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A Unified Analysis of IEEE 802.11 DCF
Networks: Stability, Throughput and Delay

Lin Dai, Member, IEEE , and Xinghua Sun

Abstract—In this paper, a unified analytical framework is established to study the stability, throughput and delay performance of
homogeneous buffered IEEE 802.11 networks with Distributed Coordination Function (DCF). Two steady-state operating points are
characterized using the limiting probability of successful transmission of Head-of-Line (HOL) packets p given that the network is in
unsaturated or saturated conditions.
The analysis shows that a buffered IEEE 802.11 DCF network operates at the desired stable point p = pL if it is unsaturated. pL
does not vary with backoff parameters, and a stable throughput can be always achieved at pL. If the network becomes saturated, in
contrast, it operates at the undesired stable point p = pA, and a stable throughput can be achieved at pA if and only if the backoff
parameters are properly selected. The stable regions of the backoff factor q and the initial backoff window size W are derived, and
illustrated in cases of the basic access mechanism and the request-to-send/clear-to-send (RTS/CTS) mechanism. It is shown that the
stable regions are significantly enlarged with the RTS/CTS mechanism, indicating that networks in the RTS/CTS mode are much more
robust. Nevertheless, the delay analysis further reveals that lower access delay is incurred in the basic access mode for unsaturated
networks. If the network becomes saturated, the delay performance deteriorates regardless of which mode is chosen. Both the first and
the second moments of access delay at pA are sensitive to the backoff parameters, and shown to be effectively reduced by enlarging
the initial backoff window size W .

Index Terms—Stability, throughput, delay, IEEE 802.11 DCF networks, Binary Exponential Backoff.
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1 INTRODUCTION

IEEE 802.11 Wireless Local Area Networks (WLANs)
have gained significant attention in both industry

and academia [1]. Fueled by the widespread popularity
of commercial WLANs, research activities have been
intensified over the last few years, and a major focus has
been put on the Medium Access Control (MAC) layer
with Distributed Coordination Function (DCF).

DCF is based on the Carrier Sense Multiple Access
(CSMA) protocol with two access mechanisms includ-
ing the basic access mechanism and the request-to-
send/clear-to-send (RTS/CTS) mechanism. As a random
access protocol, DCF inherits the merits of minimum
coordination and distributed control, which, on the other
hand, also renders difficulty in modeling and perfor-
mance evaluation. A widely adopted model of IEEE
802.11 DCF networks was proposed by Bianchi in [2],
where a two-dimensional Markov chain was established
to characterize the backoff behavior of each single node.
It is well supported by simulation results and shown
to be a powerful, yet simple, analytical tool to evaluate
the throughput performance when the network becomes
saturated, i.e., each node always has a packet to transmit.

Bianchi’s model has been refined by a series of follow-
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up papers [3]–[15] to include more practical assumptions
such as freezing of backoff counters [3], [5]–[7], finite
retransmission attempts [4] [8] and imperfect channel
conditions [9]–[12]. A great deal of effort was also made
to extend the model to unsaturated networks [16]–[29].
For instance, it was assumed in [16]–[19] that each
node has a one-packet buffer and a new packet is
generated with a certain probability after the previous
one is successfully transmitted. A more general buffered
network was considered in [20]–[29], where each node is
equipped with a buffer of finite [20] [21] or infinite size
[22]–[29]. Most of them followed the analysis in [2] and
used the conditional collision probability of each node
as a key variable to characterize the network operating
point. No consensus, however, has been reached on the
fixed-point equation of the conditional collision prob-
ability in unsaturated scenarios. Moreover, an explicit
expression of the service time distribution is usually
too complicated to obtain based on these models. Ap-
proximate methods are therefore adopted to simplify the
analysis. For example, in [20] and [28], the attempt rate
in an unsaturated network is approximated by a scaled
version of the saturated attempt rate. Good accuracy was
demonstrated via simulations when the traffic is light.

The main focus of the above studies is on the nu-
merical calculation of throughput or delay for given
network configuration. Yet how to tune system param-
eters to optimize the network performance is another
interesting problem, which attracts much attention as
well. For instance, it has been long observed that IEEE
802.11 DCF networks may suffer from low throughput if
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the backoff parameters are improperly selected. Various
algorithms were therefore developed to estimate the
number of active nodes and adaptively adjust the initial
backoff window size [30]–[34]. On the other hand, severe
delay jitter as well as short-term unfairness was found
to arise when an IEEE 802.11 DCF network becomes
saturated. In that case, nodes are pushed to large phases
with extremely small transmission probabilities such that
the node who once succeeds can capture the channel
for a long time and produce a continuous stream of
packets. To address this issue, a number of modified DCF
protocols have been proposed for IEEE 802.11 networks
[35]–[39]. Most of these studies aimed at improving
the fairness performance or enhancing the throughput.
In many cases, however, the improvement is indeed
obtained at the cost of delay degradation. It is, therefore,
especially desirable to establish a coherent theory of
IEEE 802.11 DCF networks, based on which the effect
of key system parameters can be evaluated within the
same framework.

In this paper, a unified analytical framework is es-
tablished to study the stability, throughput and delay
performance of IEEE 802.11 DCF networks. Consider an
n-node homogeneous buffered IEEE 802.11 DCF network
where each node is equipped with a buffer of infinite
size and an arrival rate of λ. In contrast to the classic
model proposed in [2], the behavior of each Head-
of-Line (HOL) packet, including backoff, collision and
successful transmission, is modeled as a discrete-time
Markov renewal process. The corresponding steady-state
distribution is shown to be crucially determined by the
limiting probability of successful transmission of HOL
packets given that the channel is idle, p. According
to whether the network is unsaturated or saturated,
distinct fixed-point equations of p are derived, and two
steady-state operating points, i.e., the desired stable
point pL and the undesired stable point pA, are ob-
tained as explicit functions of system parameters. The
network throughput and delay performance at the bi-
stable points pL and pA are further characterized.

Specifically, it is shown that a buffered IEEE 802.11
DCF network operates at the desired stable point pL
if it is unsaturated. pL does not vary with backoff
parameters, and a stable network throughput λ̂out=nλ
can be always achieved at pL. Both the first and second
moments of access delay at the desired stable point pL
are shown to be insensitive to 1) the backoff factor q, 2)
the cutoff phase K and 3) the number of nodes n. They,
however, grow with the initial backoff window size W ,
indicating that a small W is desirable to improve the
delay performance.

If the network becomes saturated, in contrast, it oper-
ates at the undesired stable point pA which is a function
of 1) the backoff factor q, 2) the initial backoff window
size W , 3) the cutoff phase K and 4) the number of
nodes n. It is shown that for saturated IEEE 802.11
DCF networks, the network throughput λ̂out may fall
below the aggregate input rate λ̂=nλ if the backoff

parameters are not properly selected. The stable region
of backoff factor q is further characterized, within which
a stable throughput λ̂out=λ̂ can be always achieved at
the undesired stable point pA. The delay performance
at pA may also significantly deteriorate and becomes
closely dependent on backoff parameters. In this case,
the key to reducing the access delay is to enlarge pA,
which can be achieved by increasing the initial backoff
window size W . With a small W , the second moment of
access delay exponentially grows with the cutoff phase
K, and eventually becomes infinite as K→∞.

Our analysis sheds important light on the capability of
IEEE 802.11 DCF networks for quality of service (QoS)
provisioning, and provides direct guidance on network
control and optimization. For instance, the maximum
throughput of IEEE 802.11 DCF networks is derived in
this paper, and shown to be solely determined by the
holding times of HOL packets in successful transmission
and collision states, τT and τF . The optimal backoff
factor and the optimal initial backoff window size to
achieve the maximum throughput are obtained as func-
tions of τF and the number of nodes n. It is shown that
thanks to a drastic reduction of τF , a higher maximum
throughput is achieved in the RTS/CTS mode, which can
be approached with a wide range of backoff factor q or
initial backoff window size W .

In current IEEE 802.11 DCF networks, Binary Expo-
nential Backoff (BEB) is adopted (i.e., the backoff fac-
tor q is fixed to be 1/2), and small values of initial
backoff window size and cutoff phase are selected. The
analysis shows that the default standard setting leads
to suboptimal performance, and may cause significant
degradation when the network size or the traffic level
increases. The stable region of initial backoff window
size W with BEB is characterized, and the optimal W to
achieve the maximum throughput is obtained as a linear
function of the number of nodes n. The delay analysis
further reveals that the fundamental reason behind the
observed short-term unfairness of BEB is a high second
moment of access delay in both the basic access and the
RTS/CTS modes. To improve the delay performance at
the saturated point, a large initial backoff window size
W should be adopted.

The remainder of this paper is organized as follows.
Section 2 establishes the network model and presents
the preliminary analysis. The stable regions are charac-
terized in Section 3 and the delay analysis is presented
in Section 4. A special focus is given to BEB in Section
5. Finally, conclusions are summarized in Section 6.

2 MODELING AND PRELIMINARY ANALYSIS

Consider an n-node IEEE 802.11 DCF network with
packet transmissions over a noiseless channel. A detailed
description of the DCF protocol can be found in [2], and
is omitted here. In this paper, we focus on a homoge-
neous buffered network, where each node has an arrival
rate of λ and is equipped with a buffer of infinite size. We
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assume that each HOL packet independently follows an
identical transition process which will be characterized
in the following subsection. Note that this assumption is
also widely adopted in previous studies [2]-[29].

2.1 State Characterization of HOL Packets
A discrete-time Markov renewal process (X,V) =
{(Xj , Vj), j = 0, 1, . . . } is established in this subsection to
model the behavior of each HOL packet. Xj denotes the
state of a tagged HOL packet at the j-th transition and
Vj denotes the epoch at which the j-th transition occurs.
Fig. 1 shows the embedded Markov chain X = {Xj}.
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Fig. 1. Embedded Markov chain {Xj} of the state transi-
tion process of an individual HOL packet in IEEE 802.11
DCF networks.

The states of {Xj} can be divided into three categories:
1) waiting to request (State Ri, i = 0, . . . ,K), 2) collision
(State Fi, i = 0, . . . ,K) and 3) successful transmission
(State T). As Fig. 1 illustrates, a HOL packet moves
from State Ri to State T if the request of transmission is
successful. Otherwise, it stays at State Fi until the end of
the collision and then shifts to State Ri+1. Here i denotes
the number of collisions experienced by the HOL packet
and is incremented until it reaches the cutoff phase K
(which is referred to as the maximum backoff stage in [2]).

In IEEE 802.11 DCF networks, a HOL packet can re-
quest a transmission only if it senses the channel idle. Let
pt represent the probability of successful transmission of
HOL packets at time slot t given that the channel is idle
at t−1. It can be easily shown that the Markov chain in
Fig. 1 is uniformly strongly ergodic if and only if the
limit

lim
t→∞

pt = p (1)

exists [40]. The steady-state probability distribution of
the embedded Markov chain can be further obtained as

πRi =

{
(1− p)iπT i = 0, ...,K − 1
(1−p)K

p πT i = K
(2)

and
πFi

= πRi
· (1− p), i = 0, . . . ,K. (3)

The interval between successive transitions, i.e., Vj+1−
Vj , is called the holding time in State Xj , which solely
depends on State Xj , j = 0, 1, . . . . In IEEE 802.11 DCF
networks, the holding time τT in State T and the holding
time τF in State Fi, i = 0, . . . ,K, vary under different
access mechanisms. A graphic illustration of τT and τF

in the basic access and RTS/CTS modes can be found in
Fig. 5 of [2] (corresponding to Ts and Tc, respectively, in
unit of time slots), and the typical values are provided
in Table V of [2].

The mean holding time τRi in State Ri, i = 0, . . . ,K, on
the other hand, is determined by the backoff protocol. In
IEEE 802.11 DCF networks, when a HOL packet enters
State Ri, it randomly selects a value from {0, . . . ,Wi−1},
where Wi is the backoff window size, i = 0, . . . ,K, and
then counts down at each idle time slot. It leaves State
Ri and makes a transmission request when the channel
is idle and the counter is zero. Let Gi

t denote the state
of the backoff counter of a State-Ri HOL packet at time
slot t, i = 0, . . . ,K. The transition process of {Gi

t} can be
described by the Markov chain shown in Fig. 2, where
αt represents the probability of sensing the channel idle
at time slot t.
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Fig. 2. State transition diagram of a State-Ri HOL packet
in IEEE 802.11 DCF networks, i = 0, . . . ,K.

Similarly, the Markov chain in Fig. 2 is uniformly
strongly ergodic if and only if the limit

lim
t→∞

αt = α (4)

exists [40]. The mean holding time τRi can be then
obtained as

τRi =
1

α
· 1 +Wi

2
, (5)

i = 0, . . . ,K. Appendix A presents the detailed deriva-
tion of (5). Appendix B further shows that

α =
1

1 + τF − τF p− (τT − τF )p ln p
. (6)

By substituting (6) into (5), the mean holding time τRi

can be written as

τRi =
1

2
(1 +Wi) (1 + τF − τF p− (τT − τF )p ln p) . (7)

Finally, the limiting state probabilities of the Markov
renewal process (X, V) are given by [41]

π̃j =
πj · τj∑
i∈S πi · τi

, (8)

j ∈ S, where S is the state space of X. Specifically, the
probability of being in State T can be obtained as

π̃T=1/

(
1+

τF
τT

·1−p

p
+

(
1

τT
+
τF
τT

·(1−p)−
(
1−τF

τT

)
·p ln p

)

·

(
K−1∑
i=0

(1−p)i·1+Wi

2
+
(1−p)K

p
·1+WK

2

))
(9)
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by substituting (2-3) and (7) into (8). Note that π̃T is also
the service rate of each node’s queue as each queue has
a successful output if and only if the HOL packet stays
at State T. The offered load of each node’s queue, ρ, is
then given by

ρ = λ/π̃T , (10)

where λ is the input rate of each node.

2.2 Limiting Probability of Success p

The analysis in Section 2.1 indicates that the steady-state
performance of IEEE 802.11 DCF networks is crucially
determined by p, the limiting probability of successful
transmission of HOL packets given that the channel is
idle. In this subsection, the steady-state operating points
of IEEE 802.11 DCF networks will be characterized based
on the fixed-point equations of p.

2.2.1 Steady-state Point of Unsaturated Networks
Let us first consider an unsaturated network. Each node
must be in one of the following four states:
S1: the queue is empty;
S2: the HOL packet is in State Ri = 0, . . . ,K;
S3: the HOL packet is in State T;
S4: the HOL packet is in State Fi = 0, . . . ,K.

For a given HOL packet, its transmission request is
successful if and only if the other n−1 nodes are either in
state S1, or, in state S2 and not requesting any transmis-
sion. The limiting probability of successful transmission
of HOL packets given that the channel is idle, p, is then
given by

p = (Pr{node is in S1|channel is idle}
+ Pr{node is in S2 with no request|channel is idle})n−1.

(11)

If the channel is idle, each node must be in either state S1

or S2. The probabilities that a node is in state Sj , j=1, 2,
are given by

Pr{node is in S1} = 1− ρ, (12)

Pr{node is in S2} = ρ
K∑
i=0

π̃Ri , (13)

where the offered load of each node’s queue ρ < 1. We
then have

Pr{node is in S1|channel is idle}=
1−ρ

1−ρ+ρ
∑K

i=0 π̃Ri

, (14)

and

Pr{node is in S2 with no request|channel is idle}

=
ρ
∑K

i=0 π̃Ri(1− ri)

1− ρ+ ρ
∑K

i=0 π̃Ri

, (15)

where ri is the conditional probability of a State-Ri HOL
packet making a transmission request given that the
channel is idle, which can be obtained as

ri=
2

1 +Wi
, (16)

i = 0, . . . ,K. Detailed derivation of (16) can be found
in Appendix A. By substituting (14-15) into (11), the
limiting probability of success p can be written as

p =

{
1− ρ+ ρ

∑K
i=0 π̃Ri(1− ri)

1− ρ+ ρ
∑K

i=0 π̃Ri

}n−1

. (17)

With a large number of nodes n, we have

p ≈ exp

{
−nρ

K∑
i=0

π̃Riri

}
= exp

{
−λ̂

K∑
i=0

π̃Ri

π̃T
ri

}
, (18)

according to (10), where λ̂ = nλ is the aggregate input
rate.

Finally, by combining (2-3), (7-8) and (16), (18) can be
written as

p=exp

{
λ̂τF /τT

1−(1−τF /τT )λ̂

}
· exp

{
− λ̂(1+τF )/τT

1−(1−τF /τT )λ̂
·1
p

}
.

(19)
(19) has two non-zero roots:

pL=exp

{
W0

(
− λ̂(1+τF )/τT

1−(1−τF /τT )λ̂
· exp

{
− λ̂τF /τT

1−(1−τF /τT )λ̂

})

+
λ̂τF /τT

1−(1−τF /τT )λ̂

}
(20)

and

pS=exp

{
W−1

(
− λ̂(1+τF )/τT

1−(1−τF /τT )λ̂
· exp

{
− λ̂τF /τT

1−(1−τF /τT )λ̂

})

+
λ̂τF /τT

1−(1−τF /τT )λ̂

}
, (21)

if the aggregate input rate λ̂ is no larger than

λ̂max =
−W0

(
− 1

e(1+1/τF )

)
τF /τT − (1− τF /τT )W0

(
− 1

e(1+1/τF )

) . (22)

W0(·) and W−1(·) in (20-22) are two branches of the
Lambert W function 1 [42], and we have pS ≤ pL.
It is interesting to note that only the larger root pL
is a steady-state operating point. It is determined by
the aggregate input rate λ̂ and the holding times in
successful transmission and collision states, τT and τF ,
and does not vary with the backoff parameters. A stable
throughput λ̂out = λ̂ can be always achieved at pL as
the offered load ρ of each node’s queue is lower than 1
if the network is unsaturated.

2.2.2 Steady-state Point of Saturated Networks
As the aggregate input rate λ̂ increases, the network
will eventually become saturated, i.e., all the nodes are
busy with non-empty queues. In this case, given that the
channel is idle, each node must be in state S2. Similar to

1. The defining equation for the Lambert W function W(z) is z =
W(z)eW(z) for any complex number z.
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(11), the limiting probability of success p in a saturated
network can be written as

p = (Pr{node is in S2 with no request|channel is idle})n−1,
(23)

which is given by

p=

{∑K
i=0 π̃Ri(1−ri)∑K

i=0 π̃Ri

}n−1
with a large n

≈ exp

{
−n

K∑
i=0

π̃Riri

}
.

(24)
By substituting (2-3), (5), (8) and (16) into (24), we have

p = exp

{
−n/

(
α(τT ·p+τF ·(1−p))+

1

2

(
1+

K−1∑
i=0

p(1−p)i·Wi

+(1−p)K ·WK

))}
, (25)

where α is the limiting probability of sensing the channel
idle which is given in (6).

It is difficult to derive the exact root of (25). Neverthe-
less, it will be shown in Fig. 4 that the idle probability α
is close to zero when the network becomes saturated. By
ignoring the first term of the denominator in the right-
hand side of (25), (25) can be written as

p = exp

{
− 2n

1+
∑K−1

i=0 p(1−p)i·Wi+(1−p)K ·WK

}
. (26)

In IEEE 802.11 DCF networks, the backoff window size
Wi is set as

Wi = W · q−i, (27)

i = 0, . . . ,K. W is called the initial (or minimum) backoff
window size and q is the backoff factor. By combining
(26) and (27), we have

p = exp

− 2n

1+W

(
qp

q+p−1−
(

qp
q+p−1−1

)
·
(

1−p
q

)K)
 .

(28)
Recall that in [2], the fixed-point equation of the collision
probability (i.e., corresponding to 1 − p in this paper)
was derived for saturated IEEE 802.11 DCF networks
with Binary Exponential Backoff (q=1/2). It can be easily
shown that (28) is consistent with Eq. (9) in [2] if q is
equal to 1/2.

In contrast to (19), (28) has a single non-zero root pA
for any cutoff phase K = 0, . . . ,∞. Moreover, the non-
zero root pA is closely dependent on backoff parameters
such as the cutoff phase K, the backoff factor q and the
initial backoff window size W . With K = ∞, pA can be
explicitly written as

pK=∞
A

for large W
≈ 2n(1− q)/(Wq)

W0 (2n(1− q)/(Wq) · exp (2n/W/q))
.

(29)

2.3 Desired Stable Point versus Undesired Stable
Point
So far we have demonstrated that for any aggregate
input rate λ̂ ≤ λ̂max, an IEEE 802.11 DCF network
operates at the steady-state point pL if the network is
unsaturated. As the aggregate input rate λ̂ increases,
however, the network may become saturated and shift
to another steady-state point pA. As IEEE 802.11 DCF
networks possess the same bi-stable property as Aloha
networks [43], we follow the terminology in [43] and
refer to pL and pA as the desired stable point and the
undesired stable point, respectively.

2.3.1 Desired Stable Point pL
(20) indicates that the desired stable point pL does not
vary with backoff parameters, and is crucially deter-
mined by the holding times in successful transmission
and collision states, τT and τF . Typical values of τT and
τF in the basic access and RTS/CTS modes have been
summarized in Table V of [2]. In particular, with the
basic access mechanism, nodes are unaware of whether
their transmissions are successful or not until the end
of the packet frame, and hence τBasic

T and τBasic
F are

approximately equal to each other. With the RTS/CTS
mechanism, collisions occur only on the RTS frames that
are much shorter than the payload frames [2]. The hold-
ing time in collision states τRTS

F is therefore drastically
reduced and becomes much smaller than τRTS

T . Fig. 3a
illustrates how the desired stable point pL varies with
the aggregate input rate λ̂ in the basic access mode (i.e.,
τBasic
T =180 time slots and τBasic

F =175 time slots) and the
RTS/CTS mode (i.e., τRTS

T =192 time slots and τRTS
F =9

time slots). It can be clearly seen from Fig. 3a that pL
declines as λ̂ increases in both modes, and for given
aggregate input rate λ̂, a higher pL is always obtained
in the RTS/CTS mode thanks to the reduction of the
holding time in collision states.

2.3.2 Undesired Stable Point pA
In contrast, the undesired stable point pA is a function of
1) the cutoff phase K, 2) the backoff factor q, 3) the initial
backoff window size W and 4) the number of nodes
n. For instance, (29) indicates that pK=∞

A monotonically
decreases as the backoff factor q or the ratio of the
number of nodes n and the initial backoff window size
W increases, which can be clearly observed from Fig.
3b. pA could be much lower than pL if the backoff
parameters are not properly selected, implying that both
throughput and delay performance may significantly
deteriorate when the network becomes saturated.

The above analysis is verified by the simulation results
presented in Fig. 4. In this paper, all the simulations
are conducted using the ns-2 simulator, and the values
of system parameters are in accordance with [2] (which
were summarized in Table II of [2]). In the simulations,
each node is assumed to have Bernoulli arrivals with
rate λ, i.e., each node has probability λ to generate a
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Fig. 3. Stable points of IEEE 802.11 DCF networks. (a) Desired stable point pL versus aggregate input rate λ̂. (b)
Undesired stable point pK=∞

A versus backoff factor q.

new packet every τT time slots. The new arrival packet
is attached to the end of the waiting queue, and the
buffer size is assumed to be infinite. It can be clearly
seen from Fig. 4 that with a low aggregate input rate
λ̂ = 0.2, the network operates at the desired stable point
pL, which does not vary with the backoff factor q. While
the aggregate input rate λ̂ increases to 0.8, the network
becomes saturated at the undesired stable point pA that
declines as q increases. It is also shown in Fig. 4 that the
limiting probability of sensing the channel idle α is close
to zero when the network operates at pA. It verifies that
(26) can serve as a good approximation of (25).
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Fig. 4. Desired and undesired stable points of IEEE
802.11 DCF networks with the basic access mechanism.
n = 50, K = ∞ and W = 16.

Note that the network exhibits distinct performances
at different stable points. A stable throughput λ̂out = λ̂
can be always achieved when it operates at the desired
stable point pL. In contrast, the undesired stable point
pA depends on backoff parameters, indicating that the
network throughput λ̂out may fall below the aggregate
input rate λ̂ unless the backoff parameters are care-
fully selected. In the next section, we will focus on the
throughput performance when the network operates at
the undesired stable point pA. We are particularly inter-
ested in how to properly choose the backoff parameters
to stabilize the network at pA, and how to achieve the
maximum stable throughput.

3 STABLE REGION AND MAXIMUM STABLE
THROUGHPUT

Section 2 shows that an IEEE 802.11 DCF network op-
erates at the undesired stable point pA if it is saturated.
According to (24), the aggregate service rate at pA can
be obtained as

nπ̃T =
−τT pA ln pA

1 + τF − τF pA − (τT − τF )pA ln pA
. (30)

To achieve a stable throughput λ̂out = λ̂, the aggregate
service rate should be no smaller than the aggregate
input rate λ̂:

nπ̃T ≥ λ̂. (31)

By combining (30-31) and (19), we can conclude that a
stable throughput can be achieved at pA if and only if

pS ≤ pA ≤ pL, (32)

where pL and pS are given in (20-21).
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Note that the undesired stable point pA is a function of
backoff parameters. In this section, we will demonstrate
how to stabilize the network at pA by properly choosing
the backoff factor q. Specifically, define Sq

A as the stable
region of backoff factor q, within which a stable through-
put λ̂out = λ̂ is achieved at the undesired stable point pA.
According to (32), Sq

A can be written as

Sq
A = {q|pS ≤ pA ≤ pL}. (33)

According to (20-21), pL and pS are monotonic decreas-
ing and increasing functions of the aggregate input
rate λ̂, respectively. As a result, Sq

A will shrink as λ̂
increases, and eventually becomes a single point when
λ̂ reaches the maximum stable throughput λ̂max Sq

A
.

With λ̂>λ̂max Sq
A

, Sq
A is an empty set, implying that the

network cannot be stabilized. We will elaborate on the
above results in the following subsections.

3.1 Stable Region of Backoff Factor q with Cutoff
Phase K=∞
Let us first assume an infinite cutoff phase K=∞. The
undesired stable point pK=∞

A has been given in (29),
and the corresponding stable region can be obtained by
combining (33) and (29) as

Sq,K=∞
A =

[
1− pL

1 + W
2npL ln pL

,
1− pS

1 + W
2npS ln pS

]
. (34)

According to (34), the stable region Sq,K=∞
A diminishes

as the aggregate input rate λ̂ increases, and finally
shrinks to a single point

qK=∞
m =

(
1+(1+1/τF )W0

(
− 1

e(1+1/τF )

))
/

(
1−W

2n
(1+1/τF )

·W0

(
− 1

e(1+1/τF )

)
ln
(
−(1+1/τF )W0

(
− 1

e(1+1/τF )

)))
(35)

with which the maximum stable throughput of

λ̂max Sq,K=∞
A

=λ̂max=
−W0

(
− 1

e(1+1/τF )

)
τF /τT−(1−τF /τT )W0

(
− 1

e(1+1/τF )

)
(36)

can be achieved. Note that qK=∞
m in (35) should not

exceed 1, which requires that

W ≤ 2n

ln
(
−(1 + 1/τF )W0

(
− 1

e(1+1/τF )

)) . (37)

Otherwise, the maximum stable throughput λ̂max Sq,K=∞
A

is lower than λ̂max.
Recall that it is shown in Section 2.2.1 that the desired

stable point pL exists if and only if the aggregate input
rate λ̂ is no larger than λ̂max. Here we can conclude
from (22) and (36) that λ̂max is the maximum throughput
that can be achieved by an IEEE 802.11 DCF network

irrespective of which stable point it operates at. It is inde-
pendent of the backoff parameters and solely determined
by the holding times in successful transmission and
collision states, τT and τF . The maximum throughputs
of IEEE 802.11 DCF networks with the basic access
mechanism (i.e., τBasic

T =180 time slots and τBasic
F =175

time slots) and the RTS/CTS mechanism (i.e., τRTS
T =192

time slots and τRTS
F =9 time slots) can be obtained as

λ̂Basic
max =0.9 and λ̂RTS

max =0.97, respectively.
For any aggregate input rate λ̂ ≤ λ̂max Sq,K=∞

A
, a

stable throughput λ̂out = λ̂ can be achieved at pK=∞
A

if the backoff factor q is selected from the stable region
Sq,K=∞
A . With q /∈ Sq,K=∞

A , the network throughput falls
below the aggregate input rate λ̂ and is determined by
the aggregate service rate, which can be obtained by
combining (29-30) as:

λ̂K=∞
s =

τT

(τT−τF )+
(1+τF )·W0

(
2n(1−q)

Wq ·exp
(

2n
Wq

))
−

2nτF (1−q)
Wq

4n2(1−q)
W 2q2 −

2n(1−q)
Wq ·W0

(
2n(1−q)

Wq ·exp
(

2n
Wq

))
.

(38)
In the following subsections, we will demonstrate the
above results in the cases of the basic access mode and
the RTS/CTS mode, respectively.

3.1.1 Basic Access Mechanism
Fig. 5a presents the stable region Sq,K=∞

A of a 50-
node IEEE 802.11 DCF network with the basic access
mechanism. It can be observed from Fig. 5a that the
stable region Sq,K=∞

A is substantially enlarged as the
initial backoff window size W increases from 8 to 128.
Intuitively, with a larger W , HOL packets should have
higher chances to succeed as their requests are spread
in a more even way. A closer look at (29) and Fig. 3b
further indicates that the probability of success is indeed
improved with an increase of the initial backoff window
size W .

Nevertheless, an excessively large W may impair the
throughput performance. With W=8, 32 and 128, the sta-
ble region Sq,K=∞

A rapidly shrinks as the aggregate input
rate λ̂ increases, and finally becomes a single point qK=∞

m

when λ̂ reaches the maximum λ̂max Sq,K=∞
A

=λ̂Basic
max =0.9.

With W=1024, in contrast, the maximum stable through-
put λ̂max Sq,K=∞

A
is slightly lower than λ̂Basic

max . In fact, ac-
cording to (37), λ̂max Sq,K=∞

A
starts declining from λ̂Basic

max

if the initial backoff window size W exceeds 971.

3.1.2 RTS/CTS Mechanism
The stable region Sq,K=∞

A with the RTS/CTS mechanism
is also illustrated in Fig. 5a. Compared to the basic access
mode, the stable region is now greatly enlarged and
becomes insensitive to the aggregate input rate λ̂ and the
initial backoff window size W . Moreover, the maximum
stable throughput λ̂max Sq,K=∞

A
is boosted to λ̂RTS

max =0.97,
which can be approached with a wide range of backoff
factor q even with a small W . Both facts are attributed
to the decrease of the holding time in collision states.
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Fig. 5. Stable region of backoff factor q in IEEE 802.11 DCF networks. n=50. (a) Stable region with various values of
initial backoff window size W . K=∞. (b) Stable region with various values of cutoff phase K. W=32.

3.2 Stable Region of Backoff Factor q with Cutoff
Phase K<∞

With a finite cutoff phase K < ∞, the undesired stable
point pA is an implicit function of the backoff factor q.
Numerical results of the stable region Sq

A can be obtained
by combining (28) and (33), and are presented in Fig.
5b. It can be seen from Fig. 5b that the maximum stable
throughput λ̂max Sq,K=∞

A
=λ̂max can be always achieved

with K ≥ 4. Moreover, a large cutoff phase K leads to an
improved stable region in both the basic access and the
RTS/CTS modes. Intuitively, HOL packets would back
off to deeper phases if they experience collisions, and the
transmission probability quickly decreases as the phase
number grows, until it reaches the maximum K. A large
cutoff phase K implies that nodes have more room to
reduce their transmission probabilities, and hence the
network is better capable of absorbing the mounting
contention and remaining stable as the aggregate input
rate increases.

3.3 Simulation Results and Discussions

So far we have shown that when the network operates
at the undesired stable point pA, a stable throughput
λ̂out = λ̂ can be achieved if the backoff factor q is selected
from the corresponding stable region Sq

A. Otherwise,
the throughput λ̂out falls below λ̂ and the network
becomes unstable. The stable region Sq,K=∞

A and the
network throughput with q /∈ Sq,K=∞

A have been given
in (34) and (38), respectively, and are verified by the
simulation results presented in Fig. 6a. A closer look
at Fig. 6a also confirms that the stable region can be
significantly improved by properly enlarging the initial
backoff window size W if the basic access mechanism

is adopted. With RTS/CTS, however, the stable region is
not sensitive to the value of W .

With a finite cutoff phase K<∞, the numerical results
of the stable region Sq

A under various values of cutoff
phase K have been presented in Fig. 5b and are verified
by the simulation results presented in Fig. 6b. It can be
clearly observed from Fig. 6b that with the basic access
mechanism, the stable region is remarkably enlarged
even with a slight increment of K when the cutoff phase
K is small. The improvement nevertheless becomes
marginal as K increases. The stable region with K=16
approaches that with K=∞. If the RTS/CTS mechanism
is adopted, the cutoff phase K can be further reduced.

Figs. 6a and 6b corroborate that the stable region of
backoff factor q can be always improved by increasing
the initial backoff window size W or the cutoff phase
K. A proper selection of W and K is especially crucial
for networks in the basic access mode. In contrast, with
the RTS/CTS mechanism, a stable throughput can be
achieved within a wide range of backoff factor q even
for small W and K, indicating that IEEE 802.11 DCF
networks in the RTS/CTS mode are much more robust
compared to those in the basic access mode.

4 DELAY ANALYSIS

In this section, we will characterize the first and second
moments of access delay of HOL packets and explore
how the moments of access delay vary with system
parameters at the desired and undesired stable points.

Let Yi denote the holding time of a HOL packet
in State Ri, and Di denote the time spent from the
beginning of State Ri until the service completion, i =
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G′′
D0

(1)=
K−1∑
i=0

(1− p)iG′′
Yi
(1)+

(1− p)
K

p
G′′

YK
(1)+2 (pτT+(1−p) τF ) ·

(
K−1∑
i=0

(1−p)iG′
Yi
(1)+

(1−p)K

p
G′

YK
(1)

)

+ 2

K−1∑
i=0

(
τF+G′

Yi
(1)
)
·

 K−1∑
j=i+1

(1−p)
j
(
pτT+(1− p)τF+G′

Yj
(1)
)
+
(1−p)K

p

(
pτT+(1− p)τF+G′

YK
(1)
)

+ 2
(1− p)K+1

p2
(
τF+G′

YK
(1)
)
·
(
pτT+(1− p)τF+G′

YK
(1)
)
+ τT (τT − 1)+

1− p

p
τF (τF − 1) . (42)

ˆ o
u
t

Analysis

Simulation

Simulation

Simulation

Analysis

Analysis

W=8

W=32

W=128

RTS/CTS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Basic

q

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RTS/CTS

Basic

ˆ o
u
t

q

K=4

Simulation

K=8

K=16

K= 

Analysis

Simulation

Analysis

Simulation

Analysis

Simulation

Analysis

(b)

Fig. 6. Network throughput λ̂out versus backoff factor q in IEEE 802.11 DCF networks. λ̂=0.8 with the basic access
mechanism and λ̂=0.9 with the RTS/CTS mechanism. n=50. (a) Network throughput with various values of initial
backoff window size W . K=∞. (b) Network throughput with various values of cutoff phase K. W=32.

0, . . . ,K. According to Fig. 1, we have

Di =

{
Yi + τT with probability p
Yi + τF +Di+1 with probability 1− p, (39)

i=0, . . . ,K−1, and

DK =

{
YK + τT with probability p
YK + τF +DK with probability 1− p, (40)

where τT and τF are holding times in State T and States
Fi, i = 0, . . . ,K, respectively.

Note that D0 is the service time of HOL packets
(also the access delay). Let GD0(z) denote its probability
generating function. It can be obtained that

G′
D0

(1) = τT+
1−p

p
τF+

K−1∑
i=0

(1−p)iG′
Yi
(1)+

(1−p)K

p
G′

YK
(1),

(41)
and G′′

D0
(1) is shown at the top of the page, where G′

Yi
(1)

and G′′
Yi
(1) are given by

G′
Yi
(1) =

1

2α

(
Wq−i + 1

)
(43)

and

G′′
Yi
(1) =

1

3α2
W 2q−2i +

1− α

α2
Wq−i +

2− 3α

3α2
, (44)

respectively, i=0, ...,K. Appendix C presents the detailed
derivation of (41-44).

Accordingly, the mean access delay E[D0] (in the unit
of time slots) can be obtained as

E[D0] = G′
D0

(1) = τT +
1−p

p
τF +

1

α
·

(
1

2p
+

W

2

(
1

1−1−p
q

+

(
1

p
− 1

1− 1−p
q

)
·
(
1−p

q

)K
))

. (45)

The second moment of access delay E[D2
0] is given by

E[D2
0] = G′′

D0
(1) +G′

D0
(1), (46)

which can be obtained by substituting (41-44) into (46).
Equations (45-46) indicate that the delay performance

crucially depends on p, the probability of successful
transmission of HOL packets given that the channel is
idle. Section 2 has revealed that an IEEE 802.11 DCF
network operates at the desired stable point p = pL if it
is unsaturated, and shifts to the undesired stable point
p = pA if it becomes saturated. In the following sections,
we will analyze the delay performance at the bi-stable
points pL and pA, respectively.
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4.1 Access Delay at the Desired Stable Point pL
(20) has shown that the desired stable point pL is de-
termined by the aggregate input rate λ̂ and the holding
times in successful transmission and collision states, τT
and τF . It is further illustrated in Fig. 3a that pL is close
to 1 within a wide range of aggregate input rate λ̂ in
both the basic access and the RTS/CTS modes. With
pL ≈ 1, the first and second moments of access delay
can be obtained as

E[D0,p=pL ] ≈ τT +
1 +W

2
, (47)

and

E[D2
0,p=pL

] ≈ τ2T + (1 +W )τT +
1 + 3W + 2W 2

6
, (48)

respectively, according to (45-46). It is clear from (47-
48) that both E[D0,p=pL ] and E[D2

0,p=pL
] increase with

the holding time in the successful transmission state
τT and the initial backoff window size W . They are
insensitive to the backoff factor q, the cutoff phase K,
and the holding time in collision states τF because the
HOL packets hardly encounter any collisions if pL is
close to one. They are also invariant to the number of
nodes n as pL is independent of n.

The analysis is verified by simulation results presented
in Fig. 7. It can be seen from Fig. 7 that better delay per-
formance is achieved in the basic access mode, because
the holding time in the successful transmission state is
larger in the RTS/CTS mode due to the overhead of
RTS/CTS frames.
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Fig. 7. Mean access delay E[D0,p=pL ] and second mo-
ment of access delay E[D2

0,p=pL
] versus backoff factor q

in unsaturated IEEE 802.11 DCF networks. λ̂ = 0.1.

4.2 Access Delay at the Undesired Stable Point pA
The undesired stable point pA is a function of 1) the cut-
off phase K, 2) the backoff factor q, 3) the initial backoff

window size W and 4) the number of nodes n. The first
and second moments of access delay at the undesired
stable point pA can be obtained by substituting (28) into
(45-46). Specifically, with an infinite cutoff phase K=∞,
the mean access delay at pA can be written as

E[DK=∞
0,p=pA

] = τT +
1− pA
pA

τF +

(
1

2pA
+

Wq

2(pA + q − 1)

)
·
(
1 + (1− pA)τF +

2n(pA + q − 1)

Wq
(τT − τF )

)
, (49)

which is minimized at

min
q

E[DK=∞
0,p=pA

]=n

τT−

1+
1

W0

(
− 1

e(1+1/τF )

)
 τF

 .

(50)

The minimum mean access delay is achieved when the
backoff factor is set to be q=qK=∞

m according to (35-36).
Fig. 8a illustrates how the mean access delay per-

formance varies with the backoff parameters when the
network is saturated at the undesired stable point pK=∞

A .
As we can see from Fig. 8a, with W=16 and n=50,
E[DK=∞

0,p=pA
] sharply increases as the backoff factor q

departs from qK=∞
m , indicating that q should be carefully

selected to optimize the delay performance. As n/W
declines, nevertheless, pK=∞

A becomes less sensitive to
the backoff factor q, and hence only a slight increment
of E[DK=∞

0,p=pA
] can be observed as q increases if W=128 or

n=10. The minimum mean access delay linearly grows
with the number of nodes n. Note that pA is a monotonic
increasing function of cutoff phase K according to (28),
implying that the mean access delay with a finite K
should be higher than E[DK=∞

0,p=pA
]. As we can see from

Fig. 8b, the mean access delay declines as the cutoff
phase K increases, and quickly converges to E[DK=∞

0,p=pA
].

The second moment of access delay E[D2
0,p=pA

] is also
closely determined by the above backoff parameters. In
contrast to the mean access delay, however, Fig. 8b shows
that with W=16, E[D2

0,p=pA
] rapidly grows as the cutoff

phase K increases. A closer look at (41-42) suggests that
a dominating component of the second moment is given
by

W 2

3α2

(
K−1∑
i=0

(
1− pA
q2

)i

+
1

pA
·
(
1− pA
q2

)K
)
, (51)

which sharply increases with the cutoff phase K, and
eventually becomes infinite as K→∞, if (1−pA)/q

2 > 1.
A large second moment indicates that the access delay
performance drastically varies from node to node. In that
case, some node may capture the channel and produce
a continuous stream of packets, while others have to
wait for a long time. The short-time unfairness therefore
arises. This irregular behavior has long been observed
and referred to as the “capture phenomenon” [44] [45].

To prevent the capture phenomenon, backoff param-
eters should be carefully selected to ensure that (1 −
pA)/q

2 < 1. According to (28) and Fig. 3b, (1 − pA)/q
2
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E[D2,K=∞
0,p=pA

]=
W 2

α2
(
1−1−pA

q2

) ·
1

3
+

1−pA

q

2
(
1−1−pA

q

)
+ W

α
(
1− 1−pA

q

) ·(τT+1−pA
pA

τF+

1−pA

q

1−1−pA

q

(
τF+

1

2α

)
−1

2

+
1+pA
2αpA

)
+

1

pA
·
(
2(1−pA)τF

(
τT+

1−pA
pA

τF

)
+
1

α

(
τT+

2(1−pA)

pA
τF−

1

2

)
+

1

α2

(
1

2pA
+
1

6

))
+τ2T+

1−pA
pA

τ2F . (53)
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Fig. 8. Access delay of saturated IEEE 802.11 DCF networks with the basic access mechanism. (a) Mean access
delay E[DK=∞

0,p=pA
] versus backoff factor q. K=∞. (b) Mean access delay E[D0,p=pA

] and second moment of access
delay E[D2

0,p=pA
] versus cutoff phase K. n=50.

can be effectively diminished by choosing a small ratio
of the number of nodes n and the initial backoff window
size W . Specifically, with K=∞, the second moment
E[D2,K=∞

0,p=pA
] is finite if and only if

W >
2n

−(1 + q) ln(1− q2)
. (52)

As we can see from Fig. 8b, by increasing the initial back-
off window size W from 16 to 1024, the second moment
of access delay is drastically reduced, and converges to
E[D2,K=∞

0,p=pA
] (which is shown on the top of the page), as

the cutoff phase K goes to infinity.
We can conclude from Figs. 7-8 that the delay perfor-

mances at the bi-stable points are drastically different
from each other. When the network operates at the
desired stable point pL, both the first and the second
moments of access delay are insensitive to the number
of nodes n, the cutoff phase K and the backoff factor q,
and increase with the initial backoff window size W . If
the network is saturated at the undesired stable point pA,
on the other hand, the delay performance significantly
deteriorates, and becomes closely dependent on backoff
parameters. With a small initial backoff window size W ,
for instance, the second moment of access delay may
grow unboundedly as the cutoff phase K increases, and

the capture phenomenon occurs eventually. A large ini-
tial backoff window size W is therefore much desirable
to improve the delay performance at the undesired stable
point pA, which is in sharp contrast to that at the desired
stable point pL.

5 PERFORMANCE ANALYSIS OF BINARY EX-
PONENTIAL BACKOFF

Note that in current IEEE 802.11 DCF networks, Binary
Exponential Backoff (BEB) is widely adopted where the
backoff factor q is fixed to be 1/2. In this section, we will
apply the analysis presented in Sections 3-4 and demon-
strate how to optimize the performance of IEEE 802.11
DCF networks with BEB by properly choosing system
parameters. We only focus on the undesired stable point
pA, because the throughput and delay performance is
insensitive to the backoff factor q when the network
operates at the desired stable point pL.

5.1 Saturation Throughput
Section 3 demonstrates that for any aggregate input rate
λ̂ ≤ λ̂max, a stable throughput λ̂out = λ̂ can be achieved
at the undesired stable point pA if the backoff factor q is
properly selected. With BEB where q is fixed to be 1/2,



12

the initial backoff window size W should be carefully
tuned to achieve a stable throughput.

Specifically, define S
W,q=1/2
A as the stable region of the

initial backoff window size W with BEB, within which a
stable throughput λ̂out = λ̂ is achieved at the undesired
stable point. Similar to (33), it can be written as

S
W,q=1/2
A = {W |pS ≤ p

q=1/2
A ≤ pL}. (54)

With an infinite cutoff phase K=∞, SW,q=1/2,K=∞
A can

be obtained as

S
W,q=1/2,K=∞
A =

[
4npS − 2n

−pS ln pS
,
4npL − 2n

−pL ln pL

]
(55)

by combining (54) and (29). SW,q=1/2,K=∞
A decreases as

the aggregate input rate λ̂ increases, and eventually
shrinks to a single point

W q=1/2,K=∞
m =2n

(
1+2

(
1+

1

τF

)
W0

(
− 1

e(1+1/τF )

))
/

(
−
(
1

+
1

τF

)
W0

(
− 1

e(1+1/τF )

)
ln

(
−
(
1+

1

τF

)
W0

(
− 1

e(1+1/τF )

)))
,

(56)

with which the maximum stable throughput of
λ̂
max S

W,q=1/2,K=∞
A

= λ̂max can be achieved. It can be
easily shown from (56) that the optimal initial backoff
window sizes in the basic access mode (i.e., τBasic

F =175
time slots) and the RTS/CTS mode (i.e., τRTS

F =9 time
slots) are given by

W
q=1/2,K=∞
m,Basic ≈ 17.3n, (57)

and
W

q=1/2,K=∞
m,RTS ≈ 2.66n, (58)

respectively.
With W /∈ S

W,q=1/2
A , the network throughput falls

below the aggregate input rate λ̂ and is determined by
the aggregate service rate, which can be obtained by
combining (28) and (30). With an infinite cutoff phase
K=∞, it can be explicitly written as

λ̂q=1/2,K=∞
s =

τT

(τT−τF )+
(1+τF )·W0(2n/W exp(4n/W ))−2nτF /W
8n2/W 2−2n/W ·W0(2n/W exp(4n/W ))

.

(59)
Note that λ̂

q=1/2
s is usually referred to as saturation

throughput in previous studies [2]–[13]. In particular, the
aggregate input rate λ̂ is intentionally raised until the
network throughput falls below λ̂. In that case, the
network becomes unstable, and the throughput starts
to vary with backoff parameters including the initial
backoff window size W and the cutoff phase K.

Figs. 9a-9b present the curves of λ̂
q=1/2
s versus initial

backoff window size W under various values of cutoff
phase K in the basic access mode and the RTS/CTS
mode, respectively. As we can see from both figures,
with a small W , the throughput with K=6 is lower than
that with K=∞. The gap, however, diminishes as W

increases, and the throughput in both cases is maximized
when W is set to be W

q=1/2,K=∞
m , i.e., W q=1/2,K=∞

m,Basic =865

and W
q=1/2,K=∞
m,RTS =133 for n=50 according to (57) and

(58), respectively. It can be clearly seen from Fig. 9a that
an appropriate value of W is of great importance to
the throughput performance of BEB if the basic access
mechanism is adopted. Considerable throughput loss is
incurred if the initial backoff window size W and the
cutoff phase K are both small.

Note that numerical and simulation results of the satu-
ration throughput of BEB with a finite cutoff phase K<∞
are also presented in [2]. The throughput considered in
[2] is the fraction of time that the payload is transmitted,
which is slightly different from the one defined in this
paper. Nevertheless, let ξ denote the ratio of the packet
payload size L and the holding time in the successful
transmission state τT . The effective throughput used in
[2] can be then expressed as ξ · λ̂q=1/2

s . It can be easily
shown that with the packet size L=164 time slots, ξ
is around 91.1% with the basic access mechanism (i.e.,
τBasic
T =180 time slots) and 85.4% with the RTS/CTS

mechanism (i.e., τRTS
T =192 time slots). The curves of

effective throughput with K=6 plotted in Figs. 9a and
9b are consistent with Figs. 9 and 10 in [2], respectively.

Fig. 10 illustrates the effect of cutoff phase K on the
throughput performance of BEB. According to (59), with
an initial backoff window size of W=32, the throughput
λ̂
q=1/2,K=∞
s in the basic access and the RTS/CTS modes

are given by 0.73 and 0.97, respectively. As we can see
from Fig. 10, to approach the throughput with K=∞,
the cutoff phase K should be large enough, i.e., K=16
for basic access and K=6 for RTS/CTS. The effective
throughput plotted in Fig. 10 is consistent with Fig. 13
in [2].

In the current IEEE 802.11 FHSS standard, the initial
backoff window size W and the cutoff phase K are fixed
to be 16 and 6, respectively [46]. Fig. 11 illustrates that
in the basic access mode, the throughput achieved with
the standardized parameters is significantly lower than
λ̂max, and the gap is further enlarged as the network size
n increases. To achieve the maximum throughput λ̂max,
our analysis has revealed that one option is to select a
large cutoff phase K and set the backoff factor q as q =
qK=∞
m according to (35). If q is fixed to be 1/2, the initial

backoff window size W should be adjusted according to
(56). Both cases lead to an optimized throughput, as Fig.
11 shows.

In the RTS/CTS mode, the throughput performance of
BEB is substantially enhanced and becomes insensitive
to backoff parameters such as the initial backoff window
size W and the cutoff phase K. It can be clearly seen
from Fig. 11 that with the standard setting, λ̂

q=1/2
s is

quite close to the maximum throughput λ̂max even with
a large network size n. Although the throughput can still
be improved by dynamically tuning the backoff factor q
or the initial backoff window size W , the gains become
marginal.
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Fig. 9. Saturation throughput λ̂q=1/2
s versus initial backoff window size W in IEEE 802.11 DCF networks with BEB

(q=1/2) under various values of cutoff phase K. n=50. (a) Basic access mechanism. (b) RTS/CTS mechanism.
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5.2 Access Delay
Section 4.2 has shown that when the network shifts to the
undesired stable point pA, the access delay performance
becomes crucially dependent on backoff parameters.
With BEB, the mean access delay at the undesired stable
point with an infinite cutoff phase K=∞ can be written
as

E[D
q=1/2,K=∞
0,p=pA

] = τT+
1−pA
pA

τF+

(
1

2pA
+

W

2(2pA − 1)

)
·
(
1+(1−pA)τF+

2n(2pA − 1)

W
(τT−τF )

)
, (60)
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Fig. 11. Saturation throughput versus number of nodes n
in IEEE 802.11 DCF networks.

by substituting q=1/2 into (49). It can be easily shown
that (60) is consistent to Lemma 1 in [15]. The minimum
mean access delay can be further obtained as

min
W

E[D
q=1/2,K=∞
0,p=pA

]=n

τT−

1+
1

W0

(
− 1

e(1+1/τF )

)
 τF

 ,

(61)

which is achieved when the initial backoff window size
is set to be W=W

q=1/2,K=∞
m .

Fig. 12a presents the curves of mean access delay
E[D

q=1/2
0,p=pA

] versus initial backoff window size W under
various values of cutoff phase K. As we can see from Fig.
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Fig. 12. Access delay of saturated IEEE 802.11 DCF networks with BEB (q=1/2). (a) Mean access delay E[D
q=1/2
0,p=pA

]

versus initial window size W . (b) Second moment of access delay E[D
2,q=1/2
0,p=pA

] versus cutoff phase K. n=50.

12a, with a small W , the mean access delay with K=6 is
larger than that with K=∞ due to a lower probability of
success of HOL packets. The mean access delay in both
cases declines as W increases, and is optimized when
W=W

q=1/2,K=∞
m . A closer look at (61) further indicates

that the minimum mean access delay in the basic access
mode (i.e., τBasic

T =180 time slots and τBasic
F =175 time

slots) and the RTS/CTS mode (i.e., τRTS
T =192 time slots

and τRTS
F =9 time slots) is approximately given by 200n

and 198n, respectively. Both of them linearly increase
with the number of nodes n.

Section 4.2 also demonstrates that the second moment
of access delay at the undesired stable point may sharply
grow with the cutoff phase K if the backoff factor q or the
initial backoff window size W is not properly selected.
With BEB, a huge second moment of access delay can
be observed from Fig. 12b when W is small, i.e., W=16.
The second moment is significantly reduced by enlarging
W to 128. Nevertheless, it still increases with the cutoff
phase K and becomes infinite as K→∞.

According to (52), the second moment of access delay
of BEB, E[D

2,q=1/2,K=∞
0,p=pA

], is finite if and only if the initial
backoff window size W satisfies

W >
4n

3 ln 4
3

≈ 4.63n. (62)

As we can see from Fig. 12b, with a large W , i.e., W>232
for n=50, the second moment of access delay converges
as K goes to infinity, and steadily decreases as the initial
backoff window size W increases. The second moment
in the RTS/CTS mode is slightly better than that in the
basic access mode when W is small. The gap, however,
diminishes for W≥512.

We can conclude from Fig. 12 that the delay perfor-

mance of BEB at the undesired stable point significantly
deteriorates if the initial backoff window size W is small.
As Fig. 13 illustrates, with the current FHSS standard
setting (K=6 and W=16), the second moment of access
delay of BEB is much higher than that with a large W ,
i.e., W=1024, and the gap is further widened as the net-
work size n grows. Note that a high second moment also
indicates serious short-term unfairness among nodes.
It is therefore of great importance to choose a large
initial backoff window size when the network becomes
saturated at the undesired stable point pA.
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]
versus number of nodes n in saturated IEEE 802.11 DCF
networks with BEB (q=1/2). K=6.
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6 CONCLUSION

This paper presents the stability, throughput and delay
analysis of buffered IEEE 802.11 DCF networks. It is
revealed that an IEEE 802.11 DCF network has two
steady-state points. It operates at the desired stable point
pL if it is unsaturated, and a stable throughput can be
always achieved at pL. If it becomes saturated, it shifts to
the undesired stable point pA, and a stable throughput
can be achieved if and only if the backoff parameters
are properly selected from their corresponding stable
regions. Both the maximum stable throughput and the
stable region of backoff factor q are derived, and shown
to be crucially dependent on the holding times of HOL
packets in successful transmission and collision states,
τT and τF . With a decrease of τF , the stable region is
enlarged and becomes less sensitive to system parame-
ters, which justifies the observation that an IEEE 802.11
DCF network in the RTS/CTS mode is more robust
than that in the basic access mode. The delay analysis
further shows that for unsaturated networks, both the
first and second moments of access delay grow with τT
and the initial backoff window size W , implying that
better delay performance can be achieved in the basic
access mode with a small W . If the network is saturated
at the undesired stable point pA, on the other hand, a
large W becomes desirable in both modes to prevent the
capture phenomenon.

Our analysis provides plenty of insight for practical
network design. In current IEEE 802.11 DCF networks,
the backoff factor q is fixed to be 1/2, and small values
of initial backoff window size W and cutoff phase K
are usually selected. It is shown that in the basic access
mode, there exists a huge gap between the maximum
throughput that can be achieved with the default stan-
dard setting and the optimum throughput. To eliminate
the gap, a large cutoff phase K should be selected, and
the initial backoff window size W should be linearly
adjusted with the network size n according to (56).
Moreover, the delay analysis shows that with the default
standard setting, a saturated IEEE 802.11 DCF network
suffers from serious short-term unfairness due to a high
second moment of access delay no matter which mode
is chosen. To improve the delay performance at the satu-
rated point, a large initial backoff window size W should
be adopted, which nevertheless may cause unnecessarily
long delay if the network is unsaturated.

It should be noted that throughout the paper, we as-
sume that each node is equipped with a buffer of infinite
size, and each HOL packet has no limit on the number of
retransmission attempts. In practical networks, however,
packets may be dropped due to 1) a finite buffer size, and
2) a limit on the number of retransmissions. Intuitively,
the buffer size does not affect the contention process
of HOL packets, and hence the analysis presented in
this paper remains valid for the finite buffer size case.
The effect of retry limit, in contrast, could be prominent
when the network becomes saturated. How to refine the

proposed analytical framework to include more practi-
cal assumptions is an interesting issue, which deserves
much attention in the future study.

APPENDIX A
DERIVATION OF (5) AND (16)
The Markov chain shown in Fig. 2 illustrates the transi-
tion process of {Gi

t}, where Gi
t denotes the state of the

backoff counter of a State-Ri HOL packet at time slot t,
i = 0, . . . ,K.

1) Let Yi denote the holding time of a HOL packet in
State Ri. When a HOL packet enters State Ri, it randomly
selects a number x from {0, . . . ,Wi − 1} as the initial
value of its backoff counter. According to Fig. 2, Yi is
the sum of the sojourn time at states Bx, Bx−1, . . . , and
B0, which can be written as

Yi =
x∑

k=0

JBk
, (63)

where JBk
is the sojourn time at state Bk, which follows

a geometric distribution with parameter α as t → ∞,
and x follows a uniform distribution with state space
{0, . . . ,Wi−1}. The mean holding time τRi is then given
by

τRi = E[Yi] = E[x+ 1] · E[JBk
], (64)

and (5) can be obtained accordingly.
2) The limiting state probabilities of the Markov chain

in Fig. 2 can be obtained as

fBk
=

2

1 +Wi
· Wi − k

Wi
, (65)

k = 0, . . . ,Wi − 1. Given that the channel is idle, a
transmission request is made if the backoff counter is
zero. The conditional probability of a State-Ri HOL
packet making a transmission request given that the
channel is idle, ri, is then equal to fB0 , and (16) can
be obtained according to (65).

APPENDIX B
DERIVATION OF (6)
The channel has three states: 1) Idle, 2) Successful Trans-
mission and 3) Collision. Accordingly, the probability of
sensing the channel idle at time slot t+1, αt+1, can be
written as

αt+1 = Pr{idle at t+1|success at t} · Pr{success at t}
+Pr{idle at t+1|collision at t} · Pr{collision at t}
+Pr{idle at t+1|idle at t} · Pr{idle at t}. (66)

In IEEE 802.11 DCF networks, a successful trans-
mission and a collision last for τT and τF time slots,
respectively. As a result, if the channel is sensed busy at
time slot t, the probability of sensing the channel idle at
the next time slot t+1 is given by 1/τT if the transmission
is successful, and 1/τF if a collision occurs. We have

Pr{idle at t+ 1|success at t} =
1

τT
, (67)
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and
Pr{idle at t+ 1|collision at t} =

1

τF
. (68)

On the other hand, if the channel is sensed idle at time
slot t, the probability that it is idle at t+1 is indeed
pt+1, which is the probability that all the nodes do not
transmit at t+1 given that the channel is sensed idle at
t. We have

Pr{idle at t+ 1|idle at t} = pt+1. (69)

The unconditional probability of sensing the channel
in successful transmission at time slot t can be written
as

Pr{success at t} =

τT∑
i=1

Pr{success at t− i+ 1|idle at t− i}

· Pr{idle at t− i}. (70)

Let ωt denote the probability that a node has a request
at time slot t given that the channel is sensed idle at t−1.
We have

pt = (1− ωt)
n−1 for large n

≈ exp(−nωt). (71)

The probability that the channel has a successful trans-
mission at time slot t − i + 1 given that the channel is
idle at time slot t− i can be then written as

Pr{success at t− i+ 1|idle at t− i} = nωt−i+1 · pt−i+1

≈ −pt−i+1 ln pt−i+1, (72)

according to (71). By substituting (72) into (70), we have

Pr{success at t} = −
τT∑
i=1

αt−i · pt−i+1 ln pt−i+1. (73)

Finally, by combining (66-69) and (73), the dynamic
equation of αt+1 can be obtained as

αt+1=− 1

τT

τT∑
i=1

αt−ipt−i+1 ln pt−i+1+
1

τF

(
1+

τT∑
i=1

αt−ipt−i+1

· ln pt−i+1 − αt

)
+ αtpt+1. (74)

As t → ∞, we have

α = −αp ln p+
1

τF
(1 + τTαp ln p− α) + αp. (75)

(6) can be obtained by solving (75).

APPENDIX C
DERIVATION OF (41-44)
The probability generating functions of Di, i = 0, . . . ,K,
can be obtained from (39) and (40) as{

GDi(z) = pzτTGYi(z) + (1− p)zτFGYi(z)GDi+1(z), i<K
GDK

(z) = pzτTGYK
(z) + (1− p)zτFGYK

(z)GDK
(z),

(76)
where Yi is the holding time of a HOL packet in State
Ri, i=0, . . . ,K.

According to (63) in Appendix A, the probability
generating function of Yi can be written as

GYi(z) =
1

Wi

GJBk
(z)−GJBk

(z)
Wi+1

1−GJBk
(z)

, (77)

where
GJBk

(z) =
αz

1− (1− α)z
. (78)

(41-42) and (43-44) can be then obtained from (76) and
(77-78), respectively.
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