
FFT and Its Applications
EE4015 Digital Signal Processing

Dr. Lai-Man Po
Department of Electrical Engineering

City University of Hong Kong

Content
• Fast Fourier Transform (FFT) algorithms

§ Decimation-in-Time
§ Decimation-in-Frequency

• Applications of FFT
§ Fast Convolution
§ Spectral Analysis
§ Signal Denoising

• Audio Signal Denoising
• Notch Filtering for Image Processing (Optional)

§ Spectrogram – Time-Frequency Analysis (Optional)

2L.M. Po

Fast Fourier Transform (FFT)

Fast Fourier Transform (FFT)
• The Fast Fourier Transform (FFT) is simply a mathematical technique to

accelerate the calculation of the DFT. It was invented by Gauss in 1805
and re-invented by Cooley and Tukey in 1965.
§ Typically, if the DFT is directly calculated for a block of 2N samples e.g. 512 or

1024 samples (N) it would make the calculation of the DFT quite demanding.

§ The FFT simply uses repetition and redundancy in the calculation to speed it up.

• The FFT is simply a FAST ALOGORITHM to calculate the DFT, NOT a
different transform.

4L.M. Po

Fast Fourier Transform (FFT)
• FFT is a fast algorithm for DFT and inverse DFT computations.

• Complexity of direct computation of DFT:
§ Each DFT coefficient requires

• N complex multiplications
• N-1 complex additions

§ All N DFT coefficients require
• N2 complex multiplications
• N(N-1) complex additions

𝑋 𝑘 = $
!"#

$%&

𝑥 𝑘 𝑊$
'! 𝑥 𝑛 =

1
𝑁$

'"#

$%&

𝑋 𝑘 𝑊$
%'!

• Direct DFT Computation : 𝑂 𝑁!

• FFT Computation : 𝑂 𝑁 log!𝑁

5L.M. Po

Complexities of Direct DFT computation and FFT

6L.M. Po

FFT Exploits symmetries of 𝑒!"
&'
(#$

• 𝑊! = 𝑒"#
!"
(Twiddle Factor)

• FFT fast algorithms are based on symmetry properties
§ Conjugate symmetry

§ Periodicity in n and k

𝑊!
$(!"&) = 𝑒"#

()
! $(!"&) = 𝑒"#

()
! $!𝑒"#

()
! $("&) = 𝑊!

$& ∗

𝑊!
$& = 𝑊!

$!+& = 𝑊!
($+!)&

7L.M. Po

Decimation-in-Time FFT Algorithm
• The basic idea is to compute the DFT according to

• Substituting n=2r and n=2r+1 for the first and second summation terms:

8L.M. Po

𝑊!
" = 𝑒#

$"%
! " = 𝑒#

$"%
!/" = 𝑊!/"

'

N/2-point DFT for even samples N/2-point DFT for odd samples

8-point DFT example using decimation-in-time
• Two N/2-point DFTs

§ 2(N/2)2 complex multiplications
§ 2(N/2)2 complex additions

• Combining the DFT outputs
§ N complex multiplications
§ N complex additions

• Total complexity
§ N2/2+N complex multiplications
§ N2/2+N complex additions
§ More efficient than direct DFT

• Repeat same process
§ Divide N/2-point DFTs into

• Two N/4-point DFTs
• Combine outputs

9L.M. Po

• After two steps of
decimation in time

• Repeat until we are left with
two-point DFT’s

10L.M. Po

Decimation-in-Time FFT Algorithm
• Final flow graph for 8-point

decimation in time
• Complexity:

§ 𝑁𝑙𝑜𝑔!(𝑁) complex
multiplications and
additions

11L.M. Po

Butterfly Computation
• Flow graph constitutes of butterflies

• We can implement each butterfly with one
multiplication

• Final complexity for decimation-in-time FFT
§ 𝑁/2 𝑙𝑜𝑔((𝑁) complex multiplications and

additions

12L.M. Po

Decimation-in-Frequency FFT Algorithm
• The basic idea is to compute the frequency-domain sequence X[k] into

successively smaller subsequences

13L.M. Po

8-Point Decimation-In-Frequency FFT

14L.M. Po

Applications of FFT
• FFT is a very powerful tools for computer-based frequency domain

analysis
§ Fast Convolution

§ Spectral Analysis (e.g. finding periodicities)
§ Signal Denoising

• Audio Signal Denoising

• Notch Filtering for Image Processing (Optional)

§ Spectrogram – Time-Frequency Analysis (Optional)

15L.M. Po

Fast Convolution with FFT
• The convolution of two finite-duration sequences

§ 𝑦 𝑛 = 𝑥% 𝑛 ⊗ 𝑥! 𝑛
• where 𝑥% 𝑛 is of length 𝑁% and 𝑥! 𝑛 is of length 𝑁! requires computation of (𝑁%
+ 𝑁! − 1) samples which corresponds to 𝑁%𝑁! −min{(𝑁%, 𝑁!} complex
multiplications

• An alternate approach is to use FFT:
§ 𝑦 𝑛 = 𝐼𝐹𝐹𝑇{𝐹𝐹𝑇 𝑥% 𝑛 > 𝐹𝐹𝑇{𝑥! 𝑛 }}

• In practice:

§ Choose the minimum 𝑁 ≥ 𝑁% + 𝑁! − 1 and is power of 2
§ Zero-pad 𝑥% 𝑛 and 𝑥! 𝑛 to length 𝑁, say, 𝑥% 𝑛 and 𝑥! 𝑛
§ 𝑦 𝑛 = 𝐼𝐹𝐹𝑇{𝐹𝐹𝑇 𝑥% 𝑛 > 𝐹𝐹𝑇{𝑥! 𝑛 }}

16L.M. Po

Block Diagram of Fast Convolution with FFT

• If the impulse response is NOT the same size as the input sequence 𝑥 𝑛 , we have to
pad the ℎ 𝑛 with zeros to match the length

• Multiplication is point-by-point, of complex numbers

𝑥 𝑛

ℎ 𝑛
𝐻 𝑘

𝑋 𝑘
𝑌 𝑘

𝑦 𝑛
FFT

FFT

IFFT

17L.M. Po

Complexity of Fast Convolution with FFT
• The inverse DFT has a factor of 1/𝑁, the IFFT thus requires 𝑁 + 𝑁/2 𝑙𝑜𝑔((𝑁)

multiplications.
• As a result, the total multiplications for 𝑦 𝑛 is 2𝑁 + 3𝑁/2 𝑙𝑜𝑔((𝑁)

• Using FFT is more computationally efficient than direct convolution computation for
longer data lengths:

18L.M. Po

Why Fast Convolution with FFT?
• Cost (number of operations) of convolution in time domain (𝑥 𝑛 ∗ ℎ 𝑛)

§ O(n N)

§ N = number of points of input sequence 𝑥 𝑛
§ n = the length of the impulse response ℎ 𝑛

• Cost of the FFT based convolution computation in frequency domain (𝑋 𝑘 𝐻 𝑘)
§ O(N log N)
§ The total cost of signal processing in the frequency domain is dominated by FFT

Plot of cost vs
n, with input
size N fixed

Convolution in frequency domain is faster for long impulse response ℎ 𝑛 (when n gets much larger than log(N))

O(N log N)

O(nN)

n

19L.M. Po

Spectral Analysis Using FFT

Load Audio File and Play the Sound
import matplotlib.pyplot as plt

import numpy as np
from scipy.io import wavfile

Load sound file from GitHub
!wget https://github.com/R6500/Python-bits/raw/master/Colaboratory/Sounds/Bicycle%20bell%203.wav

Load the file on an object

data = wavfile.read('Bicycle bell 3.wav')

Separete the object elements
Fs = data[0] # Sample Rate

x = data[1] # Signal Data
n = x.size # Number of samples
T = 1/Fs # Sample Period T

t = np.arange(0, n)*T # Time vector

Show information about the object
print('Sample rate:',Fs,'Hz')
print('Total time:',n*T,'s')

plt.plot(t,x,color='c',LineWidth=1.5,label='Sound wave')
plt.xlim(t[0],t[-1])

plt.title('Sound Waveform')
plt.ylabel('Amplitude')

plt.xlabel('Time (sec.)')
plt.legend()
plt.show()

21

FFT Signal Analysis using Numpy FFT
n = x.size

X = np.fft.fft(x,n)
PSD = X * np.conj(X)/n
freq = (Fs/n)*np.arange(n)

L = np.arange(1,np.floor(n/2),dtype='int')

fig,axs = plt.subplots(2,1)

plt.sca(axs[0])

plt.plot(t,x,color='c',LineWidth=1.5,label='Sound Waveform')
plt.xlim(t[0],t[-1])
plt.ylabel('Amplitude')

plt.xlabel('Time (sec.)')
plt.legend()

plt.sca(axs[1])
plt.plot(freq[L],PSD[L],color='c',LineWidth=1.5,label='FFT')

plt.xlim(freq[L[0]],freq[L[-1]])
plt.ylabel('Magnitude')
plt.xlabel('Frequency (Hz)')

plt.legend()
plt.show()

22L.M. Po

Fourier Analysis of Signals Using FFT
• One major application of the FFT: Analyze Signals
• Let’s analyze frequency content of a continuous-time signal

• Steps to analyze signal with FFT
1. Remove high-frequencies to prevent aliasing after sampling
2. Sample the signal 𝑥& 𝑡 to convert to discrete-time signal 𝑥[𝑛]
3. Window to limit the duration of the signal
4. Take FFT of the resulting signal

FFT

23L.M. Po

𝑥[𝑛] 𝑣[𝑛]

𝑤[𝑛]

𝑉[𝑘]

Example of Signal Analysis Using FFT (1)

Continuous-time signal

Anti-aliasing filter

Signal after filtering

24L.M. Po

𝑋(𝑗Ω

Example of Signal Analysis Using FFT (2)

DTFT of the Sampled DT
signal

Frequency response of
window

Windowed and sampled
Fourier Transform

DTFT

DTFT

𝑋 𝑒$)

𝑊 𝑒$)

𝑉 𝑒$) , 𝑉[𝑘]
DTFT
FFT

𝑉 𝑒$) = 𝑋 𝑒$) ∗ 𝑊 𝑒$)

𝑉[𝑘] = 𝑉 𝑒$) 4
)*"%! +

25L.M. Po

Effect of Windowing on Sinusoidal Signals
• The effects of anti-aliasing filtering and sampling is known

• We will analyze the effect of windowing

• Choose a simple signal to analyze this effect: sinusoids
§ 𝑠' 𝑡 = A(cos Ω(𝑡 + 𝜃(+A)cos Ω)𝑡 + 𝜃)

• Assume ideal sampling and no aliasing we get
§ 𝑥[𝑛] = A(cos ω(𝑛 + 𝜃(+A)cos ω)𝑛 + 𝜃)

• And after windowing we have
§ 𝑣[𝑛] = 𝑥[𝑛]𝑤[𝑛] = A(𝑤[𝑛]cos ω(𝑛 + 𝜃(+A)𝑤 𝑛 cos ω)𝑛 + 𝜃)

FFT

26L.M. Po

• Calculate the DTFT of 𝑣[𝑛] by writing out the cosines as

𝑣[𝑛] =
A#
2 𝑤[𝑛]𝑒)*!𝑒)+!! +

A#
2 𝑤[𝑛]𝑒%)*!𝑒%)+!! +

A&
2 𝑤[𝑛]𝑒

)*"𝑒)+"! +
A&
2 𝑤[𝑛]𝑒

%)*"𝑒%)+"!

𝑉 𝑒)+ =
A#
2
𝑒)*!𝑊 𝑒)(+%+!)! +

A#
2
𝑒%)*!𝑊(𝑒)(+.+!)!) +

A&
2
𝑒)*"𝑊(𝑒)(+%+")!) +

A&
2
𝑒%)*"𝑊(𝑒)(+.+")!)

• Consider a rectangular window w[n]
of length 64

• Assume 1/T=10 kHz, A0=1 and A1=0.75
and phases to be zero

• Magnitude of the DTFT of the window

DTFT of the
rectangular

window

27L.M. Po

|𝑊 𝑒$) |

Magnitude of the DTFT of the sampled signal

• We expect to see dirac
function at input
frequencies

• Due to windowing we see,
instead, the response of
the window

• Note that both tones will
affect each other due to
the smearing
§ This is called leakage:

small in this example

28L.M. Po

ω,−ω, ω'−ω'

|𝑉 𝑒$) |

Effect of Windowing on Sinusoidal Signals
• If the input tones are close to each other

The tones are so close that they have
considerable affect on each others

magnitude

The tones are too close to even separate in this case
• They cannot be resolved using this particular window

29L.M. Po

The Effect of Spectral Sampling
• FFT samples the DTFT with N equally spaced

samples at

• Or in terms of continuous-frequency

• Example: Signal after rectangular
windowing

𝜔8 =
2𝜋𝑘
𝑁

𝑘 = 0,1, … , 𝑁 − 1

Ω8 =
2𝜋𝑘
𝑁𝑇

𝑘 = 0,1, … , ⁄𝑁 2

𝑣 𝑛 = = >cos
2𝜋
14 𝑛 + 0.75co s(

4𝜋
15 𝑛 0 ≤ 𝑛 ≤ 63

0 𝑒𝑙𝑠𝑒

N=64

30L.M. Po

• Note the peak of the DTFTs are in
between samples of the FFT

• FFT does not necessary reflect real
magnitude of spectral peaks

𝜔% =
!9
%:
𝑛 = !9

;:
𝑘 ⇒ 𝑘 = 4.5714

𝜔! =
:9
%<
𝑛 = !9

;:
𝑘 ⇒ 𝑘 = 8.5333

DTFT FFT

31L.M. Po

• Let’s consider another sequence after windowing we have

𝑣 𝑛 = U Vcos
2𝜋
16

𝑛 + 0.75 cos(
2𝜋
8
𝑛 0 ≤ 𝑛 ≤ 63

0 𝑒𝑙𝑠𝑒

𝜔% =
!9
%;
𝑛 = !9

;:
𝑘 ⇒ 𝑘 = 4

𝜔! =
!9
=
𝑛 = !9

;:
𝑘 ⇒ 𝑘 = 8

32L.M. Po

• In this case N samples cover
exactly 4 and 8 periods of the
tones

• The samples correspond to the
peak of the lobes

• The magnitude of the peaks are
accurate

• Note that we don’t see the side
lobes in this case

DTFT

FFT

33L.M. Po

Window Functions
• Two factors are determined by the

window function
§ Resolution: influenced mainly by

the main lobe width
§ Leakage: relative amplitude of side

lobes versus main lobe
• We will learn more in FIR filter design

lecture that we can choose various
windows to trade-off these two factors

• Example: Kaiser window

Kaiser window

34L.M. Po

Example: FFT Analysis with Kaiser Window (1)
• The windowed signal is given as

• Where 𝑤$ 𝑛 is a Kaiser window with β=5.48 for a relative side lobe
amplitude of -40 dB

• The windowed signal

V𝑣 𝑛 = 𝑤8 𝑛 cos
2𝜋
14

𝑛 + 0.75𝑤8 𝑛 co s(
4𝜋
15

𝑛

35L.M. Po

Example: FFT Analysis with Kaiser Window (2)

• FFT with this Kaiser window

• The two tones are clearly resolved with the Kaiser window

36L.M. Po

Signal Denoising Using FFT

Audio Signal Denoising Using FFT
import numpy as np

import matplotlib.pyplot as plt
plt.rcParams['figure.figsize']=[16,12]
plt.rcParams.update({'font.size':18})

Create a simple signal with two frequencies

Fs = 1000 # The sampling frequency is 1kHz
dt = 1/Fs # 0.001
t = np.arange(0,1,dt)

Sum of two sin waves (50Hz and 120Hz)
x = np.sin(2*np.pi*50*t) + np.sin(2*np.pi*120*t)
x_clean = x

x = x + 2.5*np.random.randn(len(t))

plt.plot(t,x,color='c',LineWidth=1.5,label='Noisy')
plt.plot(t,x_clean, color='r',LineWidth=2,label='Clean')

plt.xlim(t[0],t[-1])
plt.legend()

plt.show()

38L.M. Po

Compute Power Spectrum Density of the Noisy
Signal by FFT
n = len(t)

X = np.fft.fft(x,n)
PSD = X * np.conj(X)/n
freq = (1/(dt*n))*np.arange(n)
L = np.arange(1,np.floor(n/2),dtype='int')

fig,axs = plt.subplots(2,1)

plt.sca(axs[0])
plt.plot(t,x,color='c',LineWidth=1.5,label='Noisy')

plt.plot(t,x_clean,color='r',LineWidth=2,label='Clean')
plt.xlim(t[0],t[-1])
plt.ylabel('Amplitude')

plt.xlabel('Time (sec.)')
plt.legend()

plt.sca(axs[1])
plt.plot(freq[L],PSD[L],color='c',LineWidth=1.5,label='Noisy')

plt.xlim(freq[L[0]],freq[L[-1]])
plt.ylabel('Magnitude')

plt.xlabel('Frequency (Hz)')
plt.legend()
plt.show()

39L.M. Po

Use the PSD to Filter Out Noise
indices = PSD > 100

PSDclean = PSD * indices
X = indices * X
x_filtered = np.fft.ifft(X)

Plots
fig,axs = plt.subplots(3,1)
plt.sca(axs[0])
plt.plot(t,x,color='c',LineWidth=1.5,label='Noisy')
plt.plot(t,x_clean,color='r',LineWidth=2,label='Clean')
plt.xlim(t[0],t[-1])
plt.ylabel('Amplitude')
plt.xlabel('Time (sec.)')
plt.legend()
plt.sca(axs[1])
plt.plot(t,x_filtered,color='b',LineWidth=2,label='Filtered')
plt.xlim(t[0],t[-1])
plt.ylabel('Amplitude')
plt.xlabel('Time (sec.)')
plt.legend()
plt.sca(axs[2])
plt.plot(freq[L],PSD[L],color='c',LineWidth=2,label='Noisy')
plt.plot(freq[L],PSDclean[L],color='b',LineWidth=1.5,label='Filtered')
plt.xlim(freq[L[0]],freq[L[-1]])
plt.ylabel('Magnlitude')
plt.xlabel('Frequency (Hz)')
plt.legend()
plt.show()

40L.M. Po

Notch Filters by 2D-FFT (Optional)
• A filter that rejects (or passes) specific frequencies
• Example: periodic noise corresponds to spikes or lines in the Fourier domain
• Can design a filter with zeros at those frequencies … this will remove the

noise
• Examples:

§ Image mosaics
§ Scan line noise
§ Halftoning noise

• (moire patterns)

41L.M. Po

Steps in Notch Filtering
• Look at spectrum |F(u,v)| of noisy image f(x,y), find

frequencies corresponding to the noise
• Create a mask image M(u,v) with notches (zeros) at those

places, 1’s elsewhere

• Multiply mask with original image transform; this zeros out
noise frequencies

G(u,v) = M(u,v) F(u,v)
• Take inverse Fourier transform to get restored image

g(x,y) = F-1(G(u,v))

42L.M. Po

Example Notch Filters (1)

43L.M. Po

• A Butterworth notch reject
filter D0 = 3 and n = 4 for
notch pairs

Example Notch
Filters (2)
• Example of horizontal scan

lines
• Create a notch of vertical lines

in frequency domain

44L.M. Po

Example Notch Filters (3)

45L.M. Po

Spectrogram (Optional)

Short-Time Fourier Transform (STFT)
• STFT can be computed as a N-point windowed DFT as follows (in

practice FFT is usually used to compute the DFT in each frame):

§ 𝜔8 is the discrete angular frequency, 𝜔8 =
!98
>
, 𝑘 = 0,1, … , 𝑁 − 1

§ 𝑚 is the time-frame index
§ 𝑠 is the hop size
§ 𝑤[𝑛] is a window function, such as rectangular, Hann windows

𝑋 𝑘,𝑚 = a
?@A

>B%

𝑥[𝑚 𝑠 + 𝑛]𝑤[𝑛]𝑒BCD!?

47L.M. Po

Spectrogram : Time-Frequency Analysis Using STFT

• Spectrogram of a digital signal can be computed as
magnitude squared STFT:

• Begin to be used since 1940s

• Spectrograms are a way of viewing hundreds of sequential
power spectra, so we can see how the spectrum of a signal
changes over time.
§ This is done by turning the spectrum sideways, reducing each bar

on the spectrum to a dot, and using the color of the dot to
symbolize the height of the bar (i.e., the amplitude or intensity of
the component frequency)

Spectrogram of the spoken
words "nineteenth century"

𝑆𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚 𝑥 𝑛 = 𝑋 𝑘,𝑚 !

48L.M. Po

Construction of Spectrogram
• Spectrogram is a digital signal representation by a sequence of spectral vectors

FFT

Spectral
vectors

FFT FFT

49L.M. Po

FFT

Spectral

Vectors

FFT FFT FFT FFT FFT FFT FFT FFT FFT FFT FFT FFT FFT

Fr
eq

ue
nc

y
(H

z)

Magnitude
of STFT

• MAP spectral magnitude to a grey level (0-255) value. 0 represents black
and 255 represents white.

• Higher the magnitude, darker the corresponding region.
• Color heat map is commonly used today.

50L.M. Po

FFT

Spectral
Vectors

FFT FFT FFT FFT FFT FFT FFT FFT FFT FFT FFT FFT FFT

Fr
eq

ue
nc

y
(H

z)

Spectrogram: Digital Signal Represented a Sequence of Spectral Vectors

Time

51L.M. Po

Spectrogram : Python Code
import numpy as np
from IPython.display import Audio
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize']=[12,8]
plt.rcParams.update({'font.size':18})

Fs = 1000
dt = 1/Fs
t = np.arange(0,2,dt)
f0 = 50
f1 = 250
t1 = 2
x = np.cos(2*np.pi*t*(f0 + (f1-
f0)*np.power(t,2)/(3*t1**2)))

plt.specgram(x, NFFT=128, Fs=1/dt, noverlap=120,
cmap='jet_r')
plt.colorbar()
plt.show()

https://www.youtube.com/watch?v=TJGlxdW7Fb4&list=PLMrJAkhIeNNT_Xh3Oy0Y4LTj0Oxo8GqsC&index=29

Time (sec.)

Fr
eq

ue
nc

y
(H

z)

52L.M. Po

https://www.youtube.com/watch?v=TJGlxdW7Fb4&list=PLMrJAkhIeNNT_Xh3Oy0Y4LTj0Oxo8GqsC&index=29

Some Real Spectrograms

Dark regions indicate
peaks (formants)
in the spectrum

53L.M. Po

Why we are bothered about spectrograms?

Phones and their
properties are

better observed in
spectrogram

54L.M. Po

Why we are bothered about spectrograms?

Sounds can be
identified much

better by the
Formants and by
their transitions

Before deep neural network ear, Hidden Marko Models implicitly model these spectrograms to
perform speech recognition.

55L.M. Po

Usefulness of Spectrogram
• Time-Frequency representation of the digital signal

• Spectrogram is a tool to study speech and audio signals

• Phones and their properties are visually studied by phoneticians

• Hidden Markov Models implicitly model spectrograms for speech to text
systems

• Useful for evaluation of text to speech systems
§ A high-quality text to speech system should produces synthesized speech whose

spectrograms should nearly match with the natural sentences.

56L.M. Po

Mel-Spectrogram and MFCCs

https://www.youtube.com/watch?v=hF72sY70_IQ

https://www.youtube.com/watch?v=9GHCiiDLHQ4

https://www.youtube.com/watch?v=hF72sY70_IQ
https://www.youtube.com/watch?v=9GHCiiDLHQ4

Mel Scale
• Studies have shown that humans do not perceive

frequencies on a linear scale. We are better at detecting
differences in lower frequencies than higher frequencies.

• For example, we can easily tell the difference between
500 and 1000 Hz, but we will hardly be able to tell a
difference between 10,000 and 10,500 Hz, even though
the distance between the two pairs are the same.

• In 1937, Stevens, Volkmann, and Newmann proposed a
unit of pitch such that equal distances in pitch sounded
equally distant to the listener. This is called the mel
scale.

https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53

https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53

Mel Spectrogram
• A mel spectrogram is a spectrogram where the frequencies are

converted to the mel scale.
Mel Spectrogram

Mel Spectrogram Computation using librosa
import librosa
import librosa.display
import matplotlib.pyplot as plt

y, sr = librosa.load('./0eeaebcb_5.wav’)

spect = np.abs(librosa.stft(y, hop_length=512))
spect = librosa.amplitude_to_db(spect, ref=np.max)

librosa.display.specshow(spect, sr=sr, x_axis='time', y_axis='log');
plt.colorbar(format='%+2.0f dB');
plt.title('Spectrogram’);

mel_spect = librosa.feature.melspectrogram(y=y, sr=sr, n_fft=2048, hop_length=1024)
mel_spect = librosa.power_to_db(spect, ref=np.max)librosa.display.specshow(mel_spect,
y_axis='mel', fmax=8000, x_axis='time');
plt.title('Mel Spectrogram');
plt.colorbar(format='%+2.0f dB');

MFCC (Mel Frequency Cepstral Coefficients
• Ever heard the word cepstral before?
• It’s spectral with the spec reversed!
• For a basic understanding, cepstrum

is the information of rate of change in
spectral bands.

https://medium.com/prathena/the-dummys-guide-to-mfcc-aceab2450fd

Cepstrum

https://medium.com/prathena/the-dummys-guide-to-mfcc-aceab2450fd

MFCC
• On taking the log of the magnitude of this Fourier spectrum, and then

again taking the spectrum of this log by a cosine transformation, we
observe a peak wherever there is a periodic element in the original time
signal.

• Since we apply a transform on the frequency spectrum itself, the
resulting spectrum is neither in the frequency domain nor in the time
domain and hence Bogert et al. decided to call it the quefrency domain.

• And this spectrum of the log of the spectrum of the time signal was
named cepstrum.

https://www.fceia.unr.edu.ar/prodivoz/Oppenheim_Schafer_2004.pdf

MFCC

DCT

Mel Spectrogram

OpenAI Whisper
(Automatic Speech Recognition)

Whisper : ASR
• Whisper is an automatic speech recognition (ASR) system trained on

680,000 hours (77 years) of multilingual and multitask supervised data
collected from the web

• It has added robustness to accents, background noise and technical
sound analysis and modelling

• It has enabled transcription for multiple languages

• OpenAI has sourced it for further application building and development
around it.

Whisper Examples

https://openai.com/blog/whisper/

https://openai.com/blog/whisper/

https://openai.com/blog/whisper/

https://openai.com/blog/whisper/

Whisper’s Architecture
• It is implemented as encoder-decoder architecture
• It takes in 30-second chunks of audio input and converts into a log-Mel spectrogram
• Decoder predicts corresponding text captions
• Special tokens have been added which helps in performing further tasks like

language identification, phrase-level timestamps, multilingual speech transcription,
and to-English speech translation.

• One-third of whisper’s dataset is non-English
§ It does a great job of transcribing audio in the original language or translating to English
§ It does a good job of learning speech-to-text tasks and outperforms supervised SOTA on CoVoST2

to English zero-shot.
§ Whisper performs better on zero-shots on different datasets because it is trained on fashion.
§ It's not fine-tuned on any specific dataset, so it doesn't beat the LibriSpeech benchmark, but it

performs better when tested on different datasets.

Whisper Models: Tiny, Base, Small, Medium, Large

Hugging Face’s Whisper Demo
• https://huggingface.co/spaces/openai/whisper

https://huggingface.co/spaces/openai/whisper

