

On the Capacity of Distributed Antenna Systems

1

Lin Dai

City University of Hong Kong

Cellular Networks (1)

Cellular Networks (2)

Implementation cost	Lower	
Sum rate		Higher?
Jun. 25, 2014		

A little bit of History of Distributed Antenna Systems (DASs)

- Originally proposed to cover the dead spots for indoor wireless communication systems [Saleh&etc'1987].
- Implemented in cellular systems to improve cell coverage.
- Recently included into the 4G LTE standard.
- Key technology for C-RAN and 5G?

• Multiple-input-multiple-output (MIMO) theory has motivated a series of information-theoretic studies on DASs.

• Ergodic capacity without channel state information at the transmitter side (CSIT):

Co-located Antennas versus Distributed Antennas

- With co-located BS antennas:
 - ✓ Ergodic Capacity without CSIT:

 $C_o^C = \mathbf{E}_{\mathbf{h}} \left\{ \log_2 \left(1 + \frac{1}{L} \boldsymbol{\mu} \| \mathbf{h} \|^2 \right) \right\}$

7

 μ is the average received SNR: $\mu = \overline{P} \cdot \left\| \mathbf{\gamma} \right\|^2 / N_0$

- With distributed BS antennas:
 - ✓ Distinct large-scale fading gains to different BS antennas.

$$C_o^D = \mathbf{E}_{\mathbf{h}} \left\{ \log_2 \left(1 + \mu \left(\tilde{\mathbf{g}} \right)^2 \right) \right\}$$

Capacity of DAS

- For given large-scale fading vector γ :
 - ✓ [Heliot&etc'11]: Ergodic capacity without CSIT
 - A single user equipped with N co-located antennas.
 - BS antennas are grouped into L clusters. Each cluster has M co-located antennas.
 - Asymptotic result as M and N go to infinity and M/N is fixed.
 - [Aktas&etc'06]: Uplink ergodic sum capacity without CSIT
 - K users, each equipped with $N\beta_k$ co-located antennas.
 - BS antennas are grouped into L clusters. Each cluster has $N\lambda_l$ co-located antennas.
 - Asymptotic result as N goes to infinity and β_k and λ_l are fixed.

- Implicit function of γ (need to solve fixed-point equations)
- Computational complexity increases with L and K.

Capacity of DAS

• With random large-scale fading vector γ:

Average ergodic capacity (i.e., averaged over γ)

- Single user = Without CSIT
- ✓ [Roh&Paulraj'02], [Zhang&Dai'04]: The user has identical access distances to all the BS antennas. $\gamma_i \sim \text{Log} C\mathcal{N}(1, \sigma^2), i = 1, ..., L.$
- ✓ [Zhuang&Dai'03]: BS antennas are uniformly distributed over a circular area and the user is located at the center. $\gamma_i = \rho_i^{-\alpha/2}, i = 1, ..., L$.
- [Choi&Andrews'07], [Wang&etc'08], [Feng&etc'09], [Zhu'11], [Lee&ect'12]: BS antennas are regularly placed in a circular cell and the user has a random location.

$$\gamma_i \sim \operatorname{Log} - \mathcal{CN}(d_i^{-\alpha/2}, \sigma_i^2), \ i = 1, ..., L.$$

Computational complexity increases with the number of BS antennas!

Questions to be Answered

- How to characterize the sum capacity of DAS when there are a large number of BS antennas and users?
 - ✓ Large-system analysis using random matrix theory.
 - ✓ Bounds are desirable.
- How to conduct a fair comparison with the co-located case?
 - ✓ K randomly distributed users with a fixed total transmission power.
 - Decouple the comparison into two parts: 1) capacity comparison and
 2) transmission power comparison for given average received SNR.
- What is the effect of CSIT on the comparison result?

Outline

- Single-cell comparison
- Multi-cell comparison
- DAS with virtual cells

[1] L. Dai, "A Comparative Study on Uplink Sum Capacity with Co-located and Distributed Antennas," IEEE J. Sel. Areas Commun., 2011.

[2] L. Dai, "An Uplink Capacity Analysis of the Distributed Antenna System (DAS): From Cellular DAS to DAS with Virtual Cells," IEEE Trans. Wireless Commun., 2014.

Part I. Single-Cell Comparison

- System model and preliminary analysis
- Uplink ergodic sum capacity
- Average transmission power per user

System Model and Preliminary Analysis

Assumptions

14

- K single-antenna users are uniformly distributed within a circular cell.
- L BS antennas are either co-located at the center of the cell, or uniformly distributed over the cell.

Received signal:

$$\mathbf{y} = \sum_{k=1}^{K} \mathbf{g}_k s_k + \mathbf{z}$$

• Uplink power control:

$$\overline{P}_k \cdot \left\| \boldsymbol{\gamma}_k \right\|^2 = P_0, \quad k = 1, \dots, K.$$

$$\begin{split} s_k &\sim \mathcal{CN}(0, \overline{P}_k): \text{Transmitted signal} \\ \mathbf{z} &\in C^{L \times 1} \\ i &\in \mathcal{CN}(0, N_0), i = 1, ..., L. \end{split}$$

$$\begin{split} \mathbf{g}_{k} &= \mathbf{\gamma}_{k} \circ \mathbf{h}_{k} &: \textit{Channel gain} \\ \mathbf{\gamma}_{k} &\in C^{L \times 1} &: \textit{Large-scale fading} \\ & \gamma_{i,k} &= d_{i,k}^{-\alpha/2}, \ i = 1, ..., L. \\ \mathbf{h}_{k} &\in C^{L \times 1} &: \textit{Small-scale fading} \\ & h_{i,k} \sim \mathcal{CN}(0,1), \ i = 1, ..., L. \end{split}$$

More about Normalized Channel Gain

Normalized channel gain vector: ٠

More about Normalized Channel Gain

• Theorem 1. For n=1,2,...,

 $\min_{\boldsymbol{\beta}_{k}: \|\boldsymbol{\beta}_{k}\|=1} E_{\mathbf{h}_{k}} \left[\| \tilde{\mathbf{g}}_{k} \|^{2n} \right] = \frac{(n+L-1)!}{L^{n}(L-1)!},$ which is achieved when $\boldsymbol{\beta}_{k} = \frac{1}{\sqrt{L}} \mathbf{1}_{L\times 1}.$ $\max_{\boldsymbol{\beta}_{k}: \|\boldsymbol{\beta}_{k}\|=1} E_{\mathbf{h}_{k}} \left[\| \tilde{\mathbf{g}}_{k} \|^{2n} \right] = n!,$ which is achieved when $\boldsymbol{\beta}_{k} = \mathbf{e}_{l_{k}^{*}}.$

✓ Channel fluctuations are minimized when $\beta_k = \frac{1}{\sqrt{L}} \mathbf{1}_{L \times 1}$, maximized when $\beta_k \approx \mathbf{e}_{L^*}$.

 Channel fluctuations are undesirable when CSIT is absent, desirable when CSIT is available.

Single-user Capacity (1)

Single-user Capacity (2)

- Without CSIT
 - A higher capacity is achieved in the CA case thanks to better diversity gains.

With CSIT

 A higher capacity is achieved in the DA case thanks to better waterfilling gains.

Uplink Ergodic Sum Capacity without CSIT

• Sum capacity without CSIT:

$$C_{sum_o} = \mathbf{E}_{\mathbf{H}} \left\{ \log_2 \det \left(\mathbf{I}_L + \frac{P_0}{N_0} \sum_{k=1}^K \tilde{\mathbf{g}}_k \tilde{\mathbf{g}}_k^{\dagger} \right) \right\} = \mathbf{E}_{\mathbf{H}} \left\{ \log_2 \det \left(\mathbf{I}_L + \mu_0 \tilde{\mathbf{G}} \tilde{\mathbf{G}}^{\dagger} \right) \right\}$$

• Sum capacity per antenna (with K>L):

$$C_{L_o} = \frac{1}{L} \mathbf{E}_{\mathbf{H}} \left\{ \log_2 \det \left(\mathbf{I}_L + \mu_0 \tilde{\mathbf{G}} \tilde{\mathbf{G}}^{\dagger} \right) \right\}$$
$$= \frac{1}{L} \mathbf{E}_{\mathbf{H}} \left\{ \sum_{l=1}^{L} \log_2 \left(1 + \mu_0 \lambda_l \right) \right\}$$

$$\begin{pmatrix} \tilde{\mathbf{G}} = \mathbf{B} \circ \mathbf{H} \\ \mathbf{B} = [\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_K] \\ \mathbf{H} = [\mathbf{h}_1, \dots, \mathbf{h}_K] \end{pmatrix}$$

where $\{\lambda_l\}$ denotes the eigenvalues of $\tilde{G}\tilde{G}^{\dagger}$.

More about Normalized Channel Gain

• Theorem 2. As $K, L \rightarrow \infty$ and $K/L \rightarrow v$,

$$\begin{split} & \mathrm{E}_{\mathrm{H}}[\lambda] \to \upsilon, \quad \text{and} \quad \mathrm{E}_{\mathrm{H}}[\lambda^{2}] \to 2\upsilon + \upsilon^{2} - \mathcal{B}_{\infty}, \quad \text{with} \quad 0 \leq \mathcal{B}_{\infty} \leq \upsilon. \\ & \mathcal{B}_{\infty} = \upsilon \quad \text{when} \quad \mathbf{B} = \frac{1}{\sqrt{L}} \mathbf{1}_{L \times K}. \\ & \mathcal{B}_{\infty} = 0 \quad \text{when} \quad \mathbf{B} = [\mathbf{e}_{l_{1}^{*}}, ..., \mathbf{e}_{l_{K}^{*}}]. \end{split}$$

$$\checkmark \text{ With CA: } \mathbf{B} = \frac{1}{\sqrt{L}} \mathbf{1}_{L \times K}.$$

$$f_{\lambda}^{C}(x) = \frac{1}{2\pi x} \sqrt{((\sqrt{\nu}+1)^{2} - x)(x - (\sqrt{\nu}-1)^{2})}$$

as $K, L \rightarrow \infty$ and $K/L \rightarrow \upsilon$.

[Marcenko&Pastur'1967]

✓ With DA and $\mathbf{B} = [\mathbf{e}_{l_1^*}, ..., \mathbf{e}_{l_K^*}]$:

$$f_{\lambda}^{D^{*}}(x) = \upsilon e^{-(x+\upsilon)} \sum_{k=0}^{\infty} \frac{(x\upsilon)^{k}}{k!(k+1)!}$$

as $K, L \to \infty$ and $K/L \to \upsilon$.

Sum Capacity without CSIT (1)

$$\checkmark \quad C_{L_o}^C > C_{L_o}^{D^*}$$

 ✓ Gap diminishes when v is large -- the capacity becomes insensitive to the antenna topology when the number of users is much larger than the number of BS antennas.

Sum Capacity without CSIT (2)

The average received SNR $\mu_0 = 0$ dB. The number of users K=100.

Jun. 25, 2014

Uplink Ergodic Sum Capacity with CSIT

• Sum capacity with CSIT:

$$C_{sum_w} = \max_{\substack{\tilde{P}_k: \mathbf{E}_{\mathbf{H}}[\tilde{P}_k] = P_0\\k=1,\dots,K}} \mathbf{E}_{\mathbf{H}} \left\{ \log_2 \det \left(\mathbf{I}_L + \frac{1}{N_0} \sum_{k=1}^K \tilde{P}_k \tilde{\mathbf{g}}_k \tilde{\mathbf{g}}_k^{\dagger} \right) \right\} \qquad \tilde{P}_k = P_k \left\| \boldsymbol{\gamma}_k \right\|^2$$

✓ With CA:

The optimal power allocation policy:

$$\tilde{P}_{k}^{*} = N_{0} \left(\frac{1}{\zeta} - \frac{1}{\tilde{\mathbf{g}}_{k}^{\dagger} \left(\mathbf{I}_{L} + \sum_{j \neq k} \tilde{P}_{j}^{*} \tilde{\mathbf{g}}_{j} \tilde{\mathbf{g}}_{j} \right)^{-1} \tilde{\mathbf{g}}_{k}} \right)^{+}$$

where ζ is a constant chosen to meet the power constraint $E_{H}\left\{\tilde{P}_{k}\right\} = P_{0}$, k=1,..., K. [Yu&etc'2004] ✓ With DA and $\mathbf{B} = [\mathbf{e}_{l_1^*}, ..., \mathbf{e}_{l_K^*}]$: The optimal power allocation policy:

$$\tilde{P}_{k}^{*} = \begin{cases} N_{0} \left(\frac{1}{\zeta} - \frac{1}{|h_{i,k_{i}^{*}}|^{2}} \right)^{+} & k = k_{i}^{*} = \arg \max_{k \in \mathcal{K}_{i}} |h_{i,k}|^{2} \\ 0 & k \neq k_{i}^{*} \end{cases}$$

i=1,...,L, where ζ is a constant chosen to meet the sum power constraint $E_{H}\left\{\sum_{k=1}^{K}\tilde{P}_{k}\right\} = KP_{0}.$

Signal-to-Interference Ratio (SIR)

26

Sum Capacity (1)

• Without CSIT

$$\checkmark C^{C}_{sum_o} > C^{D^*}_{sum_o}$$

 ✓ Gap between C^C_{sum_o} and C^{D*}_{sum_o} is enlarged as L grows (i.e., due to a decreasing K/L).

With CSIT

$$\checkmark \quad C^{D^*}_{sum_o} > C^C_{sum_o}$$

even at high SNR (i.e., thanks to better multiuser diversity gains)

Sum Capacity (2)

- Without CSIT
 - A higher capacity is achieved in the CA case thanks to better diversity gains.
- With CSIT
 - A higher capacity is achieved in the DA case thanks to better waterfilling gains and multiuser diversity gains.

The average received SNR $\mu_0 = 0$ dB. The number of users K=100.

Jun. 25, 2014

Average Transmission Power per User

Average Transmission Power per User

- Transmission power of user k: $\overline{P}_{k} = \frac{P_{0}}{\left\|\boldsymbol{\gamma}_{k}\right\|^{2}}, \ k = 1,...,K.$
- Average transmission power per user:

$$\mathcal{P} \triangleq \frac{1}{K} \sum_{k=1}^{K} \overline{P}_{k} \xrightarrow{K \to \infty} \int_{0}^{\infty} \frac{P_{0}}{x} f_{\|\mathbf{y}_{k}\|^{2}}(x) dx$$

✓ With CA:

 Users are uniformly distributed in the circular cell. BS antennas are co-located at cell center.

$$\left\| \boldsymbol{\gamma}_{k} \right\|^{2} = L \rho_{k}^{-\alpha}$$

$$f_{\rho_{k}}(x) = \frac{2x}{R^{2}} \quad \boldsymbol{\Box} \quad \boldsymbol{\mathcal{P}}^{C} = \frac{2P_{0}}{\alpha + 2} \cdot \frac{R^{\alpha}}{L}$$

✓ With DA:

 Both users and BS antennas are uniformly distributed in the circular cell.

What is the distribution of $\|\boldsymbol{\gamma}_k\|^2$?

Minimum Access Distance

 With DA, each user has different access distances to different BS antennas. Let

$$d_k^{(1)} \leq d_k^{(2)} \leq \cdots \leq d_k^{(L)}$$

denote the order statistics obtained by arranging the access distances $d_{1,k},\!...,\,d_{L,k}\!.$

•
$$\|\mathbf{\gamma}_k\|^2 = \sum_{l=1}^{L} (d_{l,k})^{-\alpha} > (d_k^{(1)})^{-\alpha}$$
 for L>1.

• An upper-bound for average transmission power per user with DA:

$$\mathcal{P}^{D} < \mathcal{P}^{DU} = \int_{0}^{R} f_{\rho_{k}}(y) \int_{0}^{R+y} \frac{P_{0}}{x^{-\alpha}} \cdot \frac{f_{d_{k}^{(1)}|\rho_{k}}(x \mid y)}{\Psi} dx dy$$

$$f_{\rho_{k}}(y) = \frac{2y}{R^{2}} \qquad f_{d_{k}^{(1)}|\rho_{k}}(x \mid y) = L(1 - F_{d_{l,k}|\rho_{k}}(x \mid y))^{L-1} f_{d_{l,k}|\rho_{k}}(x \mid y)$$

$$f_{d_{l,k}|\rho_{k}}(x \mid y) = \begin{cases} \frac{2x}{R^{2}} & 0 \le x \le R - y \\ \frac{2x}{\pi R^{2}} \operatorname{arccos} \frac{x^{2} + y^{2} - R^{2}}{2xy} & R - y < x \le R + y \end{cases}$$

Average Transmission Power per User

Sum Capacity without CSIT

• For fixed K and μ_0^C $(\mu_0^D = \mu_0^C \cdot \frac{1}{5}L$ such that $\mathcal{P}^C \approx \mathcal{P}^D)$

$$\checkmark C_{sum_o}^C < L \log_2(1 + \mu_0^C K / L)$$

$$\xrightarrow{L \to \infty} \mu_0^C K \log_2 e$$

$$\checkmark \quad C^{D}_{sum_o} = O(L)$$

Given the total transmission power, a higher capacity is achieved in the DA case. Gains increase as the number of BS antennas grows.

Summary

- A comparative study on the uplink ergodic sum capacity with colocated and distributed BS antennas is presented by using largesystem analysis.
 - A higher sum capacity is achieved in the DA case. Gains increase with the number of BS antennas L.
 - Gains come from 1) reduced minimum access distance of each user; and 2) enhanced channel fluctuations which enable better multiuser diversity gains and waterfilling gains when CSIT is available.
- Implications to cellular systems:
 - With cell cooperation: capacity gains achieved by a DAS over a cellular system increase with the number of BS antennas per cell thanks to better power efficiency.
 - Without cell cooperation: lower inter-cell interference with DA?

Part II. Multi-Cell Comparison

- System model and preliminary analysis
- Uplink ergodic sum capacity
- Sum rate with orthogonal access

System Model and Preliminary Analysis

Assumptions

- A total number of 7 cells share the same frequency band. No cooperation is adopted among BSs.
- Kc single-antenna users are uniformly distributed within each cell.
- Lc BS antennas are either co-located at the center of each cell, or uniformly distributed over each cell.
- · No CSIT.

Signal Model

- Received signal of BS 1: ٠ Inter-cell interference $\mathbf{y}_{\mathcal{B}_1} = \sum_{k \in \mathcal{K}_1} \mathbf{g}_{\mathcal{B}_1,k} s_k + \sum_{m=2}^7 \sum_{k \in \mathcal{K}_m} \mathbf{g}_{\mathcal{B}_1,k} s_k + \mathbf{z}_{\mathcal{B}_1}$ $s_k \sim \mathcal{CN}(0, \overline{P}_k)$: Transmitted signal $\mathbf{g}_k = \mathbf{\gamma}_k \circ \mathbf{h}_k$: Channel gain $\boldsymbol{\gamma}_k \in C^{L_c imes 1}$ $\mathbf{z} \in C^{L_c \times 1}$: Gaussian noise : Large-scale fading $\gamma_{i,k} = d_{i,k}^{-\alpha/2}, \quad i = 1, ..., L_c.$ $\mathbf{h}_k \in C^{L_c \times 1} \qquad : \text{ Small-scale fading}$ $z_i \sim \mathcal{CN}(0, N_0), \quad i = 1, \dots, L_c.$ $h_{ik} \sim C\mathcal{N}(0,1), \ i=1,...,L_c.$
 - Uplink power control: •

For user
$$k \in \mathcal{K}_m$$
, $\bar{P}_k \cdot \left\| \boldsymbol{\gamma}_{\mathcal{B}_m,k} \right\|^2 = P_0$, $m = 1, \cdots, 7$.

• Inter-cell interference: $\mathbf{u}_{\mathcal{B}_1} = \sum_{m=2}^7 \sum_{k \in \mathcal{K}_m} \mathbf{g}_{\mathcal{B}_1,k} s_k$

With a larger number of interfering users, $\mathbf{u}_{\mathcal{B}_1}$ can be modeled as a complex Gaussian random vector with zero mean and covariance matrix $\Sigma_{\mathbf{u}}$, where $\Sigma_{\mathbf{u}}$ is an $L_c \times L_c$ diagonal matrix with diagonal entries

$$\sigma_l^2 = \sum_{m=2}^7 \sum_{k \in \mathcal{K}_m} |\gamma_{l,k}|^2 \bar{P}_k$$

• Inter-cell interference density of BS antenna $l \in \mathcal{B}_1$

$$\eta_l^C \triangleq \frac{\sigma_l^2}{6K_c P_0} = \frac{1}{6K_c} \sum_{m=2}^7 \sum_{k \in \mathcal{K}_m} \frac{\left|\gamma_{l,k}\right|^2}{\left\|\gamma_{\mathcal{B}_m,k}\right\|^2}$$
$$= \frac{1}{6K_c} \sum_{m=2}^7 \sum_{k \in \mathcal{K}_m} \frac{\left\|\mathbf{r}_l^B - \mathbf{r}_k^U\right\|^{-\alpha}}{\sum_{n \in \mathcal{B}_m} \left\|\mathbf{r}_n^B - \mathbf{r}_k^U\right\|^{-\alpha}}$$

 \mathbf{r}_l^B : position of BS antenna I; \mathbf{r}_k^U : position of user K.

• Theorem 1. The inter-cell interference density of BS antenna $l \in B_1$ in cellular systems with the CA layout

$$\eta_l^{CC} \stackrel{K_c \to \infty}{\to} \tilde{\eta}_l^{CC} = \frac{\Upsilon(\alpha)}{L_c}$$

where $\Upsilon(\alpha) = \frac{1}{\pi R^2} \int_0^{2\pi} \int_0^R \rho^{1+\alpha} (\rho^2 + 4R^2 + 4R\rho \sin \theta)^{-\alpha/2} d\rho d\theta$.

• Theorem 2. The average inter-cell interference density of BS antenna $l\in \mathcal{B}_1$ in cellular systems with the DA layout is upper-bounded by

$$\bar{\eta}_{l}^{CDu}(r_{l},\phi_{l}) \stackrel{K_{c}\to\infty}{\to} \tilde{\eta}_{l}^{CDu}(r_{l},\phi_{l}) = \frac{1}{6\pi R^{2}} \sum_{m=2}^{7} \int_{0}^{2\pi} \int_{0}^{R} \rho(\rho^{2} + \Delta x_{m}^{2} + \Delta y_{m}^{2} - 2\rho(\Delta x_{m}\cos\theta + \Delta y_{m}\sin\theta))^{-\frac{\alpha}{2}} \cdot \int_{0}^{\rho+R} x^{\alpha} f_{d_{k}^{(1)}}(x;\rho,R,L_{c}) dx d\rho d\theta$$

where $\Delta x_m = r_l \cos \phi_l - 2R \cos(m \cdot \frac{\pi}{3} - \frac{\pi}{2}), \ \Delta y_m = r_l \sin \phi_l - 2R \sin(m \cdot \frac{\pi}{3} - \frac{\pi}{2}).$

$$\checkmark \quad \bar{\eta}_l^{CD} = \mathbb{E}_{\left\{\mathbf{r}_n^B\right\}_{n \in \bigcup_{m=2}^7 \mathcal{B}_m}} \left\{\eta_l^{CD}\right\}$$

- ✓ CA: $\tilde{\eta}_l^{CC} = \Theta(L_c^{-1})$ DA: $\tilde{\eta}_l^{CDu} = \Theta(L_c^{-\alpha/2})$ (path-loss factor ∞2)
- ✓ $\overline{\eta}_l^{CD}$ decreases at a higher rate than η_l^{CC} as the number of BS antennas per cell Lc increases.
- With the DA layout, the inter-cell interference density significantly varies with the position of the BS antenna.

• Normalized sum capacity:

$$C_k^C = \frac{1}{K_c} \mathbb{E}_{\mathbf{H}_{\mathcal{B}_1, \mathcal{K}_1}} \left\{ \sum_{l \in \mathcal{B}_1} \log_2(1 + \mu_l^C \lambda_l^C) \right\}$$

 $\{\lambda_l^C\}$: eigenvalues of $\tilde{\mathbf{G}}_{\mathcal{B}_1,\mathcal{K}_1}\tilde{\mathbf{G}}_{\mathcal{B}_1,\mathcal{K}_1}^{\dagger}$

 $\mu_l^C = rac{1}{N_0/P_0 + 6K_c\eta_l^C}$: average received SINR of BS antenna $l \in \mathcal{B}_1$

• As
$$K_c, L_c \to \infty$$
 and $K_c/L_c \to v$:

 Asymptotic normalized sum capacity with CA:

$$\begin{split} \tilde{C}_k^{CC} = &\log_2(1 + \tilde{\mu}_l^{CC} - \frac{1}{4}\mathcal{F}(\tilde{\mu}_l^{CC}, \upsilon)) - \frac{\log_2 e}{4\upsilon\tilde{\mu}_l^{CC}}\mathcal{F}(\tilde{\mu}_l^{CC}, \upsilon) \\ &+ \frac{1}{\upsilon}\log_2(1 + \upsilon\tilde{\mu}_l^{CC} - \frac{1}{4}\mathcal{F}(\tilde{\mu}_l^{CC}, \upsilon)) \end{split}$$

where $\tilde{\mu}_l^{CC} = rac{1}{N_0/P_0 + 6\upsilon\Upsilon(\alpha)}$

✓ An asymptotic lower-bound of the normalized sum capacity with DA: $\tilde{C}_{k}^{CDl} = \frac{1}{v} \int_{0}^{\infty} \log_{2} \left(1 + \tilde{\mu}_{l}^{CDl}x\right)$ $\cdot v e^{-(x+v)} \sum_{k=0}^{\infty} \frac{(xv)^{k}}{k!(k+1)!} dx$

where
$$ilde{\mu}_l^{CDl} = rac{P_0}{N_0}$$

- As P_0/N_0 increases:
 - ✓ CA: C̃^{CC}_k converges to a function of v.
 ✓ DA: C̃^{CDl}_k grows

unboundedly.

 Substantial gains can be achieved in the DA case owing to the improvement in the inter-cell interference density.

Path-loss factor $\alpha = 4$. v = 1.

Path-loss factor $\alpha = 4$. v = 1.

- Simulation results verify that:
 - ✓ CA: \tilde{C}_{k}^{CC} serves as a good approximation.
 - ✓ DA: \tilde{C}_k^{CDl} is an asymptotic lower-bound.
- Substantial gains can be achieved in the DA case owing to the improvement in the inter-cell interference density.

Sum Rate with Orthogonal Access

Sum Rate with Orthogonal Access

• Normalized sum rate with orthogonal access:

$$R_k^C = \frac{1}{K_c} \mathbb{E}_{\mathbf{h}_{\mathcal{B}_1,k}} \left\{ \log_2 \left(1 + \sum_{l \in \mathcal{B}_1} K_c \mu_l^C |\tilde{g}_{l,k}|^2 \right) \right\}$$

- $\checkmark \quad R_k^C < R_k^{Cu} = \tfrac{1}{K_c} \log_2(1 + \tfrac{K_c P_0}{N_0}) \to 0 \quad \text{as} \quad K_c, L_c \to \infty \quad \text{and} \ K_c/L_c \to \upsilon.$
- ✓ $R_k^C \ll C_k^C$ for large K_c and L_c : A significant tradeoff has to be made between complexity and performance if each cell has a large number of BS antennas and users.
- For large $\frac{P_0}{N_0}$ and K_c :
 - $\checkmark \quad \mathbf{CA:} \quad R_k^{CC} \approx \frac{1}{K_c} \int_0^\infty \frac{x^{L_c 1} e^{-x}}{(L_c 1)!} \log_2 \left(1 + \frac{x}{6L_c \tilde{\eta}_l^{CC}} \right) dx$
 - $\checkmark \quad \mathsf{DA:} \quad \bar{R}_k^{CDl*} \approx \frac{\log_2 e}{K_c} \exp\left(6\tilde{\eta}_l^{CDu}\right) E_1\left(6\tilde{\eta}_l^{CDu}\right)$
 - ✓ Both R_k^{CC} and \bar{R}_k^{CDl*} logarithmically increase with L_c because $\tilde{\eta}_l^{CC} = \Theta(L_c^{-1})$ and $\tilde{\eta}_l^{CDu} = \Theta(L_c^{-\alpha/2})$.

Sum Rate with Orthogonal Access

Path-loss factor $\alpha = 4. K_c = 100.$

- On average, a much higher rate is achieved in the DA case when the number of BS antennas per cell Lc is large.
- With the DA layout, the BS antennas at the cell edge suffer from much higher inter-cell interference than those at the cell center, thus leading to degraded rate performance for cell-edge users.

Summary

- In cellular systems, the inter-cell interference density decreases as the number of BS antennas per cell increases, but at different rates for CA and DA.
 - A higher sum capacity is achieved in the DA case owing to the improvement in the inter-cell interference density.
- With the DA layout, the inter-cell interference density significantly varies with the position of the BS antenna.
 - Uplink rate performance is greatly degraded at the cell-edge due to intensified inter-cell interference density.
- When the number of BS antennas per cell is large, there exists a huge gap between the uplink sum capacity and the sum rate with orthogonal access regardless of which BS antenna layout is adopted.

Part III. DAS with Virtual Cells

- Virtual cell
- Inter-cell interference density
- Sum capacity and sum rate with orthogonal access

To Cellular or Not to Cellular?

- By splitting a large area into small ones, there are always a certain number of users/BS antennas located at the border and closer to the neighboring cells.
- With distributed BS antennas, the geographic division of cells becomes less justified.

Virtual Cell

- Each user chooses a few surrounding BS antennas as its virtual cell [1-3], i.e., its own serving BS antenna set.
 - Different from the conventional cellular structure where cells are divided according to the coverage of BS antennas, here the virtual cell is formed in a user-centric manner.
- For user k, define its virtual cell \mathcal{V}_k as a set of BS antennas with the largest large-scale fading gains to this user.

[1] L. Dai, Researches on Capacity and Key Techniques of Distributed Wireless Communication Systems, *Ph.D. Dissertation*, Tsinghua University, Beijing, Dec. 2002.

[2] L. Dai, S. Zhou, and Y. Yao, ``Capacity with MRC-based Macrodiversity in CDMA Distributed Antenna Systems," in *Proc. IEEE Globecom*, pp. 987--991, Nov. 2002.

[3] L. Dai, S. Zhou, and Y. Yao, ``Capacity Analysis in CDMA Distributed Antenna Systems," *IEEE Trans. Wireless Commun.*, vol. 4, no. 6, pp. 2613--2620, Nov. 2005.

Signal Model

- Received signal of Virtual Cell \mathcal{V}_k : Inter-cell interference $\mathbf{y}_{\mathcal{V}_k} = \sum_{j \in \mathcal{K}_{\mathcal{V}_k}} \mathbf{g}_{\mathcal{V}_k, j} s_j + \underbrace{\sum_{j \notin \mathcal{K}_{\mathcal{V}_k}} \mathbf{g}_{\mathcal{V}_k, j} s_j}_{j \notin \mathcal{K}_{\mathcal{V}_k}} \mathbf{g}_{\mathcal{V}_k, j} s_j + \mathbf{z}_{\mathcal{V}_k}$
 - $\mathcal{K}_{\mathcal{V}_k}$: The set of users whose signals are jointly processed with user k's at virtual cell \mathcal{V}_k .
- $\mathcal{K}_{\mathcal{V}_k}$ is defined as the set of users whose virtual cells are overlapped with \mathcal{V}_k , i.e., $j \in \mathcal{K}_{\mathcal{V}_k}$ iff $\mathcal{V}_j \bigcap \mathcal{V}_k \neq \emptyset$.
- Uplink power control: $\bar{P}_k \cdot \left\| \boldsymbol{\gamma}_{\mathcal{V}_k,k} \right\|^2 = P_0.$
- $|\mathcal{V}_k| = V.$

• Inter-cell interference density of BS antenna $l \in \mathcal{V}_k$

$$\eta_l^D = \frac{1}{K - |\mathcal{K}_{\mathcal{V}_k}|} \sum_{j \notin \mathcal{K}_{\mathcal{V}_k}} \frac{|\gamma_{l,j}|^2}{\left\|\boldsymbol{\gamma}_{\mathcal{V}_j,j}\right\|^2} = \frac{1}{K - (\mathcal{K}_{\mathcal{V}_k})} \sum_{j \notin \mathcal{K}_{\mathcal{V}_k}} \frac{\left\|\mathbf{r}_l^B - \mathbf{r}_j^U\right\|^{-\alpha}}{\sum_{n \in \mathcal{V}_j} \left\|\mathbf{r}_n^B - \mathbf{r}_j^U\right\|^{-\alpha}}$$

Compared to the cellular system:

$$\eta_{l\in\mathcal{B}_{1}}^{C} = \frac{1}{K-\mathcal{K}_{1}}\sum_{j\notin\mathcal{K}_{1}}\frac{\left\|\mathbf{r}_{l}^{B}-\mathbf{r}_{j}^{U}\right\|^{-\alpha}}{\sum_{n\in\mathcal{B}_{m}}\left\|\mathbf{r}_{n}^{B}-\mathbf{r}_{j}^{U}\right\|_{j\in\mathcal{K}_{m}}^{-\alpha}}$$

• Key difference of η_l^D and η_l^C lies in the division of cells:

 $\checkmark \mathcal{K}_1$ consists of users who fall into the cell centered at BS 1. $\checkmark \mathcal{K}_{\mathcal{V}_k}$ consists of users whose virtual cells are overlapped with \mathcal{V}_k .

Path-loss factor α =4. Total number of users K=700. Total number of BS antennas L=70. Jun. 25, 2014

Average Inter-cell Interference Density

• Average inter-cell interference density

$$\bar{\eta}_{l}^{D} = \mathbb{E}_{\{\mathbf{r}_{n}^{B}\}_{n \in \mathcal{L} \setminus \mathcal{V}_{k}}} \left\{ \eta_{l}^{D} \right\}$$

• Theorem 3. The average inter-cell interference density of BS antenna l at $\mathbf{r}_l^B = (r_l, \phi_l)$ in DASs with V=1 is

$$\begin{split} \bar{\eta}_{l}^{D,V=1} \stackrel{K \to \infty}{\to} \tilde{\eta}_{l}^{D,V=1}(r_{l}) &= \frac{1}{\pi R_{0}^{2}} \int_{0}^{2\pi} \int_{0}^{R_{0}} \rho(\rho^{2} + r_{l}^{2} - 2\rho r_{l} \cos \theta)^{-\frac{\alpha}{2}} \\ &\cdot \int_{0}^{\sqrt{\rho^{2} + r_{l}^{2} - 2\rho r_{l} \cos \theta}} x^{\alpha} f_{d_{k}^{(1)}}(x;\rho,R_{0},L-1) dx d\rho d\theta. \end{split}$$

$$\checkmark \quad \tilde{\eta}_l^{D,V=1}(0) = \frac{2}{R_0^2} \int_0^{R_0} \rho^{1-\alpha} \int_0^{\rho} x^{\alpha} f_{d_k^{(1)}}(x;\rho,R_0,L-1) dx d\rho = \Theta(L^{-1})$$

Average Inter-cell Interference Density

Jun. 25, 2014

 $\checkmark \quad \tilde{\eta}_l^{D,V=1} = \Theta(L^{-1})$

For cellular systems: $\tilde{\eta}_{l}^{CC} = \Theta(L_{c}^{-1})$ $\tilde{\eta}_{l}^{CDu} = \Theta(L_{c}^{-\alpha/2})$

✓ Compared to cellular systems with the DA layout, the average inter-cell interference density $\overline{\eta}_l^{D,V=1}$ with V=1 has a smaller decreasing rate with the number of BS antennas L because the interfering area increases with L.

✓ The average number of intracell users $\overline{K}_l^{V=1} \approx K / L$.

Sum Capacity and Sum Rate with Orthogonal Access

Uplink Ergodic Sum Capacity with V=1

• Normalized sum capacity:

$$C_{k}^{D} = \frac{1}{\kappa_{l}} \int_{0}^{\infty} \frac{x^{\kappa_{l}-1}e^{-x}}{(\kappa_{l}-1)!} \log_{2} \left(1 + \mu_{l}^{D}x\right) dx$$

 κ_l : number of intra-cell users

 $\mu_l^D = rac{1}{N_0/P_0 + (K-\kappa_l)\eta_l^{D,V=1}}$: average received SINR of BS antenna $l \in \mathcal{V}_k$

• Lower-bound for the average normalized sum capacity \bar{C}_k^D :

$$\bar{C}_{k}^{Dl} = \frac{1}{\bar{\kappa}_{l}^{V=1}} \int_{0}^{\infty} \frac{x^{\bar{\kappa}_{l}^{V=1} - 1} e^{-x}}{(\bar{\kappa}_{l}^{V=1} - 1)!} \cdot \log_{2} \left(1 + \frac{1}{N_{0}/P_{0} + K\bar{\eta}_{l}^{D, V=1}} x \right) dx$$

✓ For large $\frac{P_0}{N_0}$, K and L:

$$\bar{C}_{k}^{Dl} \approx \frac{L}{K} \int_{0}^{\infty} \frac{x^{K/L-1}e^{-x}}{(K/L-1)!} \log_2\left(1 + \frac{1}{K\tilde{\eta}_l^{D,V=1}(0)}x\right) dx$$

Sum Rate with Orthogonal Access with V=1

• Normalized sum rate with orthogonal access:

$$R_k^D = \frac{\log_2 e}{\kappa_l} \exp\left(\frac{1}{\kappa_l \mu_l^D}\right) E_1\left(\frac{1}{\kappa_l \mu_l^D}\right)$$

- Lower-bound for the average sum rate \bar{R}_k^D :

$$\bar{R}_{k}^{Dl} = \frac{\log_{2} e}{\bar{\kappa}_{l}^{V=1}} \exp\left(\frac{N_{0}/P_{0} + K\bar{\eta}_{l}^{D,V=1}}{\bar{\kappa}_{l}^{V=1}}\right) \cdot E_{1}\left(\frac{N_{0}/P_{0} + K\bar{\eta}_{l}^{D,V=1}}{\bar{\kappa}_{l}^{V=1}}\right)$$

✓ For large
$$\frac{P_0}{N_0}$$
, K and L :

$$\bar{R}_k^{Dl} \approx \frac{L \log_2 e}{K} \exp(L \tilde{\eta}_l^{D,V=1}(0)) E_1(L \tilde{\eta}_l^{D,V=1}(0))$$

Sum Capacity and Sum Rate

Path-loss factor $\alpha = 4$. K = 700.

- Both \overline{C}_k^D and \overline{R}_k^D linearly increase with the number of BS antennas L.
- A small gap between \overline{C}_k^D and \overline{R}_k^D is observed ----by the use of virtual cell, the average number of users served by each BS antenna decreases as L increases!
- With V=1, the DAS suffers from severe inter-cell interference.

Implications to Cutting-edge Cellular Technologies

- Cellular Systems with Small Cells
 - Equivalent to a DAS with V=1.
 - Sum capacity is lower than that of cellular systems with colocated BS antennas due to strong inter-cell interference.
 - To improve the sum capacity:
 - Cooperation should be adopted among BSs, and
 - The cooperative BS set should be formed in a user-centric manner ---- virtual cell.

Implications to Cutting-edge Cellular Technologies

- pCell Technology of Artemis Networks

With orthogonal access:

✓ Cellular networks

$$R_k^C < R_k^{Cu} = \frac{1}{K_c} \log_2(1 + \frac{K_c P_0}{N_0}) \to 0 \text{ as } K_c, L_c \to \infty \text{ and } K_c/L_c \to v.$$

$$CA: \qquad R_k^{CC} \approx \frac{1}{K_c} \int_0^\infty \frac{x^{L_c - 1} e^{-x}}{(L_c - 1)!} \log_2\left(1 + \frac{x}{6L_c \tilde{\eta}_l^{CC}}\right) dx$$

\checkmark DASs with virtual cells

$$\bar{R}_k^{Dl} \approx \frac{L\log_2 e}{K} \exp(L\tilde{\eta}_l^{D,V=1}(0)) E_1(L\tilde{\eta}_l^{D,V=1}(0)) \rightarrow \frac{\frac{1}{v} eE_1(1)\log_2 e}{\log K, L \rightarrow \infty \text{ and } K/L \rightarrow v.$$

Jun. 25, 2014

What's the secret?

Summary

- In a DAS, if each user chooses a few surrounding BS antennas to form its virtual cell:
 - A uniform inter-cell interference density can be achieved.
 - Each BS antenna serves a declining number of users as the density of BS antennas increases, indicating good network scalability.
 - A small gap between the sum capacity and the sum rate with orthogonal access with V=1 is observed, which is in sharp contrast to cellular systems where a significant tradeoff between performance and complexity has to be made when the number of BS antennas is large.
- The size of virtual cell V is a crucial system parameter.
 - How does the sum capacity vary with V?

Thank you!

Any Questions?

Slides can be downloaded at my homepage: http://www.ee.cityu.edu.hk/~lindai