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Fast Fourier Transform (FFT)



Fast Fourier Transform (FFT)

* The Fast Fourier Transform (FFT) is simply a mathematical technique to
accelerate the calculation of the DFT. It was invented by Gauss in 1805
and re-invented by Cooley and Tukey in 1965.

= Typically, if the DFT is directly calculated for a block of 2N samples e.g. 512 or
1024 samples (N) it would make the calculation of the DFT quite demanding.

= The FFT simply uses repetition and redundancy in the calculation to speed it up.

* The FFT is simply a FAST ALOGORITHM to calculate the DFT, NOT a
different transform.
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Fast Fourier Transform (FFT)

* FFT is a fast algorithm for DFT and inverse DFT computations.

N-1 N-1

1
X[k] = z x[k]Wkn x[n] =N2X[k]WN"‘”

n=0 k=0

* Complexity of direct computation of DFT:

= Each DFT coefficient requires
* N complex multiplications
* N-1 complex additions
* Al N DFT coefficients require g

* N2 complex multiplications
 N(N-1) complex additions

* Direct DFT Computation : O(N?)
* FFT Computation: O(N log, N)




Complexities of Direct DFT computation and FFT

Direct Computation FFT
N
Multiplication |Addition |Multiplication Addition
N2 N(N —1) [0.5Nlogy(N) |Nlogy(N)
2 |4 2 1 2
8 |64 56 12 24
32 (1024 922 80 160
64 4096 4022 192 384
21011048576 1047552 |5120 10240
220 |~10" ~10" ~10° ~2 x 107
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2T
FFT Exploits symmetries of ¢ /7"

c Wy = e_jWn (Twiddle Factor)

* FFT fast algorithms are based on symmetry properties

= Conjugate symmetry

Wl\l;c(N—n) _ o IWkWN-) _ kN k(1) _ (WA’f")

= Periodicity in n and k

WI\Ilm _ WI\IIC(N+n) _ W16R+N)n



Decimation-in-Time FFT Algorithm

* The basic idea is to compute the DFT according to
N-1

N-1
X[k =) anpWy'+ > aln]Wy"

n=even n=odd
e Substituting n=2r and n=2r+1 for the first and second summation terms:

Ni2=1 N/2-1
Xk = Y alerWir+ > afer+ gwy

r=0 r=0
.\'/2—1 N/'Z—l

= > 22 (WR)" + Wy Y aler+ 1] (W3) W2 = W2 = N2 = i
I:() ]‘:U
L J \ J
! Y
N/2-point DFT for even samples  N/2-point DFT for odd samples
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8-point DFT example using decimation-in-time

Two N/2-point DFTs
= 2(N/2)? complex multiplications
= 2(N/2)? complex additions

Combining the DFT outputs

= N complex multiplications
= N complex additions

Total complexity
= N2/2+N complex multiplications
= N2/2+N complex additions
= More efficient than direct DFT

Repeat same process
= Divide N/2-point DFTs into
* Two N/4-point DFTs
* Combine outputs
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MU= - X[0]
 After two steps of N point 7 Wi
DFT ‘
. . . . x[4] o—— > o > —r X[1]
decimation in time +><><\\ P
x[2]o=> o> — X[2]
% - point Wy W3
x[6] o—>— DET
x[1jo>] ..
£ ‘%‘—point
x[s]o] DPFT
=El % — point
x[7] o> DFT

* Repeat until we are left with x[0]
two-point DFT’s
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Decimation-in-Time FFT Algorithm

* Final flow graph for 8-point =0
decimation in time " ><\/\
° ity: Wy W
Complexity: x[2] o~ >©<\v/xlzl

= Nlog,(N) complex

\

multiplications and

additions
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Butterfly Computation

* Flow graph constitutes of butterflies

* We can implement each butterfly with one
multiplication

* Final complexity for decimation-in-time FFT

= (N/2)log,(N) complex multiplications and
additions

(m—1)st
stage

mth
stage

(m—1)st
stage

mth
stage
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Decimation-in-Frequency FFT Algorithm

* The basic idea is to compute the frequency-domain sequence X[k] into
successively smaller subsequences

N-1 N/2-1 N5
X[2r] = Z:L’[n]IV '\'-(2") = Z z[n|Wirr |+ Z x[n|Wir
n=0 n=0 n=N/2
N/2-1 N/2-1 P
B S S
n=0 n=0
N/2-1

= Y (z[n]+zln+N/2)- Wi, r=0,1,--- ,N/2-1

n=0
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8-Point Decimation-In-Frequency FFT

x[0] o X[0]

x[11% ll!;%a..'bflwww
w;‘Mg'.h‘hkw - 0 X[2]
x[3] ‘A‘A" > Wy o X[6]

VVV/ 1
x[4] A‘#’%’ s W > - o X[1]
x[6] Z‘JAQLM} = o X|[3]

3 0
W“-\" WJ\'.
x[7] e por > o X[7]
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Applications of FFT

* FFT is a very powerful tools for computer-based frequency domain
analysis
= Fast Convolution
= Spectral Analysis (e.g. finding periodicities)
= Signal Denoising
e Audio Signal Denoising

* Notch Filtering for Image Processing (Optional)

= Spectrogram — Time-Frequency Analysis (Optional)
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Fast Convolution with FFT

The convolution of two finite-duration sequences
= yln] = x1[n] ® x,[n]
* where x;[n] is of length N; and x,[n] is of length N, requires computation of (N;

+ N, — 1) samples which corresponds to Ny N, — min{(N;, N>} complex
multiplications

 An alternate approach is to use FFT:
= y[n] = IFFT{FFT{x,|n|} - FFT{x,[n]}}

* In practice:

" Choose the minimum N = N; + N, — 1 and is power of 2
= Zero-pad x;[n] and x,[n] to length N, say, x4 [n] and x,[n]
= y[n] = IFFT{FFT{x{|n]} - FFT{x,[n]}}
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Block Diagram of Fast Convolution with FFT

X|k]
x|[n] —| FFT YIk)
— ) mult -||FFT—> y[n]
h[n] —* FFT
Hl|k]

* If the impulse response is NOT the same size as the input sequence x[n], we have to
pad the h[n] with zeros to match the length

* Multiplication is point-by-point, of complex numbers



Complexity of Fast Convolution with FFT

* The inverse DFT has a factor of 1/N, the IFFT thus requires N + (N/2)log,(N)
multiplications.

* As aresult, the total multiplications for y[n] is 2N + (3N/2)log, (N)

* Using FFT is more computationally efficient than direct convolution computation for
longer data lengths:

Ny N, N | NN, -min{N;,N,} | 2N +(3N/2)log,(N)
2 5 8 8 52
10 15 32 140 304
50 80 256 3950 3584
50 1000 2048 49950 37888
512| 10000 16384 4119488 376832
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Why Fast Convolution with FFT?

* Cost (number of operations) of convolution in time domain (x[n] * h[n])
= O(nN)
= N = number of points of input sequence x[n]

= n=the length of the impulse response h[n]

* Cost of the FFT based convolution computation in frequency domain (X [k]H[k])

= O(N log N)
= The total cost of signal processing in the frequency domain is dominated by FFT

O(nN)
Plot of cost vs
n, with input O(N log N)
size N fixed

»

> Nn

Convolution in frequency domain is faster for long impulse response h[n| (when n gets much larger than log(N))
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Spectral Analysis Using FFT



Load Audio File and Play the Sound

Sample rate: 48000 Hz

import matplotlib.pyplot as plt Total time: 19.4594375 s
Sound Waveform

import numpy as np
—— Sound waveform

from scipy.io import wavfile 30000

# Load sound file from GitHub
!wget https://github.com/R6500/Python-bits/raw/master/Colaboratory/Sounds/Bicycle%20bell%203.wav 20000

# Load the file on an object

data = wavfile.read('Bicycle bell 3.wav') 10000
3

# Separete the object elements % o) ‘“J ) )

Fs = data[0] # Sample Rate £ '

data[l] # Signal Data
x.size # Number of samples
= 1/Fs # Sample Period T

np.arange (0, n)*T # Time vector

—10000

—20000

1 B %
|

# Show information about the object —-30000

print('Sample rate:',6Fs,'Hz') 0.0 2.5 5.0 7.5 - 100 12.5 15.0 17.5
Time (sec.)

print('Total time:', n*T,'s')

plt.plot(t,x,color="'c',LineWidth=1.5,1label="'Sound wave') [246] # Play the mono sound

plt.xlim(t[0],t[-1]) from IPython.display import Audio
plt.title('Sound Waveform') Audio(x,rate=Fs, autoplay=True)
plt.ylabel ('Amplitude')

plt.xlabel ('Time (sec.)') [

plt.legend () Il 0:13/0:19 e————— )
plt.show()



FFT Signal Analysis using Numpy FFT

n = x.size
30000
X = np.fft.fft(x,n)
PSD = X * np.conj(X)/n 20000
= *
freq (Fs/n) *np.arange (n) ¥ 10000
L = np.arange(l,np.floor(n/2) ,dtype='int"') 2
: 8

fig, = plt.subplots (2,1

ig,axs P subplots(2,1) < ~10000
plt.sca(axs[0]) —-20000
plt.plot(t,x,color='c',LineWidth=1.5,1label="'Sound Waveform') 50600 — Sound Waveform

1t.xlim(t[0],t[-1 - , ' ' . - : ;
plt.xlim(£[0],[-11) 0.0 25 5.0 75 10.0 125 15.0 175
plt.ylabel ('Amplitude’') Time (sec.)
plt.xlabel ('Time (sec.)') led
plt.legend() 6 — T
plt.sca(axs[1]) 5
plt.plot(freq[L] ,PSD[L],color="c',LineWidth=1.5,1label="FFT"') % 4
plt.xlim(freq[L[0]], freq[L[-1]]) -‘2’3
plt.ylabel ('Magnitude') .
plt.xlabel ('Frequency (Hz)') 2 2
plt.legend() 1
plt.show ()

. I\
5000 10000 15000 20000
Frequency (Hz)
22

L.M. Po



Fourier Analysis of Signals Using FFT

* One major application of the FFT: Analyze Signals
* Let’s analyze frequency content of a continuous-time signal

Continuous-to-
—  discrete-time
x.(1) conversion

Anti-aliasing
lowpass filter

FFT

Vik]

* Steps to analyze signal with FFT

1. Remove high-frequencies to prevent aliasing after sampling

2. Sample the signal x.(t) to convert to discrete-time signal x[n]
3. Window to limit the duration of the signal

4. Take FFT of the resulting signal

L.M. Po
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Example of Signal Analysis Using FFT (1)

S.(j)
Continuous-time signal ’//\\L

-, 0 O Q
(a)
Anti-aliasing filter ‘ Hoo(j9)
| / |
i f i Q
T (b) T
Signal after filtering /‘\\Nm)
| | | |
s —Qg 0 QD s Q
E ©) T
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Example of Signal Analysis Using FFT (2)

| DTFT
DTFT of the Sampled DT K /\\Mefy\\
signal | | | | | |

Frequency response of
window 1

0 w,=0T ™ 2 ®

Windowed and sampled

Fourier Transform
V(el®) = x(e/®) xw(e/)

VIk] = V()|
N

25
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Effect of Windowing on Sinusoidal Signals

* The effects of anti-aliasing filtering and sampling is known

 We will analyze the effect of windowing

* Choose a simple signal to analyze this effect: sinusoids
= 5.(t) = Agcos(Qot + 0y) + A;cos(Q;t + 0,)

* Assume ideal sampling and no aliasing we get
= x[n] = Agcos(wgn + 6y) + Ajcos(wn + 6;)

* And after windowing we have

x|n| ? v|n|
=77

: wn| :

= p[n] = x[n]w[n] = Ayw[n]cos(won + 8,) + Ayw[n]|cos(win + 6;)

FFT

V]

26



* Calculate the DTFT of v[n] by writing out the cosines as

Ay o 0 o
v[n] = —w[n]e/Yoe/®™ 4+ —w[n]e /Yoe/®oT 4

1 _.0 s
—w[n]e /P1e7 /1

L wlnleibreion 4 5

2

V(e](‘)) = A eJGOW(e](w (*)())n) -|_ A e JGOW(e]((*H'w())n) + 1421 ej91W(ej(w_w1)n) + ﬁe_jell/]/(ej(w'i'wl)n)

2
 Consider a rectangular window w[n] (W (e/®)|
64
of length 64
( DTFT of the
e Assume 1/T=10 kHz, A,=1 and A,=0.75
I8 rectangular
and phases to be zero .
window

* Magnitude of the DTFT of the window 32|

S | W—

L.M. Po 27




Magnitude of the DTFT of the sampled signal

¢ We expect to see dirac V()
function at input {\ 32 ﬂ
frequencies

 Due to windowing we see, (\ - |
instead, the response of
the window 2

e Note that both tones will

ffect each other d
tesmearng o oLl P o

= This is called leakage: = 2 2 0 o 2
small in this example 3 6 ®) 6 3
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Effect of Windowing on Sinusoidal Signals

* If the input tones are close to each other

IV (e )l

15—

hd

- 0 T ®

The tones are so close that they have
considerable affect on each others

magnitude

L.M. Po

0

R

S

The tones are too close to even separate in this case
* They cannot be resolved using this particular window

29



The Effect of Spectral Sampling

 FFT samples the DTFT with N equally spaced

samples at
2k k=01 N-1
Wy = —— =0,1,..,N —
kTN
* Orin terms of continuous-frequency E
QO = emk k=01 N/2 j
k — NT — yv,], ..., 4
 Example: Signal after rectangular
windowing )

(Zn >+075 n ) 0<n<63
v[n] = {0S\ 3" : cos(15n Sn<
0 else

L.M. Po

— vn]

JJH ) JHL ‘..JHL wdh i,
FTTT

N=64
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16 —

Amplitude

0=t

M

DTFT Ve

b,

0

T
T 27 @

* Note the peak of the DTFTs are in
between samples of the FFT

w _27r
17 14
w _47'[
27 15

n=2"kK=k=45714
64

n=="k=k=85333
64

 FFT does not necessary reflect real

magnitude of spectral peaks

L.M. Po

Amplitude

Radians

(5]
(B8]

p—
>

(8]

FFT

V]l

:avﬂ d hmmmmnmrgzmmmm||TTmm L’I h‘r

(d)
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* Let’s consider another sequence after windowing we have

o 0.75 o 0<n<63
v[n] = { €08 (En) + 0. COS(@TL) <n<
0 else

vn|

2T 2T
s 1T wi=—n=—k=>k=4
16 64

Amplitud
o
I
E—]

L.M. Po
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: 2 » » IV
* In this case N samples cover FFT

exactly 4 and 8 periods of the - ’ .
tones

16—

Amplitude

* The samples correspond to the
peak of the lobes

 The magnitude of the peaks are 0 L enonlser sonerorcneserensscscessossessossesssesersne

0 4 R Sg-gO 63 k
accurate (b)
, ) 22 ﬂ ﬂ IV (ei®)]
e Note that we don’t see the side DTFT

lobes in this case B ﬁ ﬂ

% 16

B

O_Mﬂ MMWWVWMWWWMWVWWYWMW %m
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Window Functions

* Two factors are determined by the
window function

= Resolution: influenced mainly by
the main lobe width

= Leakage: relative amplitude of side
lobes versus main lobe

* We will learn more in FIR filter design
lecture that we can choose various
windows to trade-off these two factors

* Example: Kaiser window

Amplitude

1.2
/”' NS,
0.9 P/ \\\\
/ -
/ T
. N\
L N .
03" 7
. 7/ \
N
P N
e | | | S
0 5 10 15 2
Samples
(a)
'
NN
\
-25 i
vowm oo -~ i}
" ' / TN v . .
! ! Ri / / \\ ,’ b g \\ NN s b
| f\ -“a " | \ ! / i1 A0
—-50 ! e ! [ I : ]
AN N I 1
| ‘l" \ \\ AN A ] i
1 | IRV VAR AL i
l |' (V) I I s /{ i
=75 l i I IR TV Y v
V ] \ TARY ‘I
' E AR A
FEEEE
-100 | | | ] 1 1
0 027 0.4 0.6 0.87r T

Kaiser window

Radian frequency (w)

———pg=6
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Example: FFT Analysis with Kaiser Window (1)

* The windowed signal is given as

21 4
v[n] = wg[n] cos (—n) + 0.75wg[n]co s(—n)

14 15

* Where wy[n] is a Kaiser window with B=5.48 for a relative side lobe

amplitude of -40 dB >
 The windowed signal

Amplitude
o

B v[n]

B ‘;nwﬂh,iﬂl‘"ﬁ[ﬂh {HﬁTm’l 1‘”?’%

35
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Example: FFT Analysis with Kaiser Window (2)

 FFT with this Kaiser window

IS —
®

._
o
|

»
.

Amplitude

h
|

VK]l

 The two tones are clearly resolved with the Kaiser window

36



Signal Denoising Using FFT
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Audio Signal Denoising Using FFT

import numpy as np

import matplotlib.pyplot as plt
plt.rcParams|['figure.figsize']=[16,12]
plt.rcParams.update({'font.size':18})

# Create a simple signal with two frequencies
Fs = 1000 # The sampling frequency is 1lkHz

dt = 1/Fs # 0.001

t = np.arange(0,1,dt)

# Sum of two sin waves (50Hz and 120Hz)
X = np.sin(2*np.pi*50*t) + np.sin(2*np.pi*120
X clean = x

X = x + 2.5*np.random.randn(len(t))

plt.plot(t,x,color="'c',LineWidth=1.5,1abel="Noisy"')
plt.plot(t,x_clean, color='r', LineWidth=2,label='Clean')
plt.xlim(t[0],t[-1])

plt.legend()

plt.show()

7.5

5.0

2.5

0.0

-2.5

-7.5
—— Noisy
—— Clean
-10.0 . i ' .
0.0 0.2 0.4 0.6 0.8
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Compute Power Spectrum Density of the Noisy
Signal by FFT

n
X
PSD

len(t)
np.fft.£fft(x,n)
= X * np.conj(X)/n

freq = (1/(dt*n)) *np.arange (n)

L =

fig,

plt.
plt.
plt.
plt.
plt.
plt.
plt.

plt.
plt.
plt.
plt.
plt.
plt.
plt.

np.arange (l,np.floor(n/2) ,dtype='int"')
axs = plt.subplots(2,1)

sca(axs[0])
plot(t,x,color='c',LineWidth=1.5,1label="Noisy"')
plot(t,x_clean,color='r', LineWidth=2,label='Clean')
xlim(t[0],t[-1])

ylabel ('Amplitude')

xlabel ('Time (sec.)')

legend()

sca(axs[1l])

plot(freq[L] ,PSD[L] ,color='c',LineWidth=1.5,1label="Noisy')
xlim(freq[L[0]], freq[L[-1]1])

ylabel ('Magnitude')

xlabel ('Frequency (Hz)')

legend()

show ()

10

w

Amplitude
o

0.2

0.4 0.6 0.8
Time (sec.)

350
300

Magnitude
[ N N
[* . -] o w
o o o O

[

—— Noisy

LMo A A ANH AR M A A A A Al I iterh A A AN

100

200 300 400
Frequency (Hz)
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Use the PSD to Filter Out Noise

indices = PSD > 100
PSDclean = PSD * indices

X = indices * X

x_filtered = np.fft.ifft(X)

## Plots

fig,axs = plt.subplots(3,1)

plt.sca(axs[0])
plt.plot(t,x,color="c',LineWidth=1.5,1label="Noisy"')
plt.plot(t,x clean,color='r',6 LineWidth=2,6label='Clean')
plt.xlim(t[0],t[-1])

plt.ylabel ('Amplitude')

plt.xlabel ('Time (sec.)')

plt.legend()

plt.sca(axs[1])

plt.plot(t,x filtered,color='b',6 LineWidth=2,6 label='Filtered')
plt.xlim(t[0],t[-1])

plt.ylabel ('Amplitude')

plt.xlabel ('Time (sec.)')

plt.legend()

plt.sca(axs[2])

plt.plot(freq[L] ,PSD[L],color='c',LineWidth=2,label='Noisy"')
plt.plot(freq[L] ,PSDclean[L] ,color='b',LineWidth=1.5,label="'Filtered')
plt.xlim(freq[L[0]], freq[L[-1]1])

plt.ylabel ('Magnlitude')

plt.xlabel ('Frequency (Hz)')

plt.legend()

plt.show()

L.M. Po
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Notch Filters by 2D-FFT (Optional)

A filter that rejects (or passes) specific frequencies

* Example: periodic noise corresponds to spikes or lines in the Fourier domain

* Can design a filter with zeros at those frequencies ... this will remove the
noise

* Examples:
= |[mage mosaics
= Scan line noise

= Halftoning noise
« (moire patterns)

L.M. Po 41



Steps in Notch Filtering

;e\\‘-es
* Look at spectrum |F(u,v)| of noisy image f{x,y), find 'j

frequencies corresponding to the noise

e Create a mask image M(u,v) with notches (zeros) at those a 2€R0S
places, 1’s elsewhere
* Multiply mask with original image transform; this zeros out G- F

noise frequencies 7 o
G(u,v) = M(u,v) F(u,v)

* Take inverse Fourier transform to get restored image
g(le) = 71(G(U,V)) [j TS

L.M. Po 42
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Example Notch
Filters (2)

« Example of horizontal scan
lines

 Create a notch of vertical lines
in frequency domain

L.M. Po
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Example Notch Filters (3)

il

a b

FIGURE 4.66

(a) Result
(spectrum) of
applying a notch
pass filter to

the DFT of
Fig.4.65(a).

(b) Spatial
pattern obtained
by computing the
IDFT of (a).
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Spectrogram (Optional)
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Short-Time Fourier Transform (STFT)

e STFT can be computed as a N-point windowed DFT as follows (in
practice FFT is usually used to compute the DFT in each frame ):

N-1
X|k,m] = x[m s + n]w[n]e_jwk"

. . 21k
wy is the discrete angular frequency, w;, = %,k =01,..,N—1

m is the time-frame index

is the hop size

w|n] is a window function, such as rectangular, Hann windows

47



Spectrogram : Time-Frequency Analysis Using STFT

* Spectrogram of a digital signal can be computed as
magnitude squared STFT:

Spectrogram{x[n]} = |X[k, m]|?

* Begin to be used since 1940s

* Spectrograms are a way of viewing hundreds of sequential
power spectra, so we can see how the spectrum of a signal
changes over time.

= This is done by turning the spectrum sideways, reducing each bar Spectrogram of the spoken
on the spectrum to a dot, and using the color of the dot to words "nineteenth century

symbolize the height of the bar (i.e., the amplitude or intensity of
the component frequency)

L.M. Po 48



Construction of Spectrogram

* Spectrogram is a digital signal representation by a sequence of spectral vectors

O _-1
O _=§
O _= &
O _ 1§

o Hhee

Arplce

—> _ 1

—O =

—» _= 5

— _ =3
= 1

AEEEE T

Spectral
vectors
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Ampltce

——

Magnitude
of STFT

L.M. Po

~N

xI

3

c__, Spectral
a% Vectors
L

* MAP spectral magnitude to a grey level (0-255) value. O represents black

and represents
e Higher the magnitude, darker the corresponding region.

e Color heat map is commonly used today.




Spectrogram: Digital Signal Represented a Sequence of Spectral Vectors
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Spectrogram : Python Code

import numpy as np

from IPython.display import Audio 500 —20
import matplotlib.pyplot as plt
plt.rcParams|['figure.figsize']=[12,8] —40
plt.rcParams.update ({'font.size':18}) 400
Fs = 1000 :'I\:l
dt = 1/Fs 3 3001
t = . 0,2,dt c
np.arange ( ) S 100
£f0 = 50 -
oy
f1 = 250 Y 500! r—120
tl = 2 -
X = np.cos (2*np.pi*t* (£0 + (f1- -—140
£0) *np.power (t,2)/ (3*tl1**2)))
100
-160
plt.specgram(x, NFFT=128, Fs=1/dt, noverlap=120,
cmap="'jet r') | —180
0 ’ - - - - ;
plt.colorbaz () 025 050 075 1.00 125 150 1.75

plt.show() .
Time (sec.)

https://www.youtube.com/watch?v=TJGIxdW7Fb4&list=PLMrJAkhleNNT Xh30y0Y4LTj00x08GqsC&index=29
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https://www.youtube.com/watch?v=TJGlxdW7Fb4&list=PLMrJAkhIeNNT_Xh3Oy0Y4LTj0Oxo8GqsC&index=29

Some Real Spectrograms

sampies
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Why we are bothered about spectrograms?

sampies
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Why we are bothered about spectrograms?

sampies

Sounds can be
identified much
better by the
Formants and by
their transitions
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Before deep neural network ear, Hidden Marko Models implicitly model these spectrograms to

perform speech recognition.

L.M. Po
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Usefulness of Spectrogram

* Time-Frequency representation of the digital signal
e Spectrogram is a tool to study speech and audio signals
* Phones and their properties are visually studied by phoneticians

* Hidden Markov Models implicitly model spectrograms for speech to text
systems
e Useful for evaluation of text to speech systems

= A high-quality text to speech system should produces synthesized speech whose
spectrograms should nearly match with the natural sentences.

56



Mel-Spectrogram and MFCCs

https://www.youtube.com/watch?v=hF72sY70 IQ

https://www.youtube.com/watch?v=9GHCiiDLHQ4



https://www.youtube.com/watch?v=hF72sY70_IQ
https://www.youtube.com/watch?v=9GHCiiDLHQ4

Mel Scale

e Studies have shown that humans do not perceive
frequencies on a linear scale. We are better at detecting
differences in lower frequencies than higher frequencies.

* For example, we can easily tell the difference between
500 and 1000 Hz, but we will hardly be able to tell a
difference between 10,000 and 10,500 Hz, even though
the distance between the two pairs are the same.

* 1In 1937, Stevens, Volkmann, and Newmann proposed a
unit of pitch such that equal distances in pitch sounded
equally distant to the listener. This is called the mel
scale.

https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53
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https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53

Hz

Mel Spectrogram

* A mel spectrogram is a spectrogram where the frequencies are

converted to the mel scale.

Spectrogram
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Mel Spectrogram Computation using librosa

import librosa
import librosa.display
import matplotlib.pyplot as plt

y, Sr = librosa.load('./Oeeaebcb_S.wav’)

spect = np.abs(librosa.stft(y, hop length=512))
spect librosa.amplitude to db(spect, ref=np.max)

librosa.display.specshow (spect, sr=sr, x axis='time',6 y axis='log');
plt.colorbar (format='%+2.0f dB');
plt.title('Spectrogram’);

mel spect = librosa.feature.melspectrogram(y=y, sr=sr, n fft=2048, hop length=1024)
mel spect = librosa.power to db(spect, ref=np.max)librosa.display.specshow(mel spect,
y axis="'mel', fmax=8000, x axis='time');

plt.title('Mel Spectrogram');

plt.colorbar (format='%+2.0f dB');



MFCC (Mel Frequency Cepstral Coefficients

* Ever heard the word cepstral before?
* |t’s spectral with the spec reversed!

* For a basic understanding, cepstrum
is the information of rate of change in
spectral bands.
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https://medium.com/prathena/the-dummys-guide-to-mfcc-aceab2450fd



https://medium.com/prathena/the-dummys-guide-to-mfcc-aceab2450fd

MFCC

* On taking the log of the magnitude of this Fourier spectrum, and then
again taking the spectrum of this log by a cosine transformation, we
observe a peak wherever there is a periodic element in the original time
signal.

* Since we apply a transform on the frequency spectrum itself, the

resulting spectrum is neither in the frequency domain nor in the time
domain and hence Bogert et al. decided to call it the quefrency domain.

* And this spectrum of the log of the spectrum of the time signal was
named cepstrum.


https://www.fceia.unr.edu.ar/prodivoz/Oppenheim_Schafer_2004.pdf
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OpenAl Whisper

(Automatic Speech Recognition)



Whisper : ASR

* Whisper is an automatic speech recognition (ASR) system trained on
680,000 hours (77 years) of multilingual and multitask supervised data
collected from the web

* |t has added robustness to accents, background noise and technical
sound analysis and modelling

* It has enabled transcription for multiple languages

* OpenAl has sourced it for further application building and development
around it.



Whisper Examples

Whisper examples: Speed talking v

This is the Micro Machine Man presenting the most midget miniature motorcade of
Micro Machines. Each one has dramatic details, terrific trim, precision paint jobs,
plus incredible Micro Machine Pocket Play Sets. There's a police station, fire station,
restaurant, service station, and more. Perfect pocket portables to take any place.
And there are many miniature play sets to play with, and each one comes with its
own special edition Micro Machine vehicle and fun, fantastic features that
miraculously move. Raise the boatlift at the airport marina. Man the gun turret at the
army base. Clean your car at the car wash. Raise the toll bridge. And these play sets
fit together to form a Micro Machine world. Micro Machine Pocket Play Sets, so
tremendously tiny, so perfectly precise, so dazzlingly detailed, you'll want to pocket
them all. Micro Machines are Micro Machine Pocket Play Sets sold separately from
Galoob. The smaller they are, the better they are.

https://openai.com/blog/whisper/
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https://openai.com/blog/whisper/

Whisper’s Architecture

* Itisimplemented as encoder-decoder architecture
* |t takes in 30-second chunks of audio input and converts into a log-Mel spectrogram
 Decoder predicts corresponding text captions

* Special tokens have been added which helps in performing further tasks like
language identification, phrase-level timestamps, multilingual speech transcription,
and to-English speech translation.

* One-third of whisper’s dataset is non-English
= |t does a great job of transcribing audio in the original language or translating to English

= |t does a good job of learning speech-to-text tasks and outperforms supervised SOTA on CoVoST2
to English zero-shot.

= Whisper performs better on zero-shots on different datasets because it is trained on fashion.

= |t's not fine-tuned on any specific dataset, so it doesn't beat the LibriSpeech benchmark, but it
performs better when tested on different datasets.



Whisper Models: Tiny, Base, Small, Medium, Large

Size Parameters English-only model  Multilingual model Required VRAM  Relative speed
tiny 39M tiny.en tiny ~1GB ~32x
base 74 M base.en base ~1GB ~16x
small 244 M small.en small ~2 GB ~BX
medium 769 M medium.en medium ~5 GB ~2X

large 1550 M N/A large ~10 GB 1x



Hugging Face’s Whisper Demo

* https://huggingface.co/spaces/openai/whisper

s Whisper

Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse
audio and is also a multi-task model that can perform multilingual speech recognition as well as
speech translation and language identification. This demo cuts audio after around 30 secs.

Transcribe

Record from microphone



https://huggingface.co/spaces/openai/whisper

