z-Transform Properties and LTI System Analysis

EE4015 Digital Signal Processing

Dr. Lai-Man Po

Department of Electrical Engineering City University of Hong Kong

Overview

- Properties of z-transform
- Transfer Function
- Transfer Function & Difference Equation
- Transfer Function & Impulse Response
- Transfer Function & System Stability
- Difference Equation & System Stability
- Pole-Zero Plot
- Stability Analysis based Pole-Zero Plot

Key Properties of the z-Transform

- 1. Linearity : $x_1[n] \leftrightarrow X_1(z) ROC = R_1$ and $x_2[n] \leftrightarrow X_2(z) ROC = R_2$ $ax_1[n] + bx_2[n] \leftrightarrow aX_1(z) + bX_2(z)$ $ROC = R_1 \cap R_2$
- 2. Time Shifting : $x[n n_o] \leftrightarrow z^{-n_o}X(z)$
- 3. Time Reversal : $x[-n] \leftrightarrow X(1/z)$
- 4. Exponential Scaling : $a^n x[n] \leftrightarrow X(z/a)$
- 5. Z-domain Differentiation : $nx[n] \leftrightarrow z \frac{dX(x)}{dz}$
- 6. Convolution : $x_1[n] * x_2[n] \leftrightarrow X_1(z)X_2(z)$ ROC = $R_1 \cap R_2$

Linearity of the z-Transform

• If $x_1[n] \leftrightarrow X_1(z)$ for z in ROC of \mathbb{R}_1 and $x_2[n] \leftrightarrow X_2(z)$ for z in ROC of \mathbb{R}_2 then

 $ax_1[n] + bx_1[n] \leftrightarrow aX_1(z) + bX_2(z)$ for z in ROC of $\mathbb{R}_1 \cap \mathbb{R}_2$

• Let $y[n] = ax_1[n] + bx_2[n]$ then

$$Y(z) = \sum_{n=-\infty}^{+\infty} y[n] z^{-n} = \sum_{n=-\infty}^{+\infty} (ax_1[n] + bx_2[n]) z^{-n}$$

= $a \sum_{n=-\infty}^{+\infty} x_1[n] z^{-n} + b \sum_{n=-\infty}^{+\infty} x_2[n] z^{-n} = aX_1(z) + bX_2(z)$
 $ROC = R_1 \cap R_2$

ROC Property of the z-Transform

- Note that the ROC of combined sequence may be larger than either ROC
 - This would happen if some pole/zero cancellation occurs
- Example: $x[n] = a^n u[n] a^n u[n N]$
 - Both sequences are right-sided
 - Both sequences have a pole z = a
 - Both have a ROC defined as |z| > |a|
 - In the combined sequence the pole at z = a cancels with a zero at z = a
 - The combined ROC is the entire z plane except z=0

ROC:
$$|z| > 0$$

$$X(z) = \frac{1}{z^{N-1}} \cdot \frac{z^N - a^N}{z - a}$$

Linearity Example 1

Find the z-transform of the signal x[n] defined by $x[n] = u[n] - (0.5)^n u[n]$

• Applying the Linear property of the z-transform, we have

 $X(z) = Z\{x[n]\} = Z\{u[n] - (0.5)^{n}u[n]\}$ $= Z\{u[n]\} - Z\{-(0.5)^{n}u[n]\}$ $= \frac{z}{z-1} - \frac{z}{z-0.5}, \quad ROC = |z| > 1$

Linearity Example 2

Find the z-transform of the signal x[n] defined by

 $x[n] = [3(2)^n - 4(3)^n]u[n]$

- Applying the linearity of the z-transform, we have
 - As we know $Z\{(a)^n u[n]\} = \frac{1}{1 az^{-1}}$ ROC: |z| > |a|
 - Applying the linearity of the z-transform, we have

$$X(z) = 3\frac{1}{1-2z^{-1}} - 4\frac{1}{1-3z^{-1}} \qquad ROC: |z| > 2 \cap |z| > 3$$
$$= 3\frac{z}{z-2} - 4\frac{z}{z-3} \qquad ROC: |z| > 3$$

Linearity Example 3

Find the z-transform of the signal x[n] defined by $x[n] = cos(\omega_o n)u[n]$

• We know

$$\cos(\omega_{o}n) = \frac{e^{j\omega_{o}n} + e^{-j\omega_{o}n}}{2} = \frac{1}{2}e^{j\omega_{o}n} + \frac{1}{2}e^{-j\omega_{o}n}$$

$$Z\{e^{j\omega_{o}n}u[n]\} = \frac{1}{1 - e^{j\omega_{o}z^{-1}}}, \quad ROC = |z| > 1$$

• Applying the linearity of the z-transform, we have

$$\begin{aligned} X(z) &= \frac{1}{2} Z\{e^{j\omega_0 n} u[n]\} + \frac{1}{2} Z\{e^{-j\omega_0 n} u[n]\} = \frac{1}{2} \left[\frac{1}{1 - e^{j\omega_0 z^{-1}}}\right] + \frac{1}{2} \left[\frac{1}{1 - e^{-j\omega_0 z^{-1}}}\right] \\ &= \frac{1}{2} \left[\frac{1 - e^{-j\omega_0 z^{-1}}}{(1 - e^{j\omega_0 z^{-1}})(1 - e^{-j\omega_0 z^{-1}})}\right] + \frac{1}{2} \left[\frac{1 - e^{j\omega_0 z^{-1}}}{(1 - e^{-j\omega_0 z^{-1}})(1 - e^{j\omega_0 z^{-1}})}\right] = \frac{1}{2} \left[\frac{1 - e^{-j\omega_0 z^{-1}} + 1 - e^{j\omega_0 z^{-1}}}{(1 - e^{-j\omega_0 z^{-1}})(1 - e^{j\omega_0 z^{-1}})}\right] \\ &= \frac{1}{2} \left[\frac{2 - z^{-1}(e^{j\omega_0} + e^{-j\omega_0})}{1 - z^{-1}(e^{j\omega_0} + e^{-j\omega_0}) + z^{-2}}\right] = \frac{1 - z^{-1}\cos(\omega_0)}{1 - 2z^{-1}\cos(\omega_0) + z^{-2}} \qquad ROC = |z| > 1 \end{aligned}$$

Time Shifting of the z-Transform

- A n_0 -sample delay in the time domain appears in the z domain as a z^{-n_0} factor.
- More generally, $X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$ $x[n] \longrightarrow n_0$ Delay $x[n-n_0]$

x[n]

• Let $y[n] = x[n - n_0]$

$$Y(z) = \sum_{n = -\infty}^{+\infty} y[n] z^{-n} = \sum_{n = -\infty}^{+\infty} x[n - n_0] z^{-n}$$

• Substitute $m = n - n_0$ $Y(z) = \sum_{m=-\infty}^{+\infty} x[m] z^{-m-n_0} = z^{-n_0} \sum_{m=-\infty}^{+\infty} x[m] z^{-m} = z^{-n_0} X(z)$

L.M. Po

 $\rightarrow x[n-n_0]$

 z^{-n_0}

Time Shifting Property Example

Find the z-transform of the signal x[n] using time shifting property

$$x[n] = (0.5)^{n-5}u[n-5]$$

Solution

$$Z\{(0.5)^n u[n]\} = \frac{1}{1 - 0.5z^{-1}}, \qquad ROC: |z| > 0.5$$

• Applying the time shifting property of the z-transform, we have

$$X(z) = z^{-5} Z\{(0.5)^n u[n]\}$$

= $z^{-5} \frac{1}{1 - 0.5z^{-1}} = \frac{z^{-4}}{z - 0.5}$ ROC = $|z| > 0.5$

Time Reversal Property

• $x[-n] \leftrightarrow X(1/z)$ ROC = $1/R_x$

Time Reversal Property Example

Find the z-transform of the signal $x[n] = a^{-n}u[-n]$

Solution

- The sequence of $a^{-n}u[-n]$ is Time-reversed version of $a^nu[n]$
- Applying the time reversal theorem of the z-transform, we have

$$X(z) = \frac{1}{1 - az} = \left(\frac{1}{-a}\right) \frac{1}{z - \frac{1}{a}} = \frac{-a^{-1}z^{-1}}{1 - a^{-1}z^{-1}}, \quad |z| < |a^{-1}| \quad \text{ROC is inverted}$$

Exponential Scaling Property

$$a^n x[n] \stackrel{Z}{\leftrightarrow} X(z/a) \qquad ROC = |a|R_x$$

- ROC is scaled by *a*
- All pole/zero locations are scaled
- If *a* is a positive real number: z-plane shrinks or expands
- If *a* is a complex number with unit magnitude it rotates

Exponential Scaling Example

• Example: We know the z-transform pair

$$u[n] \stackrel{Z}{\leftrightarrow} \frac{1}{1-z^{-1}} \qquad ROC = |z| > 1$$

• Let's find the z-transform of

$$x[n] = r^{n} \cos(\omega_{o} n) u[n] = \frac{1}{2} (re^{j\omega_{o}})^{n} u[n] + \frac{1}{2} (re^{-j\omega_{o}})^{n} u[n]$$

$$\frac{1}{2} \qquad \frac{1}{2}$$

$$X(z) = \frac{1/2}{1 - re^{j\omega_0}z^{-1}} + \frac{1/2}{1 - re^{-j\omega_0}z^{-1}} \qquad ROC = |z| > r$$

Z-Domain Differentiation Property

$$nx[n] \stackrel{Z}{\leftrightarrow} - z \frac{dX(z)}{dz} \qquad ROC = R_{x}$$

• For example, we want the inverse z-transform of

 $X(z) = \log(1 + az^{-1})$ |z| > |a|

• Let's differentiate to obtain rational expression

$$\frac{dX(z)}{dz} = -\frac{-az^{-2}}{1+az^{-1}} \Rightarrow -z\frac{dX(z)}{dz} = az^{-1}\frac{1}{1+az^{-1}}$$

• Making use of z-transform properties and ROC

$$nx[n] = a(-a)^{n-1}u[n-1]$$
$$x[n] = (-1)^{n-1}\frac{a^n}{n}u[n-1]$$

The z-Transform Convolution Property

- Convolution in time domain is equal to the multiplication in frequency domain and vice versa.
- If $x[n] \leftrightarrow X(z)$ and $y[n] \leftrightarrow Y(z)$, then

 $x[n] * y[n] \leftrightarrow X(z)Y(z)$ $ROC = R_x \cap R_y$

• Proof

$$\frac{Z\{x[n] * y[n]\}}{Z\{x[n] * y[n]\}} = \sum_{n=-\infty}^{\infty} \left\{ \sum_{k=-\infty}^{\infty} x[k]y[n-k] \right\} z^{-n}$$

$$= \sum_{k=-\infty}^{\infty} x[k] \sum_{n=-\infty}^{\infty} y[n-k]z^{-n} = \sum_{k=-\infty}^{\infty} x[k]z^{-k}Y(z) = X(z)Y(z)$$

Convolution Property Example 1

• Consider the two sequences

 $x_1[n] = 3\delta[n] + 2\delta(n-1)$ $x_2[n] = 2\delta[n] - \delta(n-1)$

• Find the z-transform of convolution

 $x[n] = x_1[n] * x_2[n]$

Determine the convolution sum using the z-transform

Solution $X_{1}(z) = Z\{x_{1}[n]\} = 3 + 2z^{-1}$ $X_{2}(z) = Z\{x_{2}[n]\} = 2 - z^{-1}$ $X(z) = Z\{x_{1}[n] * x_{2}[n]\} = X_{1}(z)X_{2}(z) = 6 + z^{-1} - 2z^{-2}$

 $x[n] = Z^{-1}\{X(z)\} = 6\delta[n] + \delta(n-1) - 2\delta(n-2)$

Convolution Property Example 2

• Compute the convolution of the following two sequences using z-transform

$$x_1[n] = \begin{bmatrix} 1, & -2, & 1 \end{bmatrix} \qquad x_2[n] = \begin{cases} 1, & 0 \le n < 5 \\ 0, & elsewhere \end{cases} = \begin{bmatrix} 1, 1, 1, 1, 1 \end{bmatrix}$$

Solution

$$X_{1}(z) = Z\{x_{1}[n]\} = 1 - 2z^{-1} + z^{-2}$$

$$X_{2}(z) = Z\{x_{2}[n]\} = 1 + z^{-1} + z^{-2} + z^{-3} + z^{-4}$$

$$X(z) = X_{1}(z)X_{2}(z) = 1 - z^{-1} - z^{-5} + z^{-6}$$

$$x[n] = x_{1}[x] * x_{2}[n] = Z^{-1}\{X(z)\} = [1, -1, 0, 0, 0, -1, 1]$$

Properties of the z-**Transform**

Property	Time Domain	z-Domain	ROC
Notation	x(n)	X(z) $Y_{z}(z)$	ROC: $r_2 < z < r_1$
	$x_2(n)$	X ₂ (z)	ROC ₂
Linearity	$a_1x_1(n) + a_2x_2(n)$	$a_1 X_1(z) + a_2 X_2(z)$	At least the intersection of ROC1 and ROC2
Time shifting	x(n-k)	$z^{-k}X(z)$	That of $X(z)$, except $z = 0$ if $k > 0$ and $z = \infty$ if $k < 0$
Scaling in the z-domain	$a^n x(n)$	$X(a^{-1}z)$	$ a r_2 < z < a r_1$
Time reversal	x(-n)	$X(z^{-1})$	$\frac{1}{r_1} < z < \frac{1}{r_2}$
Conjugation	x*(n)	$X^{*}(z^{*})$	ROC
Real part	$\operatorname{Re}\{x(n)\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	Includes ROC
Imaginary part	$Im\{x(n)\}$	$\frac{1}{2}[X(z) - X^*(z^*)]$	Includes ROC
Differentiation in the z-domain	nx(n)	$-z\frac{dX(z)}{dz}$	$ r_2 < z < r_1$
Convolution	$x_1(n) \ast x_2(n)$	$X_1(z)X_2(z)$	At least, the intersection of ROC ₁ and ROC ₂
Correlation	$r_{x_1x_2}(l) = x_1(l) * x_2(-l)$	$R_{x_1x_2}(z) = X_1(z)X_2(z^{-1})$	At least, the intersection of ROC of $X_1(z)$ and $X_2(z^{-1})$
Initial value theorem	If $x(n)$ causal	$x(0) = \lim_{z \to \infty} X(z)$	
Multiplication	$x_1(n)x_2(n)$	$\frac{1}{2\pi j} \oint_C X_1(v) X_2\left(\frac{z}{v}\right) v^{-1} dv$	At least $r_{1l}r_{2l} < z < r_{1u}r_{2u}$
Parseval's relation	$\sum_{n=1}^{\infty} x_1(n) x_2^*(n) = \frac{1}{2\pi j} \oint_{C} f_{C}^*(n) = \frac{1}{2\pi j} \oint_{C} f_{C}^*(n) f_{C}^*(n) = \frac{1}{2\pi j} \oint_{C} f_{C}^*(n) f_{C}^*(n) + \frac{1}{2\pi j} \int_{C} f_{C}^*(n) + \frac{1}{2\pi j}$	$X_1(v)X_2^*(1/v^*)v^{-1}dv$	

LTI System Analysis Using the z-Transform

Transfer Function

 $H(z) = \frac{Y(z)}{X(z)}$ is referred as Transfer Function of the system.

- It is the ratio of the output to the input in the z domain:
 - Y(z) is the z transform of the output y[n]
 - X(z) is the z-transform of the input y[n]
 - H(z) is the z-transform of the impulse response h[n]

Impulse Response

- The impulse response h[n] of the discrete-time LTI system H(z) can be obtained by solving its difference equation using a unit impulse input δ[n]
- With the help of the z-transform and noticing that $X(z) = Z\{\delta[n]\} = 1$
 - $h[n] = Z^{-1}\{Y(z)/X(z)\} = Z^{-1}\{H(z)\}$

$$x[n] = \delta[n]$$

$$X(z) = 1$$

$$x[n] = \delta[n]$$

$$y[n] = h[n]$$

$$Y(z) = H(z)$$

System Outputs in Time and z domains

• The LTI system output can be find using three different ways.

Rational Transfer Function

 Transfer function can be expressed as a rational function consist of numerator polynomial divided by denominator polynomial.

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_{M-1} z^{M-1} + b_M z^{-M}}{a_0 + a_1 z^{-1} + \dots + a_{N-1} z^{N-1} + a_N z^{-N}} = \frac{\sum_{k=0}^M b_k z^{-k}}{\sum_{k=0}^N a_k z^{-k}}$$

- The highest power in a polynomial is called its degree.
- In a proper rational function, the degree of the numerator is less than or equal to the degree of the denominator. $(M \le N)$
- In a strictly proper rational function, the degree of the numerator is less than the degree of the denominator. (M < N)
- In an **improper rational function**, the degree of the numerator is greater than the degree of the denominator. (M > N)

Transfer Function and Difference Equation

• A linear constant coefficient difference equation be described by a rational function in z-transform as a ratio of Polynomials in z.

 $a_0 y[n] + a_1 y[n-1] + \dots + a_M y[n-N] = b_0 x[n] + b_1 x[n-1] + \dots + b_N x[n-M]$

• Taking the z-transform of both sides

$$a_0 Y(z) + a_1 z^{-1} Y(z) + \dots + a_N z^{-N} Y(z) = b_0 X(z) + b_1 z^{-1} X(z) + \dots + b_M z^{-M} X(z)$$
$$Y(z)(a_0 + a_1 z^{-1} + \dots + a_N z^{-N}) = X(z)(b_0 + b_1 z^{-1} + \dots + b_M z^{-M})$$

• Taking Y(z) and X(z) common and then cross multiply to get Transfer Function H(z)

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_{M-1} z^{M-1} + b_M z^{-M}}{a_0 + a_1 z^{-1} + \dots + a_{N-1} z^{N-1} + a_N z^{-N}}$$

Find the transfer function described by the following difference equation.

2y[n] + y[n-1] + 0.9y[n-2] = x[n-1] + x[n-4]

Solution: Taking the z-transforms term by term we get,

 $2Y(z) + z^{-1}Y(z) + 0.9z^{-2}Y(z) = z^{-1}X(z) + z^{-4}X(z)$

Factoring out Y(z) on the left side and X(z) on the right side:

$$Y(z)(2 + z^{-1} + 0.9z^{-2}) = X(z)(z^{-1} + z^{-4})$$

The transfer function is

$$H(z) = \frac{Y(z)}{X(z)} = \frac{z^{-1} + z^{-4}}{2 + z^{-1} + 0.9z^{-2}}$$

Find the transfer function described by the following difference equation.

y[n] - 0.2y[n - 1] = x[n] + 0.8x[n - 1]

Solution: Taking z transforms term by term we get,

 $Y(z) - 0.2z^{-1}Y(z) = X(z) + 0.8z^{-1}X(z)$

Factoring out Y(z) on the left side and X(z) on the right side:

 $Y(z)(1 - 0.2z^{-1}) = X(z)(1 + 0.8z^{-1})$

The transfer function is

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1 + 0.8z^{-1}}{1 - 0.2z^{-1}}$$

Find the transfer function described by the following difference equation.

y[n] = 0.75x[n] - 0.3x[n-2] + 0.01x[n-3]

Solution: Taking z transforms term by term we get,

 $Y(z) = 0.75X(z) - 0.3z^{-2}X(z) + 0.01z^{-3}X(z)$

Factoring out Y(z) on the left side and X(z) on the right side:

 $Y(z) = X(z)(0.75 - 0.3z^{-2} + 0.01z^{-3})$

The transfer function is

$$H(z) = \frac{Y(z)}{X(z)} = 0.75 - 0.3Z^{-2} - 0.01Z^{-3}$$

Find the difference equation that correspond to transfer function.

$$H(z) = \frac{1 + 0.5z^{-1}}{1 - 0.5z^{-1}}$$

Solution: Since H(z) = Y(z)/X(z), do the cross multiply to get $Y(z)(1 - 0.5z^{-1}) = X(z)(1 + 0.5z^{-1})$

then $Y(z) - 0.5z^{-1}Y(z) = X(z) + 0.5z^{-1}X(z)$

Finally taking the inverse z-transform term by term to get

$$y[n] - 0.5y[n - 1] = x[n] + 0.5x[n - 1]$$

$$\Rightarrow y[n] = x[n] + 0.5x[n - 1] + 0.5y[n - 1]$$

Find the difference equation that correspond to transfer function.

$$H(z) = \frac{1 + 0.8z^{-1}}{1 - 0.2z^{-1} + 0.7z^{-2}}$$

Solution: Since H(z) = Y(z)/X(z), do the cross multiply to get $Y(z)(1 - 0.2z^{-1} + 0.7z^{-2}) = X(z)(1 + 0.8z^{-1})$

then $Y(z) - 0.2z^{-1}Y(z) + 0.7z^{-2}Y(z) = X(z) + 0.8z^{-1}X(z)$

Finally taking the inverse z-transform term by term to get

$$y[n] - 0.2y[n-1] + 0.7y[n-2] = x[n] + 0.8x[n-1]$$

$$\Rightarrow y[n] = x[n] + 0.8x[n-1] + 0.2y[n-1] - 0.7y[n-2]$$

Find the difference equation that correspond to transfer function.

$$H(z) = \frac{z}{(2z-1)(4z-1)}$$

Solution: $H(z) = \frac{z}{8z^2 - 6z + 1} = \frac{Y(z)}{X(z)}$

Do the cross multiply to get

 $(8z^2 - 6z + 1)Y(z) = (z)X(z)$, then $8z^2Y(z) - 6zY(z) + Y(z) = zX(z)$

 \Rightarrow 8Y(z) - 6z⁻¹Y(z) + z⁻²Y(z) = z⁻¹X(z)

Finally taking the inverse z-transform term by term to get

$$8y[n] - 6y[n - 1] + y[n - 2] = x[n - 1]$$

$$\Rightarrow \quad y[n] - 0.75y[n - 1] + 0.125y[n - 2] = 0.125x[n - 1]$$

$$\Rightarrow \quad y[n] = 0.125x[n - 1] + 0.75y[n - 1] - 0.125y[n - 2]$$

Pole-Zero Description of Discrete-Time System

- The **zeros** of a z-transform H(z) are the values of z for which H(z) = 0.
- The **poles** of a z-transform are the values of z for which $H(z) = \infty$.
- If *H*(*z*) is a rational function , then

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_{M-1} z^{M-1} + b_M z^{-M}}{a_0 + a_1 z^{-1} + \dots + a_{N-1} z^{N-1} + a_N z^{-N}}$$

• After factoring the rational transfer function, the roots β_k of the numerator polynomial are zeros and roots α_k of denominator polynomial are poles.

$$H(z) = \frac{K(z - \beta_1)(z - \beta_2) \cdots (z - \beta_M)}{(z - \alpha_1)(z - \alpha_1) \cdots (z - \alpha_N)} = \frac{K \prod_{k=1}^{M} (1 - \beta_k z^{-k})}{\prod_{k=1}^{N} (1 - \alpha_k z^{-k})}$$

The poles and zeros of a system can provide a great deal of information about the behavior of the system.

Identify Poles and Zeros (1)

 It is easiest to identify the poles and zeros if the rational transfer function $b_0 + b_1 z^{-1} + \dots + b_{M-1} z^{M-1} + b_M z^{-M}$ N

$$H(z) = \frac{a_0 + a_1 z^{-1} + \dots + a_{N-1} z^{N-1} + a_N z^{-1}}{a_0 + a_1 z^{-1} + \dots + a_{N-1} z^{N-1} + a_N z^{-1}}$$

is converted to the form

$$H(z) = z^{N-M} \frac{b_0 z^M + b_1 z^{M-1} + \dots + b_M}{a_0 z^N + a_1 z^{N-1} + \dots + a_N}$$

which has **only positive exponents**.

Identify Poles and Zeros (2)

$$H(z) = z^{N-M} \frac{b_0 z^M + b_1 z^{M-1} + \dots + b_M}{a_0 z^N + a_1 z^{N-1} + \dots + a_N}$$

- The roots of the numerator polynomial are the zeros of the system.
- The roots of the denominator polynomial are the poles of the system.
- In general, numerator and denominator polynomials can always be factored

$$H(z) = K \frac{(z - \beta_1)(z - \beta_2) \cdots (z - \beta_M)}{(z - \alpha_1)(z - \alpha_2) \cdots (z - \alpha_N)} = K \frac{\prod_{k=1}^M (1 - \beta_k z^{-k})}{\prod_{k=1}^N (1 - \alpha_k z^{-k})}$$

Where the are β_k the zeros, are α_k the poles, and K is called the gain

Effects of Poles and Zeros

- Poles are the values of z that make the denominator of a transfer function zero.
 - Poles have the biggest effect on the behavior of discrete-time LTI system
- Zeros are the values of z that make the numerator of a transfer function zero.
 - Zeros tend to modulate, to a greater or lesser degree depending on their position relative to the poles.
- The poles of the system can be found if its transfer function is known.
- Both zeros and poles are in general complex numbers.

Pole-Zero Plot

- A very powerful tool for the discrete-time system analysis and design is a complex plane called z-plane, on which poles and zeros of the transfer function are plotted.
- On the z plane,
 - poles are plotted as crosses (X)
 - zeros are plotted as circles (O)
- A plot showing pole and zero locations is called a pole-zero plot.

Pole-Zero Plot Example 1

For a first order system the poles and zeros are

$$H(z) = \frac{2}{1 + 0.4z^{-1}}$$

- One Pole at *z* = -0.4
- One Zero at *z* = 0

LTI System Analysis using the z-Transform

- Y(z) = X(z) H(z)
- *H*(*z*) is the z-transform of the impulse response *h*[*n*], which is called transfer function
- Stable system <=> Unit circle in the ROC
- Causal system => h[n] is right-sided sequence

=> ROC outside outermost pole

Y(z)

System Stability based Pole Locations

- The position of the poles and zeros on the z-plane can give clue about the way a discrete-time system will behave.
- One reason the poles of a system are so useful is that they determine whether the system is stable or not.
- The system is stable if the poles lie inside the unit circle, which is a circle of unit radius on the z-plane.
- Since poles are complex numbers, this requires that their magnitudes be less than one.
- Mathematically, the region of stability can be described as |z| < 1

Stable Causal LTI System

- If the magnitude of each pole is less than one, the poles are less than one unit's distance from the center of the unit circle, and the system is *stable*. The ROC includes unit circle.
- If any of the poles of a system lie outside the unit circle, the system is *unstable*.
- If the outermost pole lies on the unit circle, the filter is described as being *marginally stable*

z-plane

Stable System

ROC of
$$H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}}$$

ROC: |z|>1/2

- Stable system (unit circle in ROC)
- Casual system (h[n] is right-sided sequence)
- $h[n] = \left(\frac{1}{2}\right)^n u[n]$

ROC: |z|<1/2

- Unstable system (unit circle not in ROC)
- Non-casual system (h[n] is left-sided sequence)

z-plane

Find the poles and zeros and stability for the causal discrete-time system whose transfer function is $H(z) = \frac{4z^{-1}}{4 - 9z^{-1} + 2z^{-2}}$

Solution

Eliminating negative exponents yields

$$H(z) = \frac{4z^{-1}}{4 - 9z^{-1} + 2z^{-2}} = \frac{z^{-1}}{1 - 2.25z^{-1} + 0.5z^{-2}} = \frac{z^{-1}}{(1 - 0.25z^{1})(1 - 2z^{-1})} \cdot \frac{z^{2}}{z^{2}} = \frac{z}{(z - 0.25)(z - 2)}$$

- Two Poles at z = 0.25 and z = 2
- One Zeros at *z* = 0
- As one pole lie outside the unit circle at z = 2, hence the system is **unstable**.

Find the poles and zeros and stability for the causal discrete-time system whose transfer function is

z-plane Determine the stability of the following causal system. Im $H(z) = \frac{z^{-1} - 0.5z^{-2}}{1 + 1.2z^{-1} + 0.45z^{-2}}$ unit circle 0.3 **Solution:** Eliminating negative exponents yields $H(z) = \frac{z^{-1} - 0.5z^{-2}}{1 + 1.2z^{-1} + 0.45z^{-2}} \cdot \frac{z^2}{z^2} = \frac{z - 0.5}{z^2 + 1.2z + 0.45}$ -0.6 0.5 1 Re -0.3 Poles: at z = -0.6 + i0.3 and z = -0.6 - i0.3Zero: at z = 0.5As all poles lie inside the unit circle, hence the system is **stable**.

Find the stability of the filter if the difference equation of the filter is

$$y[n] + 0.8y[n-1] - 0.9y[n-2] = x[n-2]$$

Solution

• Poles are found most easily from the transfer function.

$$H(z) = \frac{z^{-2}}{1+0.8z^{-1}-0.9z^{-2}} \cdot \frac{z^2}{z^2} = \frac{1}{z^2+0.8z-0.9}$$

• The quadratic formula gives the pole locations as

$$z = \frac{-0.8 \pm \sqrt{0.8^2 - 4(1)(-0.9)}}{2(1)} = \frac{-0.8 \pm 2.059}{2} = 0.630 \text{ and } -1.430$$

• The poles in this case are purely real, without any imaginary component. Clearly the pole at z = -1.430 lies outside the unit circle, so the system is **unstable**.

Example 5: LTI System Analysis in z Domain

• Given the following system function:

 $H(z) = \frac{1 + 0.25z^{-1}}{1 + 0.8z^{-1} - 0.84z^{-2}}$

(a) Plot the pole-zero diagram of H(z).

(b) Find a stable impulse response h[n].

(c) Find a causal impulse response exist that is both stable and causal?

Solution (a)

Plot the **pole-zero diagram** of H(z).

$$H(z) = \frac{1 + 0.25z^{-1}}{1 + 0.8z^{-1} - 0.84z^{-2}} = \frac{1 + 0.25z^{-1}}{(1 + 1.4z^{-1})(1 - 0.6z^{-1})} \cdot \frac{z^2}{z^2} = \frac{z(z + 0.25)}{(z + 1.4)(z - 0.6)}$$

• Two zeros at z = 0 and z = -0.25
• Two poles at z = -1.4 and z = 0.6

Solution (b)

Find a stable impulse response *h*[*n*].

- For a stable LTI system, the ROC must include the unit circle. Thus, the ROC is
 - ROC: 0.6 < |z| < 1.4
- The impulse response h[n] can be obtained by inverse z-transform of H(z) with this ROC

e the
by
$$\frac{75}{.4)z^{-1}} + \frac{0.425}{1 - 0.6z^{-1}}$$

$$H(z) = \frac{1 + 0.25z^{-1}}{(1 + 1.4z^{-1})(1 - 0.6z^{-1})} = \frac{0.575}{1 - (-1.4)z^{-1}} + \frac{0.425}{1 - 0.6z^{-1}}$$

Left-sided sequence of
ROC |z|<1.4
$$h[n] = -0.575(-1.4)^{n}u[-n - 1] + 0.425(0.6)^{n}u[n]$$

Partial Fraction

$$H(z) = \frac{1 + 0.25z^{-1}}{(1 + 1.4z^{-1})(1 - 0.6z^{-1})} = \frac{A}{1 + 1.4z^{-1}} + \frac{B}{1 - 0.6z^{-1}}$$

$$A = (1 + 1.4z^{-1})H(z)\Big|_{z=-1.4} = \frac{1 + 0.25z^{-1}}{1 - 0.6z^{-1}}\Big|_{z=-1.4} = \frac{1 + 0.25\left(\frac{1}{-1.4}\right)}{1 - 0.6\left(\frac{1}{-1.4}\right)} = 0.5750$$

$$B = (1 - 0.6z^{-1})H(z)\Big|_{z=0.6} = \frac{1 + 0.25z^{-1}}{1 + 1.4z^{-1}}\Big|_{z=0.6} = \frac{1 + 0.25\left(\frac{1}{0.6}\right)}{1 + 1.4\left(\frac{1}{0.6}\right)} = 0.425$$

$$H(z) = \frac{1 + 0.25z^{-1}}{(1 + 1.4z^{-1})(1 - 0.6z^{-1})} = \frac{0.575}{1 + 1.4z^{-1}} + \frac{0.425}{1 - 0.6z^{-1}}$$

Solution (c)

Find **a causal impulse response** exist that is both stable and causal?

- For a causal LTI system, the impulse response h[n]
 is right-sided sequence ROC. Then, the ROC is
 - *ROC*: 1.4 < |*z*|
 - The impulse response h[n] can be obtained by inverse z-transform of H(z) with this ROC $H(z) = \frac{0.5750}{1 - (-1.4)z^{-1}} + \frac{0.425}{1 - 0.6z^{-1}}$ ROC: 1.4 < |z|

For this transfer function, we cannot achieve both stable and causal as the system is causal, the ROC cannot include the unit circle.

L.M. Po

