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Simulation Techniques 
 
Signal Generation 
 

1. Deterministic Signals 
 

It is trivial to generate deterministic signals given the synthesis formula, 
e.g., for a single real tone, it is generated by 
 

1,,1,0),cos()( −=θ+ω= NnnAnx L  

MATLAB code: 
 
N=10;       % number of samples is 10 
A=1;       % tone amplitude is 1 
w=0.2;       % frequency is 0.2 
p=1;       % phase is 1 
 
for n=1:N 
  x(n)=A*cos(w*(n-1)+p); % note that index should be > 0 
end 
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An alternative approach is 
 
n=0:N-1;      % define a vector of size N 
x = A.*cos(w.*n+p);   % the first time index is also 1 
         % “.*” is used in vector multiplication  
 

Both give 
 
x = 
 
  Columns 1 through 7  
 
    0.5403    0.3624    0.1700   -0.0292   -0.2272   -0.4161   -0.5885 
 
  Columns 8 through 10  
 
   -0.7374   -0.8569   -0.9422 
 
Q.: Which approach is better? Why? 
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Example 2.1 
Recall the simple mathematical model of a musical signal: 
 

)2cos()()( 0
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A further simplified form is 

)2cos()( 0tftx π=  
 
where each music note has a distinct 0f . 
 
Let's the following piece of music:  
 

A A     E E   F# F#   E E  
D D    C#C#   B B   A A  
E E  D D      C# C#     B B  (repeat once)  
 

(repeat first two lines once)  
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The American Standard pitch for each of these notes is:  
 
A:    440.00 Hz  
B:    493.88 Hz  
C#:  554.37 Hz  
D:    587.33 Hz  
E:    659.26 Hz  
F#:  739.99 Hz  
Assuming that each note lasts for 0.5 second and a sampling frequency of 
8000 Hz, the MATLAB code for producing this piece of music is: 
 
a=sin(2*pi*440*(0:0.000125:0.5));   % frequency for A 
b=sin(2*pi*493.88*(0:0.000125:0.5));  % frequency for B 
cs=sin(2*pi*554.37*(0:0.000125:0.5));  % frequency for C# 
d=sin(2*pi*587.33*(0:0.000125:0.5));  % frequency for D 
e=sin(2*pi*659.26*(0:0.000125:0.5));  % frequency for E 
fs=sin(2*pi*739.99*(0:0.000125:0.5));  % frequency for F# 
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line1=[a,a,e,e,fs,fs,e,e];      % first line of song 
line2=[d,d,cs,cs,b,b,a,a];      % second line of song 
line3=[e,e,d,d,cs,cs,b,b];      % third line of song 
song=[line1,line2,line3,line3,line1,line2]; % composite song 
sound(song,8000);   % play sound with 8kHz sampling frequency 
wavwrite(song,'song.wav');  % save song as a “wav” file 
 
Note that in order to attain better music quality (e.g., flute, violin), we 
should use the more general model: 
 

)2cos()()( 0
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Q.: How many discrete-time samples in the 0.5 second note with 8000 
Hz sampling frequency?  
 
Q.: How to change the sampling frequency to 16000 Hz? 
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2. Random Signals 
 

� Uniform Variable 
 

A uniform random sequence can be generated by 
 

L,2,1),mod()()( 1 =⋅== − nmseedaseednx nn  
 

where 0seed ,  and  are positive integers. The numbers generated 
should be (approximately) uniformly distributed between 0 and )1(

a m
−m . 

a mA set of choice for  and   which generates good uniform variables is 
 

16807=a   and  2147483647=m
 

This uniform PDF can be changed easily by scaling and shifting the 
generation formula. For example, a random number which is uniformly 
between –0.5 and 0.5 is given by 
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The power of  is  )(nx
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Note that  is independent (white). )(nx
 

To generate a white uniform number with variance : 2
xσ
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MATLAB code for generating zero-mean uniform numbers with power 2: 
 

N=5000;         % number of samples is 5000 
power = 2;         % signal power is 2 
u = (rand([1,N])-0.5).*sqrt(12*power);  % “rand” give a uniform number 
            %  in [0,1] 
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Evaluation of MATLAB uniform random numbers: 
 
m = mean(u)      % * “mean” computes the time average 
 
⇒      m =  0.0172 
 
 
p = mean(u.*u)     %  compute power 
 
⇒      p = 2.0225  
 
 
 
y = mean((u-m).*(u-m))   %  compute variance 
 
⇒      v = 2.0222  
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plot(u);        % plot the signal 
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hist(u,20)        % plot the histogram for u 
          % with 20 bars 
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Q.: Is the random generator acceptable? Does ergodicity hold? 
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a = xcorr(u);      %  compute the autocorrelation 
plot(a)        %  plot the autocorrelation 
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axis([4990, 5010, -500, 12000]) % change the axis 
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The time index at 5000 corresponds to )0(uuR  
⇒ white 
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� Gaussian Variable 
 

Given a pair of independent uniform numbers which are uniformly 
distributed between [0,1], say, ),( uu , a pair of independent Gaussian 
numbers, which have zero-mean and unity variance, can be generated 
from: 

21
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This is known as the Box-Mueller transformation. Note that the Gaussian 
numbers are white. 
 
MATLAB code for generating zero-mean Gaussian numbers with power 2: 
 

N=5000;         % number of samples is 5000 
power = 2;         % signal power is 2 
w = randn([1,N]).*sqrt(power);    % “randn” give Gaussian number 
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            %  with mean 0 and variance 1 
Evaluation of MATLAB Gaussian random numbers: 
 
m = mean(w)      % * “mean” computes the time average 
 
⇒      m =  0.0123 
 
 
p = mean(w.*w)     %  compute power 
 
⇒      p = 2.0158  
 
 
 
y = mean((w-m).*(w-m))   %  compute variance 
 
⇒      v = 2.0157 
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plot(w);        % plot the signal 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-6

-4

-2

0

2

4

6

 

 
16



 
 
hist(w,20)        % plot the histogram for w 
          % with 20 bars 
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a = xcorr(w);      %  compute the autocorrelation 
plot(a)        %  plot the autocorrelation 
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axis([4990, 5010, -500, 12000]) % change the axis 
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The time index at 5000 corresponds to )0(wwR  
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� Impulsive Variable 
 
The main feature of impulsive or impulse process is that its value can be 
very large. A mathematical model for impulsive noise is called α-stable 
process, where 20 ≤α< . 
 
α -stable process is a generalization of Gaussian process ( 2=α ) and 
Cauchy process ( 1=α ) 
 
The variable is more impulsive for a smaller  α
 
A -stable variable is generated using two independent variables:  
which is uniform on (

α Φ
ππ− 5.0,5.0 ), and W  which is exponentially distributed 

with unity mean, where  is produced from W
 

)ln(uW −=  
 

where  is a uniform variable distributed on [0,1] u
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MATLAB code for 20 <α<  and 1≠α  
 
alpha = 1.8;         % alpha is set to 1.8 
beta = 0;          % beta is a symmetric parameter 
N=5000; 
phi = (rand(1,N)-0.5)*pi; 
w = -log(rand(1,N)); 
k_alpha = 1 - abs(1-alpha); 
beta_a = 2*atan(beta*tan(pi*alpha/2.0))/(pi*k_alpha); 
phi_0 = -0.5*pi*beta_a*k_alpha/alpha; 
epsilon = 1 - alpha; 
tau = -epsilon*tan(alpha*phi_0); 
a = tan(0.5.*phi); 
B = tan(0.5.*epsilon.*phi)./(0.5.*epsilon.*phi); 
b = tan(0.5.*epsilon.*phi); 
z = (cos(epsilon.*phi)-tan(alpha.*phi_0).*sin(epsilon.*phi))./(w.*cos(phi)); 
d = (z.^(epsilon./alpha) - 1)./epsilon; 
i = (2.*(a-b).*(1+a.*b) - phi.*tau.*B.*(b.*(1-a.^2)-2.*a)).*(1+epsilon.*d)./((1-a.^2).*(1+b.^2))+tau.*d; 
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plot(i); 
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MATLAB code for 1=α  
 

N=5000; 
phi = (rand(1,N)-0.5)*pi; 
a = tan((0.5.*phi)); 
i = 2.*a./(1-a.^2); 
plot(i) 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-1000

-500

0

500

1000

1500

2000

 

 
23



 
PDF for different α 
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The “impulsiveness” is due to the heavier tails, i.e., PDF go to zero slowly 
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� AR, MA and ARMA Processes 
 

MA process is generated from 
 

)()1()()( 10 Nnwbnwbnwbnx N −++−+= L  
 

where { } is a white noise sequence. Only the transient signal is 
needed to remove. 

)(nw

 

e.g., for a second-order MA process 
 

)1()()( 10 −+= nwbnwbnx  
 

Q 0)( =nw ,  0<n
 

⇒       )0()1()0()0( 010 wbwbwbx =−+=  
      )0()1()1( 10 wbwbx +=  
      )1()2()2( 10 wbwbx +=  
      ……………………... 

)0(xThe transient signal is . We should choose }),2(),1({ Lxx  
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MATLAB code for generating 50 samples of MA process with 2,1 10 == bb : 
 

b0=1; 
b1=2; 
N=50; 
w=randn(1,N+1);      % generate N+1 white noise samples 
for n=1:N 
 x(n) = b0*w(n+1)+b1*w(n);  % shift “w” by one sample  
end 
 
Alternatively, we can use the convolution function in MATLAB: 
 

b0=1; 
b1=2; 
N=50; 
w=randn(1,N+1);      % generate N+1 white noise samples 
b= [b0 b1];        % “b” is an vector 
y=conv(b,w);       % signal length is “N+1”+”2”-1  
x=y(2:N+1);       % remove the transient signals  
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From (1.44), the PSD for MA process is 
 

222
2121)( ω−ω− +=σ⋅+=ωΦ j

w
j

xx ee  

 
It can be plotted using the freqz command in MATLAB: 
 
b0=1; 
b1=2; 
b= [b0 b1];  
a=1; 
[H,W] = freqz(b,a);    % “H” is complex frequency response 
PSD = abs(H.*H); 
plot(W/pi,PSD); 
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To evaluate the MA process generated by MATLAB, we use (1.38): 
 2

 





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 ∑=ωΦ ω−−

=∞→

1

0
)(1lim)( njN

nN
xx enx

N
E     

� ∞→N    ⇒ 100→N  
� {}E   average of 100 independent simulations ⇒
 

MATLAB code: 
 

N=100;  
b= [1 2];       % “b” is a vector 
for m=1:100       % perform 100 independent runs 

w=randn(1,N+1);    % generate N+1 white noise samples 
y=conv(b,w);     % signal length is “N+1”+”2”-1  
x=y(2:N+1);      % remove the transient signals 
p(m,:) = abs(fft(x).*fft(x));  

end 
psd = mean(p)./100; 
index = 1/50:1/50:2; 
plot(index,psd); 
axis([0, 1, 0 10]); 
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� ∞→N    ⇒ 10000→N  
� {}E   average of 10000 independent simulations ⇒
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Transient signals are also needed to remove in AR & ARMA processes 
because of non-stationarity due to the poles: 
 

)()()2()1()( 21 nwMnxanxanxanx M +−++−+−= L  
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e.g., for a first–order AR process: )()1()( nwnaxnx +−=  
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⇒ nonstationary because ),( mnnRxx +  depends on  n
 

⇒ for sufficiently large , say, n 1)1(2 <<+na , we can consider it stationary. 
 

⇒ since  is the pole, extension to general AR and ARMA processes:  a
 

,1)1(2 <<+n
ip    for all poles { } ip
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Suppose 0001.0)1(2 ≤+na  is required and the AR parameter is 9.0−=a . 

The required  is calculated as n
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0001.09.0)9.0( )1(2)1(2
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≤=− ++

n

nn
 

 
MATLAB code for generating 50 samples of the AR process: 
 
M = 43; 
N = 50; 
a = -0.9; 
y(1) = 0; 
for n=2:M+N 
 y(n) = a*y(n-1)+randn; 
end 
x=y(M+1:M+N); 
plot(x); 
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Digital Filtering 
 
Given an input signal  and the transfer function )(nx )(zH , it is easy to 
generate the corresponding output signal, say, )(ny  
 
For FIR system, we can follow the MA process, while for IIR system, we 
can follow the ARMA process. The transient signals can be removed if 
necessary as in the MA, AR and/or ARMA processes. 
 
Given )(zH , the impulse response can be computed via inverse DTFT: 
 

∫ ωω
π

=
π

π−

ω deHnh nj)(
2
1)(  

 
Frequency spectrum for )(zH  ⇒  impulse response { } )(nh
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Example 2.2 
Compute the impulse response for )(zHd  with the following DTFT 
spectrum, and π=ω 2.0  and o π=ω 4.0 . c
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⇒     LL ,1,0,1,,
2

)4.0sin()2.0sin()( −=
π

π+π
= n

n
nnnhd  

 

Note that  can be obtained by using L’Hospital’s rule or: )0(dh
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Combining the results: 
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Example 2.3 
Compute the impulse response of a time-shift function which time-shifts a 
signal by a non-integer delay D. 
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Questions for Discussion 
 
1. Observe that the following signal: 
 

)()sinc()()(
10

10
DnxDkknxny

k
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−=
 

which depends on future data )}10(,),2(),1({ +++ nxnxnx L . 
 

This is referred to as a non-causal system. How to generate the output 
of the non-causal system in practice? 

 
2. The spectrum for the Hilbert transform is 
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Use a FIR filter with 15 coefficients to perform the Hilbert transform of a 
discrete-time signal ][nx . Let the resultant signal be ][ny . 
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