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A Digital Signal Processing System

Analog Band-limited Digital Processed Output Analog
input signal signal digital signal signal output
! Analog » ADC ; DS » DAC ! Reconstruction ;

filter processor filter
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A Big Picture of Transformations for Signal Processing

. Continuous-Time Signals
Periodic : %(t)
. Continuous-Time Fourier Series (CTFS) : a

= Commonly called Fourier Series (FS)

Non-Periodic (Aperiodic) : x(t)
.+ Continuous-Time Fourier Transform (CTFT)

: X(JQ)

= Commonly called Fourier Transform (FT)

Generalization
* Laplace Transform : X(s) = X(o +jQ)

= For system design

. Discrete-Time Signals (Sequences)
Periodic : X[n]
. » Discrete Fourier Series (DFS) : X[k]

= also called Discrete-Time Fourier Series (DTFS)

Non-Periodic (Aperiodic) : x[n]
* Discrete-Time Fourier Transform (DTFT)

:X(ej“))

| Finite-Duration Sequences : x[n]

= Discrete Fourier Transform (DTF) : X [k]
= Fast Fourier Transform (FFT) : X [k]

Generalization
.+ The z-Transform : X(2) = X(rej‘“)
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Continuous-Time Signal Analysis
in Frequency Domain

Fourier series and Fourier transform are the tools for analyzing
analog signals.

Basically, they are used for signal conversion between time and

frequency domains



What are Fourier Series and Fourier Transform?

* Fourier Series and Fourier Transform, named after Joseph
Fourier, are mathematical transformations employed to
transform signals between time (or spatial) domain and
frequency domain.

* They are tools that breaks a waveform (a function or
signal) into alternate representations, characterized by
sine and cosines.

. Joseph Fourier
* |t shows that any waveform can be re-written as the (1768-1830)

weighted sum of sinusoidal functions.
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Sine and Cosine Functions

* They are periodic function with period of 2w y
1 period

= sin(x + n2m) = sin(x) /\ 1 J/.\
-t ; ; : - - =X

= cos(x +n2m) = cos(x) i T = o

 General form of sine and cosine signals: y = sin(x)
= y(t) = Asin(Qt + 0) ¥
" Y(t) = A cos(Qit + 6) 1 period

where
A is Amplitude, -2
Q) is angular frequency in radian/sec, A et

0 is the phase angle in radians.
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Continuous-Time Fourier Series
(CTFS)

Frequency-Domain Representation of

Periodic Continuous-Time Signals X (t)
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Continuous-Time Fourier Series I,

* Fourier Series is basically a way of approximating or /\ /\
representing a continuous-time periodic signal by a series r 0 v;
- T

of simple harmonic (sine and cosine) functions.

* For a periodic signal with period T, then its fundamental harmonic frequency is
Q, = 2n/T.

(0 @) 0.0)

* The Fourier Series is defined as ¥(t) = ay + z a,, cos(nQet) + Z sin(nQyt)

. . .. . n=1 n=1
* |ts Fourier Series coefficients are given by

1 T/2 2 T/2 2 T/2
Ay = = f x(t) dt a, == f x(t) cos(nQgt) dt = — f x(t) sin(nQyt) dt
T'J_r/2 T'J_r/2 Tz
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Project of Function onto Sinusoids

* Projection onto bases works just like vectors in R"

€

Fourier Series

| %

a,, = (x(t),cos(nQyt))
b,, = (x(t), sin(nQ,t))

Inner Products

x(t) =ay + z a, cos(nQ,t) + ansin(nﬂot)
n=1 n=1

 Decomposes signal into frequencies

T ]

\
/

lots of low- and mid-frequency osdillation

not as much high-frequency oscillation
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Interpretation of CT Fourier Series

* Any periodic function x(t) can be expressed as a weighted sum (infinite) of sine and
cosine functions of varying frequency:

x(t) =ay + Z @, cos(nQ,t) + zbnsin(nﬂot)
n=1 n=1

e Express periodic signals using |'ﬁ'| |'ﬁ'| lﬂl fp'l l"ll lﬂll lﬂll l;“'ll W Iplll lmll cos(30t)
harmonically related sinusoids with ) IL"l | "IU." “lul" 'U' "lul" | l'nul" lll'u' I
frequencies 0, Q,, 2Q,, -:-, where Q, is .ﬂ*. AN [\ [;S(mok #(0)
called the fundamental frequency, 2(}, \/ \ \j \j \/ | j—P

is called the first harmonic, 3(), is / cos(got) /
called the second harmonic, and so on
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Fourier Series Example
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Complex Fourier Series

* Every periodic function with period T can be
expanded into a Fourier series as

co

x(t) = Z a, el kot

k=—o0

where

Time Domain

x(t)

N NN
—T 0 T

T

~T/2

1 T/2 .
ap = —f x(t)e /*ot gt k=041,42,

* ay are called Fourier Series Coefficients.

t

Frequency Domain

"

0—>||<—

Qo = —
°7T
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Fourier Series Example of Periodic Pulses
A

]_
"N (t) { b} () ()

. . . . . > 0, otherwise

—T —T5 0 Tj T t

* The fundamental frequency is 0y = 21 /T, we get:

1 (7/2 . 1 (T
a, = —f x(t)e Tkl dt = —f e IkOot gt
I'J_r/, rJ_g

L.M. Po 16



Fork #0

1 To . 1 1 _ To 1 .
= — _]kﬂotdt —— [_ —]kﬂot] — —jkQ2,T,
ak Tf_Toe | ika, € N KT e
_ Lkt _ gmikanty] sin(k2,T,) _ sin(2k T, /T)
km 2j kT leTr
For k =

L.M. Po

— eJkoTo]

0, =2n/T
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L'Hopital’s Rule

 The reason of separating the cases of k = 0 and k # 0 is to facilitate
the computation of ay, whose value is not straightforwardly obtained
from the general expression which involves “0/0”. Nevertheless, using
'Hopital’s rule

_ dsin (27kTy/T) ]
_ gy S (2mkTy/T) — lim T — lim 21Ty /T cos((2nkTy/T)) _ 275
aO _ E—0 kT k—0 dkm k—0 7 T

dk



Periodic Pulses Spectrum

Time Domain

17 —ﬂ)<t<ﬂ)

z(t) = .
0, otherwise

Continuous and Periodic
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Frequency Domain

,8.1l||l|lllllll

........ TITrTTS .."”“,',.._-4_._1..

8

Discrete and Non-periodic

(e5%

k

(00)

x(t) = Z a, e’kot

k=—o0
_ sin(2rkT, /T)
B km

T = 47T,

T == STU

T = 16T
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Fourier Series of Impulse Train

Time Domain

T ()T .

T-T 0 2Tt

k=—o0

x(t) = i 5(t — kT) I T

* Clearly, x(t) is a periodic signal with a period of T.

* The Fourier series coefficients are
Frequency Domain

[0'0) ana “na
. 1 — | ‘ | .
x(t) = z aelkot 21N prent >
T

k= k=—c _QQU —Q() 0 Q() 290 Q

1 (7/2 . 1
a = —j §(t)e kot dt = —
T'J_ 7/, T

~| -

Fourier Series Representation

L.M. Po 20



Continuous-Time Fourier Transform
(CTFT)



From Fourier Series to Fourier Transform

* Fourier Series is used to represent periodic signal as weighed sum of the complex
exponentials with harmonic frequencies of ()

[0.0)

. 2m r/2 :
x(t) = Z a e/ with Q = and  a; = —j x(t)e T g, k=0+1,+2,-
T
= ~T/2
Periodic A T — oo /\ Non-periodic
—T/2 T/2 —00 « —T/2 T/2 > o

* If we take the period T — oo, then 0 — 0 and the periodic signal x(t) become non-
periodic. Its corresponding Fourier Series can be expressed as
x(t) = lim i [ﬂfn/ﬂx(r)e‘f"m dr] ekt — foo —Uoox(r)e‘jkmdr] e/t ()
Q-0 = 2T —/Q —00 2m —0o0

| J

|
X(jQ)

L.M. Po 22
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Continuous-Time Fourier Transformation (CTFT)

* For analysis of continuous-time non-periodic signals
 Defined on a continuous range of ()

* The CTFT of a continuous-time non-periodic signal x(t) is:

X(GO) = J x(t)e 1M dt Analysis Equation

which is also called spectrum.

* The inverse CTFT is given by

1 ® .
x(t) = o j X(iQ)elM da Synthesis Equation

23
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lllustration of CT Fourier Transform

time domain frequency domain
A .
2(t) X(5)
/ 0 S [ 0 \ o
X(jQ) = / z(t)e M dt 4=
1 i - w2 ¢
—=uz(t)=— | X({yQ)edQ
2T

Continuous and Non-periodic

Continuous and Non-periodic

24



Delta Function 5(t)

* The delta function 6(t) can be expressed as

o, if t=0
6(t)={0, if t#0

* It has the following characteristics
j S(t)dt =1 and  x()6(t — ty) = x(to)d(t — ty)

where x(t) is a continuous-time signal.

* The Time shifting property oo
x(t) = j x(7)6(t — 1)dt

L.M. Po
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Unit Step Function u(t)

* The unit step function u(t) can be expressed
Y u()

1, if t>0

u(t):{o, if t<0 :

* Asthereis asudden changefromOtolatt =0, u(0) is not well
defined.

L.M. Po

=Y
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Fourier Transform of Rectangular Pulse

x(t)

X(t) = 1, -To,<t<T, 1
|10, otherwise -
=Ty 0 Ty t

* This signal is of finite length and corresponds to one period of the
periodic function. Its Fourier Transform can be expressed as

co

. To 2 sin(Tp Q)
x(t)e /¥t =f e It = (Lo
. 0

o = |

—CO

L.M. Po
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Fourier Transform Pair for Rectangular Pulse

* Define the sinc functionas sin(mTu)
sinc(mtu) =

Tu

* Itis seen that X(j(1) is a scaled sinc function because

2 sin(TyH 2 To )
X3(jQ) = éo )=2Tosinc(0T)
k s
} A oT) X ()
1 —

- /\\/\ f\//\ -
-Ty 0 Tj t — /Ty 0 /Ty ()

L.M. Po



Inverse Fourier Transform of Rectangular Pulse Spectrum

1X ()
| X050 = {1, —Wy < Q < Wy

0, otherwise

>

Wy 0 Wy ()

* The inverse Fourier Transform of this rectangular spectrum can be
obtained by

1 . 1 (Wo | sin(Wot) W, Wyt
x(t)=ﬁj X(Q)e]mdﬂ=%j elMd0 = ( 0)=—Osinc( 0)

~W, i T T

L.M. Po
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Fourier Transform Pair for Rectangular Pulse Spectrum

b X (50

* We can observe the duality property of Fourier Transform

O

A

W, Wyt
x(t) = —sinc (—)
T T

-

W()/?/\x(t)
G~
- /Wy /Wy

A

QTO/

X(542)

. _(ToQ)
X(jQ) = 2T, sinc (T)

A
—7T/T()

0

AN
7T/T()
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Fourier Transform of Exponential Function

e Right-sided Continuous-Time exponential function is defined as

x(t)
x(t) = e “u(t) With a > 0. 11\
* Its Fourier Transform can be obtained by . '
. [ it 1 o 1 a—jQ
_ at ,—jQt g0 (a+750)t _
X () /e ¢ dl == a9
0
B 1 (X)) = —tan"' [ =
[ X (59 = = A <a)
Ve 1o AXGO) L JE— T
V2 (20) =]\ SN
: : —Ia : >
' ' - —m[4r" &
—a () a () T2

Magnitude and phase plots for 1/(a + jQ)
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Fourier Transform of Delta Function 5(t)
 The Fourier Transform of delta Function can be obtained as

X(§Q) = / §(t)e Mdt = / 5(t)e IH0dt = e~ / §(t)dt = e =1

* Spectrum of §(t) has unit amplitude at all frequencies

L X0Q)
6(t) 1

1 —

L.M. Po 32



Impulse in Frequency Domain

X(jQ)

QWT X(jQ) = 2r8(Q — Q)

0 Q Q

* Based on 6(t), Fourier transform can be used to represent continuous-time periodic
signals. The inverse Fourier Transform of 2m§ (2 — Q) can be calculated by

1 ® . .
x(t) = T_1{27T5(9 — .Q.())} = %j 27'[5(.0, — Qo)ejﬂtdﬂ — e]'QOt

 As aresults, the Fourier Transform Pair is:

e/l o 275(Q — Q)

L.M. Po



Fourier Transform Pair for CT Periodic Signal

e Based on the Fourier Transform pair of Impulse in Frequency Domain, we

can express the Fourier pair for any Continuous-Time Periodic Signal as

() =%t —T) °° >
Z a,elkt o Z 2ma,6(Q —kQy)
/\\/I \//\\/r k=—o0 k=—o0
\ )
21 !
Q, = T Periodic signal in

Fourier Series Expression
and a; are Fourier Series Coefficients

L.M. Po

11!

» XUQ)

2mta,
| 2ma,

i

v

20, -, 0 Q, 2Q,
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Fourier Transform of Impulse Train

s(t)

s(t) = i(S(t—kT) T T“ T T

fe=-c0 o7 -7 0 T oT

>
t

* Clearly, x(t) is a periodic signal with a period of T. Using the previous example, the
Fourier series coefficients are

T/2 - _ 1 = .
T -T/2 T k=—o0 k=—o0
AL
* With Qo = 2 /T, the Fourier Transform is: o =
- 2T 21k
e/l o 2n5(Q — Q) s(t) o — z 5(9 — ) Qo z 5(Q—kQy)
k=—oc0 k=—o0

35



Fourier Transform Pair For Impulse Train

Time Domain Frequency Domain

RERE »<E>_.¢ 1%

=27 =T 0 27Tt =200 = 0 Q 20y Q
s(t) = 26(t—kT)=% z e/kot <]:> S(GQ) = q, Z 5(Q —kQg)
k=—o0 k=—o0 k=—o0

Fourier Series
Expression

36



Important CTFT Pairs

* Rectangular Pulse: A rectangular pulse transform to

a sinc function
= rect(t) & sinc(jQ)
* Cosin : A cosine signal transforms to two impulses
= cos(Qgt) © m[6(Q+ Qp) + 6(Q — Qp)]

* Sine : A sine transforms to two (imaginary) impulses

e @Gaussian : A Gaussian transforms to a Gaussian

— 2 2 9272 2 (02
.eX/ZO' o '/27'[0'6 21T°0“ )

L.M. Po

l{/\l‘
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Key Properties of the CTFT

1. Linearity: x1(t) < X{(jQ) and x,(t) < X,(jQ)
axq (£) + bxy(£) & aX,(jQ) + bX,(jQ)

2. Time Shifting : x(t —t,) <« e /%o X(jQ)

3. Convolution: x(t) * h(t) < X(Q) - H(jjQ)

4. Modulation : x(t) h(t) & —X(jQ) * H(jQ)

5. Time Scaling : x(at) < — =X ( " )

lal

6. Differentiation : d()<—> 0X3(Q)

38
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Convergence of CTFT

Dirichlet’s sufficient conditions for the convergence of Continuous-Time Fourier
Transform are

1. x(t) must be absolutely integrable

x(t) = jlx(t)ldt < ©

2. x(t) must have a finite number of maxima and minima within any finite interval.

3. x(t) must have a finite number of discontinuities, all of finite size, within any finite
interval.

Not all CT signals can have CTFT representations

39
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Laplace Transform

The French Newton Pierre-Simon Laplace

* Developed mathematics in astronomy, physics, and
statistics

* Began work in calculus which led to the Laplace
Transform

* Today, Laplace Transform is widely used to solve ODE
(Ordinal Differential Equation) in many application of
Electrical Engineering.

* Itis also widely used for Signal Processing in Analog

Digital Filter Design. Pierre-Simon Laplace
(1749-1827)

L.M. Po 41
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Definition of Laplace Transform

* Laplace transform maps a function x(t) of time to a functionof s = g + jQ in
complex domain.

X(s) = Jx(t)e‘s’: dt

 There are two important variants:

= Unilateral

co

X(s) =f x(t)e St dt
0

= Bilateral

X(s) = f_oo x(t)e St dt

* Both share important properties. We will focus on bilateral version.

42



Laplace Transform Example

 Find the Laplace transform of x(t) z1(1)
1 N
et ift=0
t) =
% (1) { 0 otherwise 0 g
o % p—(s+Dt |© 1
0 = [ e [Ceesaes i
105) f_mxl()e ,° —(s+D|  s+1

* Region of Convergence (ROC) : Provided Re(s+1) > 0 which implies that Re(s) >-1

s-plane

1 ROC
Xl(X) — S-|——1 ’ Re(s) > —1 ROC

L.M. Po



Regions of Convergence

» Left-sided signals have left-sided Laplace transforms (bilateral only)

 Example 200

x,(t) = {_e_t ift <0 t

2 0  otherwise / !
o 0 _ -G+’ 1
_ —st — —t,—st — =
X, (s) —f_ooxz(t)e dt—j_me e dt = ~s+1)|  s+1
* Provided Re(s+1) < 0 which implies that Re(s) < -1 8 splane
Y
. R —1 x
s+1° e(s) < !

L.M. Po 44
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Left-Sided and Right-Sided ROCs

Laplace transform

time function

Laplace transforms of ~

left- and right-sided @‘(t)
exponentials have the 1\
same form (except -); 0 t

with left- and right-sided
ROCs, respectively.

s+1

s-plane
ROC
-1
U s-plane
@)
14
—1

45



Laplace Transform of Both-Sided Signals (1)

* Find the Laplace transform of a both-sided signals of x3(t)

x3(t) = eIt /y\
| /

0
0 0 0
X3(s) =j e~ ltle=st gt =f e(1-9)t dt+j e~ (1+)t g¢
—00 —00 0
_e<1—5>t0 +e—<5+1>t°°_ 1 1 _14st+l-s 2
S (1-9) —(1+S)0 1-s 14+s (1-2)(1+s) 1-—s2
— 1 ] |\ J
I
Re(s)<1 Re(s)>1

 The ROC s the intersection of Re(s) < 1 and Re(s) > -1

46



Laplace Transform of Both-Sided Signals (1)

* the Laplace transform of a signal is both-sided is a vertical strip.

x3(t)

x3(t) = eIt /I\
!

0
s-plane
X3(S) = 1 — SZ \ R()C L
—1 1
-1<Re(s)<1

L.M. Po 47
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Time-Domain
Interpretation of
ROC

oo

X(s) = f_ooe_s’: dt

x3(t)

s-plane
ROC
—X
—1
U ' s-plane
O
e
—1
s-plane
ROC

X

=X

48
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Fourier Transform Interpretation of Laplace Transform

* |In Laplace Transform, s = g + j{1 is a complex number, then we can express the

transform as
(00]

X(s)=X(o+jQ) = j x(t)e 0+t gt = f x(t)e te T 4t

— 00

* Thus, the Laplace Transform can be interpreted as CTFT of the signal x(t) that
weighted by et . This is equivalent to taking CTFT of the signal x(t)e %t a

J{x(t)e ) = jmx(t)e‘”te‘fﬂt dt

* Ifweseto = 0,thens = jQ.The Laplace Transform of X(0 + j{) is corresponding

~

to the CTFT for 0 = 0 (Imaginal axis) is within the ROC in s-plane S 40

X(s) =X(Q) = foox(t) eI gt

S

49



Laplace Transform is Generalization of Fourier Transform

X(s) =X(o+jQ) = foox(t)e_“te_jm dt = J{x(t)e "}

* For some signals, they cannot converge for CFTF, but we still can transform them to
Laplace transform in the s-plane for analysis and system design.

* Theinverse Laplace Transform can be considered as inverse CTFT of the signal

x(t)e ot . .

x(t)e % = 1 J S{x(t)e /M da = 1 j X(s) e’ dQ
21 J)_ o, 2T ) _

O +oo

1 ® . 1
x(t) = x(t)e %tetot = —j X(s)eld+tiMt g = — X(s) eStds
21 J_, 2T) J 5_ oo

L.M. Po 50
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Important Laplace Transform Pairs

a

eat

teat

sin Ot

cos (ot

a

s
1
S—a
1

(s —a)?
Q

sZ 4+ ()2
S

s2 4 ()2

51
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Key Properties of the Laplace Transform

1. Linearity : x1(t) <= X1(s) and x,(t) < X,(s)
axq(t) + bx1(t) < aX{(s) + bX5(s)

2. Time Shifting : x(t — t,) <> e StoX(s)

3. Convolution : x(t) * h(t) <= X(s) - H(s)

4. Scaling Property : x(at) < IaIX( )

5. Time Differentiation : di) — sX(s) —x(0)
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Continuous-Time Differential Equations

e CT systems whose input-output response can be described by linear constant-
coefficient ordinary differential equations with a forced response

i d"y(r:)_i , 4@
gk ko dik

k=0 k=0

* If the equation involves derivative operators on y(t) (N>0) or x(t), it has memory.

* The system stability depends on the coefficients a;. For example, a 15t order LTI
differential equation with ag = 1:

%—aly(tFO =>  y(t) = Ae™*

* If a;>0, the system is unstable as its impulse response represents a growing
exponential function of time

e If a;<0 the system is stable as its impulse response corresponds to a decaying
exponential function of time

L.M. Po
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Differential Equations

* Analog systems can be represented by differential equations

R L C
4/\/\/\I_KYW\ | ]
|
| dity 1
L,sin(2t) =L———+ Ri(t) + —fl(t)dt Vr Vi Ve
dt C
V.(t) = I, sin(2t)
g D
d?i(t) di(t) 1 Vs

I,Qcos(Nt) =L 12, + R I +Ei(t)

This is a second order Ordinal Differential Equation (ODE).
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Solving ODE by Laplace Transform

Ordinal Differential Equations (ODEs) can be easily solved by Laplace Transform

using differential property. It can transform an ODE to Algebraic expression.

d’;(tt) — sX(s) —x(0)

2
. d<x(t)
dt?

— 52X (s) —sx(0) — x'(0)

d?x(t) dx(t)
dt? +5 dt

= 52X(s) —sx(0) —x"(0) + 5(sX(s) —x(0)) +4X(s) =0
= Forx(0) = 2and x'(0) = =5, then
¢ (s +55+4)X(s)=25s—-5+10= (s? +55+4)X(s) =2s+5
2s+5 25+5 1
S2+55+4  (s+4)(s+1) s+4

* Inverse Laplace Transform of X (s), we have the solution x(t) = e *‘u(t) +

* For example, + 4x(t) = 0 can be expressed in Laplace transform as

] X(S) =
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Summary

Continuous-Time Fourier Series (CTFS) is used for Continuous-Time
Periodic Signals analysis in frequency domain

Continuous-Time Fourier Transform (CTFT) is used for both Continuous-
Time periodic and non-periodic signals analysis in frequency domain

Laplace Transform is a generalization transformation of CTFT.

In signal processing, we always use Laplace Transform for LTI system
design such as analog filter design and system stability analysis.
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