Overview of Signal Processing

Chapter Intended Learning Outcomes:

- (i) Understand basic terminology in signal processing
- (ii) Differentiate digital signal processing and analog signal processing
- (iii) Describe basic signal processing application areas

H. C. So Page 1 Semester B 2024-2025

Signal:

- Anything that conveys information, e.g.,
 - Speech
 - Electrocardiogram (ECG)
 - Radar pulse
 - Medical image
 - Stock price
 - Orthogonal frequency division multiplexing waveform
 - Video
 - Smell

Fig.1.1: Speech

Fig.1.2: ECG

Fig.1.3: Transmitted & received radar waveforms: s(t) & r(t)

Fig.1.4: Radar ranging

Given the signal propagation speed, denoted by c, the time delay τ is related to R as:

$$\tau = \frac{2R}{c} \tag{1.1}$$

Hence the radar pulse contains the object range information

H. C. So Page 6 Semester B 2024-2025

- Can be a function of one, two or three independent variables, e.g., speech is 1-D signal, function of time; image is 2-D, function of space; wind is 3-D, function of latitude, longitude and elevation
- 3 types of signals that are functions of time:
 - Continuous-time (analog) x(t): defined on a continuous range of time t, amplitude can be any value
 - Discrete-time (sampled) x(nT): defined only at discrete instants of time $t = \cdots T, 0, T, 2T, \cdots$, amplitude can be any value
 - Digital (quantized) $x_Q(nT)$: both time and amplitude are discrete, i.e., it is defined only at $t = \cdots T, 0, T, 2T, \cdots$ and amplitude is confined to a finite set of numbers

H. C. So Page 7 Semester B 2024-2025

Fig. 1.5: Relationships between x(t), x(nT) and $x_Q(nT)$

x(nT) at n=0 is close to 2 and $x_Q(0)=2$

$$x(nT) \in (3,4) \text{ at } n = 1 \text{ and } x_Q(T) = 3$$

Using 4-bit representation, $x_Q(0) = 0010$ and $x_Q(T) = 0011$, and in general, the value of $x_Q(nT)$ is restricted to be an integer between -8 and 7 according to the two's complement representation.

In digital signal processing (DSP), we deal with $x_Q(nT)$ as it corresponds to computer-based processing. A digital signal will approach a discrete-time signal if the quantizer has very high resolution

Throughout the course, it is assumed that discrete-time signal = digital signal, or the quantizer has infinite resolution

H. C. So Page 9 Semester B 2024-2025

System:

 Mathematical model or abstraction of a physical process that relates input to output

Fig.1.6: System with input and output

- It operates on an input to produce an output, e.g.:
 - Grading system: inputs are coursework and examination marks, output is grade

- Squaring system: input is 5, then the output is 25
- Amplifier: input is $\cos(\omega t)$, then output is $10\cos(\omega t)$
- Communication system: input to mobile phone is voice, output from mobile phone is 5G waveform
- Noise reduction system: input is a noisy speech, output is a noise-reduced speech
- Feature extraction system: input is $\cos(\omega t)$, output is ω
- A continuous-time (analog) system deals with continuoustime input and output while a discrete-time system deals discrete-time input and output
- A system can be realized in hardware or software via an algorithm

H. C. So Page 11 Semester B 2024-2025

Fig. 1.7: Continuous-time and discrete-time systems

In a continuous-time (discrete-time) system, the input and output are continuous-time (discrete-time) signals

Fig.1.8: Hardware system of resistor-capacitor circuit

Fig.1.9: Algorithm for producing pop-art

Fig.1.10: Software system for moving average of Dow Jones

Processing:

 Perform a particular function by passing an input signal through a system

Fig.1.11: Analog processing of analog signal

Fig.1.12: Digital processing of analog signal

Advantages of DSP over Analog Signal Processing

- Allow development with the use of PC, e.g., MATLAB
- Allow flexibility in reconfiguring the DSP operations by simply changing the program code
- Reliable: processing of 0 and 1 is almost immune to noise and data are easily stored without deterioration
- Lower cost due to advancement of VLSI technology
- Security can be introduced by encryption/scrambling
- Simple: additions and multiplications are main operations

H. C. So Page 16 Semester B 2024-2025

DSP Application Areas

Speech

- Compression (e.g., linear predictive coding (LPC) is a coding standard for compression of speech data)
- Synthesis (computer production of speech signals, e.g., text-to-speech app)
- Recognition (e.g., speech-to-text app, emotion detection, speaker identification)
- Enhancement (e.g., noise reduction for a noisy speech)

H. C. So Page 17 Semester B 2024-2025

Audio

- Compression (e.g., MP3 is a coding standard for compression of audio data)
- Generation of music by different musical instruments such as piano, cello, guitar and flute using computer
- Song with low-cost electronic piano keyboard quality
- Automatic music transcription (writing a piece of music down from a recording)

Image and Video

- Compression (e.g., JPEG and MPEG are coding standards for image and video compression, respectively)
- Recognition such as face, palm and fingerprint

H. C. So Page 18 Semester B 2024-2025

Enhancement

Fig.1.13: Photo enhancement

- Construction of 3-D objects from 2-D images
- Computer animation in film industry

- Communications: encoding and decoding of digital communication waveforms
- Astronomy: finding the periods of orbits
- Biomedical Engineering: medical care and diagnosis, analysis of ECG, electroencephalogram (EEG), nuclear magnetic resonance (NMR) data
- Bioinformatics: DNA sequence analysis, extracting, processing, and interpreting the information contained in genomic and proteomic data
- Finance: market risk management, trading algorithm design, investment portfolio analysis

H. C. So Page 20 Semester B 2024-2025

What will You Learn?

- Signal representation and characterization, which includes generating signals, classifying signal types and properties, performing operations on signals
- System classification and analysis, which includes analysis of system stability and causality, understanding the importance of impulse response for linear time-invariant (LTI) systems
- Transform tools include Fourier series and Fourier transform, and their applications in signal representation and LTI system, e.g., a periodic continuous-time signal x(t) can be expressed as sum of complex exponentials:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\Omega_0 t}, \qquad t \in (-\infty, \infty)$$
 (1.2)

Why Important?

- Signal processing arises in our daily life, studying it will lay a good foundation for you in other relevant/higher-level courses and to solve real-world problems:
 - Generate signals which meet certain specifications e.g., synthesized speech and music
 - Design systems which produce desired outputs
 e.g., a system which suppresses noise in the observed
 data
 - New signal representation for efficient data processing, e.g., David Donoho proposed sparse representation and obtained the Shaw Prize 2013 (邵逸夫數學科學獎) https://www.youtube.com/watch?v=5wv4grOMgIU

H. C. So Page 22 Semester B 2024-2025

e.g., a simple periodic signal of a cosine wave can yield a sparse representation in the frequency domain.

$$x(t) = \cos(100t) = \frac{e^{j100t} + e^{-j100t}}{2} \leftrightarrow X(j\Omega) = \pi\delta(\Omega + 100) + \pi\delta(\Omega - 100)$$

Sparse representation is useful in data compression and approximation particularly in big data era

How to Study?

Make sure you have a clear concept and then practice

H. C. So Page 23 Semester B 2024-2025