Discrete Fourier Series & Discrete Fourier Transform

Chapter Intended Learning Outcomes

(i) Understanding the relationships between the =2
transform, discrete-time Fourier transform (DTFT), discrete
Fourier series (DFS) and discrete Fourier transform (DFT)

(i) Understanding the characteristics and properties of DFS
and DFT

(i) Ability to perform discrete-time signal conversion
between the time and frequency domains using DFS and
DFT and their inverse transforms
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Discrete Fourier Series

DTFT may not be practical for analyzing z[n| because X (e/*)

IS a function of the continuous frequency variable w and we
cannot use a digital computer to calculate a continuum of
functional values

DFS is a frequency analysis tool for periodic infinite-duration
discrete-time signals which is practical because it is discrete
In frequency

The DFS is derived from the Fourier series as follows.

Let z|n| be a periodic sequence with fundamental period N
where N iIs a positive integer. Analogous to (2.2), we have:

#[n] = Z[n + rN] (7.1)

for any integer value of r.
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Let x(¢) be the continuous-time counterpart of z[n|. According
to Fourier series expansion, z(t) is:

o0 0 .
J2mkt

x(t) = Z el ot — Z ape T (7.2)

k=—00 k=—o00

which has frequency components at =0, £20, - .
Substituting z(t) = 2Z|n|, T, = N and ¢t = n:

Tn] = Z ake% (7.3)

k=—00

Note that (7.3) is valid for discrete-time signals as only the
sample points of z(¢) are considered.

It is seen that zn] has frequency components at
w=0,+27r/N,+(27/N)(2),---, and the respective complex
exponentia|s are ej(QW/N(O))) eij@ﬂ/N(l))’ eij(Qﬂ/N(Q))j cen
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Nevertheless, there are only N distinct frequencies in z|n]
due to the periodicity of /2™ /N,

Without loss of generality, we select the following N distinct

complex exponentials, e/Z7/NO) iCr/N)) .. piCr/NIN=1) = gnd
thus the infinite summation in (7.3) Is reduced to:

Defining X[k]=Na, , k=0,1,---,N—1 , as the DFS
coefficients, the inverse DFS formula is given as:

X[kle v (7.5)
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The formula for converting z[n] to X[k] is derived as follows.

Multiplying both sides of (7.5) by e /") and summing
fromn=0ton=N —1:

N-1 ) N-1 /4 N . )
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Using the orthogonality identity of complex exponentials:

_Z 2l {1 Ek—r=mN, m 1s an Iinteger (7.7)

0. otherwise
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(7.6) is reduced to

Znle” v = X|r] (7.8)

which is also periodic with period N.

Let .‘
Wy =e v (7.9)
The DFS analysis and synthesis pair can be written as:
3 N-—1
X[kl =) z[n]Wwk (7.10)
n=>0
and
1 N-—1 .
i) = < X [k]W " (7.11)
k=0
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Example 7.1
Find the DFS coefficients of the periodic sequence z|n] with a

period of N =5. Plot the magnitudes and phases of X|k].
Within one period, z|n] has the form of:

. I, n=0,1,2
x[n]: 0. n=3,4

Using (7.10), we have
N—-1

XK =) Enwy"

n=>0

_ 0 k 2k
= Wo + W + W:
j2nk Jank

L +e™ 5 e
_j2xk 72wk _ j2xk
—e 5 (e +14+¢€ 5

2k 2k
e 5 |14+ 2cos T
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Similar to Example 6.2, we get:

i ok
X[K]| = |1 +2.cos (g)‘

The key MATLAB code for plotting DFS coefficients is

N=5;

x=[1 1 1 O O];

k=-N:2*N; %plot for 3 periods

Xm=abs(1+2.*cos(2*pi1.*k/N)) ;%magnitude computation

Xa=angle(exp(-2*j*pi1.*k/5) . *(1+2.*cos(2*pi1.-*k/N)));
%phase computation

and

The MATLAB program is provided as ex7_1.m.
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Fig.7.2: DFS plots
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Relationship with DTFT

Let x[n] be a finite-duration sequence which is extracted

from a periodic sequence Zz|n] of period N:
{i[n], 0<n<N-1
x|n] =

0,  otherwise

Recall (6.1), the DTFT of x[n]is:

o0

X(ejw) = Z :U[n]e_jwn

n=—~c6o

With the use of (7.12), (7.13) becomes
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Comparing the DFS and DTFT in (7.8) and (7.14), we have:

X[ = X (")) z0 (7.15)
That is, X[k] is equal to X(e/) sampled at N distinct
frequencies between w € |0,27] with a uniform frequency
spacing of 27 /N.

Samples of X (¢/*) or DTFT of a finite-duration sequence xz[n]

can be computed using the DFS of an infinite-duration
periodic sequence Z|n|, which is a periodic extension of z|n|.
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Relationship with z Transform

X(e’) is also related to z transform of z[n] according to
(5.8):

X(e¥) = X(2)] (7.16)

=W

Combining (7.15) and (7.16), X[k] is related to X(z) as:

~ 127k

Xkl=X(2)| 2+=X(eN) (7.17)

Pt N

That is, X[k] is equal to X(z) evaluated at N equally-spaced
points on the unit circle, namely, 1,e/?™/N ... @l2N=-D7/N

H. C. So Page 13 Semester B 2015-2016



&0

unit circle
1z| =1

z-plane

Fig.7.3: Relationship between X[k], X (/%) and X (z)

H. C. So Page 14 Semester B 2015-2016



Example 7.2
Determine the DTFT of a finite-duration sequence z[n|:

i = { L =0.12
| 0, otherwise

Then compare the results with those in Example 7.1.

Using (6.1), the DTFT of z|n| is computed as:

0.0

X(ejw) = Z :c[n]e_jw”

= 1_—; e IV 4 eI
= e M (e +1+e7¥)
= e “[1 + 2cos (w)]
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Suppose z|n| in Example 7.1 is modified as:

#[n] = I, n=0,1,2
10, n=3,4,---,9

Via appending 5 zeros in each period, now we have N = 10.

The MATLAB programs are provided as ex7_2.m, ex7_2 2.m
and ex7_2 3.m.
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Properties of DFS

1. Periodicity

If z[n] is a periodic sequence with period N, its DFS X[k] is
also periodic with period N:

#[n] = Z[n +rN] < X[k] = X[k + rN] (7.18)

where r Is any integer. The proof is obtained with the use of
(7.10) and W = ¢7>™ =1 as follows:

=
=

—1
Wy =D W

0 n
1

)WY = X[k] (7.19)

~

Xk +rNj

I
)

-

1

T

-

o~
I

-
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2. Linearity

Let (#[n], X1[k]) and (#.[n], X,[k]) be two DFS pairs with the
same period of N. We have:

Cli“l[’l’lj] + bﬁfz[’l’b] < a,Xl[k] + sz[k] (720)

3. Shift of Sequence
If 2[n] < X[k], then

Z[n —m) < Wi X[K] (7.21)

and N
Wy"a[n] < X[k — ] (7.22)

where N iIs the period while m and [ are any integers. Note
that (7.21) follows (6.10) by putting w = 27k/N and (7.22)
follows (6.11) via the substitution of wy, = 2xl/N.
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4. Duality
If 2[n] « X[k], then

X|n] <> Nz|—k] (7.23)
5. Symmetry
If 2[n] « X[k], then

7*[n] < X*[—K] (7.24)
and

7*[—n] < X*[k] (7.25)

Note that (7.24) corresponds to the DTFT conjugation
property in (6.14) while (7.25) is similar to the time
reversal property in (6.15).
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6. Periodic Convolution
Let (#1[n], X1[k]) and (i.[n], X,[k]) be two DFS pairs with the
same period of N. We have

N—1
1[n]@3s[n] = > @i[mlis[n —m] < Xi[k]Xo[k]  (7.26)

m=0

Analogous to (6.18), © denotes discrete-time convolution
within one period.

With the use of (7.11) and (7.21), the proof is given as
follows:

H. C. So Page 23 Semester B 2015-2016



= X[k Xo[k] (7.27)

To compute z[n]®y[n] where both z[n] and g[n] are of period N,
we indeed only need the samples withn=0,1,--- , N — 1.
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Let z[n] = 2[n|®y[n]. Expanding (7.26), we have:

zZIn] = z[0]g[n] + - + Z[N — 2]g[n — (N — 2)] + [N — 1]gn — (N — 1)](7.28)

For n =
z[0] = z[0]g[0] + - - - + T[N = 2Jg[0 — (N = 2)] + 2[N — 1]g[0 — (N — 1)]
= z[0lg[0] 4+ - -+ Z[N — 2]y[0 — (N — 2) + N]| + Z[N — 1]g[0 — (N — 1) + N]
= Z[0]g[0] + - - - + &[N — 2Jg[2] + [N — 1]g[1] (7.29)
Forn=1
z[1] = z[0]y[l] + -+ T[N = 2Jg[l = (N = 2)] + 2[N — 1]g[l — (N —1)]
= z[0ly[l]+---+ 2N =2]y[l = (N —2)+ N|+z[N — 1]y[l — (N — 1)+ N]
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A period of z[n| can be computed in matrix form as:

z|0] glol  gIN —=1] - gl2] gl z|0]
z[1] y[1] glo] - w3 g2 z1]
: — : : cee s e (7.31)
2N = 2] gIN =2 yIN =3 --- gl0] N —1] | | Z[N —2]
AN ] [gIN=1 gIN=2] gl glo] | [ 2N - 1]
Example 7.3

Given two periodic sequences Z|n] and y[n| with period 4:

and

Compute z[n] = z[n]@g[n].
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Using (7.31), zZ|n]is computed as:

- Z[0] (0] 93] g[2] g[1] | [ Z[0]
z[1 | _ 9] glo] 93] g2 | | 21
22 w2 gl1] glo] 93] | | z[2

Cz[3] ) Lwl3) gl2] glt] glo] | [ z[3]

(1432 [ 4 =
12143 -3 |10
13214 2 | | 4

4321 | —-1] 10 |

The square matrix can be determined using the MATLAB
command toeplitz([1,2,3,4],[1,4,3,2]). That is, we
only need to know its first row and first column.
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Periodic convolution can be utilized to compute convolution
of finite-duration sequences in (3.17) as follows.

Let z|n] and y[n| be finite-duration sequences with lengths M
and N, respectively, and z|n] = z[n| ® y|n] which has a length
of (M + N —1)

We append (N — 1) and (M — 1) zeros at the ends of xz[n] and
y|n] for constructing periodic z|n| and gy|n| where both are of
period (M + N — 1)

z[n] is then obtained from one period of z[n|®yn).

Example 7.4

Compute the convolution of z[n] and y[n] with the use of
periodic convolution. The lengths of z[n| and y[n] are 2 and 3
with z[0] = 2, z[1] = 3, y[0] =1, y|l] = —4 and y[2] = 5.
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The length of z[n|® y[n] is 4. As a result, we append two
zeros and one zero in x[n] and y|n|, respectively. According to
(7.31), the MATLAB code is:

toeplitz([1,-4,5,0],[1,0,5,-4]1)*[2;3;0;0]
which gives
2 -5 -2 15

Note that the command conv([2,3],[1,-4,5]) also
produces the same result.
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Discrete Fourier Transform

DFT is used for analyzing discrete-time finite-duration

sighals in the frequency domain

Let z|n] be a finite-duration sequence of length N such that
rin] =0 outside 0 < n < N —1. The DFT pair of z[n|is:

( N-1
X[k = § 2 z[n]Wy', 0< k< N —1 (7.32)
L0, otherwise
and
( 1 N-1
— ) XKWy 0<n<N-1
rfn) = § N 2 kW™, 0= n < (7.33)
L 0, otherwise
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If we extend z|n| to a periodic sequence z|n] with period N,
the DFS pair for z[n]is given by (7.10)-(7.11). Comparing

(7.32) and (7.10), X|k]=Xk]for 0 <k <N —1. As a result,
DFT and DFS are equivalent within the interval of [0, N — 1]

That is, we just extract one period of #[n] and X[k] to
construct (7.32) and (7.33).

As a result, the DFT pair is not well theoretically justified
and we cannot apply (7.32) to produce (7.33) or vice versa
as in DFS, DTFT and Fourier transform.
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Example 7.5
Find the DFT coefficients of a finite-duration sequence z|n

which has the form of

i = { L =0.12
| 0, otherwise

Using (7.32) and Example 7.1 with N = 3, we have:

2
XK =) a[p]Wy' =Wy + Wy + W3

n=>0

_jork 21k
= € 3 [1+2COS (T)]

(3, k=0
~ 10, k=1,2
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Together with X|k| whose index is outside the interval of
0 <k <2, we finally have:

3, k=20
0, otherwise

X[k] = {

If the length of z[n| is considered as N =5 such that
z[3] = z|4] = 0, then we obtain:

N-1
XK = ap]Wy' =W+ W+ w2
n=0
_j2mk 2k
) e 5 |14 2cos = , k=0,1,---.4
0, otherwise
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The MATLAB command for DFT computation is fft. The
MATLAB code to produce magnitudes and phases of X|k]| is:

N=5;

x=[1 11 0 0]; %append 2 zeros
subplot(2,1,1);

stem(JO:N-1],abs(fft(x))); %plot magnitude response
title("Magnitude Response®);

subplot(2,1,2);

stem(JO:N-1],angle(fft(x)));%plot phase response
title("Phase Response™);

According to Example 7.2 and the relationship between DFT
and DFS, the DFT will approach the DTFT when we append
infinite zeros at the end of z|n|

The MATLAB program is provided as ex7_5.m.
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Example 7.6
Given a discrete-time finite-duration sinusoid:

x[n] = 2cos(0.7mn + 1), n=0,1,---,20
Estimate the tone frequency using DFT.

Consider the continuous-time case first. According to
(2.16), Fourier transform pair for a complex tone of
frequency () Is:

e/t < 26 (92 — )

That is, )y can be found by locating the peak of the Fourier
transform. Moreover, a real-valued tone cos(Qt) iS:

eJ kot 4+ o4t
cos(Qpt) = 5
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From the Fourier transform of cos({t), 2y and -, are located
from the two impulses.

Analogously, there will be two peaks which correspond to
frequencies 0.77 and —0.7r in the DFT for z|n|.

The MATLAB code is

N=21; %number of samples i1s 21
A=2; %tone amplitude 1s 2
w=0.7*pI; %frequency 1s O.7*pi

p=1; %phase 1s 1

n=0:N-1; %define a vector of size N
x=A*cos(W*n+p); %hgenerate tone

X=Fft(x); %compute DFT
subplot(2,1,1);

stem(n,abs(X)); %plot magnitude response
subplot(2,1,2);

stem(n,angle(X)); %plot phase response
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1.0806

0.9382+0.9931i
-0.4524+4 10681
3.8608-2.13161
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-0.4524-4_.10681
0.9382-0.99311

RPOO WO O
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.0243-0.61301

1.0243+0.61301
0.4409+2.31591
6.5451-7.20431
3.3521+0.57181
-6.7461-15.17921
0.7756-1.50271
1.0674-0.29391

Interestingly, we observe that R{X|[k]} = R{X|N —k|]} and
In fact, all real-valued sequences

possess these properties so that we only have to compute
around half of the DFT coefficients.

LXK} = —S{X[N — A]} .

As the DFT coefficients are complex-valued, we search the
frequency according to the magnitude plot.

H. C. So
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There are two peaks, one at k=7 and the other at £ =14
which correspond to w = 0.77 and w = —0.7xr, respectively.

From Example 7.2, it I1s clear that the index k refers to
w=2mk/N. As a result, an estimate of wy is:

A 2m -7
Wy = ~ 0.6667
21

To improve the accuracy, we append a large number of
zeros to x[n]. The MATLAB code for x[n| is now modified as:

X=[A*cos(w.*n+p) zeros(1,1980)];
where 1980 zeros are appended.

The MATLAB code is provided as ex7_6.m and ex7 6 _2.m.

H. C. So Page 41 Semester B 2015-2016



Magnitude Response
25 I I I

e
o u O
1 1 1

0 1 1
0 500 1000 1500 2000

Phase Response
4 I I I

-4 1 1 1
0 500 1000 1500 2000

Fig.7.10: DFT plots for a real tone with zero padding
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The peak index is found to be k£ = 702 with N = 2001. Thus

27702
UJ —
" 9001

~ 0.70167

Example 7.7
Find the inverse DFT coefficients for X|k|] which has a length
of N =5 and has the form of

I, n=0,1,2
X[H_{O n=34

Plot z|n].

Using (7.33) and Example 7.5, we have:
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1 , 1 .
xmpzﬁ X%M@m:gUﬂHW%”+W?m
n=0
( 1 121 1 + 2 27T7’L O 1 4
—e b cos | — n = .
— < 5 5 Y 7 Y 7
| 0, otherwise

The main MATLAB code is:

N=5;

X=[1 1 1 0 0];
subplot(2,1,1);
stem([0:N-1],abs(iffe(X)));
subplot(2,1,2);
stem([0:N-17,angle(i FFt(X)));

The MATLAB program is provided as ex7_7.m.
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Properties of DFT

Since DFT pair is equal to DFS pair within [0, N — 1], their
properties will be identical if we take care of the values of
r|n] and X k] when the indices are outside the interval

1. Linearity

Let (zq|n], Xilk]) and (zy[n], Xs|k]) be two DFT pairs with the
same duration of N. We have:

axi|n| + bxs|n| <> aXi|k] + X[k (7.34)

Note that if z;|n] and xz,|n] are of different lengths, we can

properly append zero(s) to the shorter sequence to make
them with the same duration.
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2. Circular Shift of Sequence
If 2[n| <~ X|[k], then
z[(n —m) mod (N)] < Wi X[k] (7.35)

Note that In order to make sure that the resultant time
iIndex is within the interval of [0, N — 1], we need circular shift,

which is defined as
(n—m) mod (N)=n—m+r-N (7.36)
where the integer r I1s chosen such that

0<n—-—m+r-N<N-—-1 (7.37)
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Example 7.8
Determine z:|n] = z[(n — 2) mod (4)] where z|n] is of length 4
and has the form of:

x(n| = 4

as.

1[0l =z[(0—2) mod (4)] ==z2] =2, r=1
ri|l]=z[(1—-2) mod (4)]==[3] =4, r=1
12l =z[(2—2) mod (4)]==z[0]=1, r=0
r13] =z[(3—2) mod (4)] =z[1]=3, r=0
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3. Duality
If [n] < X[k], then

X[n] ¢ Nz[(—=k) mod (N)] (7.38)
4. Symmetry
If [n] < X[k], then

r*[n] < X*[(—k) mod (N)] (7.39)

and
z*[(—n) mod (N)] <> X*[k] (7.40)
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5. Circular Convolution

Let (zq|n], Xilk]) and (z3[n], Xs|k]) be two DFT pairs with the
same duration of N. We have

n] @ 2[n Z z1[m m) mod (N)] < X[k Xo[k] (7.41)

m=0

where ®y IS the circular convolution operator.
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Fast Fourier Transform

FFT is a fast algorithm for DFT and inverse DFT
computation.

Recall (7.32):
N—1
X[k =) ap]Wy, 0<k<N-1 (7.42)
n=0

Each X|k| involves N and (N — 1) complex multiplications and
additions, respectively.

Computing all DFT coefficients requires N? complex
multiplications and N(N — 1) complex additions.

Assuming that N =2", the corresponding computational
requirements for FFT are 0.5N log,(N) complex multiplications

and N log,(N) complex additions.
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Direct Computation FFT
N
Multiplication |Addition |Multiplication|Addition
N? N(N —1) |0.5Nlogy(N) |Nlogy(N)
2 |4 2 1 2
8 |64 56 12 24
32 11024 022 80 160
64 4096 4022 192 384
21011048576 1047552 5120 10240
220 | ~10" ~10" ~10° ~2 x 107

Table 7.1: Complexities of direct DFT computation and FFT
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Basically, FFT makes use of two ideas in its development:

» Decompose the DFT computation of a sequence iInto
successively smaller DFTs

= Utilize two properties of W} = e /27h/N:
scomplex conjugate symmetry property:
Wyt =Wk = (W) (7.43)
=periodicity in n and k:

W = Wyt = ) (7.44)
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Decimation-in-Time Algorithm

The basic idea is to compute (7.42) according to

N-1 N—-1
X[kl =Y alnWi+ Y alnwh (7.45)
n=even n=odd

Substituting n =2r and n=2r+1 for the first and second
summation terms:

N/2—-1 N/2-1
XK = Y afer Wit + 3 wfer + gy
r=0 r=0
N/2—1 N/2—1
- o2 (WE) W ST al2r £ 1) (W)Y (7.46)
r=0 r=0

H. C. So Page 54 Semester B 2015-2016



Using W3 = Wy, since W} = e 77/V2 = ¢=727/(N/2) we have:

N/2—1 N/2—1
XK = Y arWi,+Wh > a2+ WY,
r=>0 r=0
= G[k]+ W~ - H[k], k=0,1,---,N—1 (7.47)

where Glk] and H k| are the DFTs of the even-index and odd-
iIndex elements of z[n|, respectively. That is, X|k| can be
constructed from two N/2-point DFTs, namely, G|k| and H|k].

Further simplifications can be achieved by writing the N
equations as 2 groups of N/2 equations as follows:

X[k] =G[k]+Wx-H[k], k=0,1,---,N/2—1  (7.48)
and
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N/2-1 N/2—1
X[k+N/2| = Z qj[gr]wj\}(ﬁ;mz) _|_le\c[+N/2 Z o + HWr(kHv/z)

N/2
r=0 r=0
N/2—1 N/2—-1
= Z x[ZT]WE% — Wy Z x|2r + 1]WJQ];2
r=0 r=0
= Glk| - WY - -H[k], k=0,1,---,N/2—1 (7.49)

with the use of WJ%Q =1 and W,/* = —1. Equations (7.48) and
(7.49) are known as the butterfly merging equations.

Noting that N/2 multiplications are also needed to calculate
Wy HIE], the number of multiplications is reduced from N? to
2(N/2)*+ N/2= N(N +1)/2.

The decomposition step of (7.48)-(7.49) is repeated v times
until 1-point DFT is reached.

H. C. So Page 56 Semester B 2015-2016



Decimation-in-Frequency Algorithm

The basic idea Is to decompose the frequency-domain
sequence X |k| into successively smaller subsequences.

Recall (7.42) and employing Wi "™V/2 =y yyeN — pyaee
and W5 = Wy, the even-index DFT coefficients are:

N-1 N/2—1
X[QT] _ CE‘[R]W]T\?}(QT) _ Z anr Z Qnr
n=0 n=0 n=N/2
N/2—-1 N/2-1
= Y aWR+ Y aln+ N2w

= (x[n] +z[n+ N/2]) - Wy, r=0,1,---,N/2—1(7.50)
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Using W{" =1 and WN/2 — —1, the odd-index coefficients are:

N/2-1
X[Z’I“—|—1] — Z n 27"‘“ ‘|— Z n 21”—|—1

n=0 n=N/2
N/2-1 N/2-1

_ Z N/2_|_ Z n -+ N/2]W n+N/2)(27+1)
n=0
N/2-1 N/2-1

= S A WAWR, + WP ST i Ny
n=>0 n=0
N/2—1

= (x[n] — xln + N/2) Wi - Wiy, r=0,1,---,N/2—1(7.51)
n=0

X|[2r] and X[2r+1] are equal to N/2 -point DFTs of
(z[n] + z[n 4+ N/2]) and (z[n] — x[n + N/2]) Wy, respectively. The
decomposition step of (7.50)-(7.51) iIs repeated v times
until 1-point DFT is reached
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Fast Convolution with FFT

The convolution of two finite-duration sequences
y[n] = x[n]® x;[n]

where x[n] is of length N; and x,[n] is of length N, requires
computation of (N;+ N,-1) samples which corresponds to

N;N, —min{N;, N, } complex multiplications
An alternate approach is to use FFT:

y[n] = IFFT{FFT{x[n]}x FFT{x,[n]}}
In practice:

* Choose the minimum N > N; + N, -1 and is power of 2
= Zero-pad X [n] and x,[n] to length N, say, X;[n] and X,[n]
= y[n] = IFFT{FFT{X[n]}x FFT{X,[n]}}
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From (7.33), the inverse DFT has a factor of 1/N, the IFFT
thus requires N +(N/2)log,(N) multiplications. As a result,

the total multiplications for y[n] is 2N + (3N /2)log,(N)

Using FFT is more computationally efficient than direct
convolution computation for longer data lengths:

N, | N, N | NyN,—min{N;,N,} | 2N +(3N/2)log,(N)
2 5 8 8 52
10 15 32 140 304
50 80| 256 3950 3584
50 1000 2048 49950 37888
512 10000 16384 4119488 376832

MATLAB and C source codes for FFT can be found at:

http://www.ece.rutgers.edu/—orfanidi/intro2sp/#progs
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