Review of Continuous-Time Signals and Systems

EE4015 Digital Signal Processing

Dr. Lai-Man Po

Department of Electrical Engineering City University of Hong Kong

Prerequisites

- Mathematic Pre-cursors:
 - MA2001 (Multi-variable Calculus and Linear Algebra)
- Signals and Systems Prerequisites:
 - EE3210 (Signals and Systems)

Background Needed for DSP

- Review of Key Mathematic Concepts for Signal Processing
- Classification of Signals
 - Continuous-Time/Discrete-Time, Periodic/Non-Periodic, Deterministic/Non-Deterministic
- Basic deterministic signals for signal processing
 - Unit Impulse, Unit Step, Real Exponential, Complex Experiential and Sinusoidal Signals
- Continuous-Time Systems:
 - Causal, BIBO Stable, Linear, Time-Invariant, LTI System
 - Impulse Response
 - Convolution and its properties
 - Stability of LTI System

High School Algebra Review

Important Numbers for Signal Processing

- 1 : The number **one** is an identity for multiplication operations
 - x * 1 = x
- **0** : The number **zero** is an identity for addition operations
 - x + 0 = x
- ∞: This a symbol to represent an **infinite** number
 - $1/0 = \infty$
- π : The **pi** number is the ratio of the circumference of any circle to the diameter of that circle.
 - π = 3.14159265359
 - Circumference of a circle with radius $1 = 2\pi$

Angle Measure in Radians

- A radian is an angle made at the center of circle by an arc which is equal to the length of the radius of that circle.
 - It is therefore a unit that is used to measure an angle.
 - The one radian angle is approximately to 57.3°.

Angle Measure in Radians

- A radian is the measure of an angle θ that, when drawn as a central angle, subtends an arc whose length equals the length of the radius of the circle.
 - When working in the unit circle, with radius 1, the length of the arc equals the radian measure of the angle. $\theta = \frac{s}{2} = \frac{s}{2} = \frac{s}{2}$

$$\theta = \frac{s}{r} = \frac{s}{1} = s$$

• Relationship between Degrees and Radians

$360^{o} = 2\pi$	$60^{\circ} = \pi/3$
$180^{o} = \pi$	$45^{o} = \pi/4$
$90^{o} = \pi/2$	$30^{o} = \pi/6$

https://mathbitsnotebook.com/Algebra2/TrigConcepts/TCRadianMeasure.html

L.M. Po

$$a + ar + ar^{2} + ar^{3} + ar^{4} + \dots + ar^{N-1} = \sum_{k=0}^{N-1} ar^{k} = a\left(\frac{1-r^{N}}{1-r}\right)$$

• For
$$|r| < 1$$
 and $N = \infty$,

$$\sum_{k=0}^{\infty} ar^{k} = \frac{a}{1-r}$$

• For example

$$1 + 0.5 + 0.5^{2} + 0.5^{3} + 0.5^{4} + \dots = \sum_{k=0}^{\infty} 0.5^{k} = \frac{1}{1 - 0.5} = 2$$

Exponential Series e^x

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

• For = 1, $e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots$

e = 2.71828182845904523536 (and more ...)

- Euler's number *e* is a mathematical constant and it is named after the Swiss mathematician Leonhard Euler.
- There are many ways of calculating the value of *e*, another expression is

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Leonhard Euler

Exponential Function of f(x)= e^x

$$f(x) = e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

 The exponential function is the solution of the simplest 1st order Ordinal Differential Equation (ODE) of

$$\frac{df(x)}{dx} = f(x) \Leftrightarrow \frac{d(e^x)}{dx} = e^x$$

- This means the slop of the exponential function at x_o is equal to itself e^{x_o}
 - The growth rate of the value of the exponential function is proportional to the function's current value.

Sine and Cosine Functions

- They are periodic function with period of 2π
 - $\sin(x + n2\pi) = \sin(x)$
 - $\cos(x + n2\pi) = \cos(x)$
 - $\cos\left(x + \frac{\pi}{2}\right) = \sin(x)$
- Trigonometric Identities:
 - $\sin^2(x) + \cos^2(x) = 1$
 - sin(x + y) = sin(x) cos(y) + cos(y) sin(x)
 - $\cos(x + y) = \cos(x)\cos(y) \sin(y)\sin(x)$

Complex Numbers : Rectangular Form

• A complex number *x* can be represented in rectangular form:

- Multiplication: (a + ib) (a + id) = (a bd) + i(ad + id)
- Multiplication: $(a + jb) \cdot (c + jd) = (ac bd) + j(ad + bc)$
- Complex conjugate: $x^* = a jb$

Im

Complex Numbers : Polar Form

• A complex number x can also be represented in polar form as

$$x = a + jb = re^{j\theta}$$

• **Magnitude** :
$$r = |x| = \sqrt{a^2 + b^2}$$

- Phase : $\theta = \tan^{-1}(b/a)$
- Polar Form Multiplication:

$$x \cdot y = |x|e^{j\theta_x} \cdot |y|e^{j\theta_y} = |x||y|e^{j(\theta_x + \theta_y)}$$
$$x \cdot x^* = |x|e^{j\theta_x} \cdot |x|e^{-j\theta_x} = |x|^2$$

Calculus Review

Highlights of Calculus

• What is **Differential Calculus** about?

Rate of change

- The derivative of a function f(t),
 - $f'(t) = \frac{df(t)}{dt} = \lim_{\Delta \to 0} \frac{f(t+\Delta) f(t)}{\Delta}$
 - This function tells how quickly the function f(t) is changing
 - f'(t) is a function that describes the rate of change (or slop) the function f(t)

Newton's Law of Motion

- Newton's second law of motion:
 - Force is equal to rate of change of momentum (mass x velocity)

•
$$\mathbf{F} = \frac{\mathrm{d}}{\mathrm{d}t}(m\boldsymbol{v}) = m\frac{\mathrm{d}^2\boldsymbol{x}}{\mathrm{d}t^2}$$

• $\mathbf{F} = m\boldsymbol{a}$

https://en.wikipedia.org/wiki/Newton%27s laws of motion

Isaac Newton (1643–1727), the physicist who formulated the laws of motion and invented Calculus

Calculus – Derivative Table

Derivatives of Constant

$$f(x) = c$$
 \longrightarrow $f'(x) = \frac{d}{dx}f(x) = 0$, where $c = \text{constant}$

Derivatives of Polynomials

$$f(x) = a \cdot x^n \quad \longrightarrow \quad f'(x) = \frac{d}{dx} f(x) = a \cdot n \cdot x^{n-1}$$

Derivatives of Exponential and Logarithmic functions

$$f(x) = c^{ax} \longrightarrow f'(x) = \frac{d}{dx} f(x) = c^{ax} \ln(c \cdot a), \text{ where } c > 0$$

$$f(x) = e^{x} \longrightarrow f'(x) = \frac{d}{dx} f(x) = e^{x}$$

$$f(x) = \log_{c} x \longrightarrow f'(x) = \frac{d}{dx} f(x) = \frac{1}{x \ln c}, \text{ where } c > 0, c \neq 1$$

$$f(x) = \ln x \longrightarrow f'(x) = \frac{d}{dx} f(x) = \frac{1}{x}, \text{ where } x \neq 0$$

$$f(x) = \ln |x| \longrightarrow f'(x) = \frac{d}{dx} f(x) = \frac{|x|}{x^{2}}, \text{ where } x \neq 0$$

$$f(x) = x^{x} \longrightarrow f'(x) = \frac{d}{dx} f(x) = x^{x}(1 + \ln x)$$

Derivatives of Trigonometric Functions

$$f(x) = \sin(x) \longrightarrow f'(x) = \frac{d}{dx} f(x) = \cos(x)$$

$$f(x) = \cos(x) \longrightarrow f'(x) = \frac{d}{dx} f(x) = -\sin(x)$$

$$f(x) = \tan(x) \longrightarrow f'(x) = \frac{d}{dx} f(x) = \sec^{2}(x) = \frac{1}{\cos^{2}(x)} = 1 + \tan^{2}(x)$$

$$f(x) = \sec(x) \longrightarrow f'(x) = \frac{d}{dx} f(x) = \sec(x) \tan(x)$$

$$f(x) = \csc(x) \longrightarrow f'(x) = \frac{d}{dx} f(x) = -\csc(x) \cot(x)$$

$$f(x) = \cot(x) \longrightarrow f'(x) = \frac{d}{dx} f(x) = -\csc^{2}(x) = \frac{-1}{\sin^{2}(x)} = -(1 + \cot^{2}(x))$$

Integral Calculus

• Just the **inverse** of differential calculus, given a function f(t) to find functions g(t) with rate of change described by f(t)

•
$$g(t) = \int f(t)dt \Rightarrow \frac{df(t)}{dt} = g(t)$$

•
$$g(t) = \int t \, dt = \frac{1}{2}t^2 + C$$

Definite Integrals

• **Definite integrals** can be interpreted formally as the signed area of the region in the plane that is bounded by the graph of a given function between two points in the real line.

•
$$\int_a^b f(t) dt$$

•
$$\int_{1}^{4} t \, dt = \left[\frac{1}{2}t^{2}\right]_{1}^{4} = \frac{1}{2}4^{2} - \frac{1}{2}1^{2} = 8 - \frac{1}{2} = 7.5$$

Calculus – Integrals Table

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1} \quad (n \neq -1)$$
2.
$$\int \frac{1}{x} dx = \ln |x|$$
3.
$$\int e^x dx = e^x$$
4.
$$\int b^x dx = \frac{b^x}{\ln b}$$
5.
$$\int \sin x \, dx = -\cos x$$
6.
$$\int \cos x \, dx = \sin x$$
7.
$$\int \sec^2 x \, dx = \tan x$$
8.
$$\int \csc^2 x \, dx = -\cot x$$
9.
$$\int \sec x \tan x \, dx = \sec x$$
10.
$$\int \csc x \cot x \, dx = -\csc x$$
11.
$$\int \sec x \, dx = \ln |\sec x + \tan x|$$
12.
$$\int \csc x \, dx = \ln |\csc x - \cot x|$$
13.
$$\int \tan x \, dx = \ln |\sec x|$$
14.
$$\int \cot x \, dx = \ln |\sin x|$$
17.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right)$$
18.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \left(\frac{x}{a}\right), \quad a > 0$$

Euler's Formula

• Based on Taylor Series

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!} + \dots + \frac{f^n(a)}{n!}(x-a)^n$$

• We have following power series of $f(x) = e^{jx}$ with use of a=0 and all derivative $f^n(0) = j^n$

$$e^{jx} = 1 + jx - \frac{x^2}{2!} - j\frac{x^3}{3!} + \frac{x^4}{4!} + j\frac{x^5}{5!} - \frac{x^6}{6!} - j\frac{x^7}{7!} + \cdots$$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \qquad \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$e^{jx} = \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots\right) + j\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots\right)$$

$$e^{jx} = \cos(x) + j\sin(x)$$

L.M. Po

Properties of Euler's Formula

$$e^{jx} = \cos(x) + j\sin(x)$$
 $e^{-jx} = \cos(x) - j\sin(x)$

$$\cos(x) = \frac{1}{2} (e^{jx} + e^{-jx}) \qquad \sin(x) = \frac{1}{2j} (e^{jx} - e^{-jx})$$

$$|e^{\pm jx}| = \sqrt{\cos^2(x) + \sin^2(x)} = 1$$

$$\angle e^{\pm jx} = \tan^{-1}\left(\pm \frac{\sin(x)}{\cos(x)}\right) = \tan^{-1}(\pm \tan(x)) = \pm x$$

L.M. Po

Euler's Identity

• Euler's identity (aka Euler's equation) is the equality

$$e^{j\pi} + 1 = 0$$

where 1 - One (Unity) is identity of multiplication operation,

- **0** Zero (Nothing) is identity of addition operation,
- j Imaginary unit ($j = \sqrt{-1}$), which satisfies $j^2 = -1$,

e – Euler's number (2.7182...), the base of natural logarithms.

Euler's identity is named after the Swiss mathematician Leonhard Euler. It is considered to be an example of mathematical beauty.

Leonhard Euler

Continuous-Time Signals and Systems

Signals

- A signal describes how some physical quantity varies over time and /or space.
- Mathematically, a function of one or more variables.
 - For 1-D signals, the independent variable often represents time : t
 - For 2-D signals, the independent variable often represents *spatial position : (u, v)*

Classification of Signals

- Continuous-Time and Discrete-Time Signals
- Periodic and Non-Periodic (Aperiodic) Signals
- Deterministic and Non-Deterministic (Random) Signals
- Elementary continuous-time deterministic signals for Signal Processing
 - Impulse Signal (Delta Function) : $\delta(t)$
 - Unit Step Signal : u(t)
 - Exponential Signals : C e^{at}
 - Sinusoidal Signals : $A \cos(\Omega_0 t + \theta)$

Continuous-Time Signals (Analog Signals)

- Continuous-Time (CT) signal is a signal that exists at every instant of time
 - A CT signal is often referred to as analog signal
 - The independent variable is a continuous variable : t
 - Amplitude of CT signal can assume any value over a continuous range of numbers

- Most of the signals in the physical world are CT signals.
- Examples: voltage & current, pressure, temperature, velocity, etc.

Discrete-Time Signals

- A signal defined only for discrete values of time is called a discrete-time (DT) signal x[n] or simply a sequence
- DT signal can be obtained by taking samples of an analog signal at discrete instants of time
- The values of each sample x[n] is continuous

L.M. Po

Deterministic and Non-Deterministic Signals

- A signal is said to be deterministic if there is no uncertainty with respect to its value at any instant of time.
 - They can be described by a mathematical equation
- A non-deterministic signal is one where there is uncertainty at any instant of time.
 - Non-deterministic signals are random in nature hence they are called random signals.
 - Random signals cannot be described by a mathematical equation.
 - They are modelled by probabilistic and statistic tools.

Impulse Signal (Dirac Delta Function) $\delta(t)$

- The impulse signal $\delta(t)$ has the value zero everywhere except at x = 0 where its value is infinitely large in such a way that its total integral is 1.
- The Dirac delta function $\delta(t)$ is very useful in many areas of physics. It is not an ordinary function, in fact properly speaking it can only live *inside* an integral.

Representation of CT Signals by Impulse Signal

- The product of the time-shifted impulse signal $\delta(t t_o)$ with any CT signals is zero except where $t = t_o$
- Formally, for any CT signal x(t), its amplitude at $t = t_o$ can be represented as integral of product between the signal x(t) and timeshifted impulse signal $\delta(t - t_o)$:

$$\int_{-\infty}^{\infty} x(t) \,\delta(t-t_o) \,dt = x(t-t_o)$$

• This is a very important equation for deviating the convolution concept for Linear Time-Invariant System.

Unit Step Signal u(t)

• The unit step signal u(t) has the form of :

$$u(t) = \begin{cases} 1, & t > 0\\ 0, & t < 0 \end{cases}$$

• As there is a sudden change from 0 to 1 at t = 0, u(0) is not well defined

Causal and Non-Causal Signals

- A signal is causal if it is zero for *t* < 0
- Causal signals are readily created by multiplying any continuous signal by the unit step signal u(t) $x(t) = Ce^{at}$

•
$$x(t) = Ce^{at}$$
 : Non-Causal Signal

•
$$x(t) = Ce^{at}u(t)$$
 : Causal Signal
• $x(t) = 0$ for $t < 0$

Real Exponential Signals

Complex Exponential Signals

- Periodic complex exponential signals
 - *a* is purely imaginary

$$x(t) = e^{j\Omega_0 t}$$

• Characterization of the period T_o

$$e^{j\Omega_{0}t} = e^{j\Omega_{0}(t+T_{0})} = e^{j\Omega_{0}t}e^{j\Omega_{0}T_{0}} = e^{j\Omega_{0}t}$$

Because $e^{j\Omega_0 T_0} = 1$ $T_o = \frac{2\pi}{|\Omega_0|}$ T_o is fundamental period $|\Omega_0|$ is fundamental angular frequency

Continuous-Time Sinusoidal Signals

- General form of sine and cosine functions:
 - $y(t) = \mathbf{A}\cos(2\pi f_o t + \theta) = \mathbf{A}\cos(\Omega_o t + \theta)$
 - $f_o = \frac{1}{T_o}$ is the Frequency in Hz and T_o is the period
 - $\Omega_0 = 2\pi f_o$ is the Angular Frequency in radians/sec
 - *A* is the Amplitude
 - θ is the phase angle in radians

Frequency and Amplitude

Phase

- $y_1(t) = A \sin(\Omega_0 t)$
- $y_2(t) = A \sin(\Omega_0 t + \theta)$
- T_o is period
- Phase θ is in radians
- $\theta = 2\pi \frac{\tau}{T_o} = \tau \Omega_o$

Relation Between Complex Exponential and Sinusoidal Signals

 Based on Euler's Formula, complex exponential signal can be written in term of sinusoidal signals

$$x(t) = e^{j\Omega_0 t} = \cos \Omega_0 t + j \sin \Omega_0 t$$

• Sinusoidal signal can be written in terms of two periodic complex exponentials

$$A\cos(\Omega_o t + \theta) = \frac{A}{2}e^{j\theta}e^{j\Omega_o t} + \frac{A}{2}e^{-j\theta}e^{-j\Omega_o t}$$

• Sinusoidal signal can be written in terms of a single periodic complex exponential

 $A \cos(\Omega_o t + \theta) = A \operatorname{Re} \{ e^{j\theta} e^{j\Omega_0 t} \}$ $A \sin(\Omega_o t + \theta) = A \operatorname{Im} \{ e^{j\theta} e^{j\Omega_0 t} \}$

Continuous-Time Systems

• A continuous-time system is a transformation that operates on a continuous-time signal x(t) called the input to produce another continuous-time signal y(t).

• where the symbol *H* denotes the transformation or processing performed by the system

Causal Systems

- A system is said to be causal if the output of the system at any time 't' depends only on present and past inputs but does not depend on future inputs.
- If a system does not satisfy this definition, it is called noncausal.
 - The noncausal systems have outputs that depend not only on present and past inputs but also on future inputs.

BIBO Stable System

- A continuous-time signal x[n] is bounded if there exists a finite M such that
 - |x(t)| < M
- A Continuous-time system in Bounded Input-Bounded Output (BIBO) stable if every bounded input signal x(t) produced a bounded output signal y(t).

Linear Systems

• A Linear system is defined as follows:

$$x_{1}(t) \longrightarrow H\{\cdot\} \longrightarrow y_{1}(t) = H\{x_{1}(t)\}$$
$$x_{2}(t) \longrightarrow H\{\cdot\} \longrightarrow y_{2}(t) = H\{x_{2}(t)\}$$

• For arbitrary constants a_1 and a_2 :

$$a_1 x_1(t) + a_2 x_2(t) \longrightarrow H\{\cdot\} \longrightarrow y(t) = a_1 y_1(t) + a_2 y_2(t)$$

Time-Invariant Systems

• A time-invariant system is defined as follows:

$$x_{1}(t) \longrightarrow H\{\cdot\} \longrightarrow y_{1}(t) = H\{x_{1}(t)\}$$

$$x_{1}(t - t_{o}) \longrightarrow H\{\cdot\} \longrightarrow y(t) = H\{x_{1}(t - t_{o})\} = y_{1}(t - t_{o})$$

• Specifically, a system is time invariant if a time shift in the input signal results in an identical time shift in the output signal.

Linear Time-Invariant (LTI) Systems

• LTI systems satisfy both Linear and Time-Invariant properties.

$$x_{1}(t) \longrightarrow H\{\cdot\} \longrightarrow y_{1}(t) = H\{x_{1}(t)\}$$
$$x_{2}(t) \longrightarrow H\{\cdot\} \longrightarrow y_{2}(t) = H\{x_{2}(t)\}$$

• For an integer t_0 and arbitrary constants a_1 and a_2 , LTI system property is

$$a_{1}x_{1}(t - t_{o}) + a_{2}x_{2}(t - t_{o})$$

$$H\{\cdot\}$$

$$y(t) = H\{a_{1}x_{1}(t - t_{o}) + a_{2}x_{2}(t - t_{o})\}$$

$$= a_{1}y_{1}(t - t_{o}) + a_{2}y_{2}(t - t_{o})$$

L.M. Po

Impulse Response of Continuous-Time Systems

• If the input of a system is unit impulse signal $\delta(t)$, the corresponding output is called the impulse response h(t) of the LTI system

Why Impulse Response?

• For any CT signal x(t), its amplitude at $t = t_o$ can be represented as integral of product between the signal x(t) and time-shifted impulse signal $\delta(t - t_o)$:

$$\int_{-\infty}^{\infty} x(t) \,\delta(t-t_o) \,dt = x(t-t_o)$$

• Then, we can represent any continuous-time signal as

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \,\delta(t-\tau) \,d\tau$$

L.M. Po

Why Impulse Response is so important?

• Using the principle of time-invariance:

 $H\{\delta(t)\} = h(t) \implies H\{\delta(t-t_o)\} = h(t-t_o)$

Using the principle of linearity:

$$y(t) = H\left\{\int_{-\infty}^{\infty} x(\tau) \,\delta(t-\tau) \,d\tau\right\} = \int_{-\infty}^{\infty} x(\tau) \,H\{\delta(t-\tau)\} \,d\tau = \int_{-\infty}^{\infty} x(\tau) \,h(t-\tau) \,d\tau = x(t) * h(t)$$

 Therefore, any LTI system is completely described by its impulse response through the convolution operation.

Convolution

💳 operator

Convolution

• The output of any LTI system is a convolution operation of the input signal with the unit impulse response h(t):

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \,\delta(t-\tau) \,d\tau \quad \Rightarrow \quad y(t) = \int_{-\infty}^{\infty} x(\tau) \,h(t-\tau) \,d\tau = x(t) * h(t)$$

• Any Continuous-Time LTI system can be completely characterized by its unit impulse response h(t)

y(t) = f(t) * g(t)

L.M. Po

Causality for LTI Systems

- A causal system only depends on present and past values of the input signal. We do not use knowledge about future information.
- For a continuous-time LTI system, convolution tells us that

• h(t) = 0 for t < 0

• It is because $y(t_o)$ must not depend on x(t) for $t > t_o$, as the impulse response must be zero before the pulse!

$$y(t) = x(t) * h(t) = \int_{-\infty}^{t} x(\tau) h(t-\tau) d\tau$$

LTI System Stability

- Consider a bounded continuous-time input signal x(t) with condition of:
 - |x(t)| < M for all t
- Applying it to a LTI system with impulse response of h(t) using convolution:
 - $y(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau$
- Using the triangle inequality (magnitude of a sum of a set of numbers is no larger than the sum of the magnitude of the numbers):
 - $|y(t)| \leq \int_{-\infty}^{\infty} |x(\tau)| |h(t-\tau)| d\tau \leq M \int_{-\infty}^{\infty} |h(\tau)| d\tau$
- Therefore, a continuous-time LTI system is BIBO stable if and only if its impulse response h(t) is absolutely integral, ie
 - $\int_{-\infty}^{\infty} |h(t)| dt < \infty$

Commutative Property

• Convolution is a commutative operator:

$$x(t) * h(t) = h(t) * x(t) = \int_{-\infty}^{\infty} h(t)x(t-\tau) d\tau = \int_{-\infty}^{\infty} x(t)h(t-\tau) d\tau$$

Therefore, when calculating the response of a system to an input signal x(t), we can imagine the signal being convolved with the unit impulse response h(t), or vice versa, whichever appears the most straightforward.

Distributive Property (Parallel Systems)

• Another property of convolution is the distributive property

 $x(t) * (h_1(t) + h_2(t)) = x(t) * h_1(t) + x(t) * h_2(t)$

• Therefore, the two systems are equivalent •

• The convolved sum of two impulse responses is equivalent to considering the two equivalent parallel system

Associative Property (Serial Systems)

• Another property of (LTI) convolution is that it is associative

 $x(t) * (h_1(t) * h_2(t)) = (x(t) * h_1(t)) * h_2(t)$

- This can be easily verified by manipulating the integral indices
- Therefore, the following four systems are all equivalent and $y(t) = x(t) * h_1(t) * h_2(t)$ is unambiguously defined.

L.M. Po

LTI System Memory

• An LTI system is memoryless if its output depends only on the input value at the same time, i.e.

• y(t) = k x(t)

• For an impulse response, this can only be true if

• $h(t) = k \,\delta(t)$

• This type of system is extremely simple, but the output of dynamic engineering, the physical system depends on the input value at the same time and the previous time.

On-line Math and Signal Processing Courses

- MIT Highlight of Calculus by Gilbert Strang
- MIT Linear Algebra by Gilbert Strang
- <u>MIT Differential Equations and Linear Algebra</u> by Gilbert Strang and Cleve Moler
- MIT Introduction to Probability by John Tsitsiklis and Patrick Jaillet
- MIT Signals and Systems by Alan V. Oppenheim

Homework

- Try to form your term project group with **3 members**
- Start to discuss the project direction
- Performing research on the selected topics

Start to Learn How to use Google Colab

- Google Colab Tutorial
 - <u>Colab Tutorial</u>
 - LaTeX and Markdown
- Python Programming Tutorial
 - Socratica: <u>https://www.youtube.com/watch?v=bY6m6_IIN94&list=PLi01XoE8jYohWFPpC17Z-wWhPOSuh8Er-</u>
 - Sentdex: <u>https://www.youtube.com/watch?v=oVp1vrfL_w4&list=PLQVvvaa0QuDe8XSftW-RAxdo6OmaeL85M</u>
- Numpy Tutorials
 - Learn Numpy Array Indexing & Creation, Basic & Advanced Operations in 20 Minutes
 - Using NumPy Arrays to Perform Mathematical Operations in Python
 - NumPy for MATLAB users
 - <u>NumPy Tutorial | SciPy 2020 | Eric Olsen</u>
- DSP with Python
 - Youtub Tutorial : DSP using Python and MATLAB
 - Allen Downey Introduction to Digital Signal Processing PyCon 2018
 - Python Audio
 - Digital signal processing through speech, hearing, and Python

L.M. Po