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Prerequisites
• Mathematic Pre-cursors:

§ MA2001 (Multi-variable Calculus and Linear Algebra) 

• Signals and Systems Prerequisites:
§ EE3210 (Signals and Systems) 



Background Needed for DSP
• Review of Key Mathematic Concepts for Signal Processing
• Classification of Signals

§ Continuous-Time/Discrete-Time, Periodic/Non-Periodic, Deterministic/Non-
Deterministic

• Basic deterministic signals for signal processing
§ Unit Impulse, Unit Step, Real Exponential, Complex Experiential and Sinusoidal 

Signals
• Continuous-Time Systems:

§ Causal, BIBO Stable, Linear, Time-Invariant, LTI System
§ Impulse Response
§ Convolution and its properties
§ Stability of LTI System
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High School Algebra Review



Important Numbers for Signal Processing
• 1 : The number one is an identity for multiplication operations

§ 𝑥 ∗ 1 = 𝑥
• 0 : The number zero is an identity for addition operations

§ 𝑥 + 0 = 𝑥
• ∞: This a symbol to represent an infinite number 

§ 1/0 = ∞
• 𝝅 : The pi number is the ratio of the circumference of any circle to the 

diameter of that circle.
§ 𝜋 = 3.14159265359
§ Circumference of a circle with radius 1 = 2𝜋
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Angle Measure in Radians
• A radian is an angle made at the center of circle by an arc 

which is equal to the length of the radius of that circle. 
§ It is therefore a unit that is used to measure an angle. 
§ The one radian angle is approximately to 57.3°.
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Angle Measure in Radians
• A radian is the measure of an angle q that, when drawn as a 

central angle, subtends an arc whose length equals the length 
of the radius of the circle.
§ When working in the unit circle, with radius 1, the length of the arc 

equals the radian measure of the angle.

• Relationship between Degrees and Radians

https://mathbitsnotebook.com/Algebra2/TrigConcepts/TCRadianMeasure.html

360! = 2𝜋
180! = 𝜋
90! = 𝜋/2

60! = 𝜋/3
45! = 𝜋/4
30! = 𝜋/6
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Geometric Series

• 𝐹𝑜𝑟 𝑟 < 1 𝑎𝑛𝑑 𝑁 = ∞,

• For example

𝑎 + 𝑎𝑟 + 𝑎𝑟, + 𝑎𝑟- + 𝑎𝑟. +⋯+ 𝑎𝑟/01 = .
234

/01

𝑎𝑟2 = 𝑎
1 − 𝑟/

1 − 𝑟

1 + 0.5 + 0.5, + 0.5- + 0.5. +⋯ = .
234

5

0.52 = 1
104.7

= 2

.
234

5

𝑎𝑟2 =
𝑎

1 − 𝑟
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Exponential Series ex

• 𝐹𝑜𝑟 = 1, 𝑒 = 1 + 1 + !
"!
+ !

$!
+ !

%!
+⋯⋯

𝑒 = 2.71828182845904523536 (and more ...)
• Euler's number e is a mathematical constant and it is named after 

the Swiss mathematician Leonhard Euler.
• There are many ways of calculating the value of 𝑒, another 

expression is

𝑒8 = .
934

5
𝑥9

𝑛!
= 1 + 𝑥 + !!

"! +
!"

$! +
!#

%! +⋯⋯

Leonhard 
Euler
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Exponential Function of f(x)= ex

𝑓 𝑥 = 𝑒8 = .
934

5
𝑥9

𝑛!

https://www.youtube.com/watch?v=oo1ZZlvT2LQ

• The exponential function is the solution of the simplest 1st

order Ordinal Differential Equation (ODE) of

• This means the slop of the exponential function at 𝑥: is equal 
to itself 𝑒!$

§ The growth rate of the value of the exponential function 
is proportional to the function's current value.

&'(!)
&!

= 𝑓(𝑥)ó & *%

&!
= 𝑒!

𝑥!

𝑒"
= 1 + 𝑥 + !!

"!
+ !"

$!
+ !#

%!
+⋯

10L.M. Po

𝑒"! 𝑑 𝑒"!
𝑑𝑥

= 𝑒"!

https://www.youtube.com/watch?v=oo1ZZlvT2LQ


Sine and Cosine Functions
• They are periodic function with period of 2𝜋

§ sin 𝑥 + 𝑛2𝜋 = sin(𝑥)

§ cos 𝑥 + 𝑛2𝜋 = cos(𝑥)

§ cos 𝑥 + >
,
= sin(𝑥)

• Trigonometric Identities:

§ sin, 𝑥 + cos, 𝑥 = 1

§ sin 𝑥 + 𝑦 = sin 𝑥 cos 𝑦 + cos 𝑦 sin 𝑥

§ cos 𝑥 + 𝑦 = cos 𝑥 cos 𝑦 − sin 𝑦 sin 𝑥
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Complex Numbers : Rectangular Form
• A complex number 𝑥 can be represented in rectangular form:

• Addition:
• Multiplication:
• Complex conjugate:

𝑎 + 𝑏 𝑗

Real Part Imaginary Part

𝑗 = −1
𝑗, = −1

𝑎 + 𝑗𝑏
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Complex Numbers : Polar Form
• A complex number 𝑥 can also be represented in polar 

form as

• Magnitude : 𝑟 = 𝑥 = 𝑎" + 𝑏"

• Phase : 𝜃 = tan+,(𝑏/𝑎)
• Polar Form Multiplication:

𝑎 + 𝑗𝑏

𝑟

𝜃

𝑥 = 𝑎 + 𝑗𝑏 = 𝑟𝑒@A

𝑥 < 𝑦 = 𝑥 𝑒-.% < 𝑦 𝑒-.& = 𝑥 𝑦 𝑒 /-(.%0.&

𝑥 < 𝑥∗ = 𝑥 𝑒-.% < 𝑥 𝑒+-.% = 𝑥 "
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Calculus Review



Highlights of Calculus
• What is Differential Calculus about?

§ Rate of change

• The derivative of a function 𝑓 𝑡 , 

§ 𝑓C(𝑡) =  DE F
DF

= lim
G→4

E FIG 0E(F)
G

§ This function tells how quickly the function 𝑓 𝑡 is changing

§ 𝑓′ 𝑡 is a function that describes the rate of change (or slop) the function 𝑓 𝑡

𝑓′ 𝑡#

𝑡# 𝑡

Δ𝑡

𝑓$ 𝑡# =
Δ𝑦
Δ𝑡

Curve
𝑦 = 𝑓 𝑡



Newton’s Law of Motion

• Newton’s second law of motion:
§ Force is equal to rate of change of 

momentum (mass x velocity)

§ 𝐅 = F
FG

𝑚𝒗 = 𝑚 F!𝒙
FG!

§ 𝐅 = 𝑚𝒂
Isaac Newton (1643–1727), the 

physicist who formulated the 
laws of motion and invented 

Calculus
https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion

https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion


Calculus – Derivative Table



Integral Calculus
• Just the inverse of differential calculus, given a function 𝑓(𝑡) to 

find functions 𝑔(𝑡) with rate of change described by 𝑓(𝑡)

§ 𝑔 𝑡 = ∫𝑓 𝑡 𝑑𝑡 => 2' 3
23

= 𝑔(𝑡)

§ 𝑔 𝑡 = ∫ 𝑡 𝑑𝑡 = ,
"
𝑡" + 𝐶



Definite Integrals
• Definite integrals can be interpreted formally as the signed area of the 

region in the plane that is bounded by the graph of a 
given function between two points in the real line. 

• ∫I
J 𝑓 𝑡 𝑑𝑡

• ∫,
% 𝑡 𝑑𝑡 = ,

"
𝑡"

,

%
= ,

"
4" − ,

"
1" = 8 − ,

"
= 7.5



Calculus – Integrals Table 



Euler’s Formula
• Based on Taylor Series

• We have following power series of 𝑓 𝑥 = 𝑒!" with use of a=0 and all derivative 𝑓# 0 = 𝑗#

𝑓 𝑥 = 𝑓 𝑎 + E! Q
1!

𝑥 − 𝑎 + E!! Q
,!

𝑥 − 𝑎 , + E!!! Q
-!

+⋯+ E"(Q)
9!

(𝑥 − 𝑎)9

𝑒S8 = 1 + 𝑗𝑥 −
𝑥,

2!
− 𝑗

𝑥-

3!
+
𝑥.

4!
+ 𝑗

𝑥7

5!
−
𝑥T

6!
− 𝑗

𝑥U

7!
+ ⋯

cos(𝑥) = 1 −
𝑥,

2!
+
𝑥.

4!
−
𝑥T

6!
+ ⋯ sin(𝑥) = 𝑥 −

𝑥-

3!
+
𝑥7

5!
−
𝑥U

7!
+ ⋯

𝑒S8 = 1 −
𝑥,

2!
+
𝑥.

4!
−
𝑥T

6!
+ ⋯ + 𝑗 𝑥 −

𝑥-

3!
+
𝑥7

5!
−
𝑥U

7!
+ ⋯

𝑒*+ = cos(𝑥) + 𝑗 sin(𝑥)
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Properties of Euler’s Formula

cos(𝑥) =
1
2 𝑒-! + 𝑒+-! sin(𝑥) =

1
2𝑗 𝑒

-! − 𝑒+-!

𝑒±-! = cos"(𝑥) + sin"(𝑥) = 1

∠ 𝑒±S8 = tan01 ±
sin(𝑥)
cos(𝑥)

= tan01 ±tan(𝑥) = ±𝑥

𝑒-! = cos 𝑥 + 𝑗 )sin( 𝑥 𝑒+-! = cos 𝑥 − 𝑗 )sin( 𝑥
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Euler’s Identity
• Euler's identity (aka Euler's equation) is the equality

where  1 – One (Unity) is identity of multiplication operation,

0 – Zero (Nothing) is identity of addition operation,

j  – Imaginary unit (𝑗 = −1), which satisfies j2 = −1,  

π – pi (3.1415…), the ratio of the circumference of a circle to its diameter,
e – Euler's number (2.7182…), the base of natural logarithms.

Euler's identity is named after the Swiss mathematician Leonhard Euler. It is 
considered to be an example of mathematical beauty. 

Leonhard Euler

𝑒!" + 1 = 0

23L.M. Po



Continuous-Time
Signals and Systems



Signals
• A signal describes how some physical quantity varies over time and /or space.
• Mathematically, a function of one or more variables.

§ For 1-D signals, the independent variable often represents time : t
§ For 2-D signals, the independent variable often represents spatial position : (u, v)

t

𝑥 𝑡

25L.M. Po



Classification of Signals
• Continuous-Time and Discrete-Time Signals
• Periodic and Non-Periodic (Aperiodic) Signals
• Deterministic and Non-Deterministic (Random) Signals

• Elementary continuous-time deterministic signals for Signal Processing
§ Impulse Signal (Delta Function) : 𝛿 𝑡
§ Unit Step Signal : 𝑢 𝑡
§ Exponential Signals : 𝐶 𝑒;3

§ Sinusoidal Signals : 𝐴 co𝑠 Ω<𝑡 + 𝜃

26L.M. Po



Continuous-Time Signals (Analog Signals)
• Continuous-Time (CT) signal is a signal that exists at every instant of time

§ A CT signal is often referred to as analog signal

§ The independent variable is a continuous variable : t

§ Amplitude of CT signal can assume any value over a continuous range of numbers

• Most of the signals in the physical world are CT signals.
• Examples: voltage & current, pressure, temperature, velocity, etc.

t

𝑥 𝑡
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Discrete-Time Signals
• A signal defined only for discrete values of time is called a discrete-time 

(DT) signal x[n] or simply a sequence
• DT signal can be obtained by taking samples of an analog signal at 

discrete instants of time
• The values of each sample x[n] is continuous

x(t)

t

x[n]

n

Continuous time

Co
nt

in
uo

us
 a

m
pl

itu
de

Discrete time

Co
nt

in
uo

us
  a

m
pl

itu
de
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Periodic and Non-Periodic Signals
Continuous-Time Signals

Periodic Signals Non-Periodic (Aperiodic) Signals

(Single Sinewaves) (Multiple Sinewaves) (Noise) (Pulse)

W𝑥 𝑡 = W𝑥 𝑡 + 𝑛𝑇! 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 𝑥 𝑡
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Deterministic and Non-Deterministic Signals
• A signal is said to be deterministic if there is no uncertainty with respect 

to its value at any instant of time.
§ They can be described by a mathematical equation

• A non-deterministic signal is one where there is uncertainty at any 
instant of time.
§ Non-deterministic signals are random in nature hence they are called 

random signals. 
§ Random signals cannot be described by a mathematical equation. 
§ They are modelled by probabilistic and statistic tools.

30L.M. Po



Impulse Signal (Dirac Delta Function) 𝛿 𝑡
• The impulse signal 𝛿 𝑡 has the value zero everywhere except at x = 0 

where its value is infinitely large in such a way that its total integral is 1. 
• The Dirac delta function 𝛿 𝑡 is very useful in many areas of physics. It is 

not an ordinary function, in fact  properly speaking it can only live inside
an integral. 

"
#$

$
𝛿 𝑡 𝑑𝑡 = 1

𝛿 𝑡 is a spike centered at 𝑡 = 0 𝛿 𝑡 − 𝑡: is a spike centered at 𝑡 = 𝑡:

]
%&

&
𝛿 𝑡 − 𝑡! 𝑑𝑡 = 1

𝛿 𝑡 − 𝑡!

𝑡!
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Representation of CT Signals by Impulse Signal

• The product of the time-shifted impulse signal 𝛿 𝑡 − 𝑡= with any CT 
signals is zero except where 𝑡 = 𝑡=

• Formally, for any CT signal 𝑥 𝑡 , its amplitude at 𝑡 = 𝑡= can be 
represented as integral of product between the signal 𝑥 𝑡 and time-
shifted impulse signal 𝛿 𝑡 − 𝑡= :

• This is a very important equation for deviating the convolution 
concept for Linear Time-Invariant System.

R
+>

>
𝑥 𝑡 𝛿 𝑡 − 𝑡= 𝑑𝑡 = 𝑥(𝑡 − 𝑡=)
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Unit Step Signal 𝑢 𝑡
• The unit step signal 𝑢 𝑡 has the form of :

• As there is a sudden change from 0 to 1 at 𝑡 = 0 , 𝑢 0 is not well 
defined

33L.M. Po



Causal and Non-Causal Signals
• A signal is causal if it is zero for t < 0

• Causal signals are readily created by multiplying any continuous signal 
by the unit step signal 𝑢(𝑡)

§ 𝑥 𝑡 = 𝐶𝑒;3 :  Non-Causal Signal

§ 𝑥 𝑡 = 𝐶𝑒;3𝑢(𝑡) : Causal Signal

• 𝑥 𝑡 = 0 𝑓𝑜𝑟 𝑡 < 0

0

𝑥 𝑡 = 𝐶𝑒'(𝑢(𝑡)

𝑥 𝑡 = 𝐶𝑒'(
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Real Exponential Signals 
• General form

where 𝐶 and a are complex numbers

• Real Exponential Signals
§ 𝐶 and 𝑎 are real
§ Support that 𝐶 > 0
§ 𝑎 > 0: 𝑥 𝑡 is growing exponential
§ 𝑎 < 0 : 𝑥 𝑡 is decaying exponential
§ 𝑎 = 0 : 𝑥 𝑡 is constant

𝑥 𝑡 = 𝐶 𝑒QF
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Complex Exponential Signals 
• Periodic complex exponential signals

§ 𝑎 is purely imaginary

• Characterization of the period 𝑇=

𝑥 𝑡 = 𝑒@W&G

𝑒@W&G = 𝑒@W& GXY' = 𝑒@W&G𝑒@W&Y' = 𝑒@W&G

𝑒-?+@$ = 1

𝑇= =
2𝜋
Ω<

Because

𝑇= is fundamental period
Ω< is fundamental angular frequency
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Continuous-Time Sinusoidal Signals
• General form of sine and cosine functions:

§ 𝑦 𝑡 = 𝐴 cos 2𝜋𝑓:𝑡 + 𝜃 = 𝐴 co𝑠 Ωb𝑡 + 𝜃

§ 𝑓: =
1
c%

is the Frequency in Hz and 𝑇: is the period

§ Ωb = 2𝜋𝑓: is the Angular Frequency in radians/sec

§ 𝐴 is the Amplitude

§ 𝜃 is the phase angle in radians.
Period
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Frequency and Amplitude
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Phase
• 𝑦, 𝑡 = 𝐴 sin Ω<𝑡
• 𝑦" 𝑡 = 𝐴 sin Ω<𝑡 + 𝜃
• 𝑇= is period

• Phase 𝜃 is in radians

• 𝜃 = 2𝜋 A
@$
= 𝜏 Ω<

𝜏

𝑦) 𝑡 𝑦* 𝑡

Time delay
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Relation Between Complex Exponential and 
Sinusoidal Signals
• Based on Euler’s Formula, complex exponential signal can be written in term of 

sinusoidal signals

• Sinusoidal signal can be written in terms of two periodic complex exponentials

• Sinusoidal signal can be written in terms of a single periodic complex exponential

𝑥 𝑡 = 𝑒@W&G = cosΩ_𝑡 + 𝑗 sinΩ_𝑡

𝐴 cos Ω=𝑡 + 𝜃 =
𝐴
2 𝑒

-.𝑒-?+3 +
𝐴
2 𝑒

+-.𝑒+-?+3

𝐴 cos Ω=𝑡 + 𝜃 = 𝐴 𝑅𝑒 𝑒-.𝑒-?+3

𝐴 sin Ω=𝑡 + 𝜃 = 𝐴 𝐼𝑚 𝑒-.𝑒-?+3
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Continuous-Time Systems
• A continuous-time system is a transformation that operates on a 

continuous-time signal 𝑥(𝑡) called the input to produce another 
continuous-time signal 𝑦(𝑡) .

• where the symbol 𝐻 denotes the transformation or processing 
performed by the system

Continuous-Time
System
𝐻{ b }

𝑥(t) 𝑦(𝑡)

𝑦 𝑡 = 𝐻 𝑥(𝑡)

41L.M. Po



Causal Systems
• A system is said to be causal if the output of the system at any time ‘t’ 

depends only on present and past inputs but does not depend on future 
inputs. 

• If a system does not satisfy this definition, it is called noncausal. 

§ The noncausal systems have outputs that depend not only on present 
and past inputs but also on future inputs. 
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BIBO Stable System
• A continuous-time signal 𝑥 𝑛 is bounded if there exists a finite 𝑀 such 

that

§ 𝑥 𝑡 < 𝑀
• A Continuous-time system in Bounded Input-Bounded Output (BIBO) 

stable if every bounded input signal 𝑥(𝑡) produced a bounded output 
signal 𝑦(𝑡) . 

§ If the input 𝑥 𝑡 < 𝐴, then the output 𝑦 𝑡 < 𝐵

Bounded Input Bounded Output 

43L.M. Po



Linear Systems
• A Linear system is defined as follows:

• For arbitrary constants 𝑎, and 𝑎" :

𝐻{ b }𝑥1(𝑡) 𝑦1(𝑡)=𝐻{𝑥1(𝑡)}

𝐻{ b }𝑥,(𝑡) 𝑦,(𝑡)=𝐻{𝑥,(𝑡)}

𝐻{ b }𝑎1𝑥1 𝑡 + 𝑎,𝑥,(𝑡) 𝑦(𝑡) = 𝑎1𝑦1 𝑡 + 𝑎,𝑦,(𝑡)

44L.M. Po



Time-Invariant Systems
• A time-invariant system is defined as follows:

• Specifically, a system is time invariant if a time shift in the input signal 
results in an identical time shift in the output signal.  

𝐻{ b }𝑥1(𝑡) 𝑦1(𝑡) = 𝐻{𝑥1(𝑡)}

𝐻{ b }𝑥1(𝑡 − 𝑡:) 𝑦 𝑡 = 𝐻 𝑥1 𝑡 − 𝑡: = 𝑦1(𝑡 − 𝑡:)

45L.M. Po



Linear Time-Invariant (LTI) Systems
• LTI systems satisfy both Linear and Time-Invariant properties.

• For an integer 𝑡( and arbitrary constants 𝑎! and 𝑎", LTI system property is

𝐻{ b }𝑥1(𝑡) 𝑦1(𝑡)=𝐻{𝑥1(𝑡)}

𝐻{ b }𝑥,(𝑡) 𝑦,(𝑡)=𝐻{𝑥,(𝑡)}

𝐻{ b }
𝑎&𝑥& 𝑡 − 𝑡' + 𝑎(𝑥((𝑡 − 𝑡') 𝑦 𝑡 = 𝐻{𝑎&𝑥& 𝑡 − 𝑡' + 𝑎(𝑥((𝑡 − 𝑡')}

= 𝑎&𝑦&(𝑡 − 𝑡') + 𝑎(𝑦((𝑡 − 𝑡')

46L.M. Po



Impulse Response of Continuous-Time Systems
• If the input of a system is unit impulse signal 𝛿(𝑡), the corresponding output 

is called the impulse response ℎ(t) of the LTI system 

LTI System
Unit impulse

𝛿(𝑡)

Impulse Response

ℎ(𝑡)

47L.M. Po
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Why Impulse Response?
• For any CT signal 𝑥 𝑡 , its amplitude at 𝑡 = 𝑡= can be represented as 

integral of product between the signal 𝑥 𝑡 and time-shifted impulse 
signal 𝛿 𝑡 − 𝑡= :

• Then, we can represent any continuous-time signal as 

𝑥 𝑡 = 8
ef

f
𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏

48L.M. Po

Why Impulse Response?

R
+>

>
𝑥 𝑡 𝛿 𝑡 − 𝑡= 𝑑𝑡 = 𝑥(𝑡 − 𝑡=)



Why Impulse Response is so important?

• Using the principle of time-invariance:

• Using the principle of linearity:

• Therefore, any LTI system is completely described by its impulse 
response through the convolution operation.

Convolution 
operator

LTI System
ℎ(𝑡)𝑥 𝑡 = ]

%&

&
𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏 𝑦 𝑡 = "

#$

$
𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏

𝐻 𝛿 𝑡 = ℎ 𝑡 => 𝐻 𝛿 𝑡 − 𝑡: = ℎ 𝑡 − 𝑡:

𝑦 𝑡 = 𝐻 "
#$

$
𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏 = "

#$

$
𝑥 𝜏 𝐻 𝛿 𝑡 − 𝜏 𝑑𝜏 = "

#$

$
𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏 = 𝑥 𝑡 ∗ ℎ(𝑡)
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Convolution
• The output of any LTI system is a convolution operation of the input 

signal with the unit impulse response ℎ(𝑡):

• Any Continuous-Time LTI system can be completely characterized by 
its unit impulse response ℎ(𝑡)

LTI System
ℎ(𝑡)𝑥 𝑡 𝑦(𝑡) = 𝑥 𝑡 ∗ ℎ(𝑡)

𝑥 𝑡 = h
05

5
𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏 ⇒ 𝑦 𝑡 = h

05

5
𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏 = 𝑥 𝑡 ∗ ℎ(𝑡)
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Convolution Example

𝑦(𝑡) = 𝑓 𝑡 ∗ 𝑔(𝑡)
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Causality for LTI Systems
• A causal system only depends on present and past values of the input 

signal.  We do not use knowledge about future information.
• For a continuous-time LTI system, convolution tells us that

§ ℎ 𝑡 = 0 𝑓𝑜𝑟 𝑡 < 0
• It is because 𝑦(𝑡=)must not depend on 𝑥(𝑡) for 𝑡 > 𝑡=, as the impulse 

response must be zero before the pulse!

𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ(𝑡) = R
+>

3
𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏
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LTI System Stability
• Consider a bounded continuous-time input signal 𝑥 𝑡 with condition of:

§ 𝑥 𝑡 < 𝑀 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡
• Applying it to a LTI system with impulse response of ℎ 𝑡 using convolution:

§ 𝑦 𝑡 = ∫05
5 𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏

• Using the triangle inequality (magnitude of a sum of a set of numbers is no larger 
than the sum of the magnitude of the numbers):

§ 𝑦(𝑡) ≤ ∫05
5 𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏 ≤ 𝑀 ∫05

5 ℎ 𝜏 𝑑𝜏

• Therefore, a continuous-time LTI system is BIBO stable if and only if its impulse 
response ℎ 𝑡 is absolutely integral, ie

§ ∫05
5 ℎ 𝑡 𝑑𝑡 < ∞
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Commutative Property
• Convolution is a commutative operator:

• Therefore, when calculating the response of a system to an input signal 𝑥 𝑡 , 
we can imagine the signal being convolved with the unit impulse response 
ℎ 𝑡 , or vice versa, whichever appears the most straightforward.

𝑥 𝑡 ∗ ℎ 𝑡 = ℎ 𝑡 ∗ 𝑥 𝑡 = h
05

5
ℎ 𝑡 𝑥 𝑡 − 𝜏 𝑑𝜏 = h

05

5
𝑥 𝑡 ℎ 𝑡 − 𝜏 𝑑𝜏
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Distributive Property (Parallel Systems)
• Another property of convolution is the distributive property

• Therefore, the two systems are equivalent。

• The convolved sum of two impulse responses is equivalent to considering the two 
equivalent parallel system

h1(t)

h2(t)

+
x(t) y(t)

h1(t)+h2(t)
x(t) y(t)

𝑥 𝑡 ∗ ℎ* 𝑡 + ℎ) 𝑡 = 𝑥 𝑡 ∗ ℎ* 𝑡 + 𝑥 𝑡 ∗ ℎ) 𝑡
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Associative Property (Serial Systems)
• Another property of (LTI) convolution is that it is associative

• This can be easily verified by manipulating the integral indices

• Therefore, the following four systems are all equivalent and 𝑦 𝑡 =
𝑥 𝑡 ∗ ℎ, 𝑡 ∗ ℎ" 𝑡 is unambiguously defined.

𝑥 𝑡 ∗ ℎ1 𝑡 ∗ ℎ, 𝑡 = 𝑥 𝑡 ∗ ℎ1 𝑡 ∗ ℎ, 𝑡

h1(t)*h2(t)
x(t) y(t)

h2(t)*h1(t)
x(t) y(t)

h1(t)
x(t) y(t)

h2(t)
w(t)

h2(t)
x(t) y(t)

h1(t)
v(t)
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LTI System Memory
• An LTI system is memoryless if its output depends only on the input 

value at the same time, i.e.

§ 𝑦 𝑡 = 𝑘 𝑥 𝑡
• For an impulse response, this can only be true if

§ ℎ 𝑡 = 𝑘 𝛿 𝑡
• This type of system is extremely simple, but the output of dynamic 

engineering, the physical system depends on the input value at the 
same time and the previous time.
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On-line Math and Signal Processing Courses

• MIT - Highlight of Calculus by Gilbert Strang 

• MIT - Linear Algebra by Gilbert Strang 

• MIT - Differential Equations and Linear Algebra by Gilbert Strang and 
Cleve Moler

• MIT - Introduction to Probability by John Tsitsiklis and Patrick Jaillet

• MIT - Signals and Systems by Alan V. Oppenheim 
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https://ocw.mit.edu/resources/res-18-005-highlights-of-calculus-spring-2010/highlights_of_calculus/
https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/
https://ocw.mit.edu/resources/res-18-009-learn-differential-equations-up-close-with-gilbert-strang-and-cleve-moler-fall-2015/differential-equations-and-linear-algebra/
https://ocw.mit.edu/resources/res-6-012-introduction-to-probability-spring-2018/
https://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/


Homework
• Try to form your term project group with 3 members

• Start to discuss the project direction

• Performing research on the selected topics
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Start to Learn How to use Google Colab
• Google Colab Tutorial

§ Colab Tutorial
§ LaTeX and Markdown

• Python Programming Tutorial
§ Socratica: https://www.youtube.com/watch?v=bY6m6_IIN94&list=PLi01XoE8jYohWFPpC17Z-wWhPOSuh8Er-

§ Sentdex: https://www.youtube.com/watch?v=oVp1vrfL_w4&list=PLQVvvaa0QuDe8XSftW-RAxdo6OmaeL85M

• Numpy Tutorials
§ Learn Numpy - Array Indexing & Creation, Basic & Advanced Operations in 20 Minutes
§ Using NumPy Arrays to Perform Mathematical Operations in Python
§ NumPy for MATLAB users
§ NumPy Tutorial | SciPy 2020 | Eric Olsen

• DSP with Python
§ Youtub Tutorial : DSP using Python and MATLAB
§ Allen Downey - Introduction to Digital Signal Processing - PyCon 2018
§ Python Audio
§ Digital signal processing through speech, hearing, and Python

60L.M. Po

https://www.youtube.com/watch?v=agj3AxNPDWU&list=PLA83b1JHN4ly56Y7o6vDAT8Szxc3_EdRH
https://www.youtube.com/watch?v=wsXG_2W84ck
https://www.youtube.com/watch?v=oVp1vrfL_w4&list=PLQVvvaa0QuDe8XSftW-RAxdo6OmaeL85M
https://www.youtube.com/watch?v=oVp1vrfL_w4&list=PLQVvvaa0QuDe8XSftW-RAxdo6OmaeL85M
https://www.youtube.com/watch?v=G14STCiT2Jw
https://www.youtube.com/watch?v=vWkb7VahaXQ
http://www.eas.uccs.edu/~mwickert/ece5655/lecture_notes/NumPy2MATLAB.pdf
https://www.youtube.com/watch?v=NwYt5FKBsGU
https://www.youtube.com/watch?v=1LC6_PuMMfE&list=PLd9J3wW9xxHuCqfNxZ4xOk2debNAArWzG
https://www.youtube.com/watch?v=SrJq2AzXZME
https://www.youtube.com/watch?v=4WCW60sjnpM&list=PLt8AISrPVpEXgm4fYtYY0UXZiVq5ygVS7
https://www.youtube.com/watch?v=P1h_vaX9n5E&list=PL2saaWTUEfabchc5EtIeeG1L0sywONjpM

