Gaussian Message Passing on Linear Models: An Update

Hans-Andrea Loeliger¹, Junci Hu¹, Sascha Korl², Qinghua Guo³, and Li Ping³

¹ Dept. of Information Technology and Electrical Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.
² Phonak AG, Laubisriitistr. 28, CH-8712 Stäfa, Switzerland.
³ Dept. of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong.

Abstract

This semi-tutorial paper considers message passing algorithms on factor graphs of linear Gaussian models. Freshly polished tables of message computation rules are given and their use is demonstrated for soft-in soft-out equalization.

1 Introduction

In this paper, we consider Gaussian message passing in factor graphs of linear models. We present message computation tables for linear building blocks that allow to compose a variety of efficient algorithms without extra computations or derivations. The essence of this approach was presented in [1] and [2]; in the present paper, we review this approach with numerous refinements and demonstrate its application to soft-in soft-out equalization.

For the sake of exposition, we focus on linear state space models with input U_k, output Y_k, and state X_k, $k = 1, 2, 3, \ldots, N$, given by

\begin{align*}
X_k &= A_k X_{k-1} + B_k U_k \\
Y_k &= C_k X_k
\end{align*}

with known (real or complex) matrices A_k, B_k, and C_k. We assume that such a state space model is part of some larger model that defines a priori probabilities for X_0 and U_k and connects outputs Y_k (and/or inputs U_k) with known observations. A specific example—equalization—will be described in Section 3.

We will assume either that all variables in such a model are Gaussians or that we choose to treat them as Gaussians for the sake of computational efficiency. In this context, we recall the following facts (see the Appendix for details):

- For Gaussians, MAP estimation coincides with LMMSE (linear minimum mean squared error) estimation.
- MAP estimation with assumed Gaussians coincides with true LMMSE estimation.
- For Gaussian factor graphs, the sum-product algorithm and the max-product algorithm coincide.

Many problems besides equalization can also be formulated as message passing on linear Gaussian models. In particular, multi-user separation, LPC (linear predictive coding) analysis, and RLS (recursive least squares) adaptive filters lead to special cases of the general state space model (1), (2), cf. [5]. In all these problems, the message computation tables given in this paper allow to write down complete message passing algorithms without additional computations or derivations.

This paper is structured as follows. Section 2 introduces the factor graph of (1) and (2) that will be used throughout this paper. In Section 3, the general setup as outlined above is described in detail for soft-in soft-out equalization. Section 4 introduces some notation and presents some useful relations among the parameters of Gaussian messages; this section also introduces Tables I–IV, which form the core of this paper. The use of these tables is illustrated in Section 5, which gives a number of complete message passing algorithms. Some basic facts about Gaussian distributions and LMMSE estimation are reviewed in the Appendix.

This paper is not an introduction to factor graphs. For such an introduction, see [2] or [3].

The following notation will be used. The transpose of a matrix (or vector) A is denoted by A^T; A^H denotes the complex conjugate of A^T; $A^\#$ denotes the Moore-Penrose pseudo-inverse of A; and “\propto” denotes equality of functions up to a scale factor.

2 Factor Graph of Linear State Space Model

We will use Forney-style factor graphs as in [2] where edges represent variables and nodes/boxes represent factors. (Such graphs were introduced in [4], but we deviate in some details from the notation of [4].)

A factor graph corresponding to (1) and (2) is shown in Fig. 1. All nodes in Fig. 1 represent deterministic constraints, which are formally expressed by factors involving Dirac deltas. For example, the node/box connecting X_k, X'_k, and X''_k represents the factor $\delta(X_k - X'_k)\delta(X_k - X''_k)$, which enforces $X_k = X'_k = X''_k$ for all valid configurations; the node/box connecting U_k and U'_k represents the factor $\delta(U'_k - B_k U_k)$, which enforces $U'_k = B_k U_k$ for all valid configurations.

We will assume that all incoming and all outgoing
messages are Gaussians, in which case all internal (sum-product or max-product) messages are also Gaussians.

Also indicated in Fig. 1 is the decomposition of the matrix A_k of (1) into

$$A_k = A''_k A'_k$$

(3)

such that the multiplication by A'_k is a surjective mapping and the multiplication by A''_k is an injective mapping. (In other words, the rank of A'_k equals the number of rows of A'_k and the rank of A''_k equals the number of columns of A''_k.) Such a decomposition is always possible and is sometimes useful if A_k is singular.

3 Example: Equalization

As a specific example, consider the transmission of real symbols U_k over a discrete-time linear intersymbol interference channel with additive white Gaussian noise. The received real values Y'_k, $k = 1, \ldots, N$, are given by

$$Y'_k = \sum_{\ell=0}^{M} h_k U_{k-\ell} + Z_k,$$

(4)

where Z_k, $k = 1, \ldots, N$, are i.i.d. zero-mean Gaussian random variables with variance σ^2 and where h_0, \ldots, h_M are known real coefficients. (The initial channel state $U_0, U_{-1}, \ldots, U_{-M+1}$ may be known or unknown, depending of the application.)

We bring (4) into the state space form (1), (2) by defining $Y_k \triangleq Y'_k - Z_k$ (the noise-free output), $X_k \triangleq (U_k, \ldots, U_{k-M})^T$, and the matrices

$$A_k \triangleq A \triangleq \begin{pmatrix} 0 & 0 \\ I_M & 0 \end{pmatrix}$$

(5)

(6)

(7)

(8)

(9)

We note that the decomposition (3) yields $A'_k = (I_M, 0)$ and $A''_k = \begin{pmatrix} 0 \\ I_M \end{pmatrix}$; for later use we also note $(A'_k)^\# = (A'_k)^T$ and $(A''_k)^\# = (A''_k)^T$.

The factor graph of the model (4) is shown in Fig. 2. The unlabeled nodes at the bottom of Fig. 2 represent Gaussian distributions with mean zero and with variance σ^2. The dashed box at the top of Fig. 2 represents a code constraint (e.g., the graph of a low-density parity check code) or another model for U_k, if available.
4 Gaussian Messages and their Computation Rules

All messages and marginal functions (a posteriori probabilities) will be Gaussians, which we will describe either by the mean vector m and the covariance matrix V or by the weight matrix $W \triangleq V^{-1}$ and the transformed mean Wm (cf. the Appendix).

Each edge of the factor graph carries two messages, one in each direction. We will often refer to these two messages by calling one of them “incoming” and the other “outgoing”, or by calling one of them “forward” and the other “backward”. If some edge represents the variable X, the incoming message has mean m_{inX}, covariance matrix V_{inX}, and inverse covariance matrix $W_{inX} = V_{inX}^{-1}$, the outgoing message has mean m_{outX}, covariance matrix V_{outX}, and inverse covariance matrix $W_{outX} = V_{outX}^{-1}$. The product of these two messages—the marginal of the global function if the factor graph has no cycles—is the Gaussian with mean m_X and covariance matrix $V_X = W_X^{-1}$ given by

$$W_X = W_{inX} + W_{outX}$$

(8) and

$$W_X m_X = W_{inX} m_{inX} + W_{outX} m_{outX}.$$

(9)

An open half edge without an incoming message may be treated as carrying the neutral factor 1 as incoming message. Such a message may be viewed as the limit of a Gaussian with $W_{inX} = 0$ and arbitrary finite m_{inX}.

We will also use the auxiliary quantity

$$W_X \triangleq (V_{inX} + V_{outX})^{-1}. \quad (10)$$

The following relations among these quantities are often useful:

$$W_X = W_{inX} V_X W_{outX} \quad (11)$$

$$W_X = W_{inX} - W_{inX} V_X W_{inX} \quad (12)$$

$$V_X = V_{inX} W_X V_{outX} \quad (13)$$

$$V_X = V_{inX} - V_{inX} W_X V_{inX} \quad (14)$$

$$m_X = V_X W_{inX} m_{inX} + V_X W_{outX} m_{outX} \quad (15)$$

$$= m_{inX} - V_{inX} W_X m_{inX} + V_X W_{outX} m_{outX} \quad (16)$$

Note that “in” and “out” are arbitrary labels and may be interchanged in all these relations.

Computation rules for messages (such as m_{inX}, V_{outX}, etc.) and marginals (such as m_X, V_X, etc.) are listed in Tables I, II, and IV. In principle, Table I suffices to compute all messages in Fig. 1. However, using only the rules of Table I leads to frequent transformations of W and Wm into $V = W^{-1}$ and m, and vice versa; if V and W are large matrices, such conversions are costly.

(Rules (19)–(30) follow from elementary probability theory. The remaining rules are most easily proved by recognizing them as Fourier transforms of other rules in the spirit of [4].)

The inversion of big matrices can often be avoided by using the message computation rules given in Table II (which follow from the Matrix Inversion Lemma [6]). The point of these rules is that the dimension of Y may be much smaller than the dimension of X and Z; in particular, Y may be a scalar. The signs in (38) depend on the direction of the arrows, cf. (23) and (24).

The decompositions shown in Table III often allow the propagation of the “wrong” parameters through a matrix multiplication node without inverting a big matrix. Table III (top) together with Table II (bottom) allows the propagation of W and Wm forward through a matrix multiplication node; Table III (bottom) together with Table II (top) allows the propagation of V and m backward through a matrix multiplication node. The new “internal” open input in Table III (top) may be viewed as carrying as incoming message a degenerate Gaussian with $W_{in} = 0$ and arbitrary finite m_{in}; the new “internal” output in Table III (bottom) may be viewed as carrying as incoming message a degenerate Gaussian with $m_{in} = 0$ and $V_{in} = 0$.

The grouping of nodes shown in Table IV (top) is used in Algorithm D below. The grouping of nodes shown in Table IV (bottom) is used in Algorithms C and F below.

5 Complete Algorithms

We describe sequences of message computations that allow to compute essentially any message and any marginal in the factor graph of Fig. 1. If all the inputs U_k and all the output Y_k are scalars (i.e., if the matrices B_k are column vectors and the matrices C_k are row vectors), then none of these computations involves a matrix inversion. This applies, in particular, to the example of Section 3.

In these algorithms, forward (left-to-right) messages will be denoted by m_{fwX}, V_{fwX}, W_{fwX}, etc., and backward (right-to-left) messages will be denoted by m_{bwX}, V_{bwX}, W_{bwX}, etc.

(If the rank of the matrix A_k in Fig. 1 is smaller than the number of rows of A_k, then W_{fwX} is undefined; if the rank of A_k is smaller than the number of columns, then V_{bwX} is undefined.)

We begin with the two basic Kalman filter recursions for the computation of messages in Fig. 1.

Algorithm A: forward with m_{fw} and V_{fw}. (This algorithm is known as “covariance matrix Kalman filter” [6].) From the forward message at X_{k-1} and the incoming (upward) message at Y_{k-1}, the forward message at X_{k-1} is obtained by (35) and (36). (X_{k-1}^+ is skipped). The forward message at Z_k is obtained by (27) and (28). (Z_k may be skipped). The incoming
(downward) message at U'_k is obtained from the incoming message at U_k by (27) and (28). The forward message at X_k is then obtained by (21) and (23).

Algorithm B: backward with W_{fw} and $W_{bw} m_{bw}$. (This algorithm is known as “information matrix Kalman filter” [6].) From the incoming (upward) message at Y_k, the incoming message at X'_k is obtained by (31) and (32). From this and from the backward message at X'_k, the backward message at X_k is obtained by (17) and (18). The backward message at Z'_k is then obtained by (38) and (39). (U'_k is skipped.) The backward message at X'_{k-1} is obtained by (31) and (32). (Z_k may be skipped.)

It is also possible to backward propagate m_{bw} and V_{bw} and to forward propagate W_{fw} and $W_{fw} m_{bw}$.

Algorithm C: forward with W_{fw} and $W_{bw} m_{bw}$. From the incoming (upward) message at Y_{k-1}, the incoming (upwards) message at X'_k is obtained by (31) and (32). From this and from the forward message at X_k, the forward message at X'_{k-1} is obtained by (17) and (18). The forward message at Z_k is obtained by the decomposition of A'_k as in Table III (top) and using first (38) and (39) and then (31) and (32). The forward message at X_k is obtained by grouping A'_k with B_k as in Table IV (bottom) and using (43) and (44). (Z'_k is skipped.)

Algorithm D: backward with m_{bw} and V_{bw}. The incoming message at U'_k is obtained from the incoming (downward) message at U_k by (27) and (28). From this and from the backward message at X_k, the backward message at Z'_k is obtained by (22) and (24). The backward message at Z_k is obtained by the decomposition of A'_k as in Table III (bottom) and using first (35) and (36) and then (27) and (28). The backward message at X'_{k-1} is obtained by grouping A'_k with C_{k-1} as in Table IV (top) and using (41) and (42). (X'_{k-1} is skipped.)

Marginals of the global function (usually a posteriori probabilities) as well as output marginals upwards out of U_k and/or downwards out of Y_k may be obtained by the following algorithms.

Algorithm E: all marginals and output messages by forward-backward propagation. Forward pass: with m_{fw} and V_{fw} according to Algorithm A. Backward pass: with W_{bw} and $W_{bw} m_{bw}$ according to Algorithm B, augmented by the simultaneous computation of the marginals V, m, and the auxiliary quantity W (10) as follows. From m and V at X'_{k-1}, we obtain m and V both at X_k and at X'_k by (19) and (20). We then obtain W at X_k (from V and W_{fw} at X_k) by (12) and m at X_k (from m_{fw}, V_{fw}, and $W_{fw} m_{bw}$) by (16). W both at Z'_k and at U'_k is obtained by (26), and V at Z'_k is obtained by (14). m at Z'_k is obtained again by (16) and m at U'_k is obtained by (25). W and $W m$ at X'_{k-1} are obtained by (34) and (33), respectively. Finally, V and m at X'_{k-1} are obtained by (14) and (16), respectively.

The outgoing message at Y_k may be obtained as follows. From m and V at X'_{k-1}, we obtain m and V at Y_k by (29) and (30). Inverting V at Y_k yields W at Y_k, from which the outgoing message at Y_k can be extracted by (8) and (9).

The outgoing message at U_k may be obtained as follows. From m and W at U'_k, we obtain W and $W m$ at U_k by (34) and (33), from which the outgoing message can be extracted by (10) and (9).

The following algorithm is a variation of Algorithm E which is often simpler.

Algorithm F: all marginals and output messages by forward-backward propagation. Forward pass: with m_{fw} and V_{fw} according to Algorithm A. Backward pass: with W_{bw} and $W_{bw} m_{bw}$ according to Algorithm B, augmented by the simultaneous computation of the marginals V, m, and the auxiliary quantity W (10) as follows. From m and V at X'_k (from X'_k) we obtain m and V both at X_k and at X'_k by (19) and (20). By grouping A'_k with B_k as in Table IV (bottom), we simultaneously obtain m and V at Z_k and at U_k. We then obtain W at Z_k (from V and W_{bw} at Z_k) by (12) and m at Z_k (from m_{fw}, V_{fw}, and $W_{fw} m_{bw}$) by (16). W and $W m$ at X'_{k-1} are obtained by (34) and (33), respectively. Finally, V and m at X'_{k-1} are obtained by (14) and (16), respectively.

The outgoing message at U_k is obtained by extracting it from m and V at U_k. The outgoing message at Y_k may be obtained as in Algorithm E.

Algorithm G: all marginals and output messages by backward-forward propagation. Backward pass: with W_{bw} and $W_{bw} m_{bw}$ according to Algorithm B. Forward pass: with m_{fw} and V_{fw} according to Algorithm A, augmented by the simultaneous computation of the marginals V, m, and the auxiliary quantity W (10) as follows. From m and V at X_{k-1}, we obtain m and V both at X_k and at X'_k by (19) and (20). We then obtain W at X_k (from V and W_{bw} at X_k) by (12) and m at X_k (from m_{fw}, V_{fw}, and $W_{fw} m_{bw}$) by (16). W at both U'_k and X_k are obtained from (26), and V at X_k is obtained by (14). m at X_k is then obtained by (16) and m at U'_k is obtained by (25).

The outgoing messages at U_k and Y_k are computed as in Algorithm E.

For the example of Section 3, Algorithm F is particularly attractive since, in this case, the required inverse of the matrix (A'_k, B_k) is a trivial permutation matrix. It should be noted that all these algorithms may have numerical problems (depending on the application) due to the subtractions in (35), (36), (39), (12), (14), (16). In such cases, it may help to revert, at least occasionally, to the elementary rules of Table I and accept the necessity of matrix inversions.
\[W_{\text{out}Z} = W_{\text{in}X} + W_{\text{in}Y} \] \hspace{1cm} (17)

\[W_{\text{out}Z}^m = W_{\text{in}X}^m + W_{\text{in}Y}^m \] \hspace{1cm} (18)

\[m_X = m_Y = m_Z \] \hspace{1cm} (19)

\[V_X = V_Y = V_Z \] \hspace{1cm} (20)

Assuming Gaussians.

\[W_{\text{out}Z} = W_{\text{in}X} + W_{\text{in}Y} \] \hspace{1cm} (21)

\[V_{\text{out}Z} = V_{\text{in}X} + V_{\text{in}Y} \] \hspace{1cm} (22)

\[m_{\text{out}Z} = m_{\text{in}X} + m_{\text{in}Y} \] \hspace{1cm} (23)

\[m_{\text{out}Z}^m = m_{\text{in}X}^m + m_{\text{in}Y}^m \] \hspace{1cm} (24)

\[m_X + m_Y - m_Z = 0 \] \hspace{1cm} (25)

\[\tilde{W}_Z = \tilde{W}_Y = \tilde{W}_Z \] \hspace{1cm} (26)

Valid for any distribution.

\[V_{\text{out}Y} = AV_{\text{in}X}A^H \] \hspace{1cm} (27)

\[m_{\text{out}Y} = Am_{\text{in}X} \] \hspace{1cm} (28)

\[m_Y = Am_X \] \hspace{1cm} (29)

\[V_Y = AV_XA^H \] \hspace{1cm} (30)

Valid for any distribution. \(V_{\text{out}Y} \) may be obtained via Table III or Table IV.

\[W_{\text{out}X} = A^H W_{\text{in}Y} A \] \hspace{1cm} (31)

\[W_{\text{out}X}^m = A^H W_{\text{in}Y}^m \] \hspace{1cm} (32)

\[W_X = A^H W_Y m_Y \] \hspace{1cm} (33)

\[W_X = A^H W_Y A \] \hspace{1cm} (34)

Assuming Gaussians. (Valid for any distribution if the rank of \(A \) equals the number of rows.) \(V_{\text{in}X} \) may be obtained via Table III or Table IV.

\[m_{\text{out}Z} = m_{\text{in}X} + V_{\text{in}X}^H G (m_{\text{in}Y} - Am_{\text{in}X}) \] \hspace{1cm} (35)

\[V_{\text{out}Z} = V_{\text{in}X} - V_{\text{in}X}^H GAV_{\text{in}X} \] \hspace{1cm} (36)

with \(G = (V_{\text{in}Y} + AV_{\text{in}X} A^H)^{-1} \) \hspace{1cm} (37)

Assuming Gaussians.

\[m_{\text{out}Z} = -m_{\text{in}X} - Am_{\text{in}Y} \] \hspace{1cm} (38)

\[W_{\text{out}Z} = W_{\text{in}X} - W_{\text{in}X} AHA^H W_{\text{in}X} \] \hspace{1cm} (39)

with \(H = \left(W_{\text{in}Y} + A^H W_{\text{in}X} A\right)^{-1} \) \hspace{1cm} (40)

Valid for any distribution.

TABLE I

MESSAGE COMPUTATION RULES FOR LINEAR BUILDING BLOCKS.

TABLE II

MESSAGE COMPUTATION RULES FOR COMPOSITE NODES.

6 Conclusions

We have presented enhanced message computation tables for Gaussian messages in (the factor graph of) linear models. These tables allow to write down a variety of algorithms without additional computations or derivations.

Acknowledgement

The first author’s view on the topics of this paper has been much influenced by G. D. Forney, Jr., and P. O. Vontobel.
If \(\text{rank} \ A = \text{number of rows} < \text{number of columns} \):

\[
\begin{array}{c}
\text{X} \\
A \\
\text{Y}
\end{array}
\]

is equivalent to:

\[
\begin{array}{c}
\text{X} \\
+ \\
A^\# \\
\text{Y} \\
B^H \\
0
\end{array}
\]

where \(A^\# = A^H (AA^H)^{-1} \) and where \(B \) is a matrix such that \(A \) is a nonsingular square matrix and \(AB^H = 0 \).

If \(\text{rank} \ A = \text{number of columns} < \text{number of rows} \):

\[
\begin{array}{c}
\text{X} \\
A \\
\text{Y}
\end{array}
\]

is equivalent to:

\[
\begin{array}{c}
\text{X} \\
A^\# \\
+ \\
\text{Y} \\
B^H
\end{array}
\]

where \(A^\# = (A^H A)^{-1} A^H \) and where \(B \) is a matrix such that \((A, B) \) is a nonsingular square matrix and \(B^H A = 0 \).

TABLE III

REVERSING A MATRIX MULTIPLICATION.

If \(\left(\begin{array}{c} A \\ B \end{array} \right) \) is a nonsingular square matrix:

\[
\begin{align*}
\text{m}_{\text{out}X} &= \left(\begin{array}{c} A \\ B \end{array} \right)^{-1} \left(\begin{array}{c} \text{m}_{\text{in}Z} \\ \text{m}_{\text{in}Y} \end{array} \right) \\
\text{V}_{\text{out}X} &= \left(\begin{array}{c} A \\ B \end{array} \right)^{-1} \left(\begin{array}{c} \text{V}_{\text{in}Z} \\ 0 \end{array} \right) \left(\begin{array}{c} \text{A}^H, B^H \end{array} \right)^{-1}
\end{align*}
\]

Valid for any distribution.

TABLE IV

MESSAGE COMPUTATION RULES FOR COMPOSITE NODES.
Appendix: On Gaussian Distributions and LMMSE Estimation

We briefly review some basic and well known facts about Gaussian distributions, LMMSE estimation, and the equivalence of the sum-product algorithm and the max-product algorithm for Gaussians.

Let $F = \mathbb{R}$ or $F = \mathbb{C}$. A general Gaussian random (column) vector $X = (X_1, \ldots, X_n)^T$ over F with mean vector $m = (m_1, \ldots, m_n)^T \in F^n$ can be written as

$$X = AU + m$$ \hspace{1cm} (47)

where A is a nonsingular $n \times n$ matrix over F and where $U = (U_1, \ldots, U_n)^T$ consists of independent F-valued Gaussian random variables U_1, \ldots, U_n with mean zero and variance one. The covariance matrix of X is $V = AA^H$. The probability density of X is

$$f_X(x) \propto e^{-\beta(x-m)^H W (x-m)}$$ \hspace{1cm} (48)

$$\propto e^{-\beta(x-m)^T W (x-m)}$$ \hspace{1cm} (49)

for $W = V^{-1} = (A^{-1})^H A^{-1}$ and with $\beta = 1/2$ in the real case ($F = \mathbb{R}$) and $\beta = 1$ in the complex case ($F = \mathbb{C}$). Conversely, any function of the form (48) with positive definite W may be obtained in this way with some suitable matrix A.

Now let Z be a Gaussian random (column) vector, which we partition as

$$Z = \begin{pmatrix} X \\ Y \end{pmatrix},$$ \hspace{1cm} (50)

where X and Y are themselves (column) vectors. The density of Z is $f_Z(z) \propto e^{-q(x,y)}$ with

$$q(x,y) = \left((x-m_X)^T, (y-m_Y)^T \right) \cdot \begin{pmatrix} W_X & W_{XY} \\ W_{YX} & W_Y \end{pmatrix} \begin{pmatrix} x-m_X \\ y-m_Y \end{pmatrix}$$ \hspace{1cm} (51)

with positive definite W_X and W_Y and with $W_{YX} = W_{XY}^T$. For fixed y, considered as a function of x alone, (51) becomes

$$q(x,y) = x^T W_X x$$

$$- 2\text{Re} \left(x^T W_X (m_X - W^{-1}_X W_{XY} (y - m_Y)) \right) + \text{const.}$$ \hspace{1cm} (52)

Comparing this with (49) yields the following theorem:

Theorem 1 (Gaussian Conditioning Theorem). If X and Y are jointly Gaussian with joint distribution $e^{-\beta q(x,y)}$ as above, then conditioned on $Y = y$ (for any fixed y), X is Gaussian with mean

$$E[X|Y = y] = m_X - W^{-1}_X W_{XY} (y - m_Y)$$ \hspace{1cm} (53)

and covariance matrix W_X^{-1}.

Note that $E[X|Y = y]$ is both the MAP (maximum a posteriori) estimate and the MMSE (minimum mean squared error) estimate of X given the observation $Y = y$. According to (53), $E[X|Y = y]$ is an affine (= linear with offset) function of the observation y. We thus have the following theorem:

Theorem 2. For jointly Gaussian random variables or vectors X and Y, the MAP estimate of X from the observation $Y = y$ is an affine function of y and coincides with the MMSE estimate and the LMMSE estimate. □

Note that, in this theorem as well as in the following theorem, the “L” in LMMSE must be understood as “affine” (= linear with offset).

Theorem 3 (LMMSE Via Gaussian MAP Theorem). Let X and Y be random variables (or vectors) with arbitrary distributions but with finite means and with finite second-order moments. Then the LMMSE estimate of X based on the observation $Y = y$ may be obtained by pretending that X and Y are jointly Gaussian (with their actual means and second-order moments) and forming the corresponding MAP estimate. □

The proof follows from noting that, according to the orthogonality principle, the LMMSE estimate of X based on $Y = y$ depends only on the means and second-order moments.

In a different direction, we also recall the following fact.

Theorem 4 (Gaussian Max/Int Theorem). Let $q(x,y)$ be a quadratic form as in (51) with W_X positive definite. Then

$$\int_{-\infty}^{\infty} e^{-q(x,y)} \, dx \propto \max_x e^{-\frac{1}{2} q(x,y)}$$ \hspace{1cm} (54)

$$e^{-\frac{1}{2} q(x,y)}.$$ \hspace{1cm} (55)

(A proof may be found in [1].) It follows that, for Gaussian factor graphs, the sum-product algorithm coincides with the max-product algorithm.

References

