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Overview
• Properties of z-transform
• Transfer Function
• Transfer Function & Difference Equation
• Transfer Function & Impulse Response
• Transfer Function & System Stability
• Difference Equation & System Stability
• Pole-Zero Plot
• Stability Analysis based Pole-Zero Plot
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Key Properties of the z-Transform
1. Linearity : 𝑥! 𝑛 ⟷ 𝑋! 𝑧 𝑅𝑂𝐶 = 𝑅! and 𝑥" 𝑛 ⟷ 𝑋" 𝑧 𝑅𝑂𝐶 = 𝑅"

𝑎𝑥! 𝑛 + 𝑏𝑥" 𝑛 ⟷ 𝑎𝑋!(𝑧) + 𝑏𝑋"(𝑧)

2. Time Shifting :  𝑥[𝑛 − 𝑛#] ⟷ 𝑧$%!𝑋(𝑧)

3. Time Reversal :  𝑥 −𝑛 ⟷ 𝑋 1/𝑧

4. Exponential Scaling : 𝑎%𝑥 𝑛 ⟷ 𝑋 𝑧/𝑎

5. Z-domain Differentiation :  𝑛𝑥 𝑛 ⟷ 𝑧 &'())
&+

6. Convolution : 𝑥! 𝑛 ∗ 𝑥" 𝑛 ⟷ 𝑋!(𝑧)𝑋"(𝑧)

𝑅𝑂𝐶 = 𝑅! ∩ 𝑅"

𝑅𝑂𝐶 = 𝑅! ∩ 𝑅"
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Linearity of the z-Transform
• If 𝑥! 𝑛 ⟷ 𝑋! 𝑧 for 𝑧 in ROC of R1 and 𝑥" 𝑛 ⟷ 𝑋" 𝑧 for 𝑧 in ROC 

of R2 then
𝑎𝑥! 𝑛 + 𝑏𝑥! 𝑛 ⟷ 𝑎𝑋!(𝑧) + 𝑏𝑋"(𝑧) for 𝑧 in ROC of R1 ∩ R2

• Let 𝑦 𝑛 = 𝑎𝑥! 𝑛 + 𝑏𝑥" 𝑛 then

𝑌 𝑧 = ,
#$%&

'&

𝑦[𝑛]𝑧%# = ,
#$%&

'&

0𝑎𝑥! 𝑛 + 𝑏𝑥" 𝑛 )𝑧%#

= 𝑎 ,
#$%&

'&

𝑥! 𝑛 𝑧%# + 𝑏 ,
#$%&

'&

𝑥" 𝑛 𝑧%# = 𝑎𝑋! 𝑧 + 𝑏𝑋"(z)

𝑅𝑂𝐶 = 𝑅! ∩ 𝑅"
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ROC Property of the z-Transform
• Note that the ROC of combined sequence may be larger 

than either ROC
§ This would happen if some pole/zero cancellation 

occurs
• Example: 𝑥 𝑛 = 𝑎!𝑢 𝑛 − 𝑎!𝑢[𝑛 − 𝑁]

§ Both sequences are right-sided
§ Both sequences have a pole 𝑧 = 𝑎
§ Both have a ROC defined as 𝑧 > 𝑎
§ In the combined sequence the pole at 𝑧 = 𝑎 cancels 

with a zero at 𝑧 = 𝑎
§ The combined ROC is the entire z plane except z=0

This zero 
cancelled the 
pole at 𝑧 = 𝑎

5L.M. Po

𝑋(𝑧) =
1

𝑧!"#
/
𝑧! − 𝑎!

𝑧 − 𝑎

ROC: 𝑧 > 0



Linearity Example 1
Find the z-transform of the signal 𝑥 𝑛 defined by

• Applying the Linear property of the z-transform, we have 

𝑅𝑂𝐶 = z > 1
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𝑥 𝑛 = 𝑢 𝑛 − 0.5 #𝑢[𝑛]

𝑋 𝑧 = 𝑍 𝑥 𝑛 = 𝑍 𝑢 𝑛 − 0.5 #𝑢[𝑛]

= 𝑍 𝑢 𝑛 − 𝑍 − 0.5 #𝑢[𝑛]

=
𝑧

𝑧 − 1
−

𝑧
𝑧 − 0.5

,



Linearity Example 2
Find the z-transform of the signal 𝑥 𝑛 defined by

• Applying the linearity of the z-transform, we have

§ As we know 

§ Applying the linearity of the z-transform, we have 

𝑅𝑂𝐶: 𝑧 > 3
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𝑥 𝑛 = 3 2 # − 4 3 # 𝑢 𝑛

𝑍 𝑎 $𝑢 𝑛 =
1

1 − 𝑎𝑧"#

𝑋(𝑧) = 3
1

1 − 2𝑧%!
− 4

1
1 − 3𝑧%!

= 3
𝑧

𝑧 − 2
− 4

𝑧
𝑧 − 3

𝑅𝑂𝐶: 𝑧 > 2 ∩ 𝑧 > 3

𝑅𝑂𝐶: 𝑧 > 𝑎



Linearity Example 3
Find the z-transform of the signal 𝑥 𝑛 defined by

• We know

• Applying the linearity of the z-transform, we have 

𝑅𝑂𝐶 = z > 1
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𝑥 𝑛 = cos 𝜔:𝑛 𝑢 𝑛

cos 𝜔%𝑛 =
𝑒&'!$ + 𝑒"&'!$

2
=
1
2
𝑒&'!$ +

1
2
𝑒"&'!$

𝑍 B𝑒&'!$𝑢[𝑛 =
1

1 − 𝑒&'!𝑧"#
,

𝑋 𝑧 =
1
2
𝑍 B𝑒&'!$𝑢[𝑛 +

1
2
𝑍 B𝑒"&'!$𝑢[𝑛 =

1
2

1
1 − 𝑒&'!𝑧"#

+
1
2

1
1 − 𝑒"&'!𝑧"#

=
1
2

1 − 𝑒"&'!𝑧"#

1 − 𝑒&'!𝑧"# 1 − 𝑒"&'!𝑧"#
+
1
2

1 − 𝑒&'!𝑧"#

1 − 𝑒"&'!𝑧"# 1 − 𝑒&'!𝑧"#
=
1
2

1 − 𝑒"&'!𝑧"# + 1 − 𝑒&'!𝑧"#

1 − 𝑒"&'!𝑧"# 1 − 𝑒&'!𝑧"#

=
1
2

2 − 𝑧"# 𝑒&'! + 𝑒"&'!

1 − 𝑧"# 𝑒&'! + 𝑒"&'! + 𝑧"(
=

1 − 𝑧"#cos 𝜔%
1 − 2𝑧"# cos 𝜔% + 𝑧"(

𝑅𝑂𝐶 = z > 1



Time Shifting of the z-Transform
• A 𝑛F-sample delay in the time domain appears in the z domain as a 𝑧%#! factor. 

• More generally,

• Let 𝑦[𝑛] = 𝑥[𝑛 − 𝑛F]

• Substitute 𝑚 = 𝑛 − 𝑛F

𝑋 𝑧 = ,
#$%&

'&

𝑥[𝑛]𝑧%#

𝑌 𝑧 = ,
#$%&

'&

𝑦[𝑛]𝑧%# = ,
#$%&

'&

𝑥[𝑛 − 𝑛F]𝑧%#

𝑌 𝑧 = ,
G$%&

'&

𝑥[𝑚]𝑧%G%#! = 𝑧%#! ,
G$%&

'&

𝑥[𝑚]𝑧%G = 𝑧%#!𝑋(z)
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𝑥[𝑛]

𝑥[𝑛]

𝑥[𝑛 − 𝑛)]

𝑥[𝑛 − 𝑛)]𝑧"$"

𝑛) Delay



Time Shifting Property Example
Find the z-transform of the signal 𝑥 𝑛 using time shifting property

Solution

• Applying the time shifting property of the z-transform, we have 
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𝑥 𝑛 = 0.5 #%J𝑢 𝑛 − 5

𝑍 0.5 "𝑢 𝑛 =
1

1 − 0.5𝑧#$ , 𝑅𝑂𝐶: 𝑧 > 0.5

= 𝑧$,
1

1 − 0.5𝑧$! =
𝑧$-

𝑧 − 0.5

𝑋 𝑧 = 𝑧$,𝑍 0.5 %𝑢 𝑛

𝑅𝑂𝐶 = z > 0.5



Time Reversal Property

• 𝑥 −𝑛 ⟷ 𝑋 1/𝑧

Proof

𝒵{𝑥[−𝑛]} = <
%.$/

0/

𝑥[−𝑛]𝑧$% = <
1./

$/

𝑥[𝑚]𝑧1 = <
1.$/

0/

𝑥[𝑚] 𝑧$! $1

= 𝑋 𝑧$!

𝑅𝑂𝐶 = 1/𝑅2
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𝑚 = −𝑛



Time Reversal Property Example
Find the z-transform of the signal 𝑥 𝑛 = 𝑎IJ𝑢 −𝑛

Solution

• The sequence of 𝑎$%𝑢 −𝑛 is Time-reversed version of 𝑎%𝑢 𝑛

• Applying the time reversal theorem of the z-transform, we have 

ROC is inverted
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𝑋 𝑧 =
1

1 − 𝑎𝑧
=

1
−𝑎

1

𝑧 − 1
𝑎

=
−𝑎%!𝑧%!

1 − 𝑎%!𝑧%!
, 𝑧 < 𝑎%!



Exponential Scaling Property

• ROC is scaled by 𝑎

• All pole/zero locations are scaled

• If 𝑎 is a positive real number: z-plane shrinks or expands

• If 𝑎 is a complex number with unit magnitude it rotates

𝑎,𝑥 𝑛 ↔
-
𝑋 𝑧/𝑎 𝑅𝑂𝐶 = 𝑎 𝑅L
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Exponential Scaling Example
• Example: We know the z-transform pair

• Let’s find the z-transform of 

𝑢 𝑛 ↔
M N

NIO"#
𝑅𝑂𝐶 = z > 1

𝑥 𝑛 = 𝑟% cos 𝜔#𝑛 𝑢 𝑛 =
1
2 𝑟𝑒34! %𝑢 𝑛 +

1
2 𝑟𝑒$34! %𝑢 𝑛

𝑋 𝑧 =
⁄1 2

1 − 𝑟𝑒LM%𝑧%!
+

⁄1 2
1 − 𝑟𝑒%LM%𝑧%! 𝑅𝑂𝐶 = 𝑧 > 𝑟
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Z-Domain Differentiation Property

• For example, we want the inverse z-transform of 

• Let’s differentiate to obtain rational expression

• Making use of z-transform properties and ROC

𝑛𝑥 𝑛 ↔
M
− 𝑧 ST(O)

SO
𝑅𝑂𝐶 = 𝑅L

𝑋 𝑧 = log 1 + 𝑎𝑧%! 𝑧 > 𝑎

𝑑𝑋(𝑧)
𝑑𝑧

= −
−𝑎𝑧%"

1 + 𝑎𝑧%!
⇒ −𝑧

𝑑𝑋 𝑧
𝑑𝑧

= 𝑎𝑧%!
1

1 + 𝑎𝑧%!

𝑛𝑥 𝑛 = 𝑎 −𝑎 #%!𝑢[𝑛 − 1]

𝑥 𝑛 = −1 #%! N&

#
𝑢[𝑛 − 1]
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The z-Transform Convolution Property
• Convolution in time domain is equal to the multiplication in frequency 

domain and vice versa.

• If 𝑥 𝑛 ⟷ 𝑋 𝑧 and 𝑦[𝑛] ⟷ 𝑌 𝑧 , then

𝑥 𝑛 ∗ 𝑦 𝑛 ⟷ 𝑋 𝑧 𝑌(𝑧)
• Proof

𝑅𝑂𝐶 = 𝑅2 ∩ 𝑅5
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Convolution Property Example 1
• Consider the two sequences

• Find the z-transform of convolution

• Determine the convolution sum using the z-transform

Solution 
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𝑥! 𝑛 = 3𝛿 𝑛 + 2𝛿 𝑛 − 1 𝑥" 𝑛 = 2𝛿 𝑛 − 𝛿 𝑛 − 1

𝑥 𝑛 = 𝑥! 𝑛 ∗ 𝑥" 𝑛

𝑋! 𝑧 = Z 𝑥! 𝑛 = 3 + 2z$!

𝑋" 𝑧 = Z 𝑥" 𝑛 = 2 − z$!

𝑋 𝑧 = Z 𝑥! 𝑛 ∗ 𝑥" 𝑛 = 𝑋! 𝑧 𝑋" 𝑧 = 6 + z$! − 2z$"

𝑥 𝑛 = 𝑍$! 𝑋 𝑧 = 6𝛿 𝑛 + 𝛿 𝑛 − 1 − 2𝛿 𝑛 − 2



Convolution Property Example 2
• Compute the convolution of the following two sequences using z-transform

Solution 
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𝑥! 𝑛 = 1, −2, 1 𝑥" 𝑛 = [1, 0 ≤ 𝑛 < 5
0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 = 1, 1, 1, 1, 1

𝑋! 𝑧 = Z 𝑥! 𝑛 = 1 − 2z$! + 𝑧$"

𝑋" 𝑧 = Z 𝑥" 𝑛 = 1 + z$! + 𝑧$" + z$6 + 𝑧$-

𝑋 𝑧 = 𝑋! 𝑧 𝑋" 𝑧 = 1 − z$! − 𝑧$, + z$7

𝑥 𝑛 = 𝑥! 𝑥 ∗ 𝑥" 𝑛 = 𝑍%! 𝑋 𝑧 = 1,−1, 0, 0, 0, −1, 1



Properties 
of the z-
Transform
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LTI System Analysis Using the z-Transform
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Transfer Function

𝐻 𝑧 = 8 +
' +

is referred as Transfer Function of the system.

• It is the ratio of the output to the input in the z domain:

§ 𝑌 𝑧 is the z transform of the output 𝑦[𝑛]

§ 𝑋 𝑧 is the z-transform of the input 𝑦[𝑛]

§ 𝐻 𝑧 is the z-transform of the impulse response ℎ[𝑛]

LTI System
ℎ 𝑛 ⟷ 𝐻 𝑧

𝑋 𝑧

𝑥[𝑛] 𝑦[𝑛]

𝑌 𝑧

21L.M. Po



Impulse Response
• The impulse response ℎ[𝑛] of the discrete-time LTI system 𝐻(𝑧) can be 

obtained by solving its difference equation using a unit impulse input 
𝛿 𝑛

• With the help of the z-transform and noticing that 𝑋 𝑧 = 𝑍{𝛿 𝑛 } = 1

§ ℎ 𝑛 = 𝑍IN{𝑌 𝑧 /𝑋(𝑧)} = 𝑍IN{𝐻 𝑧 }

LTI System
ℎ 𝑛 ⟷ 𝐻 𝑧

𝑋 𝑧 = 1

𝑥 𝑛 = 𝛿 𝑛 𝑦 𝑛 = ℎ[𝑛]

𝑌 𝑧 = 𝐻 𝑧
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System Outputs in Time and z domains
• The LTI system output can be find using three different ways.
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Difference Equation𝑥[𝑛] 𝑦[𝑛]

Impulse Response
ℎ[𝑛]

𝑥[𝑛] 𝑦 𝑛 ＝ℎ 𝑛 ∗ 𝑥 𝑛

Transfer Function
𝐻 𝑧

𝑋 𝑧 𝑌 𝑧 = 𝐻 𝑧 𝑋 𝑧

Time Domain

z Domain



Rational Transfer Function
• Transfer function can be expressed as a rational function consist of numerator

polynomial divided by denominator polynomial.

• The highest power in a polynomial is called its degree.

• In a proper rational function, the degree of the numerator is less than or equal to
the degree of the denominator. (𝑀 ≤ 𝑁)

• In a strictly proper rational function, the degree of the numerator is less than the
degree of the denominator. (𝑀 < 𝑁)

• In an improper rational function, the degree of the numerator is greater than the
degree of the denominator. (𝑀 > 𝑁)

𝐻 𝑧 =
𝑌 𝑧
𝑋 𝑧 =

𝑏' + 𝑏$𝑧#$ +⋯+ 𝑏(#$𝑧(#$ + 𝑏(𝑧#(

𝑎' + 𝑎$𝑧#$ +⋯+ 𝑎)#$𝑧)#$ + 𝑎)𝑧#)
=
∑*+), 𝑏*𝑧"*

∑*+)
! 𝑎*𝑧"*
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Transfer Function and Difference Equation
• A linear constant coefficient difference equation be described by a rational function in 

z-transform as a ratio of Polynomials in z.

• Taking the z-transform of both sides

• Taking )𝑌(𝑧 and )𝑋(𝑧 common and then cross multiply to get Transfer Function )𝐻(𝑧

𝑎F𝑦[𝑛] + 𝑎!𝑦[𝑛 − 1] + ⋯+ 𝑎W𝑦[𝑛 − 𝑁] = 𝑏F𝑥[𝑛] + 𝑏!𝑥[𝑛 − 1] + ⋯+ 𝑏X𝑥[𝑛 − 𝑀]

𝑎F𝑌(𝑧) + 𝑎!𝑧%!𝑌(𝑧) + ⋯ + 𝑎X𝑧%X𝑌(𝑧) = 𝑏F𝑋(𝑧) + 𝑏!𝑧%!𝑋(𝑧) + ⋯+ 𝑏W𝑧%W𝑋(𝑧)

𝐻(𝑧) =
)𝑌(𝑧
)𝑋(𝑧
=
𝑏F + 𝑏!𝑧%! +⋯+ 𝑏W%!𝑧W%! + 𝑏W𝑧%W

𝑎F + 𝑎!𝑧%! +⋯+ 𝑎X%!𝑧X%! + 𝑎X𝑧%X
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𝑌(𝑧) 𝑎F + 𝑎!𝑧%! +⋯ + 𝑎X𝑧%X = 𝑋(𝑧) 𝑏F + 𝑏!𝑧%! +⋯+ 𝑏W𝑧%W



Difference Equation Example 1
Find the transfer function described by the following difference equation.

Solution: Taking the z-transforms term by term we get,

Factoring out 𝑌 𝑧 on the left side and 𝑋 𝑧 on the right side:

The transfer function is

𝐻 𝑧 =
𝑌(𝑧)
𝑋(𝑧)

=
𝑧%! + 𝑧%Y

2 + 𝑧%! + 0.9𝑧%"
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𝑌 𝑧 2 + 𝑧%! + 0.9𝑧%" = 𝑋 𝑧 𝑧%! + 𝑧%Y

2𝑌 𝑧 + 𝑧%!𝑌 𝑧 + 0.9𝑧%"𝑌 𝑧 = 𝑧%!𝑋 𝑧 + 𝑧%Y𝑋 𝑧

2𝑦 𝑛 + 𝑦 𝑛 − 1 + 0.9𝑦 𝑛 − 2 = 𝑥 𝑛 − 1 + 𝑥 𝑛 − 4



Difference Equation Example 2
Find the transfer function described by the following difference equation.

Solution: Taking z transforms term by term we get,

Factoring out 𝑌 𝑧 on the left side and 𝑋 𝑧 on the right side:

The transfer function is

𝐻 𝑧 =
𝑌(𝑧)
𝑋(𝑧)

=
1 + 0.8𝑧%!

1 − 0.2𝑧%!
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𝑦 𝑛 − 0.2𝑦 𝑛 − 1 = 𝑥 𝑛 + 0.8𝑥 𝑛 − 1

𝑌 𝑧 − 0.2𝑧%!𝑌 𝑧 = 𝑋 𝑧 + 0.8𝑧%!𝑋 𝑧

𝑌 𝑧 1 − 0.2𝑧%! = 𝑋 𝑧 1 + 0.8𝑧%!



Difference Equation Example 3
Find the transfer function described by the following difference equation.

Solution: Taking z transforms term by term we get,

Factoring out 𝑌 𝑧 on the left side and 𝑋 𝑧 on the right side:

The transfer function is

𝐻 𝑧 =
𝑌(𝑧)
𝑋(𝑧)

= 0.75 − 0.3𝑍%" − 0.01𝑍%Z
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𝑦 𝑛 = 0.75𝑥 𝑛 − 0.3𝑥 𝑛 − 2 + 0.01𝑥 𝑛 − 3

𝑌 𝑧 = 0.75𝑋 𝑧 − 0.3𝑧%"𝑋 𝑧 + 0.01𝑧%Z𝑋 𝑧

𝑌 𝑧 = 𝑋 𝑧 0.75 − 0.3𝑧%" + 0.01𝑧%Z



Difference Equation Example 4
Find the difference equation that correspond to transfer function.

𝐻 𝑧 =
1 + 0.5𝑧%!

1 − 0.5𝑧%!

Solution: Since 𝐻 𝑧 = 𝑌 𝑧 /𝑋 𝑧 , do the cross multiply to get
𝑌 𝑧 1 − 0.5𝑧$! = 𝑋 𝑧 1 + 0.5𝑧$!

then          𝑌 𝑧 − 0.5𝑧$!𝑌 𝑧 = 𝑋 𝑧 + 0.5𝑧$!𝑋 𝑧
Finally taking the inverse z-transform term by term to get

𝑦 𝑛 − 0.5𝑦 𝑛 − 1 = 𝑥 𝑛 + 0.5𝑥 𝑛 − 1

29L.M. Po

𝑦 𝑛 = 𝑥 𝑛 + 0.5𝑥 𝑛 − 1 + 0.5𝑦 𝑛 − 1⇒



Difference Equation Example 5
Find the difference equation that correspond to transfer function.

𝐻 𝑧 =
1 + 0.8𝑧%!

1 − 0.2𝑧%! + 0.7𝑧%"

Solution: Since 𝐻 𝑧 = 𝑌 𝑧 /𝑋 𝑧 , do the cross multiply to get
𝑌 𝑧 1 − 0.2𝑧$! + 0.7𝑧$" = 𝑋 𝑧 1 + 0.8𝑧$!

then          𝑌 𝑧 − 0.2𝑧$!𝑌 𝑧 + 0.7𝑧$"𝑌 𝑧 = 𝑋 𝑧 + 0.8𝑧$!𝑋 𝑧
Finally taking the inverse z-transform term by term to get

𝑦 𝑛 − 0.2𝑦 𝑛 − 1 + 0.7𝑦 𝑛 − 2 = 𝑥 𝑛 + 0.8𝑥 𝑛 − 1
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𝑦 𝑛 = 𝑥 𝑛 + 0.8𝑥 𝑛 − 1 + 0.2𝑦 𝑛 − 1 − 0.7𝑦 𝑛 − 2⇒



Difference Equation Example 6
Find the difference equation that correspond to transfer function.

𝐻 𝑧 =
𝑧

(2𝑧 − 1)(4𝑧 − 1)

Solution:  𝐻 𝑧 = *
+*!#,*-$

= . *
/ *

Do the cross multiply to get
8𝑧0 − 6𝑧 + 1 𝑌 𝑧 = 𝑧 𝑋 𝑧 , then 8𝑧0𝑌 𝑧 − 6𝑧𝑌 𝑧 + 𝑌 𝑧 = 𝑧𝑋 𝑧

8𝑌 𝑧 − 6𝑧#$𝑌 𝑧 + 𝑧#0𝑌 𝑧 = 𝑧#$𝑋 𝑧
Finally taking the inverse z-transform term by term to get
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8𝑦 𝑛 − 6𝑦 𝑛 − 1 + 𝑦 𝑛 − 2 = 𝑥 𝑛 − 1

𝑦 𝑛 − 0.75𝑦 𝑛 − 1 + 0.125𝑦 𝑛 − 2 = 0.125𝑥 𝑛 − 1

𝑦 𝑛 = 0.125𝑥 𝑛 − 1 + 0.75𝑦 𝑛 − 1 − 0.125𝑦 𝑛 − 2
⇒
⇒

⇒



Pole-Zero Description of Discrete-Time System
• The zeros of a z-transform 𝐻(𝑧) are the values of z for which 𝐻 𝑧 = 0.
• The poles of a z-transform are the values of z for which 𝐻 𝑧 = ∞ . 
• If H(z) is a rational function , then

• After factoring the rational transfer function, the roots 𝛽[ of the numerator 
polynomial are zeros and roots 𝛼[ of denominator polynomial are poles.

𝐻 𝑧 = 8 +
' +

= 9+09,+-,0⋯09.-,+.-,09.+-.

;+0;,+-,0⋯0;/-,+/-,0;/+-/

𝐻(𝑧) =
𝐾(𝑧 − 𝛽$)(𝑧 − 𝛽0)⋯ (𝑧 − 𝛽()
(𝑧 − 𝛼$)(𝑧 − 𝛼$)⋯ (𝑧 − 𝛼))

=
𝐾∏12$

( 1 − 𝛽1𝑧#1

∏12$
) 1 − 𝛼1𝑧#1

The poles and zeros of a system can provide a great deal of information about the 
behavior of the system. 
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Identify Poles and Zeros (1)
• It is easiest to identify the poles and zeros if the rational transfer 

function

is converted to the form

which has only positive exponents.

𝐻 𝑧 = k$lk#O"#l⋯lk%"#O%"#lk%O"%

m$lm#O"#l⋯lm&"#O&"#lm&O"&

𝐻 𝑧 = 𝑧nIo k$O%lk#O%"#l⋯lk%
m$O&lm#O&"#l⋯lm&
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Identify Poles and Zeros (2)

• The roots of the numerator polynomial are the zeros of the system.
• The roots of the denominator polynomial are the poles of the system.

• In general, numerator and denominator polynomials can always be factored

Where the are 𝛽' the zeros, are 𝛼' the poles, and 𝐾 is called the gain

𝐻 𝑧 = 𝑧<$=
𝑏>𝑧= + 𝑏!𝑧=$! +⋯+ 𝑏=
𝑎>𝑧< + 𝑎!𝑧<$! +⋯+ 𝑎<

𝐻(𝑧) = 𝐾
(𝑧 − 𝛽()(𝑧 − 𝛽))⋯ (𝑧 − 𝛽*)
(𝑧 − 𝛼()(𝑧 − 𝛼))⋯ (𝑧 − 𝛼+)

= 𝐾
∏',(
* 1 − 𝛽'𝑧-'

∏',(
+ 1 − 𝛼'𝑧-'
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Effects of Poles and Zeros
• Poles are the values of 𝑧 that make the denominator of a transfer

function zero.
§ Poles have the biggest effect on the behavior of discrete-time LTI

system
• Zeros are the values of 𝑧 that make the numerator of a transfer function

zero.
§ Zeros tend to modulate, to a greater or lesser degree depending on

their position relative to the poles.
• The poles of the system can be found if its transfer function is known.
• Both zeros and poles are in general complex numbers.
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Pole-Zero Plot
• A very powerful tool for the discrete-time system

analysis and design is a complex plane called z-plane,
on which poles and zeros of the transfer function are
plotted.

• On the z plane,

§ poles are plotted as crosses (X)
§ zeros are plotted as circles (O)

• A plot showing pole and zero locations is called a
pole-zero plot.

z-plane
Im

Re1
o

unit circle

x
a b

x
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Pole-Zero Plot



Pole-Zero Plot Example 1
For a first order system the poles and zeros are

• One Pole at 𝑧 = -0.4  

• One Zero at 𝑧 = 0 

𝐻 𝑧 =
2

1 + 0.4𝑧%!

z-plane
Im

Re1
o

unit circle

x
-0.4
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LTI System Analysis using the z-Transform
• 𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ[𝑛]

• 𝑌 𝑧 = 𝑋 𝑧 𝐻(𝑧)

• 𝐻(𝑧) is the z-transform of the impulse response 
ℎ[𝑛], which is called transfer function

• Stable system <=> Unit circle in the ROC

• Causal system =>  ℎ[𝑛] is right-sided sequence

=> ROC outside outermost pole

z-plane
Im

Re1
xo

unit circle

x

LTI System
𝐻(𝑧)

𝑋 𝑧 𝑌 𝑧
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System Stability based Pole Locations
• The position of the poles and zeros on the z-plane can give clue about the way a

discrete-time system will behave.

• One reason the poles of a system are so useful is that they determine whether the
system is stable or not.

• The system is stable if the poles lie inside the unit circle, which is a circle of unit
radius on the z-plane.

• Since poles are complex numbers, this requires that their magnitudes be less than
one.

• Mathematically, the region of stability can be described as
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Stable Causal LTI System
• If the magnitude of each pole is less than one,

the poles are less than one unit’s distance from
the center of the unit circle, and the system is
stable. The ROC includes unit circle.

• If any of the poles of a system lie outside the
unit circle, the system is unstable.

• If the outermost pole lies on the unit circle, the
filter is described as being marginally stable

z-plane
Im

Re1
xo

unit circle

x

Stable System

Unstable System

Im

Re1
xo

unit 
circle

x

x

x
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ROC of 𝐻 𝑧 = 7
78?@9

A?

ROC: |z|>1/2
• Stable system (unit circle in ROC)

• Casual system (h[n] is right-sided 
sequence)

• ℎ 𝑛 = !
"

#
𝑢 𝑛

z-plane

Im

Re1
xo
1/2

unit circle

ROC: |z|<1/2
• Unstable system (unit circle not in ROC)

• Non-casual system (h[n] is left-sided 
sequence)

• ℎ 𝑛 = − !
"

#
𝑢 −𝑛 − 1

z-plane

Im

Re1
xo
1/2

unit circle
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System Stability Example 1
Find the poles and zeros and stability for the causal discrete-time system 
whose transfer function is

Solution
Eliminating negative exponents yields 

• Two Poles at 𝑧 = 0.25 and 𝑧 = 2 

• One Zeros at 𝑧 = 0 

• As one pole lie outside the unit circle at z = 2, hence the system is unstable.
42L.M. Po

𝐻 𝑧 =
4𝑧%!

4 − 9𝑧%! + 2𝑧%"

𝐻 𝑧 = FG-,

FHIG-,JKG-0 =
G-,

LHK.KMG-,JN.MG-0 =
G-,

LHN.KMG, LHKG-, $
G0

G0 =
G

GHN.KM GHK



System Stability Example 2
Find the poles and zeros and stability for the causal discrete-time system 
whose transfer function is

Solution
Two zeros at 0.
Two poles are located at −0.35 ± 𝑗0.88
• For these poles the distance from the center of the unit circle is 

§ 𝑧 = −0.35 1 + 0.88 1 = 0.9487 < 1

As both poles lie inside the unit circle,
Therefore, the system is stable.

𝐻 𝑧 =
1 − 𝑧%"

1 + 0.7𝑧%! + 0.9𝑧%"
z-plane

Im

Re1
o

unit circle

x

-0.35
o

x -0.88

0.88
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System Stability Example 3
Determine the stability of the following causal system.

Solution: Eliminating negative exponents yields 

As all poles lie inside the unit circle, hence the system is stable.

z-plane
Im

Re1

unit circle

x

-0.6
o

x -0.3

0.3

0.5
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𝐻 𝑧 =
𝑧%! − 0.5𝑧%"

1 + 1.2𝑧%! + 0.45𝑧%"

𝐻 𝑧 = +-,$>.,+-0

!0!."+-,0>.-,+-0
T +

0

+0
= +$>.,

+00!."+0>.-,

Poles: at 𝑧 = −0.6 + 𝑗0.3 and 𝑧 = −0.6 − 𝑗0.3

Zero: at 𝑧 = 0.5



System Stability Example 4
Find the stability of the filter if the difference equation of the filter is 

Solution
• Poles are found most easily from the transfer function.

• The quadratic formula gives the pole locations as

• The poles in this case are purely real, without any imaginary component. Clearly the 
pole at z = −1.430 lies outside the unit circle, so the system is unstable.
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𝑦 𝑛 + 0.8𝑦 𝑛 − 1 − 0.9𝑦 𝑛 − 2 = 𝑥 𝑛 − 2

𝐻 𝑧 = +-0

!0>.C+-,$>.D+-0
T +

0

+0
= !

+00>.C+$>.D

𝑧 =
−0.8 ± 0.80 − 4 1 −0.9

2 1 =
−0.8 ± 2.059

2 = 0.630 𝑎𝑛𝑑 − 1.430



Example 5: LTI System Analysis in z Domain
• Given the following system function:

(a) Plot the pole-zero diagram of 𝐻 𝑧 .

(b) Find a stable impulse response ℎ 𝑛 .

(c) Find a causal impulse response exist that is both stable and causal?

𝐻 𝑧 = Nlr.stO"#

Nlr.uO"#Ir.uvO".
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Solution (a)
Plot the pole-zero diagram of 𝐻 𝑧 .

• Two zeros at z = 0 and z = -0.25

• Two poles at z = -1.4 and z = 0.6

𝐻 𝑧 =
1 + 0.25𝑧%!

1 + 0.8𝑧%! − 0.84𝑧%"
=

1 + 0.25𝑧%!

(1 + 1.4𝑧%!)(1 − 0.6𝑧%!)
w
𝑧"

𝑧"
=

𝑧 𝑧 + 0.25
(𝑧 + 1.4)(𝑧 − 0.6)

z-plane
Im

Re
1

o

unit circle

x
-0.25

o
0.6

x
-1.4 0

47L.M. Po



Solution (b)
Find a stable impulse response ℎ 𝑛 .

• For a stable LTI system, the ROC must include the 
unit circle. Thus, the ROC is 
§ 𝑅𝑂𝐶: 0.6 < z < 1.4

• The impulse response ℎ 𝑛 can be obtained by 
inverse z-transform of H(z) with this ROC

Im

Re

unit circle

o x
-0.25

o
0.6

x
-1.4 1

𝐻 𝑧 =
1 + 0.25𝑧%!

(1 + 1.4𝑧%!)(1 − 0.6𝑧%!)
=

0.575
1 − −1.4 z%!

+
0.425

1 − 0.6z%!

ℎ 𝑛 = −0.575 −1.4 #𝑢 −𝑛 − 1 + 0.425 0.6 #𝑢[𝑛]

Right-sided sequence of 
ROC |z|>0.6

Left-sided sequence of 
ROC |z|<1.4
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Partial Fraction

𝐻 𝑧 =
1 + 0.25𝑧"#

(1 + 1.4𝑧"#)(1 − 0.6𝑧"#)
=

𝐴
1 + 1.4𝑧"#

+
𝐵

1 − 0.6z"#

𝐴 = 1 + 1.4𝑧"# 𝐻 𝑧 b
-+"#./

=
1 + 0.25𝑧"#

1 − 0.6𝑧"#
b
-+"#./

=
1 + 0.25 1

−1.4
1 − 0.6 1

−1.4
= 0.5750

𝐵 = 1 − 0.6𝑧"# 𝐻 𝑧 b
-+).0

=
1 + 0.25𝑧"#

1 + 1.4𝑧"#
b
-+).0

=
1 + 0.25 1

0.6
1 + 1.4 1

0.6
= 0.425

𝐻 𝑧 =
1 + 0.25𝑧#$

(1 + 1.4𝑧#$)(1 − 0.6𝑧#$) =
0.575

1 + 1.4𝑧#$ +
0.425

1 − 0.6z#$



Solution (c)
Find a causal impulse response exist that is 
both stable and causal?
• For a causal LTI system, the impulse response ℎ 𝑛

is right-sided sequence ROC. Then, the ROC is 
§ 𝑅𝑂𝐶: 1.4 < 𝑧

• The impulse response ℎ 𝑛 can be obtained by 
inverse z-transform of H(z) with this ROC

𝐻 𝑧 =
0.5750

1 − −1.4 z%!
+

0.425
1 − 0.6z%!

ℎ 𝑛 = 0.5750 −1.4 #𝑢 𝑛 + 0.425 0.6 #𝑢[𝑛]

Im

o x
-0.25

o
0.6

x
-1.4

unit circle

1

𝑅𝑂𝐶: 1.4 < z

For this transfer function, we cannot achieve both stable and causal as the system is causal, the ROC 
cannot include the unit circle. 
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