

Lecture 3. Diversity

1

- Detection in Fading Channel
- Diversity
 - ✓ Time Diversity
 - ✓ Space Diversity
 - ✓ Frequency Diversity

Detection in Fading Channel

• Consider a slow flat Rayleigh fading channel.

 $y[m] = h[m]s[m] + z[m] \qquad h[m] \sim \mathcal{CN}(0,1)$

✓ How to detect?

 \checkmark What is the error performance?

• Suppose the receiver has the information of *h*[*m*] (i.e., CSIR).

- Step 1:
$$\frac{h^*}{|h|} y = \frac{h^*}{|h|} hs + \frac{h^*}{|h|} z \implies \tilde{y} = |h| s + \frac{h^*}{|h|} z$$

- Step 2: pass \tilde{y} through the optimal detector for AWGN channel.

Coherent

Detection

BER of Coherent Detection in Fading Channel

• With BPSK:

$$P_e \mid h = Q\left(\sqrt{2 \mid h \mid^2 SNR}\right)$$

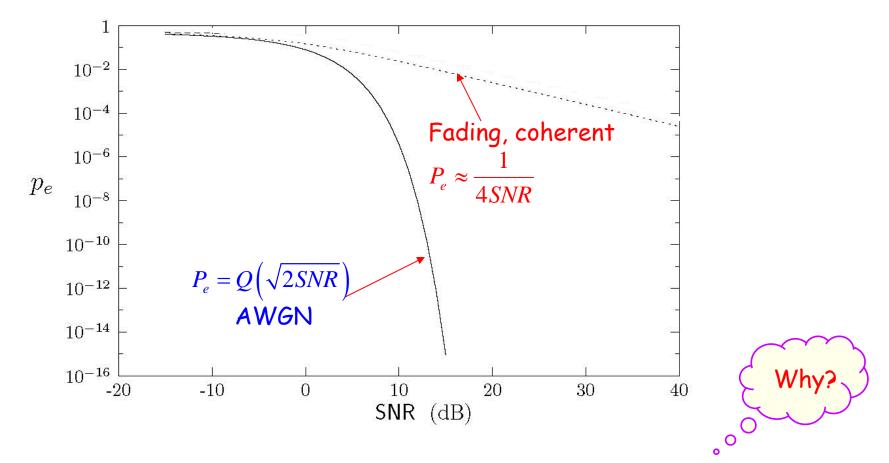
• The channel gain *h* varies with time. With $h \sim CN(0,1)$,

$$P_e = \mathbf{E}_h \left[Q\left(\sqrt{2 |h|^2 SNR}\right) \right] = \frac{1}{2} \left(1 - \sqrt{\frac{SNR}{1 + SNR}} \right)$$

$$\int \int \sqrt{\frac{SNR}{1 + SNR}} = 1 - \frac{1}{2SNR} + O\left(\frac{1}{SNR^2}\right)$$

$$P_e \approx \frac{1}{4SNR} \quad \text{at high SNR}$$

BER Comparison



The BER performance in fading channel is much worse than that in AWGN channel!

Deep Fade

$$P_e \mid h = Q\left(\sqrt{2 \mid h \mid^2 SNR}\right)$$

 $P_e|h$ is small if $|h|^2SNR >>1$; otherwise it is significant.

$$\Pr\{|\underline{h}|^{2} SNR < 1\} = \int_{0}^{1/SNR} e^{-x} dx = \frac{1}{SNR} + O\left(\frac{1}{SNR^{2}}\right)$$

Deep fade event

- Detection in fading channels has poor performance because the channel gain is a random variable, and there is a significant probability that the channel is "bad". Deep fade
- How to overcome deep fade?

Pass the information symbols through **multiple** signal paths, each of which fades **independently**, so that reliable communication is possible as long as one of the paths is strong.

Time Diversity

Repetition Coding + Interleaving

Time Diversity

• Consider a slow flat Rayleigh fading channel.

y[m] = h[m]s[m] + z[m]

- ✓ Repetition Code: s[i]=x, i=1,...,L → the number of diversity branches (repeat the information symbol x by L times)
- ✓ Received signal: $\mathbf{y} = \mathbf{h}x + \mathbf{z}$ $\mathbf{y} = [y[1], y[2], ..., y[L]]^{'}$ $\mathbf{h}^{*} = [h[1], h[2], ..., h[L]]^{'}$ $\mathbf{z} = [z[1], z[2], ..., z[L]]^{'}$

Maximal ratio combiner: it weighs the received signal in each branch in proportion to the signal strength and also aligns the phases of the signals in the summation to maximize the output SNR.

Error Performance with Time Diversity

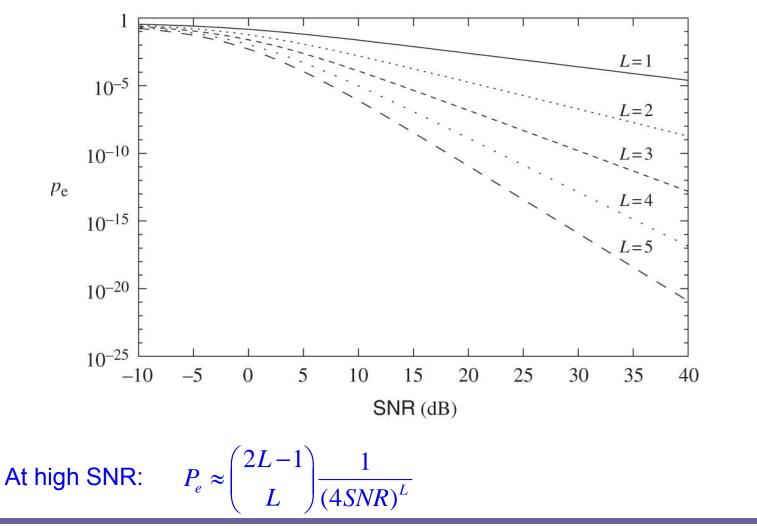
• With BPSK: $P_e | \mathbf{h} = Q\left(\sqrt{2||\mathbf{h}||^2}SNR\right)$

 $\|\mathbf{h}\|^2 = \sum_{l=1}^{L} |h[l]|^2$ is Chi-square distributed with 2*L* degrees of freedom,

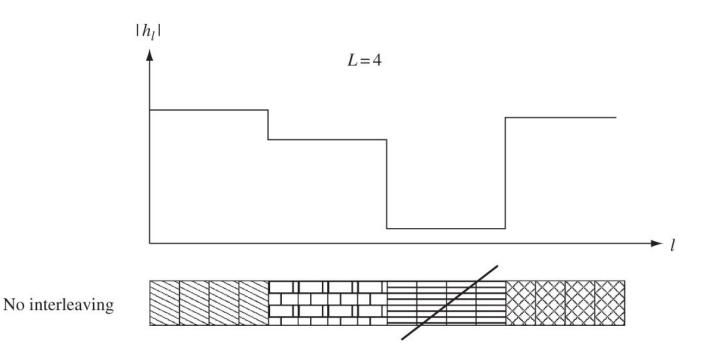
if h[l], l=1,...,L, are i.i.d complex Gaussian random variables.

Can we obtain full diversity gain by using repetition codes alone?

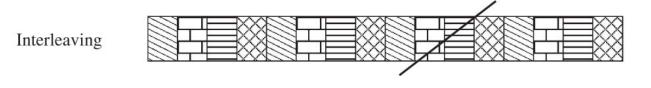
Error Performance with Time Diversity



Interleaving



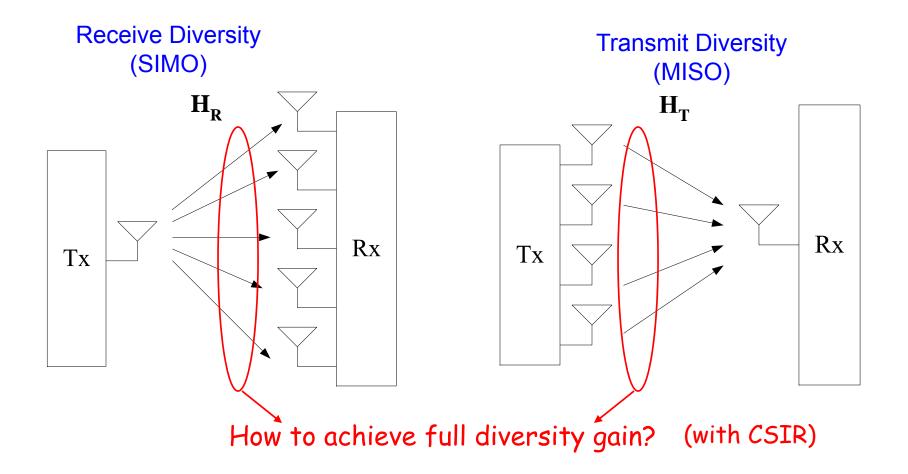
 Interleaving of codewords is required to guarantee that each branch experiences independent fading.



Space Diversity

- Receive Diversity
- Transmit Diversity
- MIMO

Space Diversity



Receive Diversity

- Consider a slow flat Rayleigh fading channel.
 - With *L* receive antennas, the received signal $\mathbf{y} = [y_1, y_2, ..., y_L]$

$$\mathbf{y} = \mathbf{h}x + \mathbf{z} \qquad \Longrightarrow \qquad \left(\frac{\mathbf{h}^*}{\|\mathbf{h}\|}\mathbf{y} = \|\mathbf{h}\| x + \frac{\mathbf{h}^*}{\|\mathbf{h}\|}\mathbf{z}\right)$$
$$\mathbf{h} = [h_1, h_2, \dots, h_L]$$

Maximal ratio combiner

- if h_l , l=1,...,L, are i.i.d complex Gaussian random variables:
 - With BPSK: $P_e | \mathbf{h} = Q\left(\sqrt{2 || \mathbf{h} ||^2 SNR}\right)$ $P_e \approx \begin{pmatrix} 2L-1 \\ L \end{pmatrix} \xrightarrow{1}{(4SNR)}$ Full diversity gain

Can we achieve the same performance by using transmit diversity?

Transmit Diversity I: with CSIT

• If the transmitter has full Channel State Information (CSIT):

What if the transmitter has no information about the channel?

Scheme 1: All *L* antennas transmit the same symbol simultaneously ٠

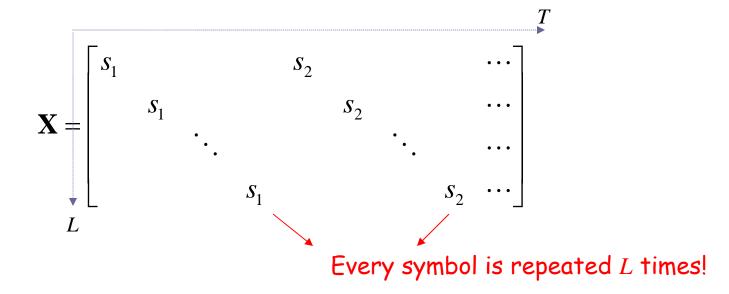
At any time slot t, $y = \mathbf{h}\mathbf{x}_t + z = s_t \sum_{i=1}^{L} h_i + z$

 $\mathbf{X} = \begin{bmatrix} s_1 & s_2 & \cdots \\ s_1 & s_2 & \cdots \\ \vdots & \vdots & \vdots \end{bmatrix}$

Diversity order =1

- No diversity gain
- Full rate: r=k/T=1

• Scheme 2: Turn on one antenna at each time slot



- Full diversity gain
- Low rate: r=1/L

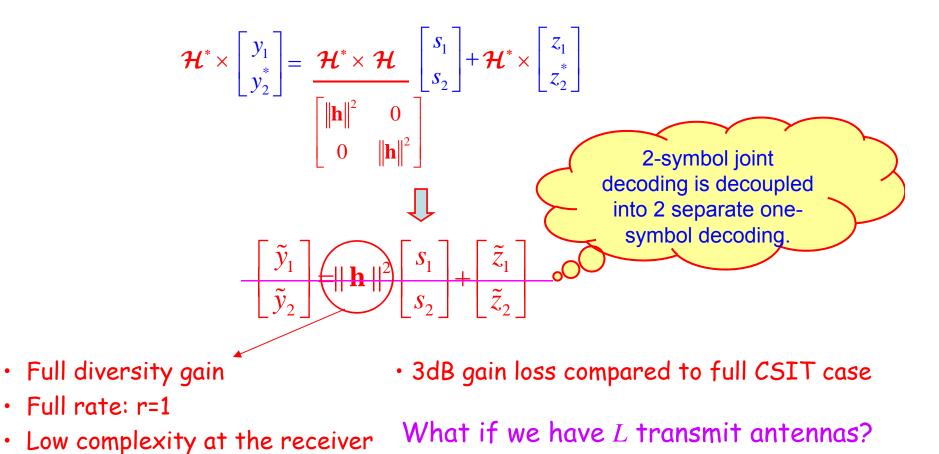
• Scheme 3: Alamouti scheme (2 transmit antennas)

$$\mathbf{X} = \begin{bmatrix} s_1 & -s_2^* \\ s_2 & s_1^* \end{bmatrix}$$

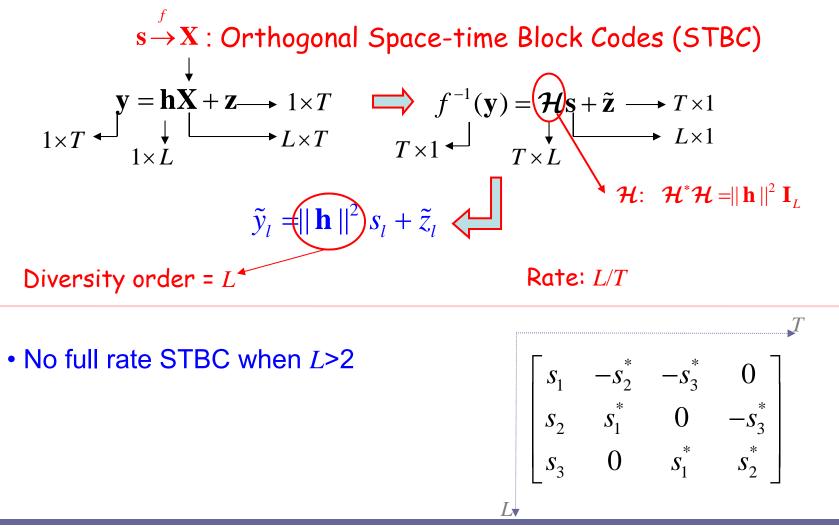
At the receiver side, we need to collect signals over 2 consecutive time slots for decoding.

$$\begin{bmatrix} y_1 & y_2 \end{bmatrix} = \begin{bmatrix} h_1 & h_2 \end{bmatrix} \begin{bmatrix} s_1 & -s_2^* \\ s_2 & s_1^* \end{bmatrix} + \begin{bmatrix} z_1 & z_2 \end{bmatrix}$$
$$\begin{bmatrix} y_1 \\ y_2^* \end{bmatrix} = \begin{bmatrix} h_1 & h_2 \\ h_2^* & -h_1^* \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} + \begin{bmatrix} z_1 \\ z_2^* \end{bmatrix}$$
$$\mathcal{H}^* \mathcal{H} = (|h_1|^2 + |h_2|^2) \mathbf{I}_2$$
$$= \|\mathbf{h}\|^2 \mathbf{I}_2$$
$$\mathbf{h} = [h_1, h_2]$$

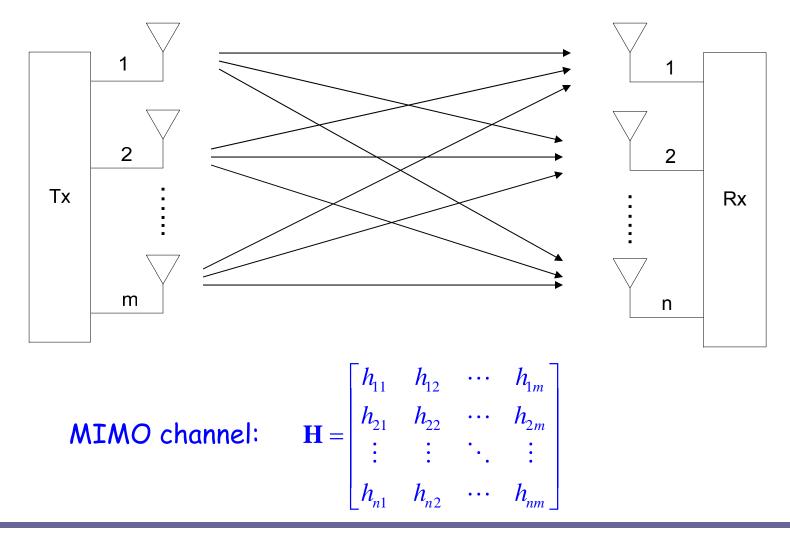
• Scheme 3: Alamouti scheme (2 transmit antennas)



More about Alamouti Scheme



Multiple-Input-Multiple-Output (MIMO)



Diversity in MIMO Channels

• What is the maximum diversity order provided by an n by m MIMO channel?

mn

• How to achieve the full diversity gain?

Transmitter

Receiver

- Transmit s simultaneously at all antennas ?
 Full rate
- Turn on one antenna at each time slot, repetition? Maximum Ratio Rate=1/m Combining
- Orthogonal STBC ? Rate=m/T

> Transmit
$$\frac{\mathbf{h}_{k}^{*}}{\|\mathbf{h}_{k}\|}s$$
, $k \in \{1,...,n\}$? Full rate

Summary

- Detection in Fading Channels
 - Poor performance due to deep fade $P_e \sim SNR^{-1}$
- Use Diversity to Overcome Fading
 - Time Diversity
 - Repetition code + Interleaving
 - Space Diversity
 - Receive diversity
 - Transmit diversity
 - Diversity in MIMO channels
 - Frequency Diversity?

Frequency Diversity

- Frequency Diversity in Frequency-selective Fading Channel
- Equalization, DSSS and OFDM

Frequency-Selective Fading Channel

• Consider a slow frequency-selective fading channel.

1) the channel response has a finite number of taps *L*>1;

2) the channel taps do not vary over N>L symbol times.

$$y[m] = \sum_{l=0}^{L-1} h_l s[m-l] + z[m]$$
 $m=1,...,N.$

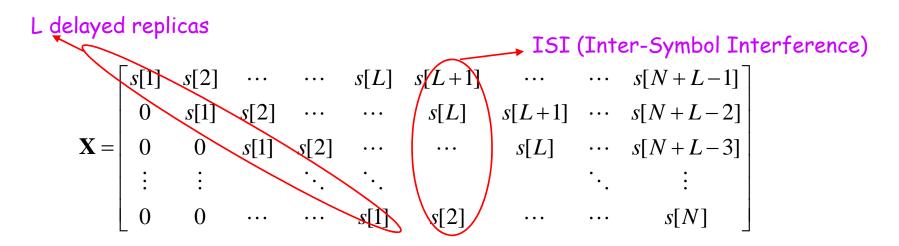
How many copies of each symbol can be obtained at the receiver over such a frequency-selective channel?

Transmission over Frequency-Selective Fading Channel

N transmit symbols: $s[1], s[2], \ldots, s[N]$ *L* channel taps: $h_0, h_1, \ldots, h_{L-1}$ $y[m] = \sum_{l=0}^{L-1} h_l s[m-l] + z[m]$ $y[1] = \sum_{l=0}^{L-1} h_l s[1-l] + z[1] = h_0 s[1] + z[1]$ At time slot 1: $y[2] = \sum_{l=0}^{L-1} h_l s[2-l] + z[2] = h_0 s[2] + h_1 s[1] + z[2]$ At time slot 2: $y[3] = \sum_{l=0}^{L-1} h_l s[3-l] + z[3] = h_0 s[3] + h_1 s[2] + h_2 s[1] + z[3]$ At time slot 3: $y[L] = \sum_{l=0}^{L-1} h_l s[L-l] + z[L] = h_0 s[L] + \dots + h_{L-1} s[1] + z[L]$ At time slot *L*: $\mathbf{x}[m] = [s[m], s[m-1], \dots, s[m-L+1]]$ $\mathbf{y}[m] = \mathbf{h}\mathbf{x}[m] + \mathbf{z}[m],$ At time slot *m*: $\mathbf{h} = [h_0, h_1, \dots, h_{I-1}]$ Lin Dai (City University of Hong Kong) EE6603 Wireless Communication Technologies Lecture 3

Transmission over Frequency-Selective Fading Channel

y = hX + z y = [y[1], y[2], ..., y[N + L - 1]]X = [x[1], x[2], ..., x[N + L - 1]]



- Frequency diversity is intrinsic in frequency-selective channels.
- Inter-Symbol Interference occurs, i.e., the delayed replicas of previous symbols interfere with the current symbols, if a symbol is sent every symbol time.

How to mitigate ISI and achieve full frequency diversity?

• Transmit one symbol every L symbol times

$$\mathbf{X} = \begin{bmatrix} s[1] & 0 & \cdots & 0 & s[2] & 0 & \cdots & 0 & \cdots \\ 0 & s[1] & \cdots & 0 & 0 & s[2] & \cdots & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \cdots \\ 0 & 0 & \cdots & s[1] & 0 & 0 & \cdots & s[2] & \cdots \end{bmatrix}$$

- Full diversity gain
- Low complexity
- Low efficiency

Time-domain Equalization

$$\mathbf{X} = \begin{bmatrix} s[1] & s[2] & \cdots & \cdots & s[L] & s[L+1] & s[L+2] & \cdots & s[N+L-1] \\ 0 & s[1] & s[2] & \cdots & \cdots & s[L] & s[L+1] & \cdots & s[N+L-2] \\ 0 & 0 & s[1] & s[2] & \cdots & \cdots & s[L] & \cdots & s[N+L-3] \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & s[1] & s[2] & s[3] & \cdots & s[N] \end{bmatrix}$$

At time slot *m*: y[m] = hx[m] + z[m] $h = [h_0, h_1, ..., h_{L-1}]$

 $\mathbf{h} = [h_0, h_1, ..., h_{L-1}]$ $\mathbf{x}[m] = [s[m], s[m-1], ..., s[m-L+1]]'$

m=1,..., *N*+*L*-1: $\mathbf{y} = \mathbf{h}\mathbf{X} + \mathbf{z}$ $\mathbf{y} = [y[1], y[2], ..., y[N + L - 1]]$ $\mathbf{X} = [\mathbf{x}[1], \mathbf{x}[2], ..., \mathbf{x}[N + L - 1]]$

How to solve s=[s[1], s[2], ..., s[N]] based on y?

- Time-domain Equalization
 - > MLSD (maximum likelihood sequence detection)

 $\max_{\mathbf{s}} \Pr\{\mathbf{y} \mid \mathbf{s}\}$

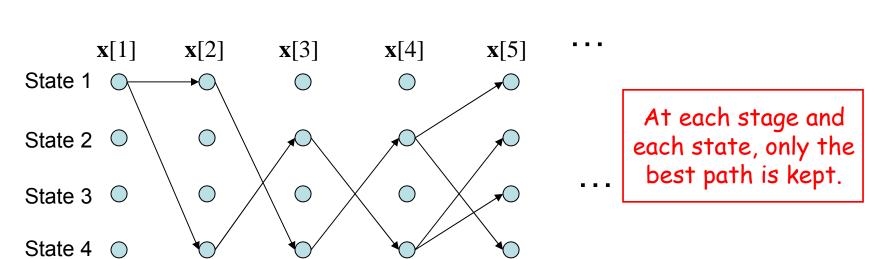
 $\max_{\mathbf{s}} \Pr\{\mathbf{y} \mid \mathbf{s}\} \implies \max_{\mathbf{X}} \Pr\{\mathbf{y} \mid \mathbf{X}\} = \max_{\mathbf{x}} \prod_{m} \Pr\{\mathbf{y}[m] \mid \mathbf{x}[m]\}$ $\implies \min_{\mathbf{x}} -\log\Pr\{\mathbf{y} \mid \mathbf{X}\} = \min_{\mathbf{x}} -\sum_{m} \log\Pr\{\mathbf{y}[m] \mid \mathbf{x}[m]\}$

At time slot *m*: $\mathbf{x}[m] = [s[m], s[m-1], ..., s[m-L+1]]'$

*can be described using a finite state machine!
Number of states = M^L

M: constellation size for each symbol s[m]

- Time-domain Equalization
 - > MLSD Viterbi algorithm $\min_{\mathbf{x}} \sum_{m} \log \Pr\{y[m] | \mathbf{x}[m]\}$



Optimality principle: if the optimal path to state s1 at stage m goes through state s2 at stage m-1, then the part of the path up to stage m-1 must be the optimal path to state s2.

 h_0 **Time-domain Equalization** ٠ h_{L-1} > Linear Equalizer $\mathbf{K}\mathbf{y} = \mathbf{K}\mathbf{H}\mathbf{s} + \mathbf{K}\mathbf{z}$ **H** = - Zero-forcing (ZF) $\mathbf{K} = (\mathbf{H}^* \mathbf{H})^{-1} \mathbf{H}^*$ h_{L-1} - Minimum Mean Squared Error (MMSE) The j-th row of **K**: $\mathbf{k}_{j} = \mathbf{h}_{j}^{*} \cdot ($ the i-th column of H Decision-Feedback Equalizer (DFE) \succ b₁' Successive Interference **X**1' Symbol Linear decoder Detector Regeneration У Cancellation (SIC)

- Time-domain Equalization (eg. GSM)
 - > MLSD
 - Viterbi algorithm

- Optimal (minimizing the sequence error)
- Full diversity gain
- Complexity level O(M^L)

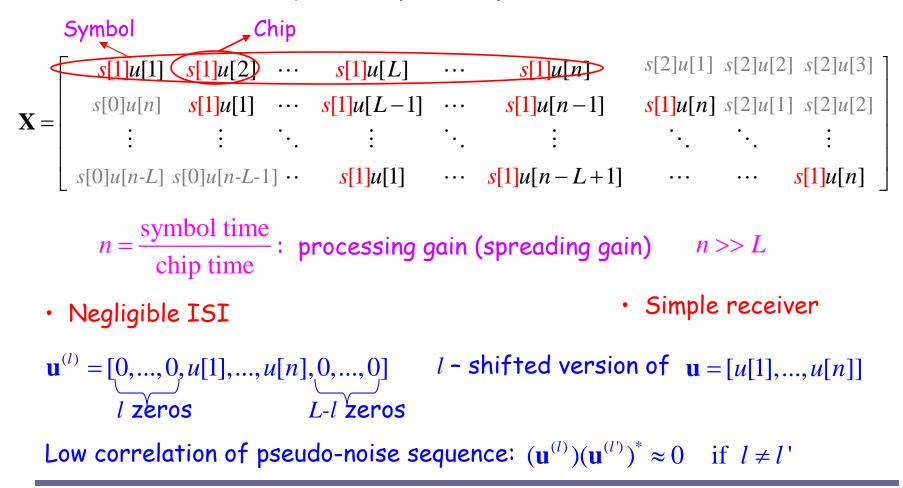
- Linear Equalizer
 - ZF, MMSE

> DFE

- Not optimal
- Full diversity gain
- Low complexity O(L^a)

Complexity at receiver side!

• DSSS (Direct Sequence Spread Spectrum)



• DSSS (eg. IS-95, WCDMA, CDMA2000, ...)

$\mathbf{X} =$	s[1] <i>u</i> [1]	<i>s</i> [1] <i>u</i> [2]	•••	<mark>s[1]</mark> u[L]	•••	<mark>s[1]</mark> u[n]	0	0	0	<i>s</i> [1] u ⁽⁰⁾
	0	<mark>s[1]</mark> u[1]	•••	s[1]u[L-1]	•••	s [1] <i>u</i> [<i>n</i> −1]	<mark>s[1]</mark> u[n]	0	0	<i>s</i> [1] u ⁽¹⁾
		• •	•••	• •	·.	•	•.	••••	•	
	0	0	•••	<i>s</i> [1] <i>u</i> [1]	•••	s[1]u[n-L+1]	•••	•••	<mark>s[1]</mark> u[n]_	<i>s</i> [1] u ^(<i>L</i>-1)

At the receiver:
$$\mathbf{y} = \mathbf{h}\mathbf{X} + \mathbf{z} = \sum_{l=0}^{L-1} h_l s[1] \mathbf{u}^{(l)} + \mathbf{z}$$
 $\mathbf{h} = [h_0, h_1, ..., h_{L-1}]$
 $\left(\mathbf{u}^{(l)}\right)^*$ $l' = 0, ..., L-1$
 $r^{(l)} = h_l s[1] + \tilde{z}^{(l)}, \quad l = 0, ..., L-1$

Rake Receiver is nothing more than a maximal ratio combiner

- Full diversity gain Low efficiency Interference mitigation
- Low complexity
 Security
 High requirement on synchronization

OFDM (Orthogonal Frequency Division Multiplexing)

 $d[0], d[1], ..., d[N_c - 1] \Longrightarrow d[N_c - L + 1], d[N_c - L + 2], ..., d[N_c - 1], d[0], d[1], ..., d[N_c - 1]$

Cyclic Prefix

	\mathbf{d}_L	\mathbf{d}_{L+1}		\mathbf{d}_{Nc+L-1}
$d[N_1 - L + 1] = d[N_1 - L + 2] = \cdots = d[N_1]$	-1] d[0]	<i>d</i> [1]	•••	$d[N_c-1]$
\mathbf{v} x $d[N, -L+1] \cdots d[N]$	$d[N_{c}-1]$	d[0]	•••	$d[N_{c} - 2]$
	· · .	÷	•.	•.
	$d[N_{c} - L + 1]$	$d[N_c - L + 2]$	•••	$d[N_c - L]$

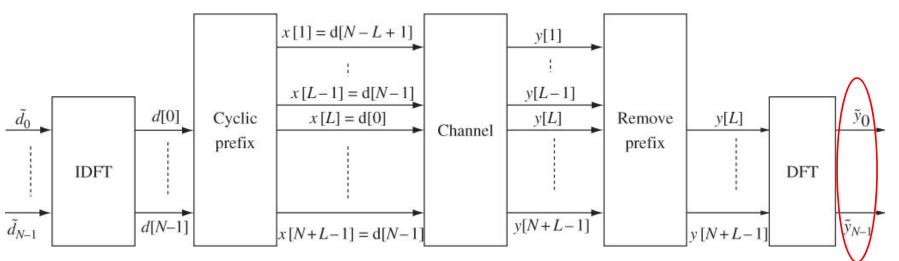
• No interference from the other block. • Rows are cyclic shifts of each other! At the receiver: $\mathbf{y} = \mathbf{h}\mathbf{X} + \mathbf{z}$ $\mathbf{y} = [y_1, ..., y_{L-1}, y_L, ..., y_{N_c+L-1}], \mathbf{h} = [h_0, h_1, ..., h_{L-1}]$ Ignoring the first L-1 receive symbols,

 $y[m] = \mathbf{hd}_m + z[m] = \sum_{l=0}^{L-1} h_l d[(m-L-l) \mod N_c] + z[m] \qquad m = L, L+1, ..., N_c + L-1.$

OFDM (eg. Wi-Fi (802.11 a, g, n), WiMAX, ...)

 $y[m] = \sum_{l=0}^{L-1} h_l d[(m-L-l) \mod N_c] + z[m] \qquad m = L, L+1, ..., N_c + L-1.$ Let $\hat{\mathbf{h}} = [h_0, h_1, ..., h_{T-1}, 0, ..., 0]$ $\hat{\mathbf{y}} = [y_L, \dots, y_{N_c+L-1}]$ $\hat{y}[n] = \sum_{l=0}^{N_c-1} \hat{h}_l d[(n-l) \mod N_c] + \hat{z}[n]$ $n = 0, 1, ..., N_c - 1.$ $\hat{\mathbf{y}} = \hat{\mathbf{h}} * \mathbf{d} + \hat{\mathbf{z}}$ $\mathbf{d} = [d[0], ..., d[N_c - 1]]$ * denotes the cyclic convolution. $\mathrm{DFT}(\hat{\mathbf{h}} * \mathbf{d})_n = \sqrt{N_c} \mathrm{DFT}(\hat{\mathbf{h}})_n \cdot \mathrm{DFT}(\mathbf{d})_n$ $\tilde{y}_n = \tilde{h}_n \tilde{d}_n + \tilde{z}_n$ $n = 0, 1, ..., N_c - 1.$ $\tilde{h}_n = \sum_{l=0}^{L-1} h_l \exp\left(\frac{-j2\pi nl}{N}\right) \qquad \qquad \tilde{d}_n = \frac{1}{\sqrt{N_c}} \sum_{m=0}^{N_c-1} d[m] \exp\left(\frac{-j2\pi nm}{N}\right)$

• OFDM (eg. Wi-Fi (802.11 a, g, n), WiMAX, ...)



- Convert the data symbols in frequency domain (in different subcarriers) into time domain using IDFT
- Add cyclic prefix to remove ISI (so that the subcarriers become orthogonal after going through the channel)
- Convert the receive signals into frequency domain to recover the data symbols

Lin Dai (City University of Hong Kong) EE6603 Wireless Communication Technologies Lecture 3

 $\tilde{y}_n = \tilde{h}_n \tilde{d}_n + \tilde{z}_n$

 N_c parallel sub-channels

 $n = 0, 1, \dots, N_c - 1.$

- OFDM (eg. Wi-Fi (802.11 a, g, n), WiMAX, ...)
- 1. Can we get N_c -fold diversity gain by sending the same symbol over N_c subcarriers?
- 2. How to collect full frequency diversity gain?

3. Can N_c be arbitrarily large?

• Full diversity gain

• Flexible resource allocation

• No ISI (by virtue of cyclic prefix)

Summary

- Detection in Fading Channels
 - Poor performance due to deep fade $P_e \sim SNR^{-1}$
- Use Diversity to Overcome Fading
 - Time Diversity
 - Repetition code + Interleaving
 - Space Diversity
 - Receive diversity, transmit diversity, MIMO
 - Frequency Diversity

will be • Equalization revisited in • DSSS
 multiuser • DFDM
 High complexity, entirely at the receiver
 Low complexity, shared by transmitter and receiver
 moderate complexity, shared by transmitter and receiver