Sampling and Reconstruction of Analog Signals

Chapter Intended Learning Outcomes:

(i) Ability to convert an analog signal to a discrete-time
sequence via sampling

(ii) Ability to construct an analog signal from a discrete-time
sequence

(iii) Understanding the conditions when a sampled signal can
uniquely represent its analog counterpart
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Sampling

» Process of converting a continuous-time signal z(¢) into a
discrete-time sequence x[n|

= z[n| IS obtained by extracting z(t) every T's where T is
known as the sampling period or interval

sample at
© L el =)
x(t xin| = x(nl
- O\C L
analog discrete-time
signal signal

Fig.4.1: Conversion of analog signal to discrete-time sequence
= Relationship between z(t) and z[n] is:

zln] =z(t)|i=pr = x(nT), n=---—1,0,1,2,-- (4.1)
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= Conceptually, conversion of x(t) to z[n] is achieved by a

continuous-time to discrete-time (CD) converter:
CD converter

z(t) x,(t) | Impulse train | | z[r]
— to sequence >
conversion

Fig.4.2: Block diagram of CD converter
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= A fundamental question is whether x[n] can uniquely
represent z(t) or if we can use z[n] to reconstruct x(¢)

Fig.4.3: Different analog signals map to same sequence
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But, the answer is yes when:

(1) z(t) is bandlimited such that its Fourier transform
X(jQ) =0 for | > Q, where (), is called the bandwidth

(2) Sampling period T is sufficiently small

Example 4.1

The continuous-time signal z(t) = cos(200xt) is used as the
input for a CD converter with the sampling period 1/300 s.
Determine the resultant discrete-time signal z[n] .

According to (4.1), z[n]is

2
z\n] = x(nT) = cos(200n7T) = cos (%n) , n=---—1,0,1,2,---

The frequency in z(t) is 2007 rads™" while that of z[n] is 27/3
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Frequency Domain Representation of Sampled Signal

In the time domain, x4(¢) is obtained by multiplying z(¢) by the
impulse train i(¢t) =>""__ 6(t — kT):

ro(t)=x(t) Y  O(t—kT)= i x[k]o(t —kT)  (4.2)
with the use of (2.12)

Let the sampling frequency in radian be Q,=2x/T (or
Fo=1/T =Q,/(2r) in Hz). From Example 2.8:

1(5Q) = Q, i 5(Q — kQ,) (4.3)

k=—o00
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Using multiplication property of Fourier transform:

ni(t) - mat) © 5-Xa(0) © Xa(j2) = / X, () Xo(j(0 = 7))dr(4.4)

where the convolution operation corresponds to continuous-
time signals

Using (4.2)-(4.4) and properties of §(¢), X,(jQ) is
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k=—o00

_ % (QS Z O(T — st)) X(j(2—7))dr

—00

o0

- % > (/ X(G(Q—71)(r — kQS)dT)

k=—00 \ 5

= — ) X(j(Q— kD) (4.5)

whichis the sum of infinite copies of X (;$2) scaled by 1/T
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When €2, is chosen sufficiently large such that all copies of
X (/T do not overlap, that is, Q, — ) >, or Q, > 20, we

can get X (j) from X, ()

1 <jsz>
- 1
I(5) _Q. 2. 0
Q. A
T T Qb Q _Q
! >
_Q. 0 Q. 20, O

Fig.4.4: X,(5Q) = X () ® I(j9Q) for sufficiently large ¢,
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When (), is not chosen sufficiently large such that Q, < 2Q,,
copies of X (5Q)/T overlap, we cannot get X(jQ) from X,(jQ),
which is referred to aliasing

| X6

X(792)
> 1
— 0 : \AIA N NN/
I Q | //\\ | //\\ //\\ | //\\ | //\\ | //\\ | .
(7€) —20, —Q, 0\ Q, 20, 30, 4Q, O
(), 4
SRR
! ! >

00, —0, 0 Q. 20, 30, 40,0
Fig.4.5: X,(Q) = X(jQ) ® I(j2) when Q, is not large enough
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Nyquist Sampling Theorem (1928)

Let z(¢) be a bandlimited continuous-time signal with
X(jQ) =0, |9 > (4.6)

Then z(¢) is uniquely determined by its samples z[n] = z(nT),
n=---—1012--- if

27
QS_T > 200, (47)

The bandwidth €, is also known as the Nyquist frequency
while 22, is called the Nyquist rate and €2, must exceed it in
order to avoid aliasing
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Application fo=/(27) fs = Q./(2)
Biomedical < 500 Hz 1 kHz
Telephone speech |« 4 kHz 8 kHz
Music <20 kHz [44.1 kHz
Ultrasonic < 100 kHz 1250 kHz
Radar < 100 MHz [200 MHz

Table 4.1: Typical bandwidths and sampling frequencies in
signal processing applications

Example 4.2
Determine the Nyquist frequency and Nyquist rate for the
continuous-time signal z(¢) which has the form of:

x(t) = 1 4 sin(20007t) + cos(40007t)

The frequencies are 0, 2000 and 4000r. The Nyquist frequency
is 40007 rads™! and the Nyquist rate is 80007 rads™’
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/-

20, O
& Q.-
H(j9)
I Q< Q<O —Q
¥ >
—Q. 0 9 0
Fig.4.6: Multi

X,(jQ)

—<,

0

plying X:(jQ) and H(j) to recover X (512)

In frequency domain, we multiply X,(jQ) by H(;Q) with
amplitude T and bandwidth . with Q, < Q. <Q,—Q,, to
obtain X,(592), and it corresponds to z,(t) = z4(t) ® h(t)
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Reconstruction

» Process of transforming x[n| back to x(¢) via discrete-time to

continuous-time (DC) converter
DC converter

z[n] sequence to | (¢) x,. (1)
+ impulse train —— H(5Q) >
conversion

Fig.4.7: Block diagram of DC converter

From Fig.4.6, H(;))is
. T, —0Q.<Q<.
H(j8) = | (4.8)
0, otherwise

where ), < Q. < Q, — Q,, Which is a lowpass filter
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For simplicity, we set (2. as the average of 2, and (Q2, — Q):
Qc = — == (49)

To get h(t), we take inverse Fourier transform of H(jQ2) and
use Example 2.5:

00 /T
. - 1 - T'sin(nt/T
hit) = — | H(jQ)eMdOQ = — [ Tl Q) — sin(t/T')
2 2m it
- —7/T
ne ( ; (4.10)
= SIC | — .
T

where sinc(u) = sin(mu) /(mu)

H. C. So Page 15 Semester B 2024-2025



Using (2.24), (4.2) and (2.11)-(2.12), z,(t) is:

(1)

which holds for all
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The interpolation formula can be verified at ¢t = nT':

r.(nT) = Z x|klsinc (n — k) (4.12)
k=—o00
It is easy to see that
 sin((n — k)m)

sinc (n — k) =

=0, n#k (4.13)

(n — k)m
For n = k&, we use L'Hopital’s rule to obtain:
. d sin (mm)
sinc(0) = lim Sin (m) = lim —dm  _ iy T cos{m) =1(4.14)
m—0 mi m—0 dmm m—+0
dm
Substituting (4.13)-(4.14) into (4.12) yields:
r,.(nT) = z[n] = x(nT) (4.15)

which aligns with z,.(¢t) = x(t)
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Example 4.3
Given a discrete-time sequence z[n] =x(nT). Generate its

time-delayed version y[n] which has the form of
yln| = x(nT — A)

where A # mT > 0 and m is a positive integer. Applying (4.11)
with ¢t = nT — A:

yln] = (nT — A) = i z[k]sinc ('”’T — ’;T - A)

k=—o00

By employing a change of variable of | = n — &:

y[n] = i x[n — [Jsinc (ZTT A)

[=—00
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Note that when A =mT, the time-shifted signal is simply
obtained by shifting the sequence z[n] by m samples:

yln] = x(nT — mT) = xn — m|

Sampling and Reconstruction in Digital Signal Processing

digital signal
processor

» DC converter —»
y[n] y(t)

——»  CD converter
(1) z[n]

Fig.4.8: Ideal digital processing of analog signa

= CD converter produces a sequence z[n] from z(t)
= x[n] is processed in discrete-time domain to give y[n|
= DC converter creates y(t) from y[n| according to (4.11):

y(t) = Z y[k]sinc (t _TkT) (4.16)

k=—o0
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anti-aliasing analog-to-digital digital signal digital-to-analog

» » » -
> Ll Ll Lol

2(t) filter (1) converter 2[n] processor yn converter y(t)

Fig.4.9: Practical digital processing of analog signal

= 2(t) may not be precisely bandlimited = a lowpass filter or
anti-aliasing filter is needed to process x(¢)
= [deal CD converter is approximated by AD converter
= Not practical to generate §(¢)
= AD converter introduces quantization error
» J[deal DC converter is approximated by DA converter
because ideal reconstruction of (4.16) is impossible
= Not practical to perform infinite summation
= Not practical to have future data
» x[n] and y[n] are quantized signals
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Example 4.4
Suppose a continuous-time signal z(t) = cos(£2t) is sampled at

a sampling frequency of 1000Hz to produce z[n]:

mn

x|n| = cos (I)

Determine 2 possible positive values of Q, say, 2; and (..
Discuss if cos(Qt) or cos(€:t) will be obtained when passing z[n|

through the DC converter.
According to (4.1) with T'=1/1000 s:

™ Qon

() st =i = (2

(2, is easily computed as:

™m O 10007

— = =
4 1000 :
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(), can be obtained by noting the periodicity of a sinusoid:

™ ™ 91N (omn
COS (—) — COS (— + 2n7r) — cos | —— | = cos
4 4 4 1000

As a result, we have:

Orn  (bn 90007
— = — 5 = = 22507
4 1000
This is illustrated using the MATLAB code:
01=250*p1; $first frequency
02=2250*p1; $second frequency

Ts=1/100000; $successive sample separation is 0.01T
t=0:Ts:0.02; %Sobservation interval

xX1l=cos (Ol.*t); $tone from first frequency
x2=cos (02.*t); $tone from second frequency

There are 2001 samples in 0.02s and interpolating the
successive points based on plot yields good approximations
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Fig.4.10: Discrete-time sinusoid
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Fig.4.11: Continuous-time sinusoids
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Passing z[n] through the DC converter only produces cos(t)
but not cos(St)

The Nyquist frequency of cos(,t) is 22507 rads™* and hence the
sampling frequency without aliasing is Q, > 45007

Given F,=1000 Hz or Q,=2000r rads ', cos({t) does not
correspond to z[n]

We can recover z,.(t) = cos(§2,t) because the Nyquist frequency
and Nyquist rate for cos(Qit) are 2507 rads™' and 5007 rads ™

Based on (4.11), z,.(t) = cos(1t) is:
30

o i i (t —TkT> ~ 3 alksinc (t _TkT)

k=—o00 =—10

with 7= 1/1000 s
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The MATLAB code for reconstructing cos(Q4t) is:

n=-10:30; sadd 20 past and future samples
x=cos (pi.*n./4);

T=1/1000; $sampling interval is 1/1000
for 1=1:2000 Sobserved interval 1s [0,0.02]

t=(1-1)*T/100; $successive sample separation is 0.01T
h=sinc ((t-n.*T)./T);

Xr(l)=x*h.'; %approximate 1interpolation of (4.11)
end

We compute 2000 samples of z.(t) in ¢t € [0,0.02]s

The value of each z,.(t) at time t is approximated as x*h.'
where the sinc vector is updated for each computation

The MATLAB program is provided as ex4 4.m
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Fig.4.12: Reconstructed continuous-time sinusoid
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Example 4.5
Play the sound for a discrete-time tone using MATLAB. The

frequency of the corresponding analog signal is 440 Hz which
corresponds to the A note in the American Standard pitch.
The sampling frequency is 8000 Hz and the signal has a
duration of 0.5 s.

The MATLAB code is

A=sin (2*pi*440*(0:1/8000:0.5)) ;%discrete-time A
sound (A, 8000) ; $DA conversion and play

Note that sampling frequency in Hz is assumed for sound.
The frequencies of notes B, C#, D, E and F# are 493.88 Hz,
554.37 Hz, 587.33 Hz, 659.26 Hz and 739.99 Hz,
respectively. You can easily produce a piece of music with
notes: A, A, E, E, F#, F#, E, E, D, D, C#, C#, B, B, A, A.
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