
Chapter 2

� Simulation Techniques

References:

� S.M.Kay, Fundamentals of Statistical Signal Processing: Estimation

Theory, Prentice Hall, 1993

� C.L.Nikias and M.Shao, Signal Processing with Alpha-Stable Distribution
and Applications, John Wiley & Sons, 1995

� V.K.Ingle and J.G.Proakis, Digital Signal Processing Using MATLAB
V.4, PWS Publishing Company, 1997

� E.Part-Enander, A.Sjoberg, B.Melin and P.Isaksson, The MATLAB
Handbook, Addison-Wesley, 1996

� S.K.Park and K.W.Miller, “Random number generators: good ones are
hard to find,” Communications of the ACM, vol.31, no.10, Oct. 1988

1

Simulation Techniques

Signal Generation

1. Deterministic Signals

It is trivial to generate deterministic signals given the synthesis formula,
e.g., for a single real tone, it is generated by

1,,1,0),cos()(−=θ+ω= NnnAnx L

MATLAB code:

N=10; % number of samples is 10
A=1; % tone amplitude is 1
w=0.2; % frequency is 0.2
p=1; % phase is 1

for n=1:N
 x(n)=A*cos(w*(n-1)+p); % note that index should be > 0
end

2

An alternative approach is

n=0:N-1; % define a vector of size N
x = A.*cos(w.*n+p); % the first time index is also 1
 % “.*” is used in vector multiplication

Both give

x =

 Columns 1 through 7

 0.5403 0.3624 0.1700 -0.0292 -0.2272 -0.4161 -0.5885

 Columns 8 through 10

 -0.7374 -0.8569 -0.9422

Q.: Which approach is better? Why?

3

Example 2.1
Recall the simple mathematical model of a musical signal:

)2cos()()(0
1

mm
m

tmfctatx φ+π∑=
∞

=

A further simplified form is

)2cos()(0tftx π=

where each music note has a distinct 0f .

Let's the following piece of music:

A A E E F# F# E E
D D C#C# B B A A
E E D D C# C# B B (repeat once)

(repeat first two lines once)

4

The American Standard pitch for each of these notes is:

A: 440.00 Hz
B: 493.88 Hz
C#: 554.37 Hz
D: 587.33 Hz
E: 659.26 Hz
F#: 739.99 Hz
Assuming that each note lasts for 0.5 second and a sampling frequency of
8000 Hz, the MATLAB code for producing this piece of music is:

a=sin(2*pi*440*(0:0.000125:0.5)); % frequency for A
b=sin(2*pi*493.88*(0:0.000125:0.5)); % frequency for B
cs=sin(2*pi*554.37*(0:0.000125:0.5)); % frequency for C#
d=sin(2*pi*587.33*(0:0.000125:0.5)); % frequency for D
e=sin(2*pi*659.26*(0:0.000125:0.5)); % frequency for E
fs=sin(2*pi*739.99*(0:0.000125:0.5)); % frequency for F#

5

line1=[a,a,e,e,fs,fs,e,e]; % first line of song
line2=[d,d,cs,cs,b,b,a,a]; % second line of song
line3=[e,e,d,d,cs,cs,b,b]; % third line of song
song=[line1,line2,line3,line3,line1,line2]; % composite song
sound(song,8000); % play sound with 8kHz sampling frequency
wavwrite(song,'song.wav'); % save song as a “wav” file

Note that in order to attain better music quality (e.g., flute, violin), we
should use the more general model:

)2cos()()(0
1

mm
m

tmfctatx φ+π∑=
∞

=

Q.: How many discrete-time samples in the 0.5 second note with 8000
Hz sampling frequency?

Q.: How to change the sampling frequency to 16000 Hz?

6

2. Random Signals

� Uniform Variable

A uniform random sequence can be generated by

L,2,1),mod()()(1 =⋅== − nmseedaseednx nn

where 0seed , and are positive integers. The numbers generated
should be (approximately) uniformly distributed between 0 and)1(

a m
−m .

a mA set of choice for and which generates good uniform variables is

16807=a and 2147483647=m

This uniform PDF can be changed easily by scaling and shifting the
generation formula. For example, a random number which is uniformly
between –0.5 and 0.5 is given by

5.0)(

)mod()(1

−=

⋅= −

m
seed

nx

mseedaseed

n

nn

7

The power of is)(nx

12
1

)()var(25.0

5.0

25.0

5.0

=

⋅∫=⋅⋅∫=
−−

dxxdxxpxx

Note that is independent (white).)(nx

To generate a white uniform number with variance : 2
xσ

x
n

nn

m
seed

nx

mseedaseed

σ⋅⋅





 −=

⋅= −

125.0)(

)mod()(1

MATLAB code for generating zero-mean uniform numbers with power 2:

N=5000; % number of samples is 5000
power = 2; % signal power is 2
u = (rand([1,N])-0.5).*sqrt(12*power); % “rand” give a uniform number
 % in [0,1]

8

Evaluation of MATLAB uniform random numbers:

m = mean(u) % * “mean” computes the time average

⇒ m = 0.0172

p = mean(u.*u) % compute power

⇒ p = 2.0225

y = mean((u-m).*(u-m)) % compute variance

⇒ v = 2.0222

9

plot(u); % plot the signal

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

10

hist(u,20) % plot the histogram for u
 % with 20 bars

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

Q.: Is the random generator acceptable? Does ergodicity hold?

11

a = xcorr(u); % compute the autocorrelation
plot(a) % plot the autocorrelation

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-2000

0

2000

4000

6000

8000

10000

12000

12

axis([4990, 5010, -500, 12000]) % change the axis

4990 4992 4994 4996 4998 5000 5002 5004 5006 5008 5010

0

2000

4000

6000

8000

10000

12000

The time index at 5000 corresponds to)0(uuR
⇒ white

13

� Gaussian Variable

Given a pair of independent uniform numbers which are uniformly
distributed between [0,1], say,),(uu , a pair of independent Gaussian
numbers, which have zero-mean and unity variance, can be generated
from:

21

)2sin()ln(2

)2cos()ln(2

212

211

uuw

uuw

π⋅−=

π⋅−=

This is known as the Box-Mueller transformation. Note that the Gaussian
numbers are white.

MATLAB code for generating zero-mean Gaussian numbers with power 2:

N=5000; % number of samples is 5000
power = 2; % signal power is 2
w = randn([1,N]).*sqrt(power); % “randn” give Gaussian number

14

 % with mean 0 and variance 1
Evaluation of MATLAB Gaussian random numbers:

m = mean(w) % * “mean” computes the time average

⇒ m = 0.0123

p = mean(w.*w) % compute power

⇒ p = 2.0158

y = mean((w-m).*(w-m)) % compute variance

⇒ v = 2.0157

15

plot(w); % plot the signal

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-6

-4

-2

0

2

4

6

16

hist(w,20) % plot the histogram for w
 % with 20 bars

-6 -4 -2 0 2 4 6
0

100

200

300

400

500

600

700

800

17

a = xcorr(w); % compute the autocorrelation
plot(a) % plot the autocorrelation

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-2000

0

2000

4000

6000

8000

10000

12000

18

axis([4990, 5010, -500, 12000]) % change the axis

4990 4992 4994 4996 4998 5000 5002 5004 5006 5008 5010

0

2000

4000

6000

8000

10000

12000

The time index at 5000 corresponds to)0(wwR

19

� Impulsive Variable

The main feature of impulsive or impulse process is that its value can be
very large. A mathematical model for impulsive noise is called α-stable
process, where 20 ≤α< .

α -stable process is a generalization of Gaussian process (2=α) and
Cauchy process (1=α)

The variable is more impulsive for a smaller α

A -stable variable is generated using two independent variables:
which is uniform on (

α Φ
ππ− 5.0,5.0), and W which is exponentially distributed

with unity mean, where is produced from W

)ln(uW −=

where is a uniform variable distributed on [0,1] u

20

MATLAB code for 20 <α< and 1≠α

alpha = 1.8; % alpha is set to 1.8
beta = 0; % beta is a symmetric parameter
N=5000;
phi = (rand(1,N)-0.5)*pi;
w = -log(rand(1,N));
k_alpha = 1 - abs(1-alpha);
beta_a = 2*atan(beta*tan(pi*alpha/2.0))/(pi*k_alpha);
phi_0 = -0.5*pi*beta_a*k_alpha/alpha;
epsilon = 1 - alpha;
tau = -epsilon*tan(alpha*phi_0);
a = tan(0.5.*phi);
B = tan(0.5.*epsilon.*phi)./(0.5.*epsilon.*phi);
b = tan(0.5.*epsilon.*phi);
z = (cos(epsilon.*phi)-tan(alpha.*phi_0).*sin(epsilon.*phi))./(w.*cos(phi));
d = (z.^(epsilon./alpha) - 1)./epsilon;
i = (2.*(a-b).*(1+a.*b) - phi.*tau.*B.*(b.*(1-a.^2)-2.*a)).*(1+epsilon.*d)./((1-a.^2).*(1+b.^2))+tau.*d;

21

plot(i);

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-140

-120

-100

-80

-60

-40

-20

0

20

40

22

MATLAB code for 1=α

N=5000;
phi = (rand(1,N)-0.5)*pi;
a = tan((0.5.*phi));
i = 2.*a./(1-a.^2);
plot(i)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-1000

-500

0

500

1000

1500

2000

23

PDF for different α

24

The “impulsiveness” is due to the heavier tails, i.e., PDF go to zero slowly

25

� AR, MA and ARMA Processes

MA process is generated from

)()1()()(10 Nnwbnwbnwbnx N −++−+= L

where { } is a white noise sequence. Only the transient signal is
needed to remove.

)(nw

e.g., for a second-order MA process

)1()()(10 −+= nwbnwbnx

Q 0)(=nw , 0<n

⇒)0()1()0()0(010 wbwbwbx =−+=
)0()1()1(10 wbwbx +=
)1()2()2(10 wbwbx +=
 ……………………...

)0(xThe transient signal is . We should choose }),2(),1({ Lxx

26

MATLAB code for generating 50 samples of MA process with 2,1 10 == bb :

b0=1;
b1=2;
N=50;
w=randn(1,N+1); % generate N+1 white noise samples
for n=1:N
 x(n) = b0*w(n+1)+b1*w(n); % shift “w” by one sample
end

Alternatively, we can use the convolution function in MATLAB:

b0=1;
b1=2;
N=50;
w=randn(1,N+1); % generate N+1 white noise samples
b= [b0 b1]; % “b” is an vector
y=conv(b,w); % signal length is “N+1”+”2”-1
x=y(2:N+1); % remove the transient signals

27

From (1.44), the PSD for MA process is

222
2121)(ω−ω− +=σ⋅+=ωΦ j

w
j

xx ee

It can be plotted using the freqz command in MATLAB:

b0=1;
b1=2;
b= [b0 b1];
a=1;
[H,W] = freqz(b,a); % “H” is complex frequency response
PSD = abs(H.*H);
plot(W/pi,PSD);

28

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

29

To evaluate the MA process generated by MATLAB, we use (1.38):
 2









 ∑=ωΦ ω−−

=∞→

1

0
)(1lim)(njN

nN
xx enx

N
E

� ∞→N ⇒ 100→N
� {}E average of 100 independent simulations ⇒

MATLAB code:

N=100;
b= [1 2]; % “b” is a vector
for m=1:100 % perform 100 independent runs

w=randn(1,N+1); % generate N+1 white noise samples
y=conv(b,w); % signal length is “N+1”+”2”-1
x=y(2:N+1); % remove the transient signals
p(m,:) = abs(fft(x).*fft(x));

end
psd = mean(p)./100;
index = 1/50:1/50:2;
plot(index,psd);
axis([0, 1, 0 10]);

30

31

� ∞→N ⇒ 10000→N
� {}E average of 10000 independent simulations ⇒

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8

9

10

32

Transient signals are also needed to remove in AR & ARMA processes
because of non-stationarity due to the poles:

)()()2()1()(21 nwMnxanxanxanx M +−++−+−= L

)()1()(
)()2()1()(

10

21
Nnwbnwbnwb

Mnxanxanxanx

N

M
−++−++

−++−+−=
L

L

e.g., for a first–order AR process:)()1()(nwnaxnx +−=

2
2

)1(2

1
1),(w

n
m

xx
a

aamnnR σ










−

−
=+

+

⇒ nonstationary because),(mnnRxx + depends on n

⇒ for sufficiently large , say, n 1)1(2 <<+na , we can consider it stationary.

⇒ since is the pole, extension to general AR and ARMA processes: a

,1)1(2 <<+n
ip for all poles { } ip

33

Suppose 0001.0)1(2 ≤+na is required and the AR parameter is 9.0−=a .

The required is calculated as n

43

0001.09.0)9.0()1(2)1(2

≥⇒

≤=− ++

n

nn

MATLAB code for generating 50 samples of the AR process:

M = 43;
N = 50;
a = -0.9;
y(1) = 0;
for n=2:M+N
 y(n) = a*y(n-1)+randn;
end
x=y(M+1:M+N);
plot(x);

34

0 5 10 15 20 25 30 35 40 45 50
-6

-4

-2

0

2

4

6

8

35

Digital Filtering

Given an input signal and the transfer function)(nx)(zH , it is easy to
generate the corresponding output signal, say,)(ny

For FIR system, we can follow the MA process, while for IIR system, we
can follow the ARMA process. The transient signals can be removed if
necessary as in the MA, AR and/or ARMA processes.

Given)(zH , the impulse response can be computed via inverse DTFT:

∫ ωω
π

=
π

π−

ω deHnh nj)(
2
1)(

Frequency spectrum for)(zH ⇒ impulse response { })(nh

⇒)()()()()()()(khknxkxknhnxnhny
kk

−∑=−∑=⊗=
∞

−∞=

∞

−∞=

36

Example 2.2
Compute the impulse response for)(zHd with the following DTFT
spectrum, and π=ω 2.0 and o π=ω 4.0 . c

0

1

ωo−ωc π−π

Η (ω)d

0.5

ωc−ωo

n
n

n
n

dede

deHnh

ocnjnj

nj
dd

o

o

c

c
π
ω

+
π
ω

=∫ ω⋅
π

+∫ ω⋅
π

=

∫ ωω
π

=

ω

ω−

ω
ω

ω−

ω

π

π−

ω

2
)sin(

2
)sin(

5.0
2
15.0

2
1

)(
2
1)(

37

⇒ LL ,1,0,1,,
2

)4.0sin()2.0sin()(−=
π

π+π
= n

n
nnnhd

Note that can be obtained by using L’Hospital’s rule or:)0(dh

3.0
2

5.0
2
15.0

2
1

)(
2
1)(

2
1)0(0

=
π
ω+ω

=∫ ω
π

+∫ ω
π

=

∫ ωω
π

=∫ ωω
π

=

ω

ω−

ω

ω−

π

π−

π

π−

⋅ω

oc

d
j

dd

o

o

c

c

dd

dHdeHh

Combining the results:







π
π+π

=
= otherwise,

2
)4.0sin()2.0sin(

0,3.0
)(

n
nn

n
nhd

⇒)()()()()()()(khknxkhknxnxnhny d
M

Mk
d

k
d −∑≈−∑=⊗=

−=

∞

−∞=

38

Example 2.3
Compute the impulse response of a time-shift function which time-shifts a
signal by a non-integer delay D.

)()(Dnxny −= ⇒)exp()(),()(DjHXeY Dj ω−=ωω⋅=ω ω−

)sinc(
2
1

2
1)(

2
1)()(

Dn

dedeedeHnh DnjnjDjnj

−=

∫ ω
π

=∫ ω⋅
π

=∫ ωω
π

=
π

π−

−ω
π

π−

ωω−
π

π−

ω

where

x
xx

π
π

=
)sin()sinc(

⇒
)sinc()(

)sinc()()sinc()()(

Dkknx

DkknxDnnxny

M

Mk

k

−−∑≈

−−∑=−⊗=

−=

∞

−∞=

39

Questions for Discussion

1. Observe that the following signal:

)()sinc()()(
10

10
DnxDkknxny

k
−≈−−∑=

−=

which depends on future data)}10(,),2(),1({ +++ nxnxnx L .

This is referred to as a non-causal system. How to generate the output
of the non-causal system in practice?

2. The spectrum for the Hilbert transform is





<ω≤π−
π≤ω<−

=ω
0,

0,
)(

j
j

H

Use a FIR filter with 15 coefficients to perform the Hilbert transform of a
discrete-time signal][nx . Let the resultant signal be][ny .

40

