
Lecture 5. Multiple Access

1

- Overview of Multiple Access
- Centralized MAC
- Distributed MAC
- Case Study: WiFi

What is Multiple Access?

• How to share the channel?

Multiple Access

Ideal MAC

- Sum rate (system throughput) $\sum_{k=1}^{K} R_k$
- Rate of each single user R_k
- Complexity
-

High throughput Fairness Low complexity

- Resource Allocation

 Resource Allocation
 Given the resources (time, frequency, antennas, power, ...), how to maximize the system objective (sum rate, average user rate, ...)?
- Protocol Design Minimum system control, fully distributed
 What is the simplest way to determine how nodes share the channel?

Centralized MAC vs. Distributed MAC

Centra	lized	MAC
--------	-------	-----

- Resource allocation
- Joint processing of users' information
- Multiuser information theory
 - Perfect system guidance and performance evaluation
 - Bursty arrival is not taken into consideration

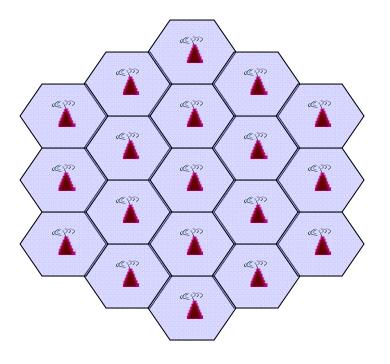
Distributed MAC

- Resource competition
- No joint transmission/detection (A "collision" occurs if more than one user transmits. None of them can succeed.)
- Random access theory
 - Simple, scalable
 - No unified framework

- CDMA, OFDMA and Scheduling
- Aloha and CSMA

Centralized MAC I: MAC of Wideband Cellular Networks

- CDMA
- OFDMA
- Scheduling



A little bit of History

- 1st Generation: AMPS, TACS, NMT
- 2nd Generation: GSM, IS-136, IS-95
 - 2.5G: GPRS, EDGE
- 3rd Generation: WCDMA, CDMA2000, TD-SCDMA
- 4th Generation: WiMAX, LTE, LTE Advanced

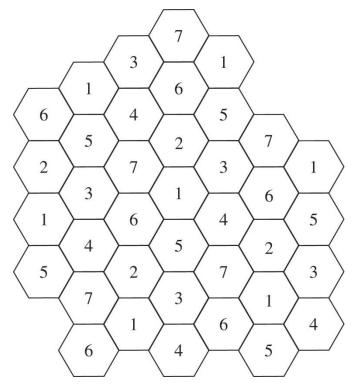
Cellular Networks

- Intra-cell: How to allocate resources to different users inside the cell?
 - FDMA, TDMA, CDMA, OFDMA, SDMA, ...
- Inter-cell: How to overcome the interference outside the cell?
 - Avoid Average out Cancel
- How to manage cells?
 - Cell planning Cell cooperation
- Voice and data service
- Expensive spectrum
- Large-scale network

- Provide distinct QoS
- Improve spectral efficiency
- Decompose the network

Lin Dai (City University of Hong Kong) EE6603 Wireless Communication Technologies Lecture 5

Uplink vs. Downlink


BS→user: downlink user→BS: uplink

Synchronization

- Easier in downlink because all the signals originate from the same transmitter (BS)
- Power control
 - More crucial for uplink because the receive signals experience distinct channels
- Channel measurement
 - Easier in downlink because BS can send a strong pilot signal
- Data rate requirement
 - Higher in downlink (for data service)
- Duplexing: How to allocate resources between uplink and downlink
 - Time Division Duplex (TDD) or Frequency Division Duplex (FDD)

Narrowband Cellular Network (e.g. GSM)

- Intra-cell: TDMA
 - Users are allocated different time slots.
 - Inter-cell: Avoid the interference
 - Frequency reuse factor: 1/7
- Complicated cell planning
- Hard handoff
- ✓ No intra- or inter-cell interference
- \checkmark Inefficient use of resources

Wideband Cellular Network

- Universal frequency reuse
 - Share the bandwidth
- Cell cooperation
 - Soft handoff

- Flexible resource allocation
 - Allocate on-demand
 - Exploit the channel condition

Examples:

- CDMA (e.g. IS-95, WCDMA, CDMA2000, TD-SCDMA)
- > OFDMA (e.g. Flash-OFDM, WiMAX, LTE)
- Channel-aware Scheduling (e.g. CDMA 1xEVDO, HSDPA)

Wideband Cellular (1): CDMA

- Intra-cell: CDMA
 - Users are allocated different PN sequences.
- Inter-cell: average out the interference
 - Fluctuations of aggregate interference in adjacent cells are reduced when there are many users in the network.
- ✓ Decompose the network problem into a set of independent pointto-point links, while each link sees both interference (regardless of intra-cell or inter-cell) and background thermal noise.
 - ✓ Simple transceiver design
 - ✓ Soft capacity

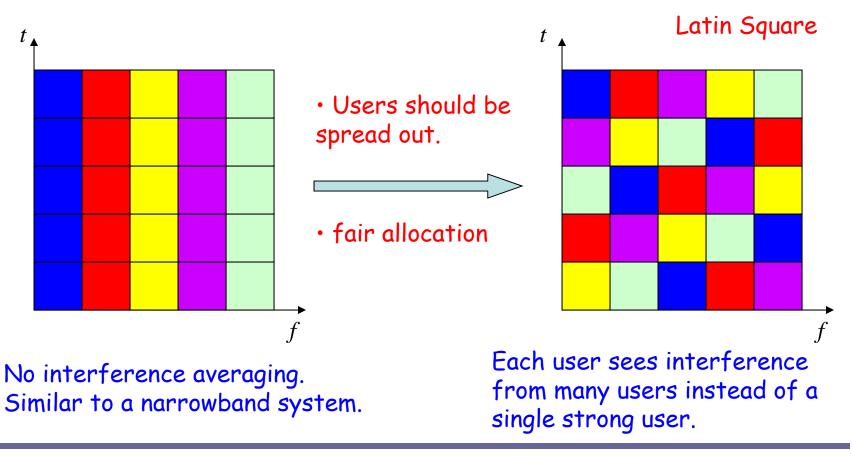
CDMA Uplink vs. Downlink

Uplink (users-BS)

- Near-far effect (power control is crucial)
- Intra-cell interference (chip-level synchronization is required to keep users orthogonal)
- Interference averaging
- Non-coherent demodulation
- Multiuser detector is affordable

Downlink (BS-users)

- No near-far problem
- Much smaller intra-cell interference
- Less interference averaging due to few base stations
- Coherent demodulation (strong pilot)
- Rake receiver


Wideband Cellular (2): OFDMA

- Intra-cell: OFDMA
 - Users are allocated different subcarriers using OFDM.
 - No intra-cell interference.
- Inter-cell: average out the interference
 - Hopping
- $\checkmark\,$ Flexible resource allocation
 - \checkmark Abundant frequency and time units
 - \checkmark Various allocation strategies

Hopping Pattern

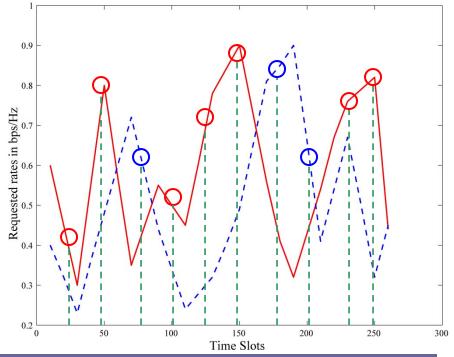
Resources: 5 by 5 time-frequency units. To be allocated to 5 users.

CDMA vs. OFDMA

CDMA

- Universal frequency reuse
- Inter-cell interference averaged
- Significant intra-cell interference
- Tight power control
 - "expensive" for users who only transmit infrequentlyincur delay
- Fewer degrees of freedom
- Medium PAPR

 (Peak-to-Average Power Ratio)
 High PARA
 High PARA

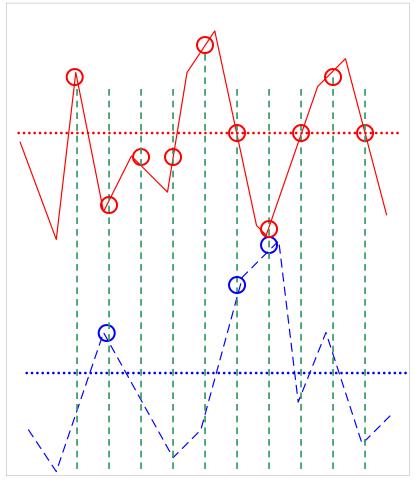

Lin Dai (City University of Hong Kong) EE6603 Wireless Communication Technologies Lecture 5

OFDMA

- Universal frequency reuse
- Inter-cell interference averaged
- No intra-cell interference
- Timing and frequency synchronization
- Adaptive resource allocation
- High PAPR

Wideband Cellular (3): Channel-aware Scheduling

- Intra-cell: channel-aware scheduling
 - Users are allocated different time slots according to their channel conditions: select the best user at each time slot.
 - No intra-cell interference.
- Inter-cell: opportunistically
 avoid the interference


CDMA vs. Channel-aware Scheduling

CDMA	Channel-aware Scheduling
Average out channel fluctuations	Exploit channel fluctuations
Track slow fluctuations	 Track as many fluctuations as possible
Power control	Rate control
Average out inter-cell interference	Opportunistically avoid inter-cell interference
 Support tight delay 	Need some laxity

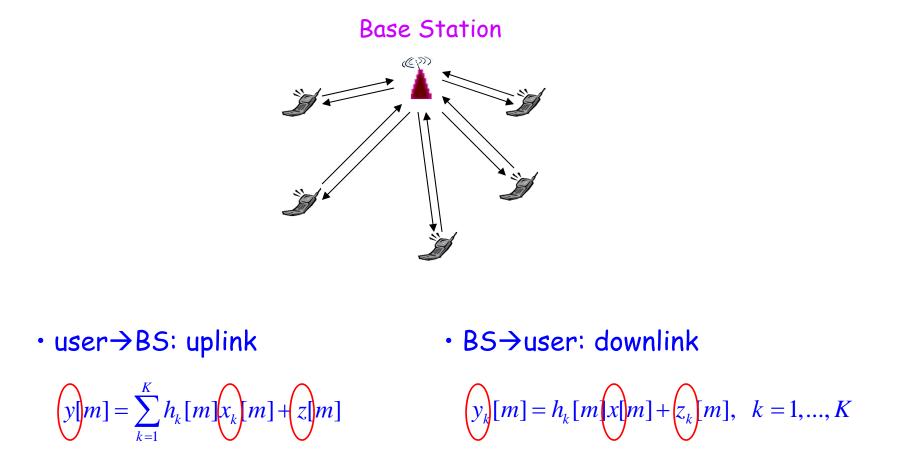
More about Channel-aware Scheduling

- Fairness
 - Hit the "peak"
- Channel measurement and feedback
 - Fast channel tracking
- Channel fluctuations
 - Too fast
 - Too slow

"Opportunistic Beamforming" Introducing randomness

Summary I: MAC of Wideband Cellular Networks

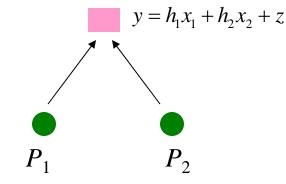
	CDMA	OFDMA	Channel-aware Scheduling
Intra-cell Resources	PN Sequences	Subcarriers & Time slots	Time slots
Intra-cell I <u>nterference</u>	Significant	None	None
Control at BS	Tight Power Control	Timing & Frequency Synchronization	Rate Control Track as many
	Track slow fluctuations		fluctuations as possible
Delay <u>Requirement</u>	Can Support Tight Delay		Need some laxity



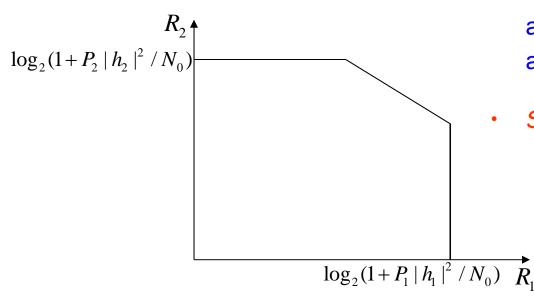
Centralized MAC II: Multiuser Capacity

- Multiuser Capacity of AWGN Channels
- Multiuser Capacity of Fading Channels

Uplink vs. Downlink Channel Model



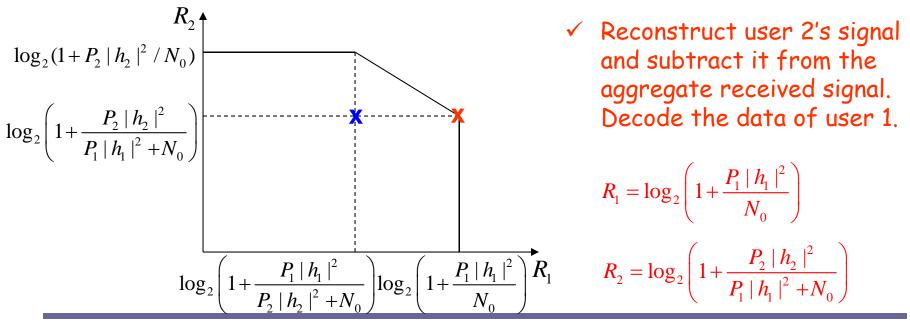
Multiuser Capacity of AWGN Channels


- Uplink Capacity
- Downlink Capacity

Capacity of Uplink AWGN Channel

 $R_{1} \leq \log_{2}(1 + P_{1} | h_{1} |^{2} / N_{0}) \qquad R_{2} \leq \log_{2}(1 + P_{2} | h_{2} |^{2} / N_{0})$ $R_{1} + R_{2} \leq \log_{2}(1 + (P_{1} | h_{1} |^{2} + P_{2} | h_{2} |^{2}) / N_{0})$

- Capacity Region: set of pairs (R1, R2) at which users 1 and 2 can reliably and simultaneously communicate.
- Sum Capacity: the maximum total rate

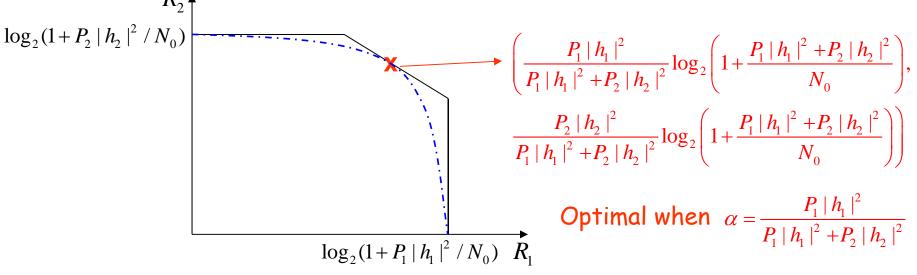

$$C_{sum} = \max_{(R_1, R_2) \in \mathcal{C}} R_1 + R_2$$
$$= \log_2 \left(1 + \frac{P_1 |h_1|^2 + P_2 |h_2|^2}{N_0} \right)$$

To Achieve Uplink Capacity I: Non-orthogonal Access

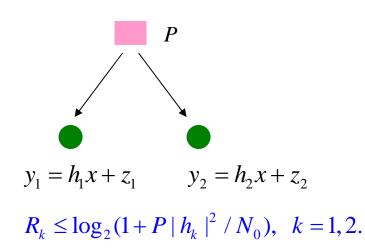
Always treat the other user's signal as noise during detection

 $R_{1} = \log_{2}(1 + P_{1} |h_{1}|^{2} / (P_{2} |h_{2}|^{2} + N_{0})) \qquad R_{2} = \log_{2}(1 + P_{2} |h_{2}|^{2} / (P_{1} |h_{1}|^{2} + N_{0}))$

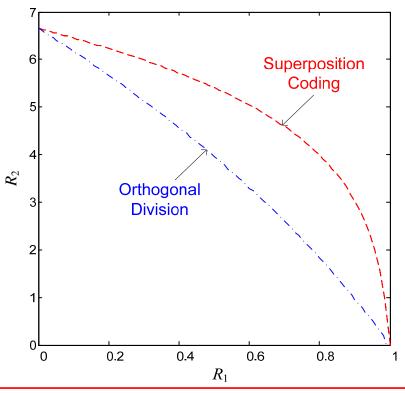
- Successive Interference Cancellation (SIC)
 - ✓ Decode the data of user 2, treating user 1's signal as Gaussian noise;



To Achieve Uplink Capacity II: Orthogonal Access


• Suppose a fraction of α of the bandwidth is allocated to user 1 and the rest is allocated to user 2.

$$R_{1} = \alpha \log_{2} \left(1 + \frac{P_{1} |h_{1}|^{2}}{\alpha N_{0}} \right) \qquad R_{2} = (1 - \alpha) \log_{2} \left(1 + \frac{P_{2} |h_{2}|^{2}}{(1 - \alpha) N_{0}} \right)$$
$$R_{2} \uparrow$$



Capacity of Downlink AWGN Channel

Suppose $|h_1| < |h_2|$.

- User 2 has a better channel than user 1.
- User 2 can decode any data that user 1 can successfully decode.

- Superposition coding achieves the downlink AWGN capacity.
- Orthogonal division is strictly inferior to superposition coding.

To Achieve Downlink Capacity

- Superposition Coding
 - \checkmark The transmit signal is a linear superposition of the signals of two users.

Total transmission power: $P = P_1 + P_2$

- User 1: Treat user 2's signal as noise -

 $R_{1} = \log_{2} \left(1 + \frac{P_{1} |h_{1}|^{2}}{P_{2} |h_{1}|^{2} + N_{0}} \right)$

Decode user 1's signal first, and
then decode its own signal using SIC
User 2: Perform SIC
$$R_2 = \log_2\left(1 + \frac{P_2 |h_2|^2}{N_0}\right)$$

- Orthogonal Division
 - ✓ a fraction of α of the bandwidth is allocated to user 1 and the rest is allocated to user 2. $P = P_1 + P_2$

$$R_{1} = \alpha \log_{2} \left(1 + \frac{P_{1} |h_{1}|^{2}}{\alpha N_{0}} \right) \qquad R_{2} = (1 - \alpha) \log_{2} \left(1 + \frac{P_{2} |h_{2}|^{2}}{(1 - \alpha) N_{0}} \right)$$

K-User Capacity

Capacity Region

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Uplink} \\ \hline \\ R_{k} \leq \log_{2} \left(1 + \frac{P_{k} \mid h_{k} \mid^{2}}{N_{0}} \right), \ k = 1, ..., K. \\ \hline \\ \sum_{k \in \mathcal{S}} R_{k} \leq \log_{2} \left(1 + \frac{P_{k} \mid h_{k} \mid^{2}}{N_{0}} \right), \ k = 1, ..., K. \\ \hline \\ \sum_{k \in \mathcal{S}} R_{k} \leq \log_{2} \left(1 + \frac{\sum_{k \in \mathcal{S}} P_{k} \mid h_{k} \mid^{2}}{N_{0}} \right), \ \mathcal{S} \subset \{1, ..., K\} \\ \hline \\ \checkmark \quad \text{SIC} \quad R_{1} \leq \log_{2} \left(1 + \frac{P_{1} \mid h_{1} \mid^{2}}{\sum_{k = 2}^{K} P_{k} \mid h_{k} \mid^{2} + N_{0}} \right), \\ \hline \\ R_{k} \leq \log_{2} \left(1 + \frac{P_{k} \mid h_{k} \mid^{2}}{N_{0}} \right), \ R_{k} \leq \log_{2} \left(1 + \frac{P_{k} \mid h_{k} \mid^{2}}{N_{0}} \right), \\ \hline \\ R_{k} \leq \log_{2} \left(1 + \frac{P_{k} \mid h_{k} \mid^{2}}{N_{0}} \right), \\ \hline \\ R_{k} \leq \log_{2} \left(1 + \frac{P_{k} \mid h_{k} \mid^{2}}{N_{0}} \right), \ \sum_{k = 1}^{K} P_{k} = P. \\ \hline \\ \checkmark \quad \text{Orthogonal} \quad R_{k} \leq \alpha_{k} \log_{2} \left(1 + \frac{P_{k} \mid h_{k} \mid^{2}}{\alpha_{k} N_{0}} \right), \\ \hline \\ Access \quad \sum_{k = 1}^{K} \alpha_{k} = 1. \end{array} \right)$$

K-User Capacity

• Sum Capacity
$$C_{sum} = \max_{R_1...R_k} \sum_{k=1}^{K} R_k$$

 $C_{sum}^{U} = \log_2 \left(1 + \frac{\sum_{k=1}^{K} P_k |h_k|^2}{N_0} \right)$

To achieve the sum capacity:

Uplink

- ✓ SIC
- \checkmark Orthogonal Access with

$$\alpha_{k} = \frac{P_{k} |h_{k}|^{2}}{\sum_{j=1}^{K} P_{j} |h_{j}|^{2}}, \quad k = 1, ..., K.$$

DownlinkWith
$$|h_1|^2 \le |h_2|^2 \le \dots \le |h_K|^2$$
: $C_{sum}^D = \log_2 \left(1 + \frac{P |h_K|^2}{N_0} \right)$ To achieve the sum capacity:Allocate all the transmission
power to the strongest user!

Multiuser Capacity of Fading Channels

- Ergodic Uplink Sum Capacity without CSIT
- Ergodic Uplink Sum Capacity with CSIT

K-user:

٠

Ergodic Uplink Sum Capacity of without CSIT

- Single-user: $C = E_h[\log_2(1+|h|^2 P/N_0)]$
 - $C_{sum} = \mathbf{E}_{h} \left[\log_{2} \left(1 + \frac{\sum_{k=1}^{K} |h_{k}|^{2} P_{k}}{N_{0}} \right) \right]$ $\leq \log_{2} \left(1 + \frac{\sum_{k=1}^{K} \mathbf{E}_{h} |h_{k}|^{2} P_{k}}{N_{0}} \right) = \log_{2} \left(1 + \frac{\sum_{k=1}^{K} P_{k}}{N_{0}} \right)$

Fading always hurts if no CSI is available at the transmitter side!

Ergodic Uplink Sum Capacity with CSIT

• Single-user:

$$\max_{P_{1},...,P_{L}} \frac{1}{L} \sum_{l=1}^{L} \log_{2}(1 + \frac{P_{l} |h_{l}|^{2}}{N_{0}})$$

Subject to: $\frac{1}{L} \sum_{l=1}^{L} P_{l} = P.$

$$P_l^{optimal} = \left(\mu - \frac{N_0}{|h_l|^2}\right)^+$$

Waterfilling power allocation

• K-user:

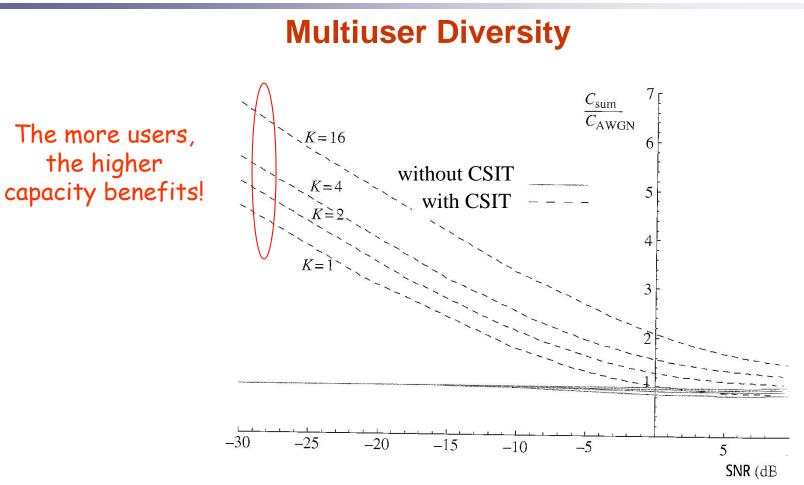
$$\max_{P_{k,l}:k=1,...,K,l=1,...,L} \frac{1}{L} \sum_{l=1}^{L} \log_2(1 + \frac{\sum_{k=1}^{K} P_{k,l} |h_{k,l}|^2}{N_0})$$

Subject to: $\frac{1}{L} \sum_{l=1}^{L} P_{k,l} = P$, $k = 1,...,K$.
$$\Longrightarrow P_{k,l}^{optimal} = \begin{cases} \left(\mu - \frac{N_0}{|h_{k,l}|^2}\right)^+ & \text{if } |h_{k,l}| = \max_{i=1,...,K} |h_{i,l}| \\ 0 & \text{otherwise} \end{cases}$$

Ergodic Uplink Sum Capacity with CSIT

• Single-user:

$$C = E_{h} \left[\log_{2} \left(1 + \frac{P^{*}(h) |h|^{2}}{N_{0}} \right) \right]$$


$$P^{*}(h) = \left(\mu - \frac{N_{0}}{|h|^{2}}\right)^{+}$$
 where μ satisfies $E_{h}[P^{*}(h)] = P$

• K-user:

$$C_{sum} = \mathbf{E}_{\mathbf{h}} \left[\log_{2} \left(1 + \frac{P_{k}^{*}(\mathbf{h}) |h_{k}|^{2}}{N_{0}} \right) \right] \qquad \mathbf{h} = [h_{1}, h_{2}, ..., h_{K}]$$

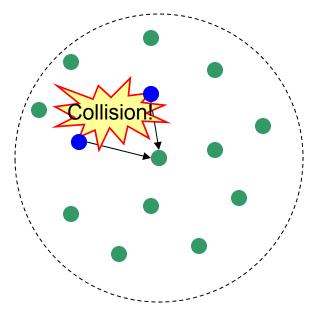
$$P_{k}^{*}(\mathbf{h}) = \begin{cases} \left(\mu - \frac{N_{0}}{|h_{k}|^{2}} \right)^{+} & \text{if } \left(|h_{k}| = \max_{i=1,...,K} |h_{i}| \right) \\ 0 & \text{otherwise} \end{cases} \qquad \text{where } \mu \text{ satisfies } \sum_{k=1}^{K} \mathbf{E}_{\mathbf{h}}[P_{k}^{*}(\mathbf{h})] = KP$$
Select the user with the best channel condition!

Multiuser Diversity: when there are many users that fade independently, at any time there is a high probability that one of the users will have a strong channel.

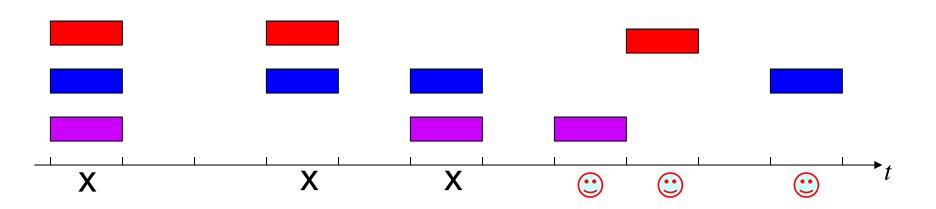
Summary II: Multiuser Capacity

- AWGN channel
 - To achieve uplink capacity: SIC
 - To achieve downlink capacity: superposition coding
- Fading channel
 - Without CSIT: always inferior to AWGN
 - With CSIT: better than AWGN with optimal power allocation


Distributed MAC


- Aloha
- CSMA

Random Access


- Each node determines whether to access the channel independently.
- Collision
 - The receiver cannot properly detect the signal if more than one node transmit simultaneously.
- Resolving collisions: Backoff
 - Retransmit with a certain probability; or
 - Choose a random value and countdown.
 Retransmit when the counter is zero.

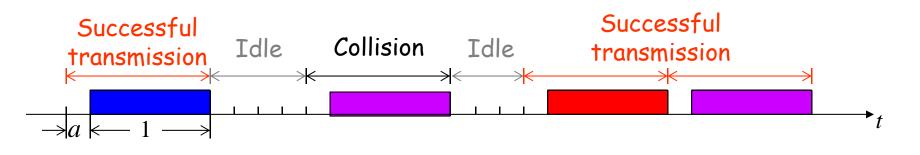
Random Access I: Aloha

- Slotted Aloha
 - Transmit if there is a new packet;
 - Backoff if there is a collision:
 - Retransmit with a constant probability *q*; or
 - Choose a value from $\{0, 1, ..., \lfloor 1/q \rfloor\}$ and count down. Retransmit when the counter is zero.

Network Throughput of Slotted ALOHA

- Network Throughput: The percentage of time that the network produces an effective output.
 - What is the maximum network throughput of slotted Aloha?
 n: the number of nodes G: the attempt rate
 - \checkmark G/n is the attempt rate per node, which is also the probability that a node has an attempt for given time.
 - ✓ The probability of successful transmission p is the probability that there is only one attempt among n nodes for given time.

 $p = n \cdot \frac{G}{n} \cdot \left(1 - \frac{G}{n}\right)^{n-1} \approx Ge^{-G}$ with a large *n*


✓ The network has an effective output if there is a successful transmission. Network throughput $S = p ≈ Ge^{-G}$

The maximum network throughput of slotted Aloha is e⁻¹, achieved when G=1.

Random Access II: Carrier Sense Multiple Access (CSMA)

<u>CSMA</u>: listen before transmit

- If channel sensed idle, transmit entire frame
- If channel sensed busy, defer transmission
- \checkmark Can collisions be completely avoided in this way? No.
- \checkmark What is the maximum network throughput? 1.

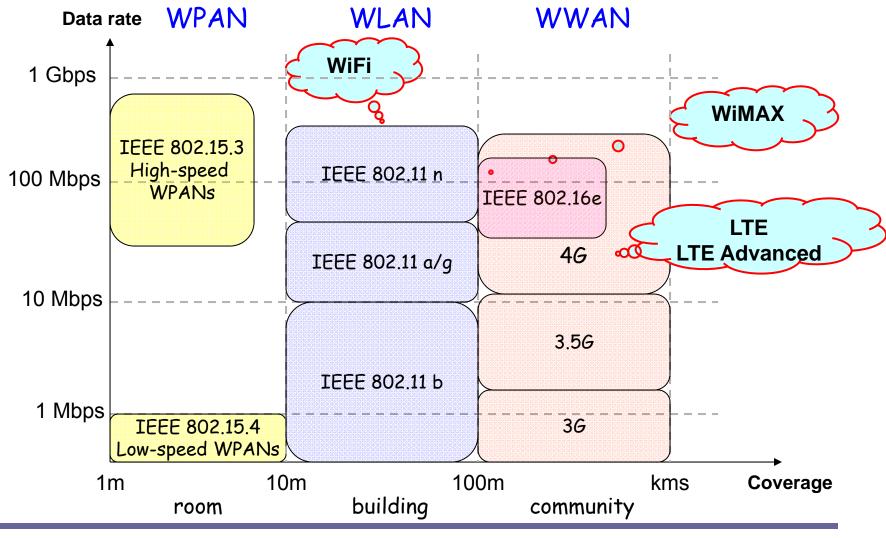
More about CSMA

- The network throughput of CSMA increases as the propagation delay *a* decreases.
 - CSMA has a much higher throughput than Aloha if a is small enough.
- CSMA/CD (Collision Detection) vs. CSMA/CA (Collision Avoidance)
 - The collision can be detected only if the node is full-duplex (i.e., be able to receive signals via transmission)

Ethernet: CSMA/CD + Binary Exponential Backoff

WiFi: CSMA/CA + Binary Exponential Backoff

Summary III: Distributed MAC


- No central controller
- Resource competition
- Aloha: transmit if there is a request, back off if a collision occurs
 - Maximum network throughput e⁻¹
- CSMA: Listen before transmit
 - Reduce the propagation delay *a* to improve the network throughput.
 - The maximum network throughput approaches 1 as a goes to zero.

Case Study: WiFi

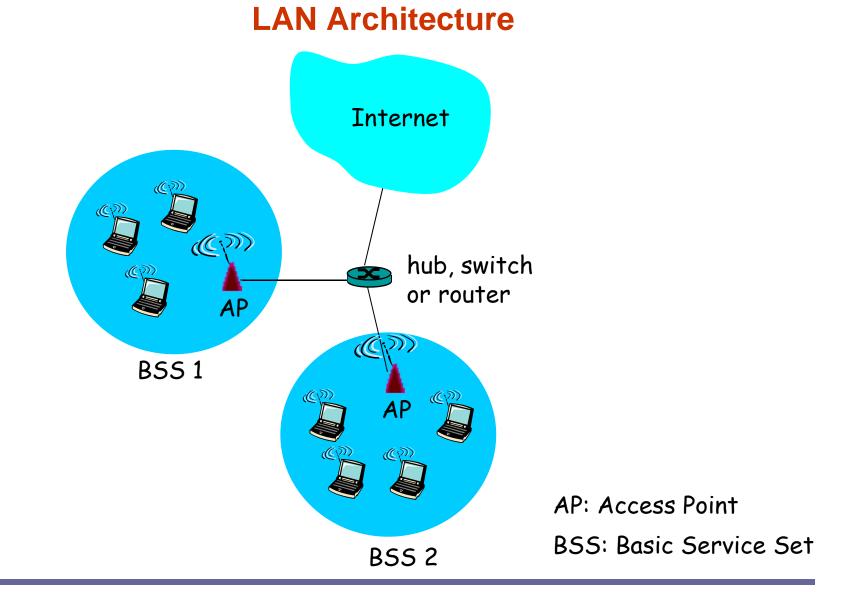
Wireless Networks

WiFi and IEEE 802.11

- WiFi
 - a class of WLAN devices based on the IEEE
 802.11 standards.

• IEEE 802.11

 a set of standards carrying out WLAN computer communication in the 2.4, 3.6 and 5 GHz frequency bands. They are implemented by the IEEE LAN/MAN Standards Committee (IEEE 802).



IEEE 802.11 Standards

- 802.11a
 - 5 GHz
 - up to 54 Mbps
 - OFDM in physical layer
- 802.11g
 - 2.4 GHz
 - up to 54 Mbps
 - OFDM in physical layer
- 802.11n
 - 2.4 GHz
 - up to 200 Mbps
 - OFDM, Multiple antennas (4)

- 802.11b
 - 2.4 GHz unlicensed spectrum
 - up to 11 Mbps
 - DSSS in physical layer
 - all use CSMA/CA for multiple access
 - all have access-point-based and ad-hoc network versions
 - 802.11ac
 - 5 GHz
 - up to 900 Mbps
 - OFDM, Multiple antennas (8)

Channels and Association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- Wireless Station: must associate with an AP
 - scans channels, listening for *beacon frames* containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - typically run DHCP to get IP address in AP's subnet

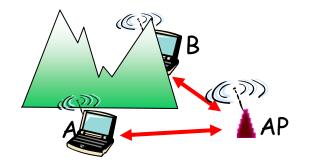
MAC Protocol: CSMA/CA + Binary Exponential Backoff

Transmitter (Wireless Station)

- if sense channel idle (idle for a period of time equal to DIFS), then transmit the entire frame.
- else, choose a random backoff value and count down whenever the channel is sensed idle. Transmit the entire frame when the counter reaches zero.
 Collision Avoidance

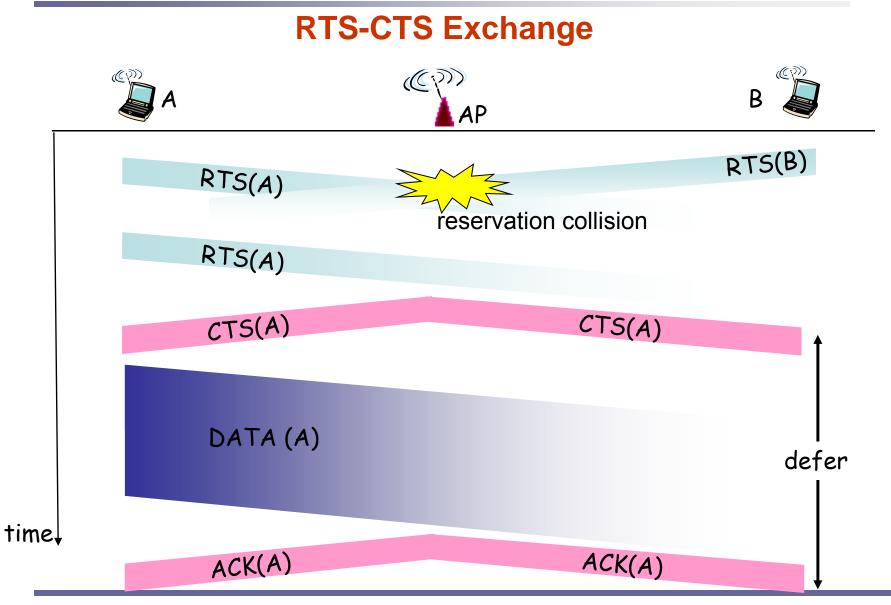
Receiver (Access Point)

- if frame received OK, then return ACK


Transmitter (Wireless Station)

if ACK, then repeat step * if it has another frame to transmit.

else, choose a random backoff value from (0, w-1), w is initialized at CW_{min} and doubled after each unsuccessful transmission. Count down whenever the channel is sensed idle. Transmit the entire frame when the counter reaches zero. Binary Exponential Backoff


Hidden Terminal Problem

- Node A and AP hear each other
- Node B and AP hear each other
- Node A and Node B cannot hear each other

A and B are unaware of each other's transmission

51

To Solve the Hidden Terminal Problem: RTS-CTS

- Sender transmits *small* request-to-send (RTS) packets to AP
 - RTSs may still collide with each other (but they're short)
- AP broadcasts clear-to-send (CTS) in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

Avoid data frame collisions by using small reservation packets!

Summary

- Low cost, short-distance transmission
 - Free spectrum
 - High data rate
- Limited network control
 - Distributed MAC
 - Simple coordination among APs
- IP-based network architecture