Lecture 2. Fading Channel

- Characteristics of Fading Channels
- Modeling of Fading Channels
- Discrete-time Input/Output Model

Radio Propagation in Free Space

- Speed: c = 299,792,458 m/s
- Isotropic
 - Received power at a particular location decays with distance: $P \sim r^{-2}$

- ✓ Transmitted signal: $s(t) = \cos 2\pi ft$
- ✓ Received signal: $y(t) = \frac{\beta \cos 2\pi f (t r/c)}{r}$

Radio Propagation in Terrestrial Environment

Transmission Power: P_t

Received Power: P_r

Large-scale Fading

- Large-scale fading -- Log-normal shadowing
 - Attributed to the random variation of propagation environment.
 - Empirically modeled as a **log-normal** random variable with mean μ and variance σ^2 .
 - Mean μ is determined by the path loss: $\mu \sim r^{-\alpha}$, $\alpha > 2$.

Small-scale Fading

- Small-scale fading
 - Attributed to 1) multiple arriving paths; and 2) movements of the transmitter and/or receiver.

A Simple Two-path Model (1)

Reflecting wall, fixed antenna

- ✓ Transmitted signal: $s(t) = \cos 2\pi ft$
- Received signal: $y(t) = \frac{\beta \cos 2\pi f (t r/c)}{r} \frac{\beta \cos 2\pi f (t (2d r)/c)}{2d r}$

The phase difference between the two waves:

$$\Delta \phi = \left(\frac{2\pi f (2d - r)}{c} + \pi\right) - \left(\frac{2\pi f r}{c}\right)$$
$$= \frac{4\pi f}{c} (d - r) + \pi$$

What happens if $\Delta \phi$ changes from π to 2π ?

 $\Delta \phi = 2k\pi$: Constructively add

 $\Delta \phi = (2k+1)\pi$: Destructively add

Coherence Bandwidth vs. Delay Spread

• An appreciable change of received signal will be observed if the frequency of transmitted signal f changes by: $\frac{c}{4(d-r)}$

The difference between the propagation delays along the two

signal paths is:
$$\frac{2d-r}{c} - \frac{r}{c} = \frac{2(d-r)}{c}$$
 O Delay Spread T_d

•
$$T_d \sim \frac{1}{W_c}$$

A Simple Two-path Model (2)

- ✓ Transmitted signal: $s(t) = \cos 2\pi ft$
- ✓ Received signal:

$$y(t) = \frac{\beta \cos 2\pi f (t - r(t)/c)}{r(t)} - \frac{\beta \cos 2\pi f (t - (2d - r(t))/c)}{2d - r(t)}$$

$$= \frac{\beta \cos 2\pi f (t - r(t)/c)}{r_0 + vt} - \frac{\beta \cos 2\pi f (t - (2d - r(t))/c)}{r_0 + vt}$$

$$= \frac{\beta \cos 2\pi f ((1 - v/c)t - r_0/c)}{r_0 + vt} - \frac{\beta \cos 2\pi f ((1 + v/c)t + (r_0 - 2d)/c)}{2d - r_0 - vt}$$

$$\approx \frac{2\beta \sin 2\pi f (vt/c + (r_0 - d)/c) \sin 2\pi f (t - d/c)}{r_0 + vt}$$

Coherence Time vs. Doppler Spread

An appreciable change of received signal will be observed if time t

changes by: $\frac{c}{4fv}$ Coherence
Time T_c

The difference between the Dopper shifts of the two paths is:

$$T_c \sim \frac{1}{D}$$

$$D_s = D_2 - D_1 = 2fv/c \circ o$$

Doppler Spread D_s

Modeling of Fading Channels

A fading channel can be modeled as a Linear Time-Varying system.

$$y(t) = \int_{-\infty}^{\infty} h(\tau, t) s(t - \tau) d\tau$$

> Suppose that $h(\tau,t)$ is a deterministic function of time t and delay $\tau.$

Time-variant transfer function: $H(f,t) = \mathcal{F}_{\tau}(h(\tau,t))$

Delay Doppler function: $S(\tau, \upsilon) = \mathcal{F}_t(h(\tau, t))$

Doppler-variant transfer function: $D(f, v) = \mathcal{F}_{\tau}(S(\tau, v)) = \mathcal{F}_{t}(H(f, t))$

 $\mathcal{F}(\cdot)$ denotes Fourier transform.

Modeling of Fading Channels

A fading channel can be modeled as a Linear Time-Varying system.

$$y(t) = \int_{-\infty}^{\infty} h(\tau, t) s(t - \tau) d\tau$$

Suppose that $h(\tau,t)$ is a WSS process with uncorrelated scatterers: The autocorrelation function $R_h(\tau_1,t_1,\tau_2,t_2) = \mathrm{E}[h(\tau_1,t_1)h^*(\tau_2,t_2)] = R_h(\tau,\Delta t)$

Time-variant transfer function: $R_H(\Delta f, \Delta t) = \mathcal{F}_{\tau}(R_h(\tau, \Delta t))$

Delay Doppler function: $R_S(\tau, \upsilon) = \mathcal{F}_{\Delta t}(R_h(\tau, \Delta t))$

Doppler-variant transfer function: $R_D(\Delta f, \upsilon) = \mathcal{F}_{\tau}(R_S(\tau, \upsilon)) = \mathcal{F}_{\Delta t}(R_H(\Delta f, \Delta t))$

Delay Spread

 T_d

Coherence Bandwidth

 W_{c}

Coherence Bandwidth vs. Delay Spread

• Let $\Delta t = 0$: $|R_{H}(\Delta f, 0)|$ $\mathcal{F}_{\Delta f}^{-1}(\cdot)$ $\mathcal{F}_{\tau}(\cdot)$ $R_{h}(\tau, 0)$ $\mathcal{F}_{\tau}(\cdot)$

- Flat fading: Signal Bandwidth W << Coherence Bandwidth W_c Symbol Time T >> Delay Spread T_d
- Frequency-selective Signal Bandwidth W>> Coherence Bandwidth W_c fading: Symbol Time T<< Delay Spread T_d

Coherence Time vs. Doppler Spread

• Let $\tau = 0$:

- Slow fading: Symbol Time T << Coherence Time T_c Signal Bandwidth W >> Doppler Spread D_s
- Fast fading: Symbol Time T >> Coherence Time T_c Signal Bandwidth W << Doppler Spread D_s

Discrete-time Input/Output Model

•
$$y(t) = \int_{-\infty}^{\infty} h(\tau, t) s(t - \tau) d\tau = \sum_{n} s[n] \sum_{i} a_{i}(t) \Psi_{T_{0}}(t - \tau_{i}(t) - nT_{0})$$

• $h(\tau, t) = \sum_{i} a_{i}(t) \delta(\tau - \tau_{i}(t))$
• $s(t) = \sum_{n} s[n] \Psi_{T_{0}}(t - nT_{0})$

• $a_i(t)$: attenuation at time t of path i

- $\Psi_{T_0}(t)$: modulation pulse
- $\tau_i(t)$: propagation delay at time t of path i
- Sampled output at t=mT₀:

$$y[m] = \sum_{i} s[n] \sum_{i} a_{i}(mT_{0}) \Psi_{T_{0}}((m-n)T_{0} - \tau_{i}(mT_{0}))$$
Let $l=m-n$. $y[m] = \sum_{i} s[m-l] \sum_{i} a_{i}(mT_{0}) \Psi_{T_{0}}(lT_{0} - \tau_{i}(mT_{0}))$ $h_{l}[m]$

• Discrete-time Input/Output Model: $y[m] = \sum_{l} h_{l}[m]s[m-l] + z[m]$

Discrete-time Input/Output Model

$$y[m] = \sum_{l=0}^{L-1} h_l[m]s[m-l] + z[m]$$

How many channel filter taps can be obtained (how to determine the value of L)?

Delay spread:
$$T_d = \max_{i,j} |\tau_i - \tau_j|$$
 \longrightarrow $L = \lceil WT_d \rceil$ Sampling rate: W

- Flat fading: L=1
- Frequency-selective fading: L>>1
- ightharpoonup How fast does the channel filter tap gain $h_l[m]$ vary with time in one symbol time T? Depends on the coherence time T_c .
 - Slow fading: $h_l[m]$ can be regarded as constant in T
 - Fast fading: $h_l[m]$ varies with time in T

More about $h_l[m]$

- Without line-of-sight (LOS) paths: $h_l[m]$ can be modeled as a zero-mean complex Gaussian random variable $\mathcal{CN}(0, \sigma_s^2)$.
 - > The magnitude follows Rayleigh distribution.
- With one LOS path: $h_l[m]$ can be modeled as

$$h_l[m] = \sqrt{\frac{k}{k+1}}\sigma_s e^{j\theta} + \sqrt{\frac{1}{k+1}}\mathcal{CN}(0,\sigma_s^2)$$

k: the ratio of the power in the LOS path and that in the scattered paths.

> The magnitude follows Ricean distribution.

More about $h_l[m]$

- Availability of Channel State Information (CSI)
 - CSIR: CSI is available at the receiver side.
 - available through channel measurement
 - required for coherent detection
 - CSIT: CSI is available at the transmitter side.
 - available through channel measurement and feedback
 - optional
- Ergodicity
 - indispensable condition to achieve the Shannon capacity
 - may not hold in delay-limited scenarios

Summary

- Fading Channel
 - Large-scale fading
 - Path loss
 - Shadowing
 - Small-scale fading
 - Delay spread (caused by multipath) $\stackrel{ extstyle }{
 ightharpoonup}$ Frequency-selective fading
 - Doppler spread (caused by mobility) Slow fading

 Fast fading
 - Discrete-time input/output model

$$y[m] = \sum_{l=0}^{L-1} h_l[m] s[m-l] + z[m]$$