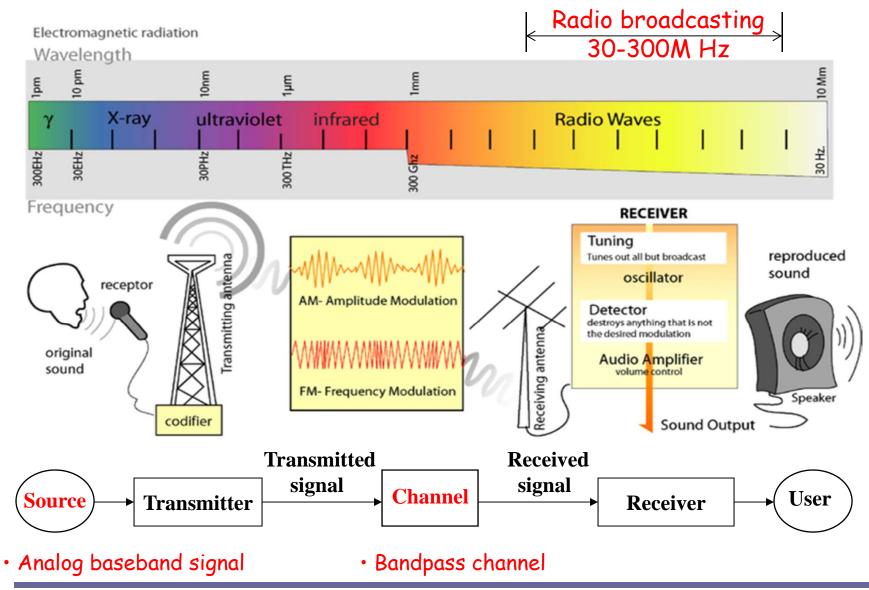
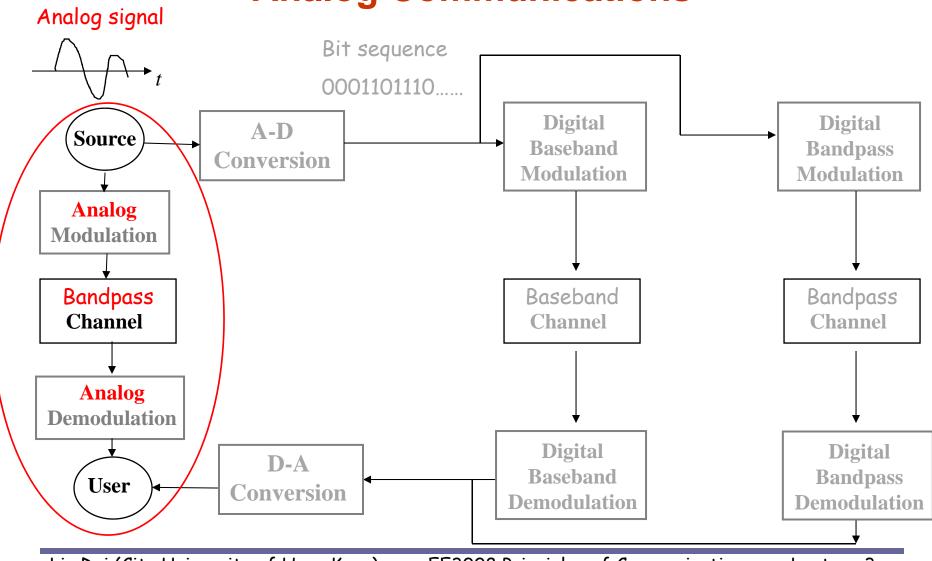
Analog Communications

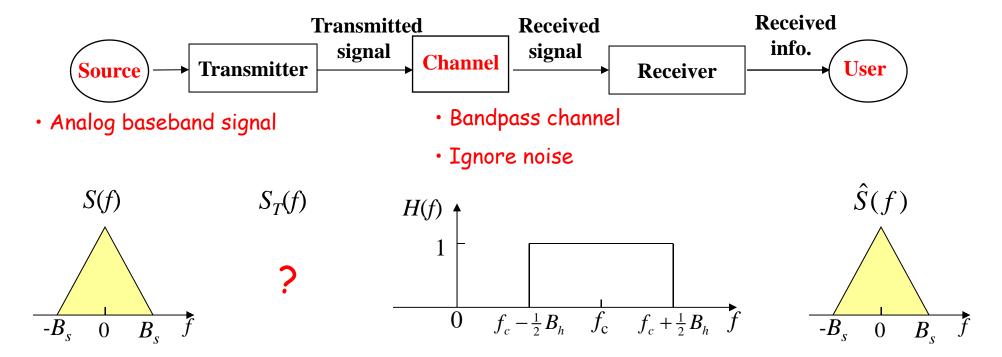
- Amplitude Modulation (AM)
- Frequency Modulation (FM)



Analog Communications



Analog Communications



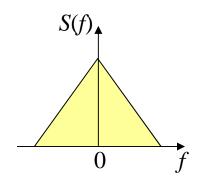
- For reliable communications, i.e., $\hat{S}(f) = S(f)$, all frequency components of the transmitted signal should pass through the channel, which requires:
 - Frequency components of transmitted signal should be centered at f_c ;
 - The channel bandwidth B_h should be no smaller than the bandwidth of transmitted signal B_m .

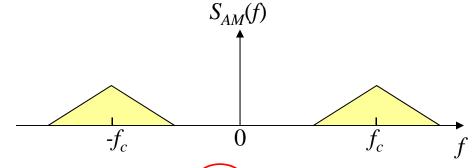
Analog Modulation

Modulation property of Fourier Transform:

$$s(t)\cos(2\pi f_c t) \Leftrightarrow \frac{1}{2}[S(f-f_c)+S(f+f_c)]$$

carrier





- Amplitude Modulation (AM)
- $s_{AM}(t) = As(t)\cos(2\pi f_c t)$

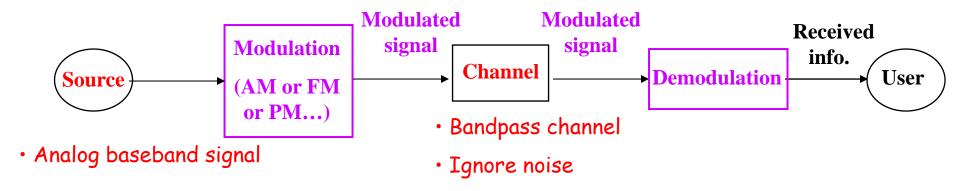
Phase Modulation (PM)

$$s_{PM}(t) = A\cos(2\pi f_c t + o(s(t)))$$

Frequency Modulation (FM)

$$s_{FM}(t) = A\cos(2\pi(f_c t + k \int_{-\infty}^{\tau} s(\tau)d\tau))$$

Analog Modulation



 Bandwidth efficiency is an important performance metric, which is defined as:

```
\gamma \triangleq \frac{\text{Information Signal Bandwidth } B_s}{\text{Required Channel Bandwidth } B_h} = \frac{\text{Information Signal Bandwidth } B_s}{\text{Modulated Signal Bandwidth } B_m}
```

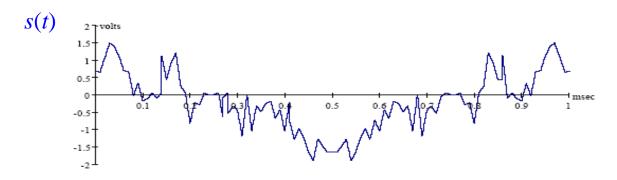
- Required channel bandwidth B_h = Modulated signal bandwidth B_m
- A higher γ indicates a better spectral utilization.

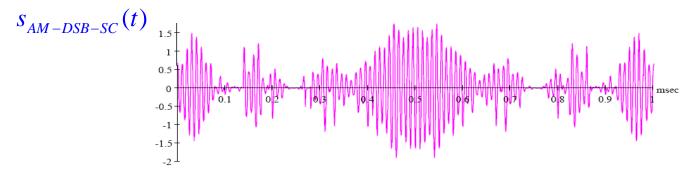
Lecture 3. Analog Communications Part I. Amplitude Modulation (AM)

- AM-DSB-SC
- AM-DSB-C
- AM-SSB
- AM-VSB

AM-DSB-SC -- Modulation

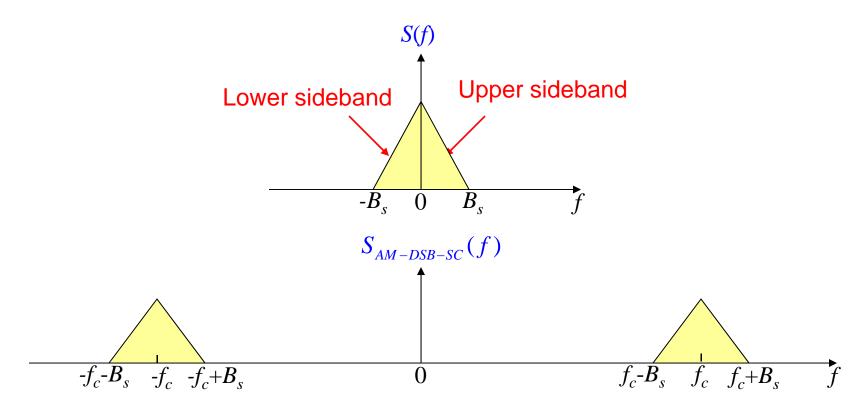
• Time Domain: $s_{AM-DSB-SC}(t) = As(t)\cos(2\pi f_c t)$





AM-DSB-SC -- Modulation

• Frequency Domain: $S_{AM-DSB-SC}(f) = \frac{A}{2}[S(f-f_c) + S(f+f_c)]$



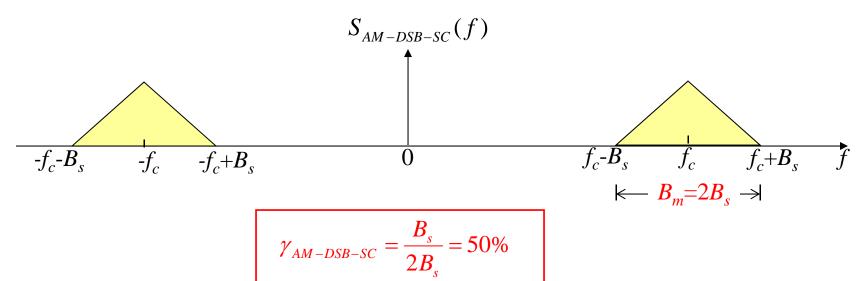
AM-DSB-SC: Amplitude Modulation-Double SideBand-Suppressed Carrier

Bandwidth Efficiency of AM-DSB-SC

Bandwidth Efficiency:

$$\gamma = \frac{\text{Information Signal Bandwidth } B_s}{\text{Required Channel Bandwidth } B_h} = \frac{\text{Information Signal Bandwidth } B_s}{\text{Modulated Signal Bandwidth } B_m}$$

With AM-DSB-SC:



AM-DSB-SC -- Demodulation

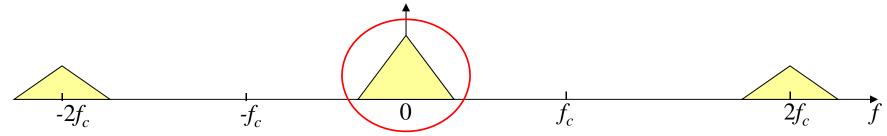
• Time Domain: $s_{AM-DSB-SC}(t) \Leftrightarrow s(t)$

$$s_{AM-DSB-SC}(t)\cos(2\pi f_c t) = As(t)\cos(2\pi f_c t)\cos(2\pi f_c t) = 0.5As(t) + 0.5As(t)\cos(2\pi 2f_c t)$$

• Frequency Domain: $S_{AM-DSB-SC}(f) \Rightarrow S(f)$

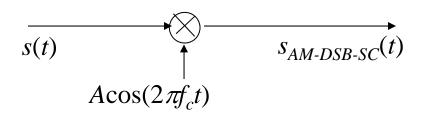
$$\frac{1}{2} \left[S_{AM-DSB-SC}(f - f_c) + S_{AM-DSB-SC}(f + f_c) \right] = \frac{A}{4} \left[S(f - 2f_c) + S(f) \right] + \frac{A}{4} \left[S(f) + S(f + 2f_c) \right] \\
= \frac{A}{4} \left[S(f - 2f_c) + S(f + 2f_c) \right] + \frac{A}{2} \left[S(f) + \frac{A}{2} \left[$$

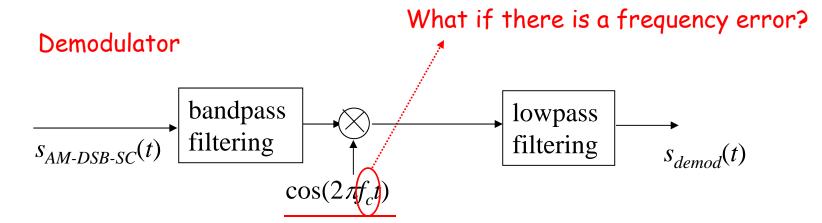
$$\frac{1}{2} \left[S_{AM-DSB-SC}(f - f_c) + S_{AM-DSB-SC}(f + f_c) \right]$$



Modulator and Demodulator of AM-DSB-SC

Modulator





Coherent Demodulation: the demodulator requires a reference signal which has exactly the same frequency and phase as the carrier signal.

Frequency Error of Coherent Demodulator

Consider that the reference signal has a small frequency error, Δf .

$$w(t) = As(t)\cos(2\pi f_c t)\cos(2\pi (f_c + \Delta f)t)$$
$$= 0.5As(t) \left(\cos(2\pi \Delta f t) + \cos(2\pi (2f_c + \Delta f)t)\right)$$

After lowpass filtering, we have

$$0.5As(t)\cos(2\pi\Delta ft)$$

$$\cos(2\pi\Delta ft) = 1 \quad \text{when } \Delta f = 0$$

$$\cos(2\pi\Delta ft) \text{ changes with } t \text{ when } \Delta f \neq 0$$

The performance of AM-DSB-SC is sensitive to the frequency error of the reference signal.

Pros and Cons of AM-DSB-SC

Straightforward

- Sensitive to frequency and phase error of the reference signal (coherent demodulation)
- Bandwidth inefficient ($\gamma_{AM-DSB-SC}$ =50%)

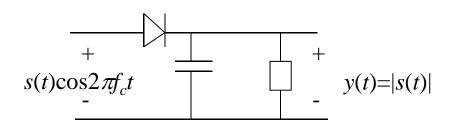
AM-DSB-C

Envelope and Envelope Detector

Envelope

Consider a signal $s(t)\cos 2\pi f_c t$. If s(t) varies slowly in comparison with the carrier $\cos 2\pi f_c t$, the envelope of $s(t)\cos 2\pi f_c t$ is |s(t)|.

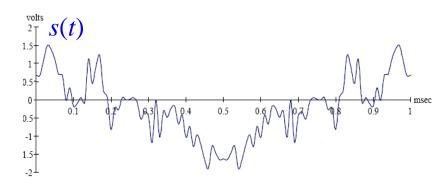
- The envelope |s(t)| = s(t) if $s(t) \ge 0$.
- Envelope Detector:

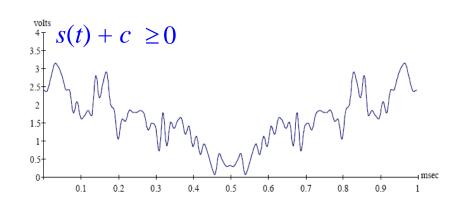


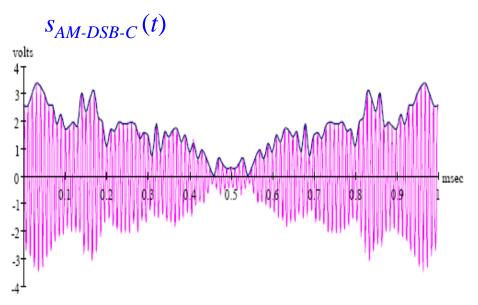
How to apply the Envelope Detector to AM systems?

AM-DSB-C -- Modulation

• Time Domain: $s_{AM-DSB-C}(t) = A(s(t)+c)\cos(2\pi f_c t)$







c is a dc offset to ensure $s(t)+c \ge 0$ for any time t.

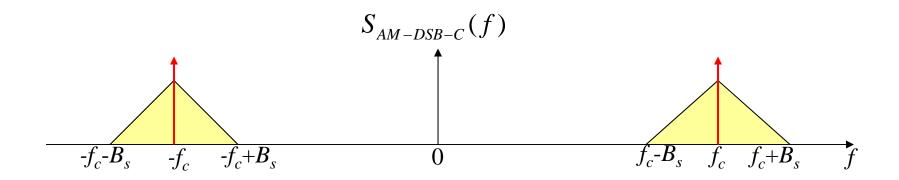
AM-DSB-C -- Modulation

Frequency Domain:

$$s_{AM-DSB-C}(t) = A(s(t) + c)\cos(2\pi f_c t) = As(t)\cos(2\pi f_c t) + Ac\cos(2\pi f_c t)$$

$$\Leftrightarrow$$

$$S_{AM-DSB-C}(f) = \frac{A}{2}[S(f - f_c) + S(f + f_c)] + \frac{Ac}{2}[\delta(f - f_c) + \delta(f + f_c)]$$



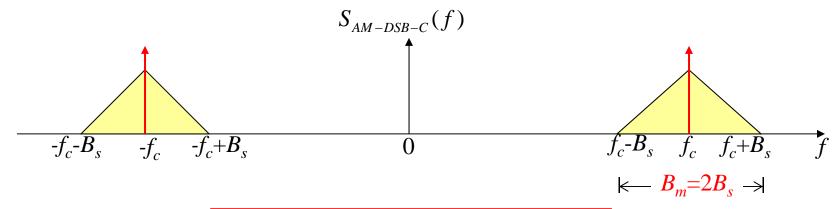
AM-DSB-C: Amplitude Modulation-Double SideBand-Carrier

Bandwidth Efficiency of AM-DSB-C

Bandwidth Efficiency:

 $\gamma = \frac{\text{Information Signal Bandwidth } B_s}{\text{Required Channel Bandwidth } B_h} = \frac{\text{Information Signal Bandwidth } B_s}{\text{Modulated Signal Bandwidth } B_m}$

With AM-DSB-C:

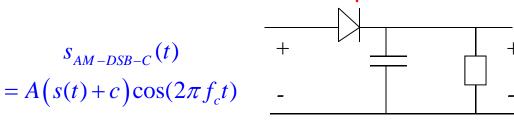


$$\gamma_{AM-DSB-C} = \frac{B_s}{2B_s} = 50\% = \gamma_{AM-DSB-SC}$$

AM-DSB-C -- Demodulation

• Time Domain: $s_{AM-DSB-C}(t) \Rightarrow s(t)$

Envelope Detector:



$$y(t) = |A(s(t)+c)| = A(s(t)+c)$$
$$(s(t)+c \ge 0)$$

Non-coherent demodulation (no need to generate a reference signal)

- Apply $s_{AM-DSB-C}(t)$ to an envelope detector.

Simple

- Remove the dc offset c.

- Robust
- Any price to pay?

More about AM-DSB-C

Define the power efficiency of an AM-DSB-C system as:

$$\eta = \frac{\text{power of information signal } s(t)}{\text{power of modulating signal } s(t) + c} = \frac{P_s}{c^2 + P_s} \le 50\%$$

- $-\eta$ increases as the dc offset c decreases.
- to ensure $s(t) + c \ge 0$, $c^2 \ge P_s$
- Define the modulation index of an AM-DSB-C system as:

$$m = \frac{\max[s(t) + c] - \min[s(t) + c]}{\max[s(t) + c] + \min[s(t) + c]} = \frac{\max s(t) - \min s(t)}{\max s(t) + \min s(t) + 2c}$$

-m increases as the dc offset c decreases.

Can m be arbitrarily large?

Modulation Index m of AM-DSB-C

$$m = \frac{\max[s(t) + c] - \min[s(t) + c]}{\max[s(t) + c] + \min[s(t) + c]} = \frac{\max s(t) - \min s(t)}{\max s(t) + \min s(t) + 2c}$$

m < 1

when $\min(s(t)+c) > 0$

m = 1

when $\min(s(t)+c)=0$

m > 1

when $\min(s(t)+c) < 0$

m should not exceed 1 to avoid over-modulation.

Pros and Cons of AM-DSB-C

Simple and robust receiver design (non-coherent demodulation)

• Cost of power efficiency (η <50%)

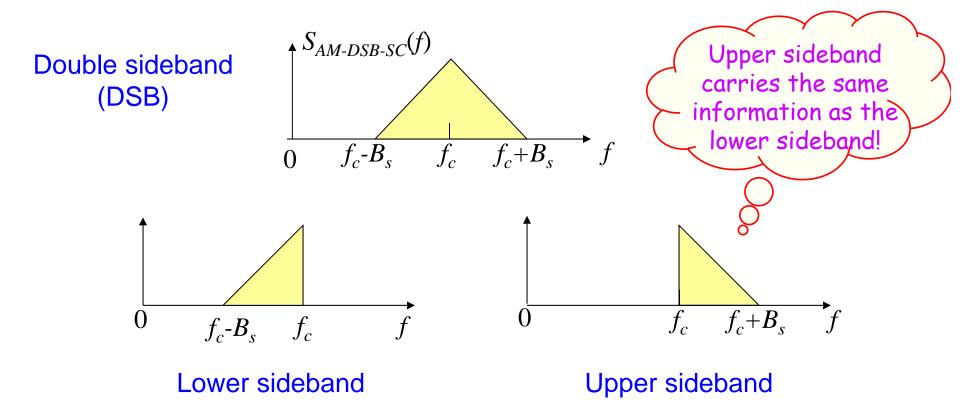
• Bandwidth inefficient ($\gamma_{AM-DSB-C} = \gamma_{AM-DSB-SC} = 50\%$)

Commercial radio

broadcasting

AM-SSB and **AM-VSB**

How to Improve Bandwidth Efficiency?

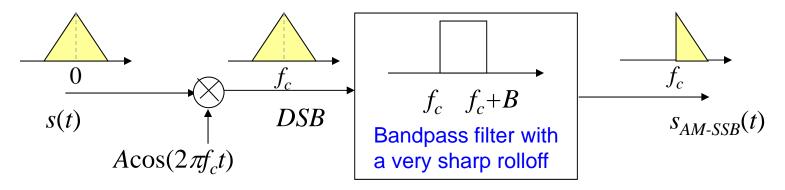


Use a bandpass filter to select the desired sideband, and only transmit the desired sideband.

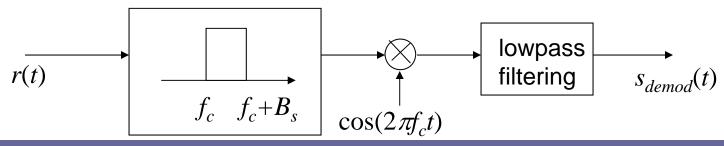
AM-SSB

Amplitude Modulation-Single SideBand (AM-SSB)

Modulation (Frequency Discrimination Method)



Demodulation (coherent)



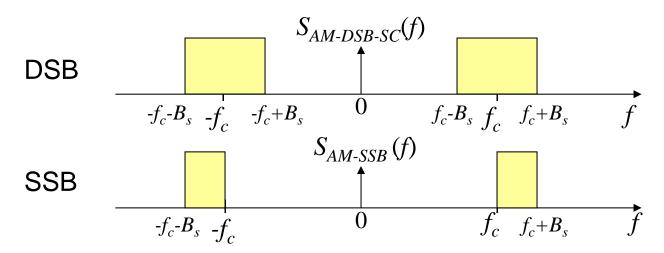
Pros and Cons of AM-SSB

• Bandwidth efficient (γ_{AM-SSB} =100%)

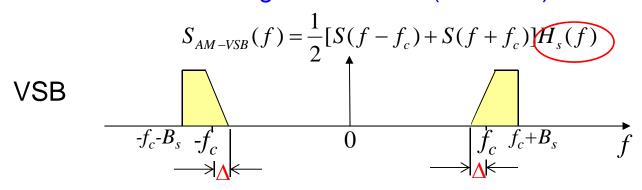
Mobile communications, military communications, ...

- High requirement on filtering (sharp rolloff)
- Sensitive to frequency and phase error of the reference signal (coherent demodulation)

AM-VSB



Amplitude Modulation-Vestigial SideBand (AM-VSB)



Allow a small portion (or *vestige*) of the lower sideband, Δ , along with the upper sideband.

Spectrum of AM-VSB Signal

modulation:
$$S_{AM-VSB}(f) = \frac{1}{2} [S(f - f_c) + S(f + f_c)] H_s(f)$$
$$= \frac{1}{2} S(f - f_c) H_s(f) + \frac{1}{2} S(f + f_c) H_s(f)$$

Demodulation:

$$\begin{split} S_{\text{demod}}(f) &= \frac{1}{2} [S_{AM-VSB}(f-f_c) + S_{AM-VSB}(f+f_c)] \\ &= \frac{1}{4} [S(f-2f_c) + S(f)] H_s(f-f_c) + \frac{1}{4} [S(f) + S(f+2f_c)] H_s(f+f_c) \\ &= \frac{1}{4} S(f) [H_s(f-f_c) + H_s(f+f_c)] + \frac{1}{4} S(f-2f_c) H_s(f-f_c) + \frac{1}{4} S(f+2f_c) H_s(f+f_c) \end{split}$$

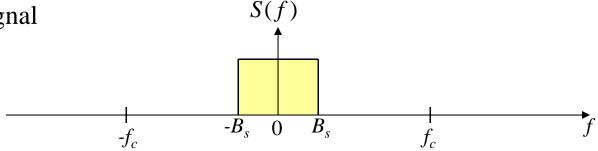
After lowpass filtering:

$$S_{\text{demod}}(f) = S(f)[H_s(f - f_c) + H_s(f + f_c)]$$

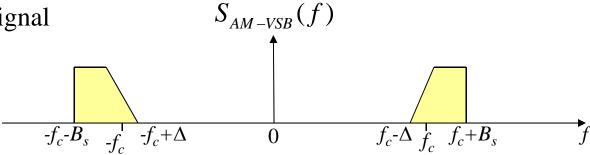
$$H_s(f - f_c) + H_s(f + f_c) = k \qquad 0 \le |f| \le B$$

Spectrum of AM-VSB Signal

Baseband signal

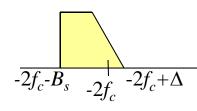


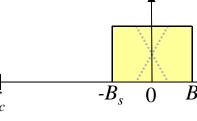
Modulated Signal

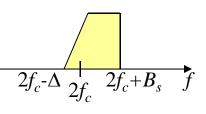


De-modulation

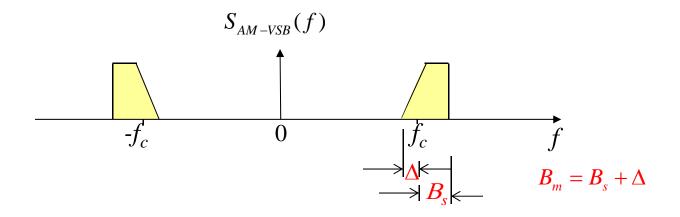
$$S_{\text{demod}}(f) = \frac{1}{2} [S_{AM-VSB}(f - f_c) + S_{AM-VSB}(f + f_c)]$$







Tradeoff between Complexity and Bandwidth Efficiency



$$50\% < \gamma_{AM-VSB} = \frac{B_s}{B_s + \Delta} < 100\%$$

$$0 < \Delta < B_s$$

- The bandwidth efficiency γ decreases as the vestige Δ increases.
- The larger vestige ∆, the lower receiver complexity.

Summary of AM

AM-DSB-SC	Power efficient	Coherent demodulation	Bandwidth inefficient $\gamma=50\%$
AM-DSB-C Commercial radio broadcasting	Power inefficient	Non-coherent demodulation (simple and robust)	Bandwidth inefficient $\gamma=50\%$
AM-SSB Mobile and military communications	Power efficient	Coherent demodulation	Bandwidth efficient γ=100%
AM-VSB Public television systems	Power efficient	Coherent demodulation	Tradeoff between bandwidth and complexity $50\% < \gamma = \frac{B_s}{B_s + \Delta} < 100\%$