Review of Analog Signal Analysis

Chapter Intended Learning Outcomes:

(i) Review of Fourier series which is used to analyze
continuous-time periodic signals

(ii) Review of Fourier transform which is used to analyze
continuous-time aperiodic signals

(iii) Review of analog linear time-invariant system
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Fourier series and Fourier transform are the tools for
analyzing analog signals. Basically, they are used for signal
conversion between time and frequency domains:

=(t) & X(jQ) (2.1)

Fourier Series

= For analysis of continuous-time periodic signals

» Express periodic signals wusing harmonically related
sinusoids with frequencies --- — Q,0, 0,2, - -- Where ) is
called the fundamental frequency or first harmonic, 20 is
called the second harmonic, 3¢ is called the third harmonic,
and so on

= In the frequency domain, 2 only takes discrete values at
_Q()aoag():zﬂ(b"'
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ap = T / z(t)e Ml dt ==
— p/Q
“=x(t) = Z e’ Fhot
k=—00
continuous and periodic discrete and aperiodic

Fig.2.1: Illustration of Fourier series
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A continuous-time function x(¢) is said to be periodic if there
exists 7, > 0 such that

z(t) = x(t +T)), t € (—00,0) (2.2)

The smallest 7, for which (2.2) holds is called the
fundamental period

The fundamental frequency is related to 7, as:

Every periodic function can be expanded into a Fourier series
as
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x(t) = Z ape’ Mt t € (—o00,0) (2.4)
k=—o00
where
T,/2
ap = 1 / x(t)e /Ml gt k=---—101,2,-- (2.5)
Iy
—T,/2

are called Fourier series coefficients

As X(j?) is characterized by {a;} , the Fourier series

coefficients in fact correspond to the frequency
representation of x(¢)

Generally, a; is complex and we can also use magnitude and
phase for its representation
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lar| = /(R{ar})* + (S{ar})? (2.6)

/(az) = tan"" (;{[ZS) (2.7)

and

Example 2.1
Find the Fourier series coefficients for x(¢) = cos(107t) + cos(207t)

It is clear that the fundamental frequency of z(t) is {2y = 107.
According to (2.3), the fundamental period is thus equal to
T, =27/ = 1/5, which is validated as follows:

1 1 1
X (t+ g> = COS (1071' (t+ 5)) + cos (207r (t+ g))
= cos(10mt + 27) + cos(207t + 4m)
= cos(107t) 4 cos(207t)
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With the use of Euler formulas:

eju+ e—ju
cos(u) =
2
and | |
Ju L —Ju
sin(u) = ‘ °
29

we can express z(t) as:

x(t) = cos(107mt) + cos(207t)
eIUt 4 =it 2%t 4 =72t
_|_
1 - 1 1 ’ 1
_ 02t | =it 2 it 4 2 2t
2 2 2 2

By inspection and using (2.4), wehavea s=a_1=a;=a,=1/2
while all other Fourier series coefficients are equal to zero
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Example 2.2
Find the Fourier series coefficients for
x(t) = 1 4 sin(Qot) + 2 cos(Qot) + cos(3Qt + 7/4).

With the use of Euler formulas, x(t) can be written as:

Sl?(t) — 1+ (1 + QL) )it + (1 _ QL) e I8kt 4+ %6jﬂ/463j90t 4+ %6_'jﬂ/4€_3'j9()t
J J
2 . 1 . 1 |
= %(1 — e (1 +j§) e+ 1+ (1 — j§> e’
2 .
+§(1 T j)e

Using (2.4), we have:
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and

H. C. So

N

A

k=-3
= —1
k=0
k=1
k=3
otherwise

1T (

4(&_3)

\/5 2 \/5 2
) T\
tan~! (—1) = —=
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Example 2.3

Find the Fourier series coefficients for x(¢), which is a periodic
continuous-time signal of fundamental period T and is a
pulse with a width of 27; in each period. Over the specific
period from —T7/2 to T/2, x(t) is:

L, —Iy<t<dy
x(t) = .
0, otherwise
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Fig.2.2: Periodic pulses

According to (2.3), the fundamental frequency is Q) =2xn/T.
Using (2.5), we get:

/2 T
1 . 1 .
QG = / x(t)e [ e
~T/2 T,
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For k = 0:

For k£ +# 0:
1o
| Tp : :
a = 1 [ oIkt gy L ikt _ sin(k$201p) _ sin (27kTy/T)
A ]kQOT Ty k‘ﬂ- k'ﬂ'

The reason of separating the cases of k=0and k£ #0is to
facilitate the computation of a«;, whose value is not
straightforwardly obtained from the general expression which
involves “0/0”. Nevertheless, using L'Hopital’s rule:

| dsin (2rkTy/T)
. sin (27kTy/T) . a5 . 21T/ T cos((2nkTy/T)) 2T,
lim = lim = lim = —
L—0 k L—0 dkm k—0 7 T

dk
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FORLAGEE-Lar 1 T ‘JL-ﬂ_'—l_rrrr_*-LJ"l llLIJ_I_“_I_LLH_rﬁ roee= il T — 16TO
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In summary, if a signal z(¢) is continuous in time and periodic,
we can write:

x(t) = Z ae’ M t € (—o0,00) (2.4)

The basic steps for finding the Fourier series coefficients are:

1. Determine the fundamental period 7, and fundamental
frequency ¢

2. Forall &, multiply z(t) by e=7%%!, then integrate with respect
to ¢ for one period, finally divide the result by 7,. Usually
we separate the calculation into two cases: k=0and k& # 0
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That is, {a;} correspond to the frequency domain
representation of x(¢) and we may write:

z(t) < X(JQ) or z(t) < ay (2.1)

where X(5Q), a function of frequency (, is characterized by

{ar}
Both z(¢) and X () represent the same signal: we observe

the former in time domain while the latter in frequency
domain.
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Fourier Transform

= For analysis of continuous-time aperiodic signals

= Defined on a continuous range of O

The Fourier transform of an aperiodic and continuous-time
signal z(¢) is:

X(jQ) = /:U(t)e_jmdt (2.8)

which is also called spectrum. The inverse transform is given
by

o0

x(t):%[X(jQ)ejmdQ (2.9)

Again, z(t) and X (jQ) represent the same signal
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time domain

frequency domain
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0 \ t
X(49Q2) = fx(t)e_jmdt ==

= x(t) =

6. @]

1

o

/ X (59)e’*dQ

continuous and aperiodic

continuous and aperiodic

Fig.2.3: Illustration of Fourier transform
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The delta function §(¢) has the following characteristics:

6(t)=0, t+#0 (2.10)
/5(t)dt:1 (2.11)

and -
f()o(t —to) = f(to)o(t — to) (2.12)

where f(t) is a continuous-time signal.

(2.10) and (2.11) indicate that §(¢) has a very large value or
impulse at t = 0. That is, §(¢) is not well defined at¢ =0

(2.12) is obtained by multiplying f(¢) by an impulse §(¢ — )
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6(t) as the building block of any continuous-time signal,
described by the sifting property:

2(t) = /OO 2(7)8(t — 7)dr (2.13)

That is, z(t) can be considered as an “infinite sum” of impulse

functions (multiplied by a zero width) at distinct times r and
each with amplitude z(7)

5(1)
1A

.
0 t
Fig.2.4: Representation of §(¢)
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The unit step function «(¢) has the form of:

I, t>0

u(t) = {o, . (2.14)

As there is a sudden change from O to 1 at¢ =0, «(0)is not
well defined

A u(t)

1

-
0 {
Fig. 2.5: Representation of u(¢)
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Example 2.4
Find the Fourier transform of z(¢) which is a rectangular pulse

of the form:

I, “Ty<t<dy
z(t) = .
0, otherwise

Note that the signal is of finite length and corresponds to one
period of the periodic function in Example 2.3. Applying (2.8)
on z(¢) yields:
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Define the sinc function as:

sin(mu)

sinc(u) =
Tu

It is seen that X (;Q) is a scaled sinc function because

21217 Q1
X(]Q) — Slﬂg(z O) — QT()SiHC (—O)

:
A :
boa) o, 1XG9)
1 \
> PN T\ >
B N N N
T, 0 Ty t Ty O T 9

Fig.2.6: Fourier transform pair for rectangular pulse of z(¢)
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Example 2.5
Find the inverse Fourier transform of X (5Q) which is a

rectangular pulse of the form:

X(jQ) = I, =Wy < Q< W,
0, otherwise
Using (2.9), we get:
o0 W
x(t) — i / X(]Q)ethdQ _ 1 / e]QtdQ _ Sln(Wot)
o —Wa

H. C. So Page 24 Semester B 2024-2025



A
W()/?T/ .CL“(t)
| / \

—7T/W() W/WO

Fig.2.7: Fourier transform pair for rectangular pulse of X (;Q)

From Examples 2.4 and 2.5, we observe the duality property
of Fourier transform

Example 2.6
Find the Fourier transform of z(t) = e~ “u(t) with a > 0.

Employing the property of «(¢) in (2.14) and (2.8), we get:
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o0

. Cut i o] 1 a— 7¢)
X(iQ) = ate=J8% gy — (a+jt| _ _
(]) /6 e a—l—er 0 Py TP
0
Note that when t — o0, e — 0
1
X(Q)| =
X(9) = o=
and
RNAY
Z(X(5Q)) = —tan " | —
a
Z(X(542))
: A
1/a 4 X(59) T[2zzzmz————=-F-= R
V2/(2a) — | O\ '“—W/a
i i - __73/4___: 0
—a (O a Q0 )2 T

Fig.2.8: Magnitude and phase plots for 1/(a + Q)
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Example 2.7

Find the Fourier transform of the delta function z(¢) = 6(¢) .

Using (2.11) and (2.12) with f(t) = e 7 and t, = 0, we get:

o0 o0 o0

X(jQ) = / S(t)e M dt = / S(t)e 7 0dt = e~ 70 / S(t)dt = e 70 =1

Spectrum of §(¢) has unit amplitude at all frequencies

Based on §(¢), Fourier transform can be used to represent
continuous-time periodic signals. Consider

X(jQ) = 278(Q — Q) (2.15)
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QWT
-

0 () ()
Fig.2.9: Impulse in frequency domain

Taking the inverse Fourier transform of X (;Q2) and employing
Example 2.7, =z(¢)is computed as:

0.

x(t) = % / 216 (Q — Q)elHdQ = 7N (2.16)
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As a result, the Fourier transform pair is:
e/ s 25 (2 — () (2.17)
From (2.4) and (2.17), the Fourier transform pair for a

continuous-time periodic signal is:

Z ape’ "N Z 2magd (2 — k) (2.18)

k=—o00 k=—00

Example 2.8
Find the Fourier transform of x(¢)=>"7" _ §(t — kT) which is

called an impulse train.

Clearly, z(t) is a periodic signal with a period of 7. Using (2.5)
and Example 2.7, the Fourier series coefficients are:
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T/2

1 s 1
ajp — T / (S(t)e ijOtdt — ?

_T/2

with Q) = 27 /T. According to (2.18), the Fourier transform is:

, 7 — 21k =
XU =7 3 (Q—T) - 3 -k
x(t) X(59)
[ T[] HERE
- .
2T —T 0O T 27T t —QQU —Q(] () Q() QQ(] ()

Fig.2.10: Fourier transform pair for impulse train
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Fourier transform can be derived from Fourier series:

Consider z(¢) and z(¢):

} x(t)

0 t

L

A

(1)

_—_

T7/2 0

. /\ o

T/)2 Tt

Fig.2.11: Constructing z(¢) from z(t)

z(t) is constructed as a periodic version of x(t), with period T
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According to (2.5), the Fourier series coefficients of z(¢) are:

T/2
1

ar = 7 / (t)e Ml qy (2.19)

T2

where Q,=2x/T . Noting that z(¢)=z(¢) for |t|<T/2 and
x(t) =0 for|t| > T/2, (2.18) can be expressed as:

T/2 0
1 . 1 N
= / x(t)e Ml dt = T / x(t)e I dt (2.20)
—T/2 —00
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According to (2.8), we can express a, as:

1 :
ak:TX(ijO) (2.21)

The Fourier series expansion for z(t) is thus:
== 1 Lo - ik Qot
Bt)= Y =X (jkQ0)e’ ™ = — D QX (jEQ)e M (2.22)

k=—o00 k=—o00

Considering #(t) — z(t) as T — oo or y — 0 and QX (jkQy)e/ bt
as the area of a rectangle whose height is X (jkQ)e/**" and
width corresponds to the interval of [kQy, (k + 1)y, we obtain

o0

x(t) = lim Z(t) = lim — Z Qo X (KLY ) et = 21 /X(jQ)ethdQ(Z.Z?))

Qp—0 Qo—)O T T
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Area = X{jk e it O

(k +1)€2

k)

Fig. 2.12: Fourier transform from Fourier series
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Linear Time-Invariant (LTI) System

» Linearity: if (z((¢),y:(t)) and (x2(t), y»(t)) are two continuous-
time input-output pairs, then az(t) + bxs(t) — ay,(t) + byo(t)

 Time-Invariance: if z(t) — y(¢), then a(t —t)) — y(t — )

= Impulse response h(t) is continuous-time signal which is the
output of a continuous-time LTI system when the input is
the impulse §(¢), and it can indicate the system functionality

continuous-time
5(t) LTI system h(t)

Fig. 2.13: Continuous-time impulse response
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= The input-output relationship for a LTI system is
characterized by convolution:

y(t) = 2(t) @ h(t) = }Ox(T)h(t—T)de }Oh(T)x(t—T)dT (2.24)
where z(t), y(t) and h(t) are input, output and impulse
response, respectively

Example 2.9
Determine the function of a LTI continuous-time system if its
impulse response is h(t) = 0.1[u(t) — u(t — 10)).

Using (2.24), we get:
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0.0

y(t) = h(t) ® z(t) = / h(r)a(t — 7)dr

= 0.1 /OO u(7T) —u(r — 10)|x(t — 7)dT
| 10
=1 o x(t — 7)dT

Note that [u(7) — u(7 — 10)] is a rectangular pulse for r € (0, 10).

The system computes average input value from the current
time minus 10 to current time.

= Convolution in time domain corresponds to multiplication in
Fourier transform domain, i.e.,

2(t) @ h(t) & X(GQ)VH(jQ) (2.25)
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Proof:

The Fourier transform of z(¢) ® h(t) is

Y () = / / h(t — 7)e Y drdt

/ / h(t —T)e ﬂ'mdt] dr
:/ x(7) / h(u)ejﬂ(““)du] dr, u=t—r

| jom st [ e
= X(jQ)- H(jQ) (2.26)

This suggests that y(¢) can be computed from inverse Fourier
transform of X (;Q)H ().
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