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Overview

* Properties of z-transform

* Transfer Function

* Transfer Function & Difference Equation
* Transfer Function & Impulse Response

* Transfer Function & System Stability

* Difference Equation & System Stability

* Pole-Zero Plot

e Stability Analysis based Pole-Zero Plot
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Key Properties of the z-Transform

1. Linearity : x;[n] <> X;(z) ROC = R, and x,[n] <« X,(z) ROC =R,
axi[n] + bxz[n] < aX1(2) + bX2(2) poc =R, nR,

2. Time Shifting: x[n —n,] <= z7"X(2)

3. Time Reversal : x[—n] «— X(1/z)

4. Exponential Scaling : a™x|[n] < X(z/a)

dX(x)
dz

6. Convolution : xq[n] * x,[n] & X1(2)X,(z) ROC =R;NR;

5. Z-domain Differentiation : nx[n] < z
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Linearity of the z-Transform

* If x;[n] e X{(2) for z in ROC of R, and x,[n] <> X,(2) for z in ROC
of R, then

axi|n] + bxq[n] <= aX;(z) + bX,(2) for zin ROC of R, N R,

Let y[n] = axq|n] + bx,|n] then

Y (2) = z y[njz ™ = Z (axs[n] + bx;[n])z ™
=a z 1z7" + b Z xXy[n]z™" = aX,(z) + bX,(2)

ROC — R1 nRz



ROC Property of the z-Transform

* Note that the ROC of combined sequence may be larger
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than either ROC

= This would happen if some pole/zero cancellation
occurs

« Example: x[n] = a™u[n] — a™u[n — N]

= Both sequences are right-sided
= Both sequences have a pole z = a
= Both have a ROC defined as |z| > |a

Jm z-plane
15th-order pole Unit circle
‘Ohwo‘ T
e 8
O v .-O
L == )
% Re
) e
Q. o
O~/ This zero

" |n the combined sequence the pole at z = a cancels

withazeroatz =a
The combined ROC is the entire z plane except z=0

ROC: |z| > 0

cancelled the
poleatz =a

N

zN — gV

1
X(Z) = ZN- ’

1

zZ—a
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Linearity Example 1

Find the z-transform of the signal x[n] defined by
x[n] = u[n] — (0.5)™"u[n]

* Applying the Linear property of the z-transform, we have

X(z) = Zix|n]} = Z{uln] — (0.5)"u[n]}

= Z{u[n]} = Z{—=(0.5)"u[n]}

VA VA

=—7— 705 ROC=l1d>1




Linearity Example 2

Find the z-transform of the signal x[n] defined by
x[n] = [3(2)" — 4(3)"]u[n]

* Applying the linearity of the z-transform, we have

1
" As we know Z{(a)"u[n]} = T —aq,-1 ROC:lz| > |a

= Applying the linearity of the z-transform, we have

1 1
X(Z):31—ZZ‘1_41—32‘1 ROC:|z| >2n|z| >3

=3 — 4

zZ— 2 zZ—3

ROC:|z| > 3
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Linearity Example 3

Find the z-transform of the signal x[n] defined by x[n] = cos(w,n)u[n]

 We know

el @olt 4 7@l ]

— _e]won + _e—jwon

cos(w,n) = 5

2 2

ROC = |z| > 1

Z{ej“’onu[n]} =

1—e/®oz=1’

* Applying the linearity of the z-transform, we have

1 .
X(z) = EZ{ef“)O”u

1

2|(1 - ef@oz1)(1 — e~J@oz 1)

1
2
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1 — e JWoz~1

(n]} +5 Z{eoomuln]} = -

+

1 1 —e/@oz~1

2 ll — ef“)oz‘ll + 2 [1 — e‘f“)oz_ll

2((1 — e J@woz=1)(1 — e/@oz

1 -z tcos(w,)

2—z71(e/¥0 4 e7®0)
[1 —z71(e/®o + e7J®0) + 772

T 1-271 cos(w,) + z72

1—e @z 7141 —e/®yz 1
‘1)] 2|(1 — e J@oz=1)(1 — eJ®oz™1)

ROC = |z]| > 1
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Time Shifting of the z-Transform

* Ang-sample delay in the time domain appears in the zdomain as a z~ "0 factor.

ny Delay — x[n —n]

z o

——  x[n —ng]

+o00
* More generally, X(z) = Z x[n]z™" x[n] ——
n=—0o
* Lety[n] = x[n — ng]
x[n] —=
400 400
Y(z) = Z y[nlz™" = z x[n—nglz™™
Nn=-—~oo Nn=—oo

* Substitutem =n —ng

400 + 00
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Time Shifting Property Example

Find the z-transform of the signal x[n] using time shifting property

x[n] = (0.5)">u[n — 5]
Solution

1

25 ulnl} = 5=

ROC:|z| > 0.5

* Applying the time shifting property of the z-transform, we have

X(z) = z7°Z{(0.5)™u[n]}

1 z~4

_5 —
1—-05z71 z-05

= 7 ROC = |Z| > 0.5

10



Time Reversal Property

 x|[-n] — X(1/z) ROC=1/R,

Proof roo — - o
Z{x[-n]} = Z x[—n]z ™ = z x[m]z™ = z x[m](z~1)"™

=X(z™YH
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Time Reversal Property Example

Find the z-transform of the signal x|n] = a ™" u|—n]

Solution

* The sequence of a ™u[—n] is Time-reversed version of a"u|n|

* Applying the time reversal theorem of the z-transform, we have

1.,-1

1 1 1 —a "z~
X(z) = = ( ) = . |lzl < la”*| ROCis inverted
1—az 1 1—-—q1z71

12
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Exponential Scaling Property

Z
a"x|n] & X(z/a) ROC = |a|Ry

ROC is scaled by |a|

All pole/zero locations are scaled

* |f ais a positive real number: z-plane shrinks or expands

* If ais a complex number with unit magnitude it rotates

13
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Exponential Scaling Example

* Example: We know the z-transform pair

uln] 5 !

ROC =|z| > 1

1—z
e Let’s find the z-transform of

x[n] =r"*cos(w,n) un] = %(ref‘“o)nu[n] + % (re—fwo)

1/2 1/2

X(z) = . :
(2) 1 —7rel@Woz=1 1 —yreJWoz~1

ROC = |z| >r

n

u|n]

14
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Z-Domain Differentiation Property

Z
nx|n] e _ &)

— ROC = R,

* For example, we want the inverse z-transform of

X(z) =log(1+az™1) |z| > |al
» Let’s differentiate to obtain rational expression
dX(z) —az™? dX(z) 4 1
= — > — =
dz 1+ az™1 ‘T dz “ 1y az1

* Making use of z-transform properties and ROC
nx[n] = a(—a)" tu[n — 1]

x[n] = (_1)71_10;_11”[” — 1]

15
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The z-Transform Convolution Property

e Convolution in time domain is equal to the multiplication in frequency
domain and vice versa.

e If x[n] <> X(z) and y|[n] <= Y(z), then

x[n]*yln] & X(2)Y(z)  ROC =R:nR,

° Proof

Zix[n] » y[n} = Y [y x[k]y[n—k]}z-"

n=—oo \k=—oo

co

= i x[k] i yln—klz™" = Z x[k]z7*Y (2) = X(2)Y(2)

k=—o0 n=-—oco k=—o0

16
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Convolution Property Example 1

* Consider the two sequences
xq|n] =38[n] +26(n—1) x| n] =28[n]—-6(n—1)
* Find the z-transform of convolution
x[n] = xq[n] * x;[n]

 Determine the convolution sum using the z-transform

Solution  x () = 7{x,[n]} = 3 + 2272

Xy(2) =Z{x;nl} =2 — 27"
X(2) = Z{xi[n] x x;[n]} = X1 ()X (2) = 6 4271 — 2272
x[n] = Z 7YX (2)} = 66[n]+6(n—1) — 26(n — 2)

17



Convolution Property Example 2

* Compute the convolution of the following two sequences using z-transform

1, 0<n<5

xqnl =101, =2, 1] xz2[n] = {0’ elsewhere — b L1 11]

I

Solution

X(2) =Z{xn]}=1—-2z"1 + 272

X (2)=Z{c,In} =14zt +z%+z23+2z7%
X2)=X,(2)X,(z2)=1—z"1 =z +2727°

x[n] = x; [x] * x,[n] = Z7HX(2)} = [1,—1,0,0,0,—1,1]

I

L.M. Po 18



Properties

of the z-
Transform
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ROC

Property Time Domain z-Domain
Notation x(n) X(2)

xy(n) Xi(2)

xin) Xalz)
Linearity ayxi(n) + ayx;(n) @ X (2) + a3 X»(2)

Time shiflting

Scaling in the z-domain

Time reversal
Conjugation
Real part
Imaginary part

Differentiation in the
-domain
Convolution
Correlation

Initial value theorem

Multiplication

Parseval's relation

r(n — k)

a"x(n)

x{—n)

x*(n)
Relx(n)}
Imix(n))

nx(n)

xyln) » x3(m)

Foell) = xi (1)  x3(=1)
Il x{n) causal

xyin)xyin)

o

Y X(2)
X(a™'z)
X(z™")
X*(z")
HE(HES &P
HX(z) = Xz
dX(z)
dz

Xy(z2)Xa(2)

-

RQ..,(I) Ll XI(Z)xz(:—|)

(D) = _lim X(2)

2nj

1
2_nlme) = mﬁx-wx;u/v'n-"du

X (X, (%) v dv

ROC: r; < 2] < 1y

ROC,

ROC,

Al least the intersection of ROC,
and ROC,

That of X(z), except z =0ilk >0
and z=moil k <)

lalry < |z| < |a|r,

1 1

— < |zl « =
ry 2
ROC
Includes ROC
Includes ROC

rp<lzl<n

At least, the intersection of ROC,
and ROG,

At least, the intersection of ROC of
Xi(z) and X027

At least ryry < 2] < riur

19



LTI System Analysis Using the z-Transform



Transfer Function

*lnd LTI System 7 ["]A'
X() h[n] < H(z) v(2)
Y(Z2) . .
H(z) = —=is referred as Transfer Function of the system.
X(2)

* It is the ratio of the output to the input in the z domain:

= Y(z) is the z transform of the output y[n]
= X(z) is the z-transform of the input y[n]

= H(z) is the z-transform of the impulse response h[n]

L.M. Po
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Impulse Response

* The impulse response h|n] of the discrete-time LTI system H(z) can be

obtained by solving its difference equation using a unit impulse input
n]

 With the help of the z-transform and noticing that X(z) = Z{§|n]|} =1

“hn] =Z"HY(2)/X(2)} = Z7 {H(2)}

x[n] = 8[n] y[n] = h{n]

R LTI System
X(2) =1 ol = i) Y(2) = H(z)

—

L.M. Po



System Outputs in Time and z domains

* The LTI system output can be find using three different ways.

X(2)

L.M. Po

Time Domain

»| Difference Equation

Impulse Response
h{n]

z Domain

Transfer Function
H(z)

» Y(z) =H(2)X(2)

23
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Rational Transfer Function

Transfer function can be expressed as a rational function consist of numerator
polynomial divided by denominator polynomial.
Y(Z) . bO + blz_l + -+ bM_le_l + bMZ_M . Z]]\(/Izo ka_k

X(Z) aO + a1Z_1 + -+ aN_lzN_l + aNZ_N IIX:O ClkZ_k

H(z) =

The highest power in a polynomial is called its degree.

In a proper rational function, the degree of the numerator is less than or equal to
the degree of the denominator. (M < N)

In a strictly proper rational function, the degree of the numerator is less than the
degree of the denominator. (M < N)

In an improper rational function, the degree of the numerator is greater than the
degree of the denominator. (M > N)

24



Transfer Function and Difference Equation

* Alinear constant coefficient difference equation be described by a rational function in
z-transform as a ratio of Polynomials in z.

apgy|n] + aqyln — 1]+ -+ ayy[n — N| = bgx|n] + byx|n — 1] + --- + byx[n — M]

* Taking the z-transform of both sides

apY(z2) + a1z7Y(2) + - + ayz VY (2) = boX(2) + b1z71X(2) + - + byz MX(2)
Y(2)(ag+az7t+ - +ayz™¥)=X(2)(by + byz™t + -+ byz™™)

* Taking Y(z) and X(z) common and then cross multiply to get Transfer Function H(z)

Y(Z) _ bO + b1Z_1 + -+ bM_]_ZIVI_1 + bMZ_M

X(Z) B Ao + a1Z_1 + -+ aN_lzN_l + aNZ_N

H(z) =

L.M. Po 25
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Difference Equation Example 1

Find the transfer function described by the following difference equation.
2y[n] + y[n — 1] + 0.9y[n — 2] = x[n — 1] + x[n — 4]
Solution: Taking the z-transforms term by term we get,
2Y(2) +z7Y(2) + 0927%Y(2) = z7X(2) + z7*X (2)
Factoring out Y (z) on the left side and X(z) on the right side:
Y(2)2+2z 1409272 =X(2)(z"t+2z7%)

The transfer function is
Y(z) ozl +z7t

H(2) = =
(2) X(z) 2+z71409z772

26



L.M. Po

Difference Equation Example 2

Find the transfer function described by the following difference equation.
y[n] — 0.2y[n — 1] = x[n] + 0.8x[n — 1]
Solution: Taking z transforms term by term we get,
Y(z) —0.2z71Y(2) = X(2) + 0.8271X(2)
Factoring out Y (z) on the left side and X(z) on the right side:
Y(z)(1—-02z"H) =X(=)1+08z71)

The transfer function is
Y(z) 1+ 0.8z~1
X(z) 1 - 02z71

H(z) =

27
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Difference Equation Example 3

Find the transfer function described by the following difference equation.
y[n] = 0.75x[n] — 0.3x[n — 2] + 0.01x[n — 3]
Solution: Taking z transforms term by term we get,
Y(z) = 0.75X(z) — 0.327%X(z) + 0.01z73X(2)
Factoring out Y (z) on the left side and X(z) on the right side:
Y(z) = X(2)(0.75 — 0.3272 + 0.01z73)

The transfer function is

Y
H(z) = Y4 07503272 - 0,012
X(2)

28



Difference Equation Example 4

Find the difference equation that correspond to transfer function.

1 + 0.5z71
1 — 0.5z71

Solution: Since H(z) = Y (z)/X(z), do the cross multiply to get
Y(z)(1-0.5z"1Y) =X(2)(1+0.5z71)
then Y(z) —0.5z7Y(z) = X(z) + 0.5271X(2)
Finally taking the inverse z-transform term by term to get
y[n] — 0.5y|n — 1] = x[n] + 0.5x[n — 1]
= y[n] =x[n] + 0.5x[n — 1] + 0.5y[n — 1]

H(z) =

L.M. Po
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Difference Equation Example 5

Find the difference equation that correspond to transfer function.

1 + 0.8z71
1 — 0.2z7140.72z72

Solution: Since H(z) = Y (z)/X(z), do the cross multiply to get
Y(z)(1-02z"1+0.727%) =X(z)(1 + 0.8z~ D)
then Y(z) —0.2z7Y(2) + 0.727%Y(z) = X(2) + 0.8z271X(2)
Finally taking the inverse z-transform term by term to get
y[n] —0.2y|n — 1] + 0.7y|n — 2] = x[n] + 0.8x[n — 1]
= y[n] =x[n] +0.8x[n—1] + 0.2y[n — 1] — 0.7y[n — 2]

H(z) =

L.M. Po
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Difference Equation Example 6

Find the difference equation that correspond to transfer function.
Z

(2z—-1)(4z—-1)

H(z) =
z __Y(2)
z2-6z+1 X (2)
Do the cross multiply to get
(822 —6z+ 1)Y(2) = (2)X(2), then 822Y(2) — 62Y(2) + Y (2) = zX(2)

Solution: H(z) = -

= 8Y(2)—-6z"Y(2)+2z7%Y(z) =z"1X(2)
Finally taking the inverse z-transform term by term to get
8y[n] —6y[ln—1] +y[n - 2] =x[n - 1]
y[n] — 0.75y[n — 1] + 0.125y[n — 2] = 0.125x[n — 1]

=
=  y[n] =0.125x[n — 1] + 0.75y[n — 1] — 0.125y[n — 2]

L.M. Po
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Pole-Zero Description of Discrete-Time System

* The zeros of a z-transform H(z) are the values of z for which H(z) = 0.
* The poles of a z-transform are the values of z for which H(z) = .

* If H(z) is a rational function , then

H(z) = Y(z) _ bo+biz” '+ +by_1zM 1 +byz”Y
- X(Z) apt+a,z=1++ay_,zN"1+ayz=N
* After factoring the rational transfer function, the roots [, of the numerator
polynomial are zeros and roots aj of denominator polynomial are poles.

K(z—=p1)(z—=PF2) (2= Pu) _ KH’;?:l(l — ,Bkz_k)

E-a)z-a) - (Z—ay) Il (1-az*)

H(z) =

The poles and zeros of a system can provide a great deal of information about the
behavior of the system.

32
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Identify Poles and Zeros (1)

* It is easiest to identify the poles and zeros if the rational transfer

function
bo+biz Y +-+bp_1zM 14+byz~M

ap+a,z 1++an_,1zN"1+apyz=N

H(z) =

is converted to the form

N—M bOZM+b1ZM_1+'“+bM
apzN+a;zN=1+--+ay

H(z) =z

which has only positive exponents.

33
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Identify Poles and Zeros (2)

b()ZM + ble_l + oo+ bM
apzV + azZN"1 4+ -+ ay

H(z) =zN"M

* The roots of the numerator polynomial are the zeros of the system.

* The roots of the denominator polynomial are the poles of the system.

* In general, numerator and denominator polynomials can always be factored
(2= B =)@ =) _ | Mima(1 = frz™)
(z=a1)(z—az)(z— ay) [Tr=1(1 — az™*)

Where the are [}, the zeros, are a;, the poles, and K is called the gain

H(z)=K

34
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Effects of Poles and Zeros

* Poles are the values of z that make the denominator of a transfer
function zero.
= Poles have the biggest effect on the behavior of discrete-time LTI
system
e /eros are the values of z that make the numerator of a transfer function
zZero.
= Zeros tend to modulate, to a greater or lesser degree depending on
their position relative to the poles.
* The poles of the system can be found if its transfer function is known.

* Both zeros and poles are in general complex numbers.

35



Pole-Zero Plot

* A very powerful tool for the discrete-time system z-plane
analysis and design is a complex plane called z-plane, "
on which poles and zeros of the transfer function are _f unitcircle
plotted. /
« Onthezplane, | SN N
\ a ‘T b Re

= poles are plotted as crosses (X)
= zeros are plotted as circles (O)

* A plot showing pole and zero locations is called a

pole-zero plot.
Pole-Zero Plot

L.M. Po 36
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Pole-Zero Plot Example 1

For a first order system the poles and zeros are olane
Z_

A
Im

. unitcircle

* OnePoleatz=-0.4

« OneZeroatz=0 " g Re

37
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LTI System Analysis using the z-Transform

* y|n| = x[n] * h[n] X(2) T system Y@

1 L

Y(z) = X(z) H(2)

H(z) is the z-transform of the impulse response

z-plane

+ Im

h[n], which is called transfer function

Stable system <=> Unit circle in the ROC

Causal system => h|n] is right-sided sequence

=> ROC outside outermost pole

38
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System Stability based Pole Locations

* The position of the poles and zeros on the z-plane can give clue about the way a
discrete-time system will behave.

* One reason the poles of a system are so useful is that they determine whether the

system is stable or not.

* The system is stable if the poles lie inside the unit circle, which is a circle of unit
radius on the z-plane.

* Since poles are complex numbers, this requires that their magnitudes be less than
one.

* Mathematically, the region of stability can be described as |z| < 1

39
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Stable Causal LTI System

* If the magnitude of each pole is less than one,
the poles are less than one unit’s distance from
the center of the unit circle, and the system is
stable. The ROC includes unit circle.

* If any of the poles of a system lie outside the
unit circle, the system is unstable.

* |f the outermost pole lies on the unit circle, the
filter is described as being marginally stable

z-plane

Stable System

Unstable System

40
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ROC of H(z) = —

1

1_EZ_1
ROC: |z|>1/2 ROC: |z|<1/2
* Stable system (unit circle in ROC) * Unstable system (unit circle not in ROC)
* Casual system (h[n] is right-sided « Non-casual system (h[n] is left-sided
sequence) seguence)

z-plane z-plane

41



System Stability Example 1

Find the poles and zeros and stability for the causal discrete-time system
whose transfer function is 4,1

H(z) =
(2) 4—9z71 42272

Solution

Eliminating negative exponents yields

471 z 1 z~ 1 z2 Z

H(z) = = — . —
( ) 4—9z-142z-2 1-2.25z71+40.52z72 (1-0.25z1)(1-22z"1) z2 (z—0.25)(z-2)

e Two Polesatz=0.25andz=2
* OneZerosatz=0

* Asone pole lie outside the unit circle at z = 2, hence the system is unstable.

L.M. Po 42



System Stability Example 2

Find the poles and zeros and stability for the causal discrete-time system

whose transfer function is
H(z) =

1 — 772

1+4+0.7z714+0.9z72

Solution
Two zeros at 0.
Two poles are located at —0.35 + j0.88

z-plane

r
Im

.. unitcircle

0.88

* For these poles the distance from the center of the unit circle is

= |z| =/(=0.35)2 + (0.88)2 = 0.9487 < 1

As both poles lie inside the unit circle,
Therefore, the system is stable.

L.M. Po

B

Re
-0.88 ./
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System Stability Example 3

: - : z-plane
Determine the stability of the following causal system. P
Im
z71 —0.52z72
H(Z) - 1+ 1.2z71 4+ 04572 .. unitcircle
Solution: Eliminating negative exponents yields X 0.3
H(z) = z=1-0.5z72 . z? _ z—0.5 0.6 o /:"1 Re
1+41.227140.45272 22 7241.22+0.45 R
Poles:atz = —0.6 +j0.3and z = —0.6 — j0.3

Zero:atz = 0.5

As all poles lie inside the unit circle, hence the system is stable.

L.M. Po 44



System Stability Example 4

Find the stability of the filter if the difference equation of the filter is

y|n] + 0.8y[n — 1] — 0.9y[n — 2] = x[n — 2]
Solution

* Poles are found most easily from the transfer function.

H(z) = z~? z2 1
140.8271-0.9272 22 7z240.82z—0.9

* The quadratic formula gives the pole locations as

- —0.8+./0.82 —4(1)(—0.9) —0.8 £ 2.059
2(1) 2
* The poles in this case are purely real, without any imaginary component. Clearly the
pole at z = —1.430 lies outside the unit circle, so the system is unstable.

= 0.630 and —1.430

L.M. Po 45
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Example 5: LTl System Analysis in z Domain

* Given the following system function:

14+0.25z"1
14+0.82-1-0.847"2

H(z) =

(a) Plot the pole-zero diagram of H(z).
(b) Find a stable impulse response h|n].

(c) Find a causal impulse response exist that is both stable and causal?
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Solution (a)

Plot the pole-zero diagram of H(z).

H(z) = 14 0.25z71 B 1+ 0.25z71 z? z(z + 0.25)
T 082 1084z 2 (1+ 14z D(1-0621) 22 (z+ 1.4)(z— 0.6)
| Im
N z-plane
* Twozerosatz=0andz=-0.25 T
e Twopolesatz=-1.4andz=0.6
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Solution (b)

Find a stable impulse response h[n].

* For a stable LTI system, the ROC must include the Vs o—b — > Re

r . -1.4 L \-0.25 6 /1
unit circle. Thus, the ROC is \/

= ROC:06<|z| <14

* The impulse response h[n| can be obtained by

inverse z-transform of H(z) with this ROC

1+ 0.25z71 0.575 0.425
H(z) = -1 N . —1
(1+14z7H(1-06z71) 1-(-14)z 1—0.6z
Left-sided sequence of / Right-sided sequence of
ROC |z|<1.4 ROC |z|>0.6

hin] = —0.575(—1.4)"u[—n — 1] + 0.425(0.6)™u[n]
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Partial Fraction

1+ 0.25z71 A B
H(z) = = —< = —+ -
(1+14z7H)(1-06z"1) 1+14z71 1-0.6z71
1
_ 1+ 0.25z71 14025 ( 4)
A=1+14z"YHH(2) = — = 0.5750
z=—14 1—0.62z"1 lz=—14 ( )
1
B=(1-0.6z"1)H(2) _1+0257 Lr025 (ﬁ) = 0.425
B o2 “ 06 1+ Laz1 -

=06 1+ 1.4 (%)

1+0.25z71 0.575 0.425

H = =
@) = a5 T4, Da 002D 1514z T 1-006z2
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Solution (c)

“=~~__ unitcircle

Find a causal impulse response exist that is
both stable and causal?

* For a causal LTI system, the impulse response h[n]
is right-sided sequence ROC. Then, the ROC is
= ROC:1.4 < |z|

* The impulse response h|n] can be obtained by

inverse z-transform of H(z) with this ROC
0.5750 0.425
H(z) =

1—-(—1.4)z71 " 1—0.6z"1
hin] = 0.5750(—1.4)"u[n] + 0.425(0.6)™u[n]

ROC: 1.4 < |z

For this transfer function, we cannot achieve both stable and causal as the system is causal, the ROC

cannot include the unit circle.
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