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Sparse Approximation and Applications 
 
 

Chapter Intended Learning Outcomes: 
 
(i) Realize that many real-world signals can be sparse when 

represented in another domain 
 

(ii) Understand the importance of sparse modeling 
  

(iii) Able to solve the sparse approximation problem 
 
(iv) Able to apply sparse approximation in real-world 

applications 
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Real-World Sparse Signal Examples 
 

A signal is sparse if most of its coefficients are 
(approximately) zero. 
 
The impulse response of an echo-path in a telephone 
network, which is a time-domain function, is sparse, because 
it only appears in an unknown short duration. 
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Recall the impulse response is the output  of a discrete-
time linear time-invariant (LTI) system with input being an 
impulse function : 
 

 
 

discrete-time 
LTI system

 
 
Suppose  is of length , i.e., nonzero for , 
and output  with input  is represented via convolution:  
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Another similar example regarding sparsity is multipath 
channel in wireless communications: 
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Apparently, this impulse response  is also sparse because 
it is nonzero only at the time indices 5, 24, 45, 70, and 95. 
 
If the source signal is , then the resultant signal due to 
the channel is: 
 

 
 
where we clearly see that there are 5 multipaths. If we have 
the input  and output , then the impulse response  
can be computed. 
 
Nevertheless, sparsity may not be directly observed from the 
original data but via a transformation. 
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Consider a simple sinusoidal signal: 
 

 

 

 
 

 

Clearly, it is not sparse in the time domain, but it is sparse if 
we view the signal in the frequency domain. 
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A speech segment in the time domain also becomes sparse 
when viewing in the frequency domain: 
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If we convert an image matrix to a vector, and then perform 
discrete cosine transform (DCT), we can find that the DCT 
coefficients are sparse, i.e., many coefficients can be 
approximated as 0. The DCT transform of  is: 
 

 

 

where 
 

 

 
It looks like the discrete Fourier transform (DFT) with only 
keeping the cosine components and ignoring the sine 
components, and is a real-valued transform. 
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Note that direct transforming the matrix with 2D-DCT would 
be more appropriate but it is easier to use the 1D transform 
as illustration.  
 
Consider vectorizing the gray-scale ducky image  
into a vector  

 
>> img = imread('Gray_Ducky.jpg'); 
gray = im2double(img); 
duck_vec=gray(:); 
duck_dct=dct(duck_vec); 
plot(duck_dct) 
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Another example of a 512×512 pixel image:  

 
Arranging the magnitudes of the DCT coefficients in 
descending order and logarithmic scale, it is found that more 
than 95% of the total energy is contributed by only 5% of 
the largest components. 
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Advantages of Sparse Signal Representation 
 
We can utilize the sparse information to achieve efficient 
channel or impulse response estimation, e.g., in echo 
cancellation in video conferencing where we want to remove 
far-end signal due to echo interfering with near-end signal. 
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The source signal at the far-end, denoted by , is known. 
  
Suppose we know that the maximum length of the echo 
impulse response  is . We can use a vector 

 to model the unknown echo channel. 
 
The echo canceller output and far-end response are then: 
 

  and   

 
Let  be the signal to be sent out. It is: 
 

 
 
Clearly, if , the echo can be cancelled with . 
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Suppose we have  measurements for both  and . 
The weights can be obtained by minimizing the least squares 
(LS) cost function:  
 

 

 
Viewing  as a linear regression model: 
 

 
 
We can construct a matrix  with rows  yielding 
 

 
 
On the other hand, gradient descent can be used as well. 
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However, the complexity of LS solution will be high if  is 
very large. 
 
While the convergence rate of the gradient descent can be 
very slow. 
 
To increase the efficiency, a better formulation is to utilize 
the a priori sparsity information: 
 

 
 
where we assume that the maximum number of nonzero 
components of , namely, , is known. 
 
Basically, the task here is to find a sparse vector   such that 

. 
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Similarly, the sparse linear regression problem for multipath 
channel estimation in wireless communications means 
finding a sparse vector   such that  where  and  re 
constructed from the output  and input , respectively,  
 
We expect there are only 5 nonzero coefficients for the above 
example. 
 
In the above examples, we may be able to collect  
measurements where  is the length of vector to be 
estimated. 
 
In fact, even when , i.e., the number of equations is 
less than the number of unknowns, it is possible to solve it 
because of the known sparse information. This corresponds 
to applicability in many large-scale scenarios particularly 
real-time processing is required.  
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Consider the problem of identifying network performance 
bottlenecks, e.g., network links responsible for unusually 
high end-to-end delays.  
 
In a large-scale system, monitoring every network link is 
costly or even infeasible, and real-time diagnosis will not be 
allowed. 
 
Alternatively, we can collect a relatively small number of 
overall performance measures using end-to-end test 
measurements or probes, and then deduce the states of 
individual components. 
 
In practice, there are only a few malfunctioning links 
responsible for transaction delays, while the remaining links 
function properly, i.e., the problematic links are considered 
sparse among all links.  
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Routing matrix  where  if the end-to-end test 
 goes through the link , and 0 otherwise. 

 
Unobserved vector of link delays  is well approximated 
by a sparse vector, where only a few entries have relatively 
large magnitudes, as compared to the rest. 
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Observed vector of end-to-end transaction delays  
 
We can construct: 
 

 

 
 
where  is assumed sparse and  is observation 
noise including the nonzero effect of normal links.  
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Note that without any constraints on , we cannot obtain a 
unique solution as it is an underdetermined system of linear 
equations because number of unknowns is more than the 
number of equations. 
 
With sparsity constraint, we can get a unique solution for . 
 
The nonzero entries correspond to the bottlenecks or 
extremely slow links and in practice  is desired. 
 
In the field of neuroimaging analysis, e.g., medical imaging, 
one key objective is to discover voxels (brain areas) that are 
most relevant to a given task, stimulus, or mental state, 
using functional magnetic resonance imaging (fMRI). 
 
The signal model can also be cast as: 
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Given  and , our task is to find a sparse . 
 
The small number of the nonzero entries in  correspond to 
the most relevant voxels.  
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Sparse modeling can also be used to increase the efficiency 
of data compression with the use of transform.  
 

Recall the basic principle of data compression: transform the 
original signal into another domain such that it looks sparse, 
then store only the large-magnitude components; when 
“playing back”, perform inverse transform on the 
transformed data with setting non-dominant components 0. 
 
Example 1 
Perform data compression of a discrete-time finite-duration 
sinusoid expressed as follows: 
 

 
 

Since it contains only two frequencies: , it is 
appropriate to transform  to frequency domain via 
discrete Fourier transform (DFT): 
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The signal transformation can be viewed in matrix form: 
 

 
where  

 
 

 
 

 

 

is the DFT matrix. 
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For illustration, we set : 
>> x=cos(0.125.*pi.*[0:63]+1); 
>> stem([0:63],x) 
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In frequency domain, the signal is complex, and we plot the 
magnitude plot: 
>> stem([0:63],abs(fft(x))); 

 

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60



H. C. So                                                                                  Page 26                                         Semester A 2021/22 

To perform compression for the sinusoid, we just store two 
DFT coefficients,  and , 
which correspond to the two frequency components. 
 
Note that in this example, the other DFT coefficients are 0, 
indicating lossless compression. 
 
Similarly, for an image, we can perform DCT, and keep only 
large-magnitude DCT coefficients and set remaining zero. 
 
Based on the concept of sparse modeling, we can perform 
compression via finding a sparse  given  and : 
 

 
 

where  is inverse transform matrix. We can skip performing 
whole transform which computes unused small coefficients, 
and saves complexity when the length of  is large. 



H. C. So                                                                                  Page 27                                         Semester A 2021/22 

Approaches for Sparse Approximation 
 
In the noise-free scenario, the sparse approximation problem 
is formulated as: 
 

                 (1) 
 
where  is measurement vector,  is known 
matrix, and  is vector to be estimated with minimum 
number of nonzero entries. 
 
However, minimizing the -norm under the linear constraints 
is a task of combinatorial nature.  
 
That is, we need to try all valid combinations of zeros in  
and identify the one with smallest number of nonzero 
elements, which is infeasible for large  as the search 
complexity is exponentially dependent of . 
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Example 2 
Given  

   and   

 
Find the sparsest vector  such that . 
 
Writing  as the sum of 6 vectors: 
 

 
 
where  and . Basically we want to 
find the solution which can remove the column vectors as 
many as possible. 
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Note that without any constraint, there will be infinite 
solutions for .  
 
We may start from picking up only 1 column vector and there 
are 5 combinations to see if  can be satisfied. 
 
If not, we pick 2 column vectors, there are  
combinations to check. 
 
If still not, we pick 3 column vectors, and so on, until  
is satisfied. 
 
In doing so, we find: 
 

 
 
It is clear that this approach is not feasible when the length 
of  is very long. 
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A feasible approach to solve (1) is to use greedy pursuit, 
which is built upon a series of locally optimal single-term 
updates. 
 
Matching pursuit (MP) is one of the representative greedy 
algorithms and utilizes correlation to find the dominant 
column of  sequentially, That is, it is an iterative procedure 
and update the solution until a stopping criterion is reached. 
 
Given  and ,  is determined 
using MP as follows. 
 
We start with residual  and , and it is 
desired that after  iterations,  and . 
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At the 1st iteration, we determine the column index  of  
that has maximal correlation with the residual: 
 

 
 

Then the coefficient of  can be estimated via LS: 
 

 
 

 
 

Then we update the residual: 
 

 
and the solution: 

 
 

which contains only one nonzero entry  at the th position. 
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Similarly, at the 2nd iteration, we perform: 
 

 

 

 

and 
 

 
 
with updated solution . 
 
This procedure is then repeated until a stopping criterion is 
met.  
 
Note that the MP allows selecting the same column index 
more than once. 
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MP Algorithm 
Input: ,  
  Initialization: Set , , , index set  
  Repeat 
   

  Select the index  via  

 
  Augment the index set  
  Update the solution: 

 
 

  Update the residual: 
 

Until a stopping criterion is reached 
Output: The solution is  
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Example 3 
Find sparse vector  in Example 2 using MP.  
 
>> A=[8 8 8 8 8 8; 
    8 -8 8 -8 8 -8; 
    3 -3 -6 6 10 -10; 

    3 3 6 6 10 10]; 
>> y=[40 8 24 36].' 
 

>> y.'*A(:,1:6)./[norm(A(:,1)) norm(A(:,2)) norm(A(:,3)) 
norm(A(:,4)) norm(A(:,5)) norm(A(:,6))] 
   46.6770   24.1661   32.2441   43.5578   54.3323   20.7611 
 

>> y.'*A(:,5)/norm(A(:,5))^2 
   3.0000 
 
>> r=y- y.'*A(:,5)/norm(A(:,5))^2* A(:,5); 
 
At 1st iteration, we have ,  and : 
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>> r.'*A(:,1:6)./[norm(A(:,1)) norm(A(:,2)) norm(A(:,3)) 
norm(A(:,4)) norm(A(:,5)) norm(A(:,6))] 
    0.0000   24.1661    5.0912   18.1019    0.0000   20.7611 

 
>> r.'*A(:,2)/norm(A(:,2))^2 
   2.0000 
 
>> r=r- r.'*A(:,2)/norm(A(:,2))^2* A(:,2) 

 
At 2nd iteration, we have ,  and : 
 

 

 
It can be checked that the residual , we may terminate 
the MP and take  as the solution. 
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Orthogonal MP (OMP) is an improvement to MP such that a 
column will be at most selected once. 
 
At the 1st iteration, we determine the column index  of  
that is most correlated with the residual: 
 

,   

 
Then the coefficient of  can be estimated via LS: 
 

 

 
 

Then we update the residual: 
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At the 2nd iteration, we perform: 
 

,     

 
Let . We update  together via LS: 
 

 
 

Then we update the residual: 
 

 
 
Note that  is excluded for selection and  is recomputed. 
 
This procedure is then repeated until a stopping criterion is 
met.  
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As an illustration in 3D case, the residual vector is 
orthogonal to the subspace spanned by the currently 
available set of active columns,  and . 
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OMP Algorithm 
Input: ,  
  Initialization: Set , , , index set  
  Repeat 
   
  Select the index  via  
 

  Augment the index set     

  Assign  with     

  Update the solution: 
    

  Update the residual: 
 

 

Until a stopping criterion is reached 
Output: ,  
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Example 4 
Find sparse vector  in Example 2 using OMP.  
 

Similar to MP, at 1st iteration, we have ,  and 
: 

 

>> r.'*A(:,[1:4,6])./[norm(A(:,1)) norm(A(:,2)) norm(A(:,3)) 
norm(A(:,4)) norm(A(:,6))] 
    0.0000   24.1661    5.0912   18.1019   20.7611 
 
>> Ai=[(A(:,5)) (A(:,2))]; 
>> x=inv(Ai.'*Ai)*Ai.'*y 
   3 
   2 
      
>> r=y- Ai*x 
 

It can be checked that the residual , we may terminate 
the OMP and use  and  to produce the solution: 
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Example 5 
Suppose we have a signal: 
 

 
 

for  with . Discuss how to perform 
compression using MP and OMP. 

 

-10

-5

0

5

10

15

20

0 10 20 30 40 50 60



H. C. So                                                                                  Page 42                                         Semester A 2021/22 

It comprises the sum of a sinusoid and spiky-like pulses. 
 
To compress the sinusoid, we choose inverse DFT (IDFT) and 
its matrix is given by: 
 

 

 
As the spikes are already sparse in the time domain, we 
choose a  identity matrix  for its sparse 
representation. 
 
Hence the matrix  is: 
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From Example 1, we know that the sinusoid can be 
represented as 2 DFT coefficients in the frequency domain. 
 

As a result, we expect 5 nonzero entries in this domain at the 
4th, 22nd, 43rd, 68th (4+64), 124th (60+64) positions.  
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The MP and OMP are terminated when  is reached. 
 

If the number of nonzero entries is known, we can also set 
 as the stopping criterion. 

 

MP and OMP may not necessarily provide the global optimum 
solution because they perform optimization in a local manner. 
In fact, MP can only get a local solution. 
 

It is only guaranteed that , i.e., the residual 
vector decreases at every iteration step. 
 

OMP and MP can also be used for the noisy model : 
 

                               (2) 
 

and  cannot reach 0 because of the noise component  
 

OMP generally performs better than MP. 
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Although OMP and MP can deal with (1) and (2), the global 
solution is not guaranteed. 
 

Another approach which can ensure a global solution is to 
approximate the -norm using the nearest convex norm -
norm: 
 

                               (3) 
 

which is called basis pursuit de-noising (BPDN). Alternatively, 
we can express (3) as  regularization: 
 

                                 (4) 
 

or least absolute shrinkage and selection operator (LASSO): 
 

                         (5) 
 

That is, (3), (4) and (5) are equivalent for specific choices of 
,  and . 
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We deal with the unconstrained formulation (4). 
 

When , it becomes the standard LS: 
 

 
 

When , the solution is found in 
 

 
 

To get better insight, we consider  so that closed-
form solution can be obtained. 
 

Now we have: 
 

   and   
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Recall: 

 

 
When , we get: 
 

 
 
For , the solution is: 
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Combining the results yields 
 

                       (6) 

where  
 

 

 

Hence the  regularization can force some elements of  to 
zero if , indicating sparsity can be promoted. 
 
From (6), it is observed how  controls the sparsity: if it is 
large, then there are more zero entries, while if it is small, 
then there are less zero entries. 
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Example 6 
Suppose the LS solution of  with  is: 
 

 
 

Find the  regularization solution with . Compare the 
result with the  regularization. 
 

Using (6), the  regularization solution with  is: 
 

 
 

with 2 zero entries. When , the  regularization 
solution with  is: 
 

          (7) 
 

 
 

where the LS solution is scaled by  which is not sparse. 
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Example 7 
Suppose we have a signal: 
 

 
 

where  is an i.i.d. Gaussian noise with power of 0.25. 
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Discuss how to find its sparse approximation using  
regularization. 
 

Based on , we consider using the scaled IDFT matrix: 
 

 

 

The LS solution is shown to be 
 

 
 
Following the idea of (6), the sparse approximation is 
obtained via removing the entries with small magnitudes.  
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That is, we may just keep the 4th and 64th entries, which 
corresponds to the sinusoid as shown in Example 1. 
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However, when  is not orthogonal, we may not be able to 
obtain a closed-form solution.  
 

A simple solution is to use the gradient descent to find the 
solution in an iterative manner: 
 

 
 

Applying the chain rule, we have: 
 

 
 

Combining the results yields: 
 

 
or 
                                                            (7) 
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Example 8 
Consider a system of linear equations: 
 

 
 
where , ,  and . Given  and 

, the task is to find  which is a sparse vector. 
 

To validate (7), we first construct a sparse  with only 5 
nonzero entries: 
 
 4th  1.1640   5th -0.1140   33rd -0.1258 
 40th -0.5066   41st  0.9286 
 
Then we construct  where each element is an i.i.d. Gaussian 
variable with unit variance, and the noise-free  is then 
generated by . 



H. C. So                                                                                  Page 55                                         Semester A 2021/22 

Result of : 

 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20 25 30 35 40 45 50

Recovered signal

Original signal



H. C. So                                                                                  Page 56                                         Semester A 2021/22 

Result of noisy case when power of : 
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