. Therefore,

ζTv = v1 + yv2.

If there exists an element a satisfying that ζTv = a for all y ∈ [−1, 0], then v2 = 0. So, if v2 6= 0,

one has L̃FV = ∅; if v2 = 0, one has L̃FV = K[fki (t, xi(t))− fk0 (t, x0(t))−α], and then it follows

from Supplementary Lemma i that max L̃FV < 0. Thus, max L̃FV < 0 or L̃FV = ∅ in this case.

• Case (v): x̃+(t) = 0 and x̃−(t) < 0.

Since x̃+(t) = 0, x̃−(t) < 0 and Assumption 1 holds, one has
∑
r∈Ni

air[x̃
+(t) − x̃kr(t)] ≥

0,
∑
s∈Nj

ajs[x̃
−(t) − x̃ls(t)] < 0. So, if v ∈ F(x̃+(t), x̃−(t)), then vT = (v1, v2) with v1 ∈

K[fki (t, xi(t))−fk0 (t, x0(t))−α]∪K[fki (t, xi(t))−fk0 (t, x0(t))] and v2 ∈ K[f lj(t, xj(t))−f l0(t, x0(t))+

α]. For

∂V (x̃+(t), x̃−(t)) = [0, 1]× {−1},

if ζ ∈ ∂V (x̃+(t), x̃−(t)), then ζT = (y,−1) with y ∈ [0, 1]. Therefore,

ζTv = yv1 − v2.

If there exists an element a satisfying that ζTv = a for all y ∈ [0, 1], then v1 = 0. So, if v1 6= 0,

one has L̃FV = ∅; if v1 = 0, one has L̃FV = −K[f lj(t, xj(t))−f l0(t, x0(t))+α], and then it follows

from Supplementary Lemma i that max L̃FV < 0. Thus, max L̃FV < 0 or L̃FV = ∅ in this case.

Combining the above five cases, it can be concluded that max L̃FV < 0 for all (x̃+(t), x̃−(t)) ∈

D \ {(0, 0)}.

The proof is now completed.
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9 Proof of Corollary 1

Proof The nonsmooth function V , which was given by (6) in the manuscript, is chosen as the

Lyapunov function. If Assumptions 1, 5 and 6 hold, then Supplementary Lemma ii holds. By

using Lemma 1, it follows from Lemmas 3 - 5 and Supplementary Lemma ii that (x̃+(t), x̃−(t)) =

(0, 0) is a globally stable equilibrium point for system (2).

Next, the maximal converging time is considered.

• Case (i): x̃+(t) > 0 and x̃−(t) ≥ 0.

In this case, V = x̃+(t) and L̃FV = K
[
fki (t, xi(t))− fk0 (t, x0(t))− α

]
. By the proof of

Supplementary Lemma i, one has ‖ fi(t, xi(t))−f0(t, x0(t)) ‖ ≤ Q(t), Q(t) ≤ Q(0),∀t ∈ R+,∀i =

1, 2, · · · , N . Since | fki (t, xi(t)) − fk0 (t, x0(t)) | ≤ ‖ fi(t, xi(t)) − f0(t, x0(t)) ‖, ∀t ∈ R+, ∀i =

1, 2, · · · , N,∀k = 1, 2, · · · , n, one has

max L̃FV ≤ −(α−Q(t))

≤ −(α−Q(0)).

Therefore, the converging time satisfies

T1 ≤
1

α−Q(0)
x̃+(0).

• Case (ii): x̃+(t) > 0 and x̃−(t) < 0.

In this case, V = x̃+(t)− x̃−(t) and L̃FV = K
[
(fki (t, xi(t))−fk0 (t, x0(t))−α)− (f lj(t, xj(t))−

f l0(t, x0(t))+α)
]
. By the proof of Supplementary Lemma i, one has ‖ fi(t, xi(t))−f0(t, x0(t)) ‖ ≤

Q(t), Q(t) ≤ Q(0),∀t ∈ R+,∀i = 1, 2, · · · , N . Since | fki (t, xi(t))−fk0 (t, x0(t)) | ≤ ‖ fi(t, xi(t))−

f0(t, x0(t)) ‖,∀t ∈ R+,∀i = 1, 2, · · · , N,∀k = 1, 2, · · · , n, one has

max L̃FV ≤ −2(α−Q(t))

≤ −2(α−Q(0)).

Therefore, the converging time satisfies

T2 ≤
1

2(α−Q(0))
(x̃+(0)− x̃−(0))

≤ 1

α−Q(0)
max{x̃+(0),−x̃−(0)}.

• Case (iii): x̃+(t) ≤ 0 and x̃−(t) < 0.
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In this case, V = −x̃−(t) and L̃FV = K
[
− (f lj(t, xj(t)) − f l0(t, x0(t)) + α)

]
. By the proof

of Supplementary Lemma i, one has ‖ fj(t, xj(t)) − f0(t, x0(t)) ‖ ≤ Q(t), Q(t) ≤ Q(0),∀t ∈

R+,∀j = 1, 2, · · · , N . Since | f lj(t, xj(t)) − f l0(t, x0(t)) | ≤ ‖ fj(t, xj(t)) − f0(t, x0(t)) ‖,∀t ∈

R+,∀j = 1, 2, · · · , N,∀l = 1, 2, · · · , n, one has

max L̃FV ≤ −(α−Q(t))

≤ −(α−Q(0)).

Therefore, the converging time satisfies

T3 ≤ −
1

α−Q(0)
x̃−(0).

Combining the above three cases, the maximal converging time is obtained as

T =
1

α−Q(0)
max

i=1,2,··· ,N
k=1,2,··· ,n

{| xki (0)− xk0(0)− x∗ki |}.

The proof is now completed.

10 Proof of Lemma 7

Proof Define the formation position errors r̃i(t) = ri(t) − r0(t) − r∗i and the velocity errors

ṽi(t) = vi(t) − v0(t), i = 1, 2, · · · , N , with r̃0(t) = 0 and ṽ0(t) = 0. Sliding mode is designed

as Si(t) = r̃i(t) + ṽi(t). The Filippov solution of Si(t) is defined as the absolutely continuous

solution of the differential inclusion

Ṡi(t) ∈ K

Fi(t, ri(t), vi(t))− F0(t, r0(t), v0(t))− α sgn

∑
j∈Ni

aij[Si(t)− Sj(t)]


 ,

∀i = 1, 2, · · · , N.

Based on Assumption 1, one follower must receive information from other followers or the leader,

in other words, it is connected with other followers or the leader. Define S+(t) as the maximal

error component which is connected with non-maximal error components of the followers or con-

nected with the component of the leader. Similarly, define S−(t) as the minimal error component

which is connected with non-minimal error components of the followers or connected with the

component of the leader. Suppose that, at any time t, S+(t) is the kth error component of agent
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i and S−(t) is the lth error component of agent j, where i, j ∈ {1, 2, · · · , N}, k, l ∈ {1, 2, · · · , n}.

The Filippov solutions of S+(t) and S−(t) can be described by

Ṡ+(t) ∈K

F k
i (t, ri(t), vi(t))− F k

0 (t, r0(t), v0(t))− α sgn

∑
r∈Ni

air[S
+(t)− Skr (t)]


 ,

Ṡ−(t) ∈K

F l
j(t, rj(t), vj(t))− F l

0(t, r0(t), v0(t))− α sgn

∑
s∈Nj

ajs[S
−(t)− Sls(t)]


 . (7)

Based on Assumptions 7 and 8, for any i = 1, 2, · · · , N and each t ∈ R+, one has

‖ Fi(t, ri(t), vi(t))− F0(t, r0(t), v0(t)) ‖

= ‖ fi(t, ri(t), vi(t)) + vi(t)− f0(t, r0(t), v0(t))− v0(t) ‖

= ‖ fi(t, ri(t), vi(t))− fi(t, r0(t), v0(t)) + fi(t, r0(t), v0(t))− f0(t, r0(t), v0(t)) + vi(t)− v0(t) ‖

≤ ‖ fi(t, ri(t), vi(t))− fi(t, r0(t), v0(t)) ‖ + ‖ fi(t, r0(t), v0(t)) ‖

+ ‖ f0(t, r0(t), v0(t)) ‖ + ‖ vi(t)− v0(t) ‖

≤ ‖ fi(t, ri(t), vi(t))− fi(t, r0(t), v0(t)) ‖ + ‖ fi(t, r0(t), v0(t))− fi(t, rEi , vEi ) ‖

+ ‖ f0(t, r0(t), v0(t))− f0(t, rE0 , vE0 ) ‖ + ‖ vi(t)− v0(t) ‖

≤LFJ (‖ ri(t)− r0(t) ‖ + ‖ vi(t)− v0(t) ‖) + LFJ
(
‖ r0(t)− rEi ‖ + ‖ v0(t)− vEi ‖

)
+ LLJ

(
‖ r0(t)− rE0 ‖ + ‖ v0(t)− vE0 ‖

)
+ (‖ vi(t)− v0(t) ‖)

≤LFJ (‖ ri(t)− r0(t)− r∗i ‖ + ‖ r∗i ‖ + ‖ vi(t)− v0(t) ‖) + LFJ
(
‖ r0(t)− rEi ‖ + ‖ v0(t)− vEi ‖

)
+ LLJ

(
‖ r0(t)− rE0 ‖ + ‖ v0(t)− vE0 ‖

)
+ (‖ vi(t)− v0(t) ‖)

≤LFJ ‖ r̃i(t) ‖ +(LFJ + 1) ‖ ṽi(t) ‖ +LFJ (‖ r∗i ‖ + ‖ rEi ‖ + ‖ vEi ‖ +βr + βv)

+ LLJ (‖ rE0 ‖ + ‖ vE0 ‖ +βr + βv).

Let

G = LFJ
(

max
i=1,2,··· ,N

{‖ r∗i ‖ + ‖ rEi ‖ + ‖ vEi ‖}+ βr + βv
)

+ LLJ (‖ rE0 ‖ + ‖ vE0 ‖ +βr + βv).

Clearly, G is a constant. Since ṽi(t) = Si(t) − r̃i(t), one has ‖ ṽi(t) ‖ ≤ ‖ Si(t) ‖ + ‖ r̃i(t) ‖.

Thus,
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‖ Fi(t, ri(t), vi(t))− F0(t, r0(t), v0(t)) ‖

≤LFJ ‖ r̃i(t) ‖ +
(
LFJ + 1

)
‖ (Si(t)− r̃i(t)) ‖ +G

≤
(
2LFJ + 1

)
‖ r̃i(t) ‖ +

(
LFJ + 1

)
‖ Si(t) ‖ +G

≤
(
2LFJ + 1

)√
n max
i=1,2,··· ,N
k=1,2,··· ,n

{| r̃ki (t) |, | Ski (t) |}+
(
LFJ + 1

)√
n max
i=1,2,··· ,N
k=1,2,··· ,n

{| Ski (t) |}+G (8)

Let

M(t) = (2LFJ + 1)
√
n max
i=1,2,··· ,N
k=1,2,··· ,n

{| r̃ki (t) |, | Ski (t) |}+ (LFJ + 1)
√
n max
i=1,2,··· ,N
k=1,2,··· ,n

{| Ski (t) |}+G.

If α > M(t),∀t ∈ R+, then α >‖ Fi(t, ri(t), vi(t)) − F0(t, r0(t), v0(t)) ‖,∀t ∈ R+,∀i =

1, 2, · · · , N .

Now, it can be proved that if α > M(0) then α > M(t), ∀t ∈ R+. Because α > M(0) and

M(t) are continuously changing, suppose that t1 ∈ R+ is the first time at which α = M(t).

Thus, M(t1) > M(0).

Now, consider the following two cases.

• Case (i): The signs of r̃ki (t) and ṽki (t) are the same. In this case, | r̃ki (t) | will increase.

Since | r̃ki (t) | + | ṽki (t) | = | r̃ki (t) + ṽki (t) | = | Ski (t) |, it follows that | r̃ki (t) | ≤ | Ski (t) |.

• Case (ii): The signs of r̃ki (t) and ṽki (t) are opposite. In this case, one has | r̃ki (t) | + | ṽki (t) |

= | r̃ki (t)− ṽki (t) | ≥ | Ski (t) |. Both | r̃ki (t) | ≤ | Ski (t) | and | r̃ki (t) | ≥ | Ski (t) | are possible. For

ṽki (t) = ˙̃rki (t) and their signs are opposite, | r̃ki (t) | must decrease.

Combining the above two cases, it can be concluded that | r̃ki (t) | must be decreasing when

| r̃ki (t) | ≥ | Ski (t) |. Since α,LFJ and G are constants, if M(t1) > M(0), then max
i=1,2,··· ,N
k=1,2,··· ,n

{| Ski (t1) |}

must be larger than max
i=1,2,··· ,N
k=1,2,··· ,n

{| Ski (0) |}. So, there must exist a t2 ∈ [0, t1) such that the derivative

of max{| S+(t) |, | S−(t) |} is greater than zero.

Now, consider the following three cases.

• Case (i): {S+(t) > 0, S−(t) ≥ 0}.

In this case, max{| S+(t) |, | S−(t) |} = S+(t), and the derivative of max{| S+(t) |, | S−(t) |}

is Ṡ+(t). Since Assumption 1 holds and S+(t) > 0, one has
∑
r∈Ni

air[S
+(t)− Skr (t)] > 0. Thus,

Ṡ+(t) ∈ K
[
F k
i (t, ri(t), vi(t))− F k

0 (t, r0(t), v0(t))− α
]
.

If the derivative of max{| S+(t) |, | S−(t) |} is greater than zero at t2 ∈ [0, t1), one has Ṡ+(t2) > 0.

Then, there must exist i ∈ {1, 2, · · · , N} and k ∈ {1, 2, · · · , n} such that F k
i (t2, ri(t2), vi(t2)) −
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F k
0 (t2, r0(t2), v0(t2)) > 0 and the positive constant α < | F k

i (t2, ri(t2), vi(t2))−F k
0 (t2, r0(t2), v0(t2)) |.

Since | F k
i (t2, ri(t2), vi(t2))−F k

0 (t2, r0(t2), v0(t2)) | ≤ ‖ Fi(t2, ri(t2), vi(t2))−F0(t2, r0(t2), v0(t2)) ‖,

one has α < ‖ Fi(t2, ri(t2), vi(t2)) − F0(t2, r0(t2), v0(t2)) ‖. It follows that α < M(t2) based on

(8). Because α > M(0) and M(t) are continuously changing, there must be a t3 ∈ [0, t2) such

that α = M(t3). It contradicts the assumption that t1 ∈ R+ is the first time at which α = M(t).

• Case (ii): {S+(t) ≤ 0, S−(t) < 0}.

In this case, max{| S+(t) |, | S−(t) |} = −S−(t), and the derivative of max{| S+(t) |, | S−(t) |

} is −Ṡ−(t). Since Assumption 1 holds and S−(t) < 0, one has
∑
s∈Nj

ajs[S
−(t) − Sls(t)] < 0.

Thus,

Ṡ−(t) ∈ K
[
F l
j(t, rj(t), vj(t))− F l

0(t, r0(t), v0(t)) + α
]
.

If the derivative of max{| S+(t) |, | S−(t) |} is greater than zero at t2 ∈ [0, t1), one has Ṡ−(t2) < 0.

Then, there must exist j ∈ {1, 2, · · · , N} and l ∈ {1, 2, · · · , n} such that F l
j(t2, rj(t2), vj(t2)) −

F l
0(t2, r0(t2), v0(t2)) < 0 and the positive constant α < | F l

j(t2, rj(t2), vj(t2))−F l
0(t2, r0(t2), v0(t2)) |.

Since | F l
j(t2, rj(t2), vj(t2))−F l

0(t2, r0(t2), v0(t2)) | ≤ ‖ Fj(t2, rj(t2), vj(t2))−F0(t2, r0(t2), v0(t2)) ‖,

one has α < ‖ Fj(t2, rj(t2), vj(t2)) − F0(t2, r0(t2), v0(t2)) ‖. It follows that α < M(t2) based on

(8). Because α > M(0) and M(t) are continuously changing, there must be a t3 ∈ [0, t2) such

that α = M(t3). It contradicts the assumption that t1 ∈ R+ is the first time at which α = M(t).

• Case (iii): {S+(t) > 0, S−(t) < 0}.

(a) If {S+(t) ≥ −S−(t)}, then max{| S+(t) |, | S−(t) |} = S+(t). So, the proof is the same

as that in Case (i).

(b) If {S+(t) < −S−(t)}, then max{| S+(t) |, | S−(t) |} = −S−(t). So, the proof is the same

as that in Case (ii).

Combining the above three cases, it can be concluded that the derivative of max{| S+(t) | ,

| S−(t) |} will not be greater than zero. Hence, if α > M(0), i.e., Assumption 9 holds, then

α > M(t), ∀t ∈ R+. It follows that α > ‖ Fi(t, ri(t), vi(t)) − F0(t, r0(t), v0(t)) ‖,∀t ∈ R+,∀i =

1, 2, · · · , N , based on (8).

The proof is now completed.
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11 Proof of Lemma 8

Proof If Assumptions 1 and 7 - 9 hold, then Lemma 7 holds, i.e., α > ‖ Fi(t, ri(t), vi(t)) −

F0(t, r0(t), v0(t)) ‖,∀t ∈ R+,∀i = 1, 2, · · · , N . Based on (6) in the manuscript, the nonsmooth

function V (S+(t), S−(t)) : R2 → R is

V (S+(t), S−(t)) =


S+(t) S+(t) ≥ 0, S−(t) ≥ 0

S+(t)− S−(t) S+(t) > 0, S−(t) < 0

−S−(t) S+(t) ≤ 0, S−(t) < 0.

(9)

Five cases are discussed as follows:

• Case (i): S+(t) > 0 and S−(t) > 0.

Since Assumption 1 holds and S+(t) > 0, one has
∑
r∈Ni

air[S
+(t)− Skr (t)] > 0, and for

∂V (S+(t), S−(t)) = {(1, 0)},

one has

L̃FV = K
[
F k
i (t, ri(t), vi(t))− F k

0 (t, r0(t), v0(t))− α
]
.

Since | F k
i (t, ri(t), vi(t)) − F k

0 (t, r0(t), v0(t)) | ≤ ‖ Fi(t, ri(t), vi(t)) − F0(t, r0(t), v0(t)) ‖, ∀t ∈

R+,∀i = 1, 2, · · · , N,∀k = 1, 2, · · · , n, it follows from Lemma 7 that

max L̃FV < 0.

• Case (ii): S+(t) > 0 and S−(t) < 0.

Since S+(t) > 0, S−(t) < 0 and Assumption 1 holds, one has
∑
r∈Ni

air[S
+(t) − Skr (t)] >

0,
∑
s∈Nj

ajs[S
−(t)− Sls(t)] < 0, and for

∂V (S+(t), S−(t)) = {(1,−1)},

one has

L̃FV = K
[
(F k

i (t, ri(t), vi(t))− F k
0 (t, r0(t), v0(t))− α)

− (F l
j(t, rj(t), vj(t))− F l

0(t, r0(t), v0(t)) + α)
]
.

Since | F k
i (t, ri(t), vi(t)) − F k

0 (t, r0(t), v0(t)) | ≤ ‖ Fi(t, ri(t), vi(t)) − F0(t, r0(t), v0(t)) ‖,∀t ∈

R+,∀i = 1, 2, · · · , N,∀k = 1, 2, · · · , n, it follows from Lemma 7 that

max L̃FV < 0.
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• Case (iii): S+(t) < 0 and S−(t) < 0.

Since S−(t) < 0 and Assumption 1 holds, one has
∑
s∈Nj

ajs[S
−(t)− Sls(t)] < 0, and for

∂V (S+(t), S−(t)) = {(0,−1)},

one has

L̃FV = K
[
−(F l

j(t, rj(t), vj(t))− F l
0(t, r0(t), v0(t)) + α)

]
.

Since | F l
j(t, rj(t), vj(t)) − F l

0(t, r0(t), v0(t)) | ≤ ‖ Fj(t, rj(t), vj(t)) − F0(t, r0(t), v0(t)) ‖,∀t ∈

R+,∀j = 1, 2, · · · , N,∀l = 1, 2, · · · , n, it follows from Lemma 7 that

max L̃FV < 0.

• Case (iv): S+(t) > 0 and S−(t) = 0.

Since S+(t) > 0, S−(t) = 0 and Assumption 1 holds, one has
∑
r∈Ni

air[S
+(t) − Skr (t)] >

0,
∑
s∈Nj

ajs[S
−(t) − Sls(t)] ≤ 0. So, if v ∈ F(S+(t), S−(t)), then vT = (v1, v2) with v1 ∈

K[F k
i (t, ri(t), vi(t)) − F k

0 (t, r0(t), v0(t)) − α] and v2 ∈ K[F l
j(t, rj(t), vj(t)) − F l

0(t, r0(t), v0(t)) +

α] ∪ K[F l
j(t, rj(t), vj(t))− F l

0(t, r0(t), v0(t))]. For

∂V (S+(t), S−(t)) = {1} × [−1, 0],

if ζ ∈ ∂V (S+(t), S−(t)), then ζT = (1, y) with y ∈ [−1, 0]. Therefore,

ζTv = v1 + yv2.

If there exists an element a satisfying that ζTv = a for all y ∈ [−1, 0], then v2 = 0. So, if v2 6= 0,

one has L̃FV = ∅; if v2 = 0, one has L̃FV = K[F k
i (t, ri(t), vi(t)) − F k

0 (t, r0(t), v0(t)) − α], and

then it follows from Lemma 7 that max L̃FV < 0. Thus, max L̃FV < 0 or L̃FV = ∅ in this case.

• Case (v): S+(t) = 0 and S−(t) < 0.

Since S+(t) = 0, S−(t) < 0 and Assumption 1 holds, one has
∑
r∈Ni

air[S
+(t) − Skr (t)] ≥

0,
∑
s∈Nj

ajs[S
−(t) − Sls(t)] < 0. So, if v ∈ F(S+(t), S−(t)), then vT = (v1, v2) with v1 ∈

K[F k
i (t, ri(t), vi(t)) − F k

0 (t, r0(t), v0(t)) − α] ∪ K[F k
i (t, ri(t), vi(t)) − F k

0 (t, r0(t), v0(t))] and v2 ∈

K[F l
j(t, rj(t), vj(t))− F l

0(t, r0(t), v0(t)) + α]. For

∂V (S+(t), S−(t)) = [0, 1]× {−1},
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if ζ ∈ ∂V (S+(t), S−(t)), then ζT = (y,−1) with y ∈ [0, 1]. Therefore,

ζTv = yv1 − v2.

If there exists an element a satisfying that ζTv = a for all y ∈ [0, 1], then v1 = 0. So, if v1 6= 0,

one has L̃FV = ∅; if v1 = 0, one has L̃FV = −K[F l
j(t, rj(t), vj(t)) − F l

0(t, r0(t), v0(t)) + α], and

then it follows from Lemma 7 that max L̃FV < 0. Thus, max L̃FV < 0 or L̃FV = ∅ in this case.

Combining the above five cases, it can be concluded that max L̃FV < 0 for all (S+(t), S−(t)) ∈

D \ {(0, 0)}.

The proof is now completed.

12 Proof of Theorem 2

Proof The nonsmooth function V (S+(t), S−(t)) in (9) is chosen as the Lyapunov function. If

Assumptions 1 and 7 - 9 hold, then Lemma 8 holds. By Lemma 1, it follows from Lemmas 3 -

5 and 8 that (S+(t), S−(t)) = (0, 0) is a globally stable equilibrium point for system (7).

Solving

Ski (t) = r̃ki (t) + ˙̃rki (t) = 0,

one has

r̃ki (t) = ce−t, ˙̃rki (t) = −ce−t,

where c is a constant determined by the initial conditions. Therefore, the errors r̃i(t) and ṽi(t)

converge to zero exponentially; that is, the second-order multi-agent system achieves the desired

formation asymptotically.

The proof is now completed.

13 Supplementary Lemma iii

Supplementary Lemma iii If Assumptions 1, 10 and 11 hold, then α >‖ Fi(t, ri(t), vi(t))−

F0(t, r0(t), v0(t)) ‖,∀t ∈ R+,∀i = 1, 2, · · · , N , where Fi(t, ri(t), vi(t)) = vi(t) + fi(t, ri(t), vi(t))
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and F0(t, r0(t), v0(t)) = v0(t) + f0(t, r0(t), v0(t)).

Proof Based on Assumption 10, for any i = 1, 2, · · · , N and each t ∈ R+, one has

‖ Fi(t, ri(t), vi(t))− F0(t, r0(t), v0(t)) ‖

= ‖ fi(t, ri(t), vi(t)) + vi(t)− f0(t, r0(t), v0(t))− v0(t) ‖

= ‖ f0(t, ri(t), vi(t))− f0(t, r0(t), v0(t)) + vi(t)− v0(t) ‖

≤ ‖ f0(t, ri(t), vi(t))− f0(t, r0(t), v0(t)) ‖ + ‖ vi(t)− v0(t) ‖

≤LLJ (‖ ri(t)− r0(t) ‖ + ‖ vi(t)− v0(t) ‖)+ ‖ vi(t)− v0(t) ‖

≤LLJ (‖ ri(t)− r0(t)− r∗i ‖ + ‖ r∗i ‖ + ‖ vi(t)− v0(t) ‖)+ ‖ vi(t)− v0(t) ‖

≤LLJ (‖ r̃i(t) ‖ + ‖ r∗i ‖ + ‖ ṽi(t) ‖)+ ‖ ṽi(t) ‖

Since ṽi(t) = Si(t)− r̃i(t), one has ‖ ṽi(t) ‖ ≤ ‖ Si(t) ‖ + ‖ r̃i(t) ‖. Thus,

‖ Fi(t, ri(t), vi(t))− F0(t, r0(t), v0(t)) ‖

≤(2LLJ + 1) ‖ r̃i(t) ‖ +(LLJ + 1) ‖ Si(t) ‖ +LLJ ‖ r∗i ‖

≤(2LLJ + 1)
√
n max
i=1,2,··· ,N
k=1,2,··· ,n

{| r̃ki (t) |, | Ski (t) |}+ (LLJ + 1)
√
n max
i=1,2,··· ,N
k=1,2,··· ,n

{| Ski (t) |}

+ LLJ max
i=1,2,··· ,N

{‖ r∗i ‖}. (10)

Let

W (t) =(2LLJ + 1)
√
n max
i=1,2,··· ,N
k=1,2,··· ,n

{| r̃ki (t) |, | Ski (t) |}

+ (LLJ + 1)
√
n max
i=1,2,··· ,N
k=1,2,··· ,n

{| Ski (t) |}+ LLJ max
i=1,2,··· ,N

{‖ r∗i ‖}.

If α > W (t),∀t ∈ R+, then α >‖ Fi(t, ri(t), vi(t)) − F0(t, r0(t), v0(t)) ‖,∀t ∈ R+,∀i =

1, 2, · · · , N .

Now, it can be proved that if α > W (0) then α > W (t), ∀t ∈ R+. Because α > W (0) and

W (t) are continuously changing, suppose that t1 ∈ R+ is the first time at which α = W (t).

Thus, W (t1) > W (0).

Now, consider the following two cases.

• Case (i): The signs of r̃ki (t) and ṽki (t) are the same. In this case, | r̃ki (t) | will increase.

Since | r̃ki (t) | + | ṽki (t) | = | r̃ki (t) + ṽki (t) | = | Ski (t) |, it follows that | r̃ki (t) | ≤ | Ski (t) |.
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• Case (ii): The signs of r̃ki (t) and ṽki (t) are opposite. In this case, one has | r̃ki (t) | + | ṽki (t) |

= | r̃ki (t)− ṽki (t) | ≥ | Ski (t) |. Both | r̃ki (t) | ≤ | Ski (t) | and | r̃ki (t) | ≥ | Ski (t) | are possible. For

ṽki (t) = ˙̃rki (t) and their signs are opposite, | r̃ki (t) | must decrease.

Combining the above two cases, it can be concluded that | r̃ki (t) | must be decreasing when

| r̃ki (t) | ≥ | Ski (t) |. Since α,LLJ and max
i=1,2,··· ,N

{‖ r∗i ‖} are constants, if W (t1) > W (0), then

max
i=1,2,··· ,N
k=1,2,··· ,n

{| Ski (t1) |} must be larger than max
i=1,2,··· ,N
k=1,2,··· ,n

{| Ski (0) |}. So, there must exist a t2 ∈ [0, t1)

such that the derivative of max{| S+(t) |, | S−(t) |} is greater than zero.

Now, consider the following three cases.

• Case (i): {S+(t) > 0, S−(t) ≥ 0}.

In this case, max{| S+(t) |, | S−(t) |} = S+(t), and the derivative of max{| S+(t) |, | S−(t) |}

is Ṡ+(t). Since Assumption 1 holds and S+(t) > 0, one has
∑
r∈Ni

air[S
+(t)− Skr (t)] > 0. Thus,

Ṡ+(t) ∈ K
[
F k
i (t, ri(t), vi(t))− F k

0 (t, r0(t), v0(t))− α
]
.

If the derivative of max{| S+(t) |, | S−(t) |} is greater than zero at t2 ∈ [0, t1), one has Ṡ+(t2) > 0.

Then, there must exist i ∈ {1, 2, · · · , N} and k ∈ {1, 2, · · · , n} such that F k
i (t2, ri(t2), vi(t2)) −

F k
0 (t2, r0(t2), v0(t2)) > 0 and the positive constant α < | F k

i (t2, ri(t2), vi(t2))−F k
0 (t2, r0(t2), v0(t2)) |.

Since | F k
i (t2, ri(t2), vi(t2))−F k

0 (t2, r0(t2), v0(t2)) | ≤ ‖ Fi(t2, ri(t2), vi(t2))−F0(t2, r0(t2), v0(t2)) ‖,

one has α < ‖ Fi(t2, ri(t2), vi(t2)) − F0(t2, r0(t2), v0(t2)) ‖. It follows that α < W (t2) based on

(10). Because α > W (0) and W (t) are continuously changing, there must be a t3 ∈ [0, t2) such

that α = W (t3). It contradicts the assumption that t1 ∈ R+ is the first time at which α = W (t).

• Case (ii): {S+(t) ≤ 0, S−(t) < 0}.

In this case, max{| S+(t) |, | S−(t) |} = −S−(t), and the derivative of max{| S+(t) |, | S−(t) |

} is −Ṡ−(t). Since Assumption 1 holds and S−(t) < 0, one has
∑
s∈Nj

ajs[S
−(t) − Sls(t)] < 0.

Thus,

Ṡ−(t) ∈ K
[
F l
j(t, rj(t), vj(t))− F l

0(t, r0(t), v0(t)) + α
]
.

If the derivative of max{| S+(t) |, | S−(t) |} is greater than zero at t2 ∈ [0, t1), one has Ṡ−(t2) < 0.

Then, there must exist i ∈ {1, 2, · · · , N} and k ∈ {1, 2, · · · , n} such that F l
j(t2, rj(t2), vj(t2)) −

F l
0(t2, r0(t2), v0(t2)) < 0 and the positive constant α < | F l

j(t2, rj(t2), vj(t2))−F l
0(t2, r0(t2), v0(t2)) |.

Since | F l
j(t2, rj(t2), vj(t2))−F l

0(t2, r0(t2), v0(t2)) | ≤ ‖ Fj(t2, rj(t2), vj(t2))−F0(t2, r0(t2), v0(t2)) ‖,

one has α < ‖ Fj(t2, rj(t2), vj(t2)) − F0(t2, r0(t2), v0(t2)) ‖. It follows that α < W (t2) based on
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(10). Because α > W (0) and W (t) are continuously changing, there must be a t3 ∈ [0, t2) such

that α = W (t3). It contradicts the assumption that t1 ∈ R+ is the first time at which α = W (t).

• Case (iii): {S+(t) > 0, S−(t) < 0}.

(a) If {S+(t) ≥ −S−(t)}, then max{| S+(t) |, | S−(t) |} = S+(t). So, the proof is the same

as that in Case (i).

(b) If {S+(t) < −S−(t)}, then max{| S+(t) |, | S−(t) |} = −S−(t). So, the proof is the same

as that in Case (ii).

Combining the above three cases, it can be concluded that the derivative of max{| S+(t) | ,

| S−(t) |} will not be greater than zero. Hence, if α > W (0), i.e., Assumption 11 holds, then

α > W (t), ∀t ∈ R+. It follows that α > ‖ Fi(t, ri(t), vi(t)) − F0(t, r0(t), v0(t)) ‖,∀t ∈ R+,∀i =

1, 2, · · · , N , based on (10).

The proof is now completed.

14 Supplementary Lemma iv

Supplementary Lemma iv Let F denote the set-valued map. If Assumptions 1, 10 and 11

hold, then the set-valued Lie derivative L̃FV of V with respect to F satisfies that max L̃FV < 0

for all (S+(t), S−(t)) ∈ D \ {(0, 0)}.

Proof If Assumptions 1, 10 and 11 hold, then Supplementary Lemma iii holds, i.e., α >

‖ Fi(t, ri(t), vi(t)) − F0(t, r0(t), v0(t)) ‖,∀t ∈ R+,∀i = 1, 2, · · · , N . The nonsmooth function

V (S+(t), S−(t)) : R2 → R was given by (9).

Five cases are discussed as follows:

• Case (i): S+(t) > 0 and S−(t) > 0.

Since Assumption 1 holds and S+(t) > 0, one has
∑
r∈Ni

air[S
+(t)− Skr (t)] > 0, and for

∂V (S+(t), S−(t)) = {(1, 0)},

one has

L̃FV = K
[
F k
i (t, ri(t), vi(t))− F k

0 (t, r0(t), v0(t))− α
]
.

Since | F k
i (t, ri(t), vi(t)) − F k

0 (t, r0(t), v0(t)) | ≤ ‖ Fi(t, ri(t), vi(t)) − F0(t, r0(t), v0(t)) ‖, ∀t ∈
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R+,∀i = 1, 2, · · · , N,∀k = 1, 2, · · · , n, it follows from Supplementary Lemma iii that

max L̃FV < 0.

• Case (ii): S+(t) > 0 and S−(t) < 0.

Since S+(t) > 0, S−(t) < 0 and Assumption 1 holds, one has
∑
r∈Ni

air[S
+(t) − Skr (t)] >

0,
∑
s∈Nj

ajs[S
−(t)− Sls(t)] < 0, and for

∂V (S+(t), S−(t)) = {(1,−1)},

one has

L̃FV = K
[
(F k

i (t, ri(t), vi(t))− F k
0 (t, r0(t), v0(t))− α)

− (F l
j(t, rj(t), vj(t))− F l

0(t, r0(t), v0(t)) + α)

]
.

Since | F k
i (t, ri(t), vi(t)) − F k

0 (t, r0(t), v0(t)) | ≤ ‖ Fi(t, ri(t), vi(t)) − F0(t, r0(t), v0(t)) ‖,∀t ∈

R+,∀i = 1, 2, · · · , N,∀k = 1, 2, · · · , n, it follows from Supplementary Lemma iii that

max L̃FV < 0.

• Case (iii): S+(t) < 0 and S−(t) < 0.

Since S−(t) < 0 and Assumption 1 holds, one has
∑
s∈Nj

ajs[S
−(t)− Sls(t)] < 0, and for

∂V (S+(t), S−(t)) = {(0,−1)},

one has

L̃FV = K
[
−(F l

j(t, rj(t), vj(t))− F l
0(t, r0(t), v0(t)) + α)

]
.

Since | F l
j(t, rj(t), vj(t)) − F l

0(t, r0(t), v0(t)) | ≤ ‖ Fj(t, rj(t), vj(t)) − F0(t, r0(t), v0(t)) ‖,∀t ∈

R+,∀j = 1, 2, · · · , N,∀l = 1, 2, · · · , n, it follows from Supplementary Lemma iii that

max L̃FV < 0.

• Case (iv): S+(t) > 0 and S−(t) = 0.

Since S+(t) > 0, S−(t) = 0 and Assumption 1 holds, one has
∑
r∈Ni

air[S
+(t) − Skr (t)] >

0,
∑
s∈Nj

ajs[S
−(t) − Sls(t)] ≤ 0. So, if v ∈ F(S+(t), S−(t)), then vT = (v1, v2) with v1 ∈
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K[F k
i (t, ri(t), vi(t)) − F k

0 (t, r0(t), v0(t)) − α] and v2 ∈ K[F l
j(t, rj(t), vj(t)) − F l

0(t, r0(t), v0(t)) +

α] ∪ K[F l
j(t, rj(t), vj(t))− F l

0(t, r0(t), v0(t))]. For

∂V (S+(t), S−(t)) = {1} × [−1, 0],

if ζ ∈ ∂V (S+(t), S−(t)), then ζT = (1, y) with y ∈ [−1, 0]. Therefore,

ζTv = v1 + yv2.

If there exists an element a satisfying that ζTv = a for all y ∈ [−1, 0], then v2 = 0. So, if v2 6= 0,

one has L̃FV = ∅; if v2 = 0, one has L̃FV = K[F k
i (t, ri(t), vi(t)) − F k

0 (t, r0(t), v0(t)) − α], and

then it follows from Supplementary Lemma iii that max L̃FV < 0. Thus, max L̃FV < 0 or

L̃FV = ∅ in this case.

• Case (v): S+(t) = 0 and S−(t) < 0.

Since S+(t) = 0, S−(t) < 0 and Assumption 1 holds, one has
∑
r∈Ni

air[S
+(t) − Skr (t)] ≥

0,
∑
s∈Nj

ajs[S
−(t) − Sls(t)] < 0. So, if v ∈ F(S+(t), S−(t)), then vT = (v1, v2) with v1 ∈

K[F k
i (t, ri(t), vi(t)) − F k

0 (t, r0(t), v0(t)) − α] ∪ K[F k
i (t, ri(t), vi(t)) − F k

0 (t, r0(t), v0(t))] and v2 ∈

K[F l
j(t, rj(t), vj(t))− F l

0(t, r0(t), v0(t)) + α]. For

∂V (S+(t), S−(t)) = [0, 1]× {−1},

if ζ ∈ ∂V (S+(t), S−(t)), then ζT = (y,−1) with y ∈ [0, 1]. Therefore,

ζTv = yv1 − v2.

If there exists an element a satisfying that ζTv = a for all y ∈ [0, 1], then v1 = 0. So, if v1 6= 0,

one has L̃FV = ∅; if v1 = 0, one has L̃FV = −K[F l
j(t, rj(t), vj(t)) − F l

0(t, r0(t), v0(t)) + α], and

then it follows from Supplementary Lemma iii that max L̃FV < 0. Thus, max L̃FV < 0 or

L̃FV = ∅ in this case.

Combining the above five cases, it can be concluded that max L̃FV < 0 for all (S+(t), S−(t)) ∈

D \ {(0, 0)}.

The proof is now completed.

15 Proof of Corollary 2

Proof The nonsmooth function V (S+(t), S−(t)) in (9) is chosen as the Lyapunov function. If

Assumptions 1, 10 and 11 hold, then Supplementary Lemma iv holds. By Lemma 1, it follows
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from Lemmas 3 - 5 and Supplementary Lemma iv that (S+(t), S−(t)) = (0, 0) is a globally

stable equilibrium point for system (7).

Solving

Ski (t) = r̃ki (t) + ˙̃rki (t) = 0,

one has

r̃ki (t) = ce−t, ˙̃rki (t) = −ce−t,

where c is a constant determined by the initial conditions. Therefore, the errors r̃i(t) and ṽi(t)

converge to zero exponentially; that is, the second-order multi-agent system achieves the desired

formation asymptotically.

The proof is now completed.
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