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Lecture 4. Analog Communications  

Part II. Frequency Modulation (FM) 

• Angle Modulation (FM and PM) 

• Spectral Characteristics of FM signals 

• FM Modulator and Demodulator 
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More About Amplitude Modulation 

• Simple 

• High requirement on amplifiers 

– Linear amplifiers are difficult to achieve in applications. 

• Low fidelity performance 

– Noise enhancement in quiet periods 

– No tradeoff between bandwidth and fidelity performance 

and bandwidth efficient (compared to FM) 
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Angle Modulation 
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An angle-modulated signal can be written as 

: Instantaneous Phase 

: Instantaneous Frequency 

( )t

( )f t

A typical carrier signal: ( ) 2 ( ),ct f t t   

•   Phase Modulation (PM): 

( ) ( )t s t  ( ) cos(2 ( ))PM cs t A f t s t  

•   Frequency Modulation (FM): 

1 ( )
( )

2

d t
ks t

dt




  ( ) cos(2 ( ( ) ))

t

FM cs t A f t k s d  


  
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Phase Deviation and Frequency Deviation 

Phase Modulation (PM) signal 

Frequency Modulation (FM) signal 

( ) cos(2 ( ))PM cs t A f t s t  

( ) cos(2 ( ( ) ))
t

FM cs t A f t k s d  


  

( ) 2 ( )ct f t s t   

Instantaneous Frequency: 

max | ( ) |
t

ks t

Instantaneous Phase:  
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t

s tMaximum (Peak) Phase Deviation:  

Maximum (Peak) Frequency Deviation:  
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Peak phase deviation represents the maximum phase difference 

between the transmitted signal and the carrier signal. 

Peak frequency deviation represents the maximum departure 

of the instantaneous frequency from the carrier frequency. 
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Relationship between PM and FM  

( ) cos(2 ( ))PM cs t A f t s t  

( ) cos(2 ( ( ) ))
t

FM cs t A f t k s d  


  

PM 
Modulator 

x(t) 

FM 
Modulator 

•  Phase modulation of the carrier with a message signal is equivalent to 
frequency modulation of the carrier with the derivative of the message signal. 

•  We will only focus on FM in the following. 

( )dx t

dt

cos(2 ( ))cA f t x t 
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FM Signal 

sFM(t) 

s(t) 
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Spectral Characteristics of Frequency 

Modulated Signals 
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A False Start 

•   Frequency Modulation (FM): 

( ) ( )cf t f ks t 

( ) cos(2 ( ( ) ))
t

FM cs t A f t k s d  


  
Instantaneous Frequency 

Where is the 
fallacy in this 

reasoning? 

The bandwidth of 
the FM signal could 
be arbitrarily small 
by using an 
arbitrarily small k! 

Too good to 
be true  
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Suppose that the peak amplitude of s(t) is 
ms. Then the maximum and minimum values 
of the instantaneous frequency of the 
modulated signal would be fc+kms and fc-
kms. Then the spectral components of the 
FM signal would be within the frequency 
band of [fc-kms, fc+kms] with the 
bandwidth of 2kms.   
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FM Sinusoidal Signal  

= cos{2 [ sin(2 )]}
2

m
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A f t f t
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


Peak frequency deviation: 

( ) cos(2 )c m mf t f kA f t 

max | ( ) | mf ks t kA  

Instantaneous phase 

= cos[2 sin(2 )]c m

m

f
A f t f t

f
 




Instantaneous frequency: 

( ) cos{2 [ cos(2 ) ]}
t

FM c m ms t A f t k A f d   


  

( ) cos(2 )m ms t A f t

• Let us first assume the message signal s(t) is a sinusoidal signal: 

• Peak frequency deviation               is proportional to Am, the 
amplitude of the message signal s(t). 

mf kA 

m

f

f



•             is defined as the modulation index. 

= cos[2 sin(2 )]c mA f t f t  

Lin Dai (City University of Hong Kong)         EE3008 Principles of Communications       Lecture 4 



10 

( ) cos[2 sin(2 )]FM c ms t A f t f t   

= ( cos(2 ) 1)cos(2 )m cAc m f t f t 

FM -- With a sinusoidal message signal                   : ( ) cos(2 )m ms t A f t

( ) ( ( ) )cos(2 )AM DSB C cs t A s t c f t   
( ) ( )

( ) ( )

m m m

m m

A c A c A
m

A c A c c

   
 

   

m

m

kA

f
 

With a general message signal s(t): 
max | ( ) |

s

k s t

B
 

AM-DSB-C -- with a message signal s(t): 
max[ ( ) ] min[ ( ) ]

max[ ( ) ] min[ ( ) ]

s t c s t c
m

s t c s t c

  


  

With a sinusoidal message signal          : ( ) cos(2 )m ms t A f t

Modulation Indices of AM-DSB-C and FM 
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sFM(t) can be expanded as an infinite Fourier series:  

( ) cos[2 sin(2 )]

           = ( )cos[2 ( ) ]

FM c m

n c m

n

s t A f t f t

A J f nf t

  

 




 



( sin )1
( )

2

j x nx

nJ e dx













 

FM Sinusoidal Signal (Cont’d) 

Jn() is called the Bessel Function of the first kind and of order n, which 

is defined by 

Read Reference [1] (Sec. 3.3.2) to see the derivation of sFM(t) 

and more details about Bessel Function. 
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A Little Bit about Bessel Function 

For small values of  :  ( )
2 !

n

n n
J

n


 

For large values of  :  
2

( ) cos
4 2

n

n
J

 
 



 
   

 

( )   even
( )

( )   odd

n

n

n

J n
J

J n








 


Symmetry property: ( ) ( )n nJ J  
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Magnitude Spectrum of FM Sinusoidal Signals  
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The bandwidth of an FM sinusoidal signal is     .  
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Power Spectrum of FM Sinusoidal Signals  
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Power Spectrum of FM Sinusoidal Signals  

Power at carrier 
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Effective Bandwidth of FM Sinusoidal Signals 
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Carson’s Rule: The effective bandwidth of an FM sinusoidal signal 

is given by  

<<1: narrowband FM 

Large : wideband FM 

2(1 ) mf 2( )mf f  

fc-(1+)fm 
fc+(1+)fm 0 

2

4

A
|J-(1+)|2 

2

4

A
|J1|2 

2

4

A
|J-1|2 

2

4

A

|J0|2 
2

4

A

fc-fm fc+fm fc 
f 

Lin Dai (City University of Hong Kong)         EE3008 Principles of Communications       Lecture 4 



17 

Bandwidth Efficiency of FM Signals 

•  Bandwidth Efficiency of FM sinusoidal signals: 

1

2(1 ) 2(1 )

m
FM

m

f

f


 
 

 
50%

•  Bandwidth Efficiency of FM signals: 

1
50%

2(1 ) 2(1 )

s
FM

s

B

B


 
  

 

 Worse than AM systems. 
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Edwin Howard Armstrong: Inventor of Modern FM Radio 

(December 18, 1890 – January 31, 1954)  
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Bandwidth Efficiency of FM Signals 

•  Bandwidth Efficiency of FM sinusoidal signals: 

1

2(1 ) 2(1 )

m
FM

m

f

f


 
 

 
50%

•  Bandwidth Efficiency of FM signals: 

1
50%

2(1 ) 2(1 )

s
FM

s

B

B


 
  

 

 Larger : 

 Lower bandwidth efficiency 

 Better fidelity performance 

 Worse than AM systems. 

FM systems can provide much better fidelity performance than AM systems by 

sacrificing the bandwidth efficiency. 
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Pros and Cons of FM 

• Less requirement on amplifiers (constant amplitude) 

• Flexible tradeoff between channel bandwidth and fidelity 

performance 

• Low bandwidth efficiency 
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FM Modulator and Demodulator 
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The carrier signal used in a direct FM system can be generated by 
a sinusoidal oscillator circuit where the oscillator frequency is 
controllable. 

 

For example, in the circuit shown below, the oscillator frequency 
can be adjusted by tuning the capacitance of Cv. 

 

 

 

 

 

Direct FM 
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In practice, it is very difficult to construct highly stable oscillators 
that can be voltage-controlled accurately. Therefore, direct FM is 
not commonly used in FM broadcast transmitters. It is only used in 
applications where low equipment cost is more important than 
frequency stability, e.g. radio control. 

 

Indirect FM is more widely adopted as it is easier for practical 
circuit realization. An indirect FM modulator includes two steps: 

 A highly stable narrowband FM (NBFM) modulator (i.e., with a 
small ) that does not require voltage-controlled oscillators; and  

 A frequency multiplier to increase . This is usually done together 
with frequency shifting and bandwidth expanding. 

Indirect FM 
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NarrowBand FM (NBFM) is a special case of FM where the 
modulation index, , is small (usually  << 1). Recall that an 
FM signal is given by: 

 

 

 

If | (t)| is small then we have the following approximations: 

        cos((t))  1    and     sin((t))  (t)  

As a result,  

 ( )  cos(2 )  sin(2 ) 2 ( )
t

FM c cs t A f t A f t k s d    


  

( ) 2 ( )
t

t k s d   


 

Narrowband FM (NBFM) Modulator 

( ) cos{2 [ ( ) ]}
t

FM cs t A f t k s d  


  
cos(2 ( ))cA f t t  

cos(2 )cos( ( )) sin(2 )sin( ( ))c cA f t t A f t t    

( ) 2 ( )
t

t k s d   


 

sFM(t)  Acos(2fct) - A(t)sin(2fct ) 
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Armstrong FM Modulator 

s(t) 

 
( )  cos(2 ) 

               sin(2 ) 2 ( )

FM c

t

c

s t A f t

A f t k s d



   




 

 cos(2 )cA f t

sin(2 )cA f t
2 ( )

t

k s d  

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The main advantage of Armstrong FM modulator is its high 
frequency stability. While the Armstrong modulator is only suitable 
for FM with a small . For large  , a frequency multiplier can be 
used at the output of the Armstrong modulator.  

In particular, let us consider a frequency doubler defined as: 

    eo(t) = ei
2(t). 

If ei(t) is an FM signal, e.g., ei(t)  = cos(2fct +  sin2fmt), we have 

eo(t) = cos2 (2fct +  sin2fmt) = 0.5[1+cos (22fct + 2 sin2fmt)] 

 Both  and carrier frequency have been doubled.  

 A frequency multiplier can be formed by cascading several doublers. 

Frequency Multiplier 
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FM Demodulator: Slope Detection 

 ( ) cos 2 ( ) :
t

FM cs t A f t k s d  


   
 

   ( )
2 2 ( ) sin 2 ( )

t
FM

c c

ds t
f ks t A f t k s d

dt
    



        
  



Finally, we briefly discuss the FM demodulator. 

Let us take the derivative of an FM signal  

 

 

The envelope of this signal is:  

 

We can then recover s(t) from this envelope signal by removing 

its DC component.  

 

 2 2 ( )cA f ks t 
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Summary of FM and AM 

Bandwidth 

Efficiency 

Fidelity 

(evaluated by output SNR)  

AM 

FM 

DSB-SC 

DSB-C 

SSB 

VSB 

(DSB-C has a lower SNR) 

More bandwidth, better fidelity performance 

50% 

100% 

Complexity 

high 

high 

high 

low 

moderate 

~ Pt 

~ Pt ~ 2 

50% 100%s

s

B

B
 

 

50%
2(1 )

s

s

B

B



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