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Frequency Response Estimation
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 H(z) is referred as Transfer Function of the system.
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* Frequency Response H(ej“’) of the transfer

function corresponds to the unit circle

* H(2)|,—pio = H(e?)

z-plane



Geometry Interpretation in z-plane

1 z )
* Forexample, H(z) = ———==— z-plane

= |t hasazeroatOandapoleata Ui

circle _.-==" T 7~

* Given a point z; on the z-plane,

= The vector of z; corresponds to the vector from zero

to the point z4

= The vector of (z;—a) corresponds to the vector from

the pole at a to the point z4

|z |

|z1—al

* The angle £X(z,) = 42z, — £(z1 — a)

= The magnitude |X(z,)| =
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Geometry Interpretation of Frequency Response

g'm z-plane
1 Z Unit

¢ H(Z) — - circle .-~ T

. /'/ ‘\\ \w
* The frequency response H(ef“’) corresponds to / ﬂ L

all the points on the unit circle

1
e7o=d]

. . . H(el®
" The angle LH(eJ“’) = sze/Y — £(e!® — q) |1 (/)]

= The magnitude |H(ejw)| =
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Two Poles Example

H(ejw)l __[llegnth zeror
I legnth pole

- 2H(e!®) =) zzeror — Y, £pole

|H (e’)]

0 wg ([ 2T — w, 2T
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This transfer function has two
poles (complex conjugate poles)
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Example of H(z) with only one zero

* Sketch the magnitude response of H(z) =1 —z~ 1

H(ej“)) = H(z) =1—eJ® = (1 - cosw) —jsinw

z=el®

|H(ej‘”)| = (1 —cosw)? + (—sinw)? =v2 —2cosw

V2 —2cosw




Magnitude and Phase Responses

* We can show that the magnitude response |H(e’/®)| is an even function
of frequency

* The phase response 2H(e’?) is an odd function of frequency

0dd i (e/)
symmetry




Group Delay

Learn how to calculate the group delay

a Discrete-Time system



Phase Response of a Linear-Phase Filter
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A diagram comparing the performance of a

Phase Response of a Linear-Phase Filter

L.M. Po

linear phase filter and a non-linear phase filter.
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X(z) ——| H(z) —— Y(x)

Group Delay

: I
* Frequency response: Magnitude Phase Phase shift is
Response Response due to a delay
: : : through the
H(Z) . = H(e]“’) = |H(e]w)|LH(€]w) system
z=el® -
. (Delay generally varies with frequency):

= grad{H(e/®)} = — d{LZEjjw)}

Negative slope of phase response

* Note: Phase plots normally limited in range to +m«

= |gnore discontinuities when evaluating derivative



Group Delay Example 1

Determine the group delay of a DT system with unit impulse response of
h[n] = &[n — 5]. This system is an ideal delay of 5 sample times.

(0@) (00)

H(z) = Z h[n]z™ = Z §[n— 5]z = 25

H(el®) = (ej“’)_5 =1.e7/°@

Phase Response : 2H(e/?) = —5w
Group Delay :

- d{«H(e’*)} ~d{-5w} _ :

(@) = dw dw

7(w) =5 samples



Group Delay Example 2

Determine the group delay of a causal 5-point moving average with unit impulse

response of h|n] = —,—,—,—,—] with the first sample at n = 0.

1 1
h[n] = 3(5[n] +6n—-1]+8n—-2]+8[n—-3]+6[n—4]) = H(z) = g(z—0 +z7 4272423427

H(e/®) = %(ejo + eI 4 720 4 T30 oA = %e‘jz‘”(eﬂw +e/¥+e /04 e)Y 4 /20)

. 11
H(e/®) =e /2 g(l + 2 cos 2w + 2 cos w)

Phase Response : AH(ej‘*)) = —20 Real value function

L d{—2w} 3 N
== 2 = = 2 samples



Frequency Response of
FIR Systems



Frequency Response of FIR Systems

 Determine the magnitude and phase response of the 3-sample averager given by

1 “h[n]
hin] =43 —l=n=1 Non-casual System XL
0 otherwise
- . 1 0 1~
—k k L 4, 1o 1, 1o 1
H@) = ) hlnle™ = ) hlnle™ =527t 4520422 =22 42+ 7]
n=-—oo n=1
| 1, 1
H(e/®) = H(2) ; =§[e jo 4 e 4 gJ@] =§[1+e jo 4 el@] =§[1+2cosw]
z=el®

* Precautions must be taken when determining the phase response of a filter having a

real-valued transfer function, because negative real values produce an additional
phase of it radians.

L.M. Po



Linear Phase Response Characteristics

* A linear-phase transfer function can be expressed as

H(ej“)) = e‘jk“’B(ej“)) = [B(ej“)) Cos(—ka))] —j[ B(ej“)) sin(ka))]

* Real-valued function B(ej“)) of that can take positive and negative values.

* Let phase angleis @

B(e’®) sin(kw —
tand = — ( .w) (k) = —tan(kw) = Phase 0= —kw
B(e/¥) cos(kw) Response LH(ef‘“) = —kw

The phase function includes linear phase term and accommodates for the sign changes in B(ej“)).
Since -1 can be expressed as phase jumps of +m, This will occur at frequencies where B(ej‘”) changes
sign.

If B(e/®) > 0,the zH(e/®) = —kw  If B(e/®) < 0,then 2H(e/?) = —kw + 7

L.M. Po



Magnitude Response of the 3-Sample Averager

1 .
H(efw) =3 [1+4 2cosw] A |H(?)]

Magnitude Response |H(e/?)|:

1
|H(e’?)| = | 1+2cosa)]| :>

Even Function

L.M. Po 17



Zero Phase Response of the 3-Sample Averager

. _ 1 | |
H(e]w) — e](o)w§[1 + 2 cos (,l)] — e](O)wB(e]w)

Zero Phase Response 2H(e/?):
(
. 21 21
_ 0 B(e/?)>0 —5 <w<—
¢H(e/®) =
. 21 2T
0+tm B(e!”)<0 —nSa)S—?and?<w<n
\

Odd Function

L.M. Po



Casual 3-Point Weighted Averager Example

* Find the magnitude and phase responses of the 3-point weighted average with the

impulse response as

h[O]—1 h[l]—lh[Z]—1
_Er - 4 _E
1 1

_ 04 14 . -2
H(Z)—Zz +z +ZZ

2

: 1 . 1 . 1. 1 .
H(el®) = > +e Tl 4 e = e‘f‘”(ze“" +1+-e77?)

H(ej“)) = e /Y [1+ cos w]
\ j

r
AH(ej“)) = —w Ble)

L.M. Po

Casual System
h[n]
19

N -

I

0o 1 2 7

2

The amplitude function
1S never negative
(therefore there is no
phase jumps of )

Even function

|H(ej‘°)| = |1 + cos w|

Odd function

N

p=

-

Linear Phase

19



Magnitude and Phase Responses of Unit Sample

jw
Case 1 p lH(e)] LH(el®) =0
1
1 n=20 . .
hin] = 6|n| = , |
[n] [n] {O otherwise
= — = E
Case 2 ¢ N
h[n] = §[n — k] |
A [H()]
H(z) =z7k 1
H(ej“’) = g Jkw
>
-T T
Note: When phase exceeds tm range a jump of +2m is needed to bring the phase back

into tm range.

L.M. Po



Phase Jumps

* From the previous examples, we note that there are two occasions for
which the phase function experiences discontinuities or jumps.

1. A jump of £2m occurs to maintain the phase function within the

principal value range of [-t and 1]

2. A jump of + m occurs when B(ej‘“) undergoes a change of sign

* The sign of the phase jump is chosen such that the resulting phase
function is odd and, after the jump, lies in the range [-t and mt].

L.M. Po 21



Causal 3-Sample Averager

* Determine the magnitude and phase response of the 3-sample averager given by

h[n]= § 0<n<?2 .ln]l 1
0 otherwise ’ T3 T ’
1 1 1 1 R
H(Z)=§ZO+§Z_1+§Z_2 §[1+Z_1+Z_2] 0 1 2 N
. 1 . . 1 . . 1
H(e/®) = 3 [1+e7/@ 4720 =/ 3 [1+e/®+e /0| =@ 3 [1+4 2 cos w]
A —
Magnitude Response llH_(e]w)l B(e’)
|H(ef‘“)| ‘ 1+2cosw]‘

L.M. Po



Linear Phase Response of the Causal 3-Sample Averager

: -1
H(ef‘*’) = e‘f‘“§ [1+ 2 cosw]

\ J
|

B(e/?)

. 2T 2T
- B(ef“’)>0 —— << —

LH(ej“))

2T

; 3 3

jw) — -
LH(Q ) \ . 2T 2T ‘TC\
—w+m B(ef“’)<0 —nSwS—?and?<w<n

\

Note: Phase is undefined at points |H(ef“’)| =0or B(ej“’)=0.

L.M. Po
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Four Types of Causal Linear Phase FIR Systems

* For casual FIR systems, if their impulse response h[n] satisfied the
symmetrical property, then the systems will have linear phase responses.

 The symmetrical impulse response property is defined as
h[n] = +th[M — 1 — n|], n=01.. M—-1
* There 4 types of linear phase FIR systems:
= Type | : Odd Positive Symmetric— M is odd and h[n| = h[M — 1 — n]
= Type Il : Even Positive Symmetric — M is even and h|[n] = h[M — 1 — n|
= Type Il : Odd Negative Symmetric— M is odd and h|n] = —h[M — 1 — n]
= Type IV : Even Negative Symmetric— M is even and h[n] = —h[M — 1 — n]

L.M. Po 24



Positive Symmetry Impulse Responses

Odd Positive Symmetry
(Type 1)

h[n] = h[M — 1 — n]

H(el®) = -1, (h[

L.M. Po

M-1

2
el

(M=3)/2

k=1

h[M_l k
—— -

-]

Even Positive Symmetry
(Type 1)

h[n] = h[M — 1 — n]

(M=3)/2

| =), M—1 1

H(e/®) = /7| 2 Z h [T— k] cos((k - 5))
k=1

25
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Negative Symmetry Impulse Responses

Odd Negative Symmetry
(Type IlI)

P I [
T

(odd)

h[n] = —h[M — 1 — n]

(M-1)/2
oM-1) & M-1
H(e/®)=e A ) <2 Z h[T—k] sinkw)
k=1

Even Negative Symmetry
(Type IV)

centre of symmetry
(negative symmetry)

|
I
I
I
|68
I
I
I

>
M=12
(even)

h[n] = —h[M — n — 1]
wM-1) © < (M_1)/2

H(ejw) e—}(—r )

h — — k] sin((k — —)w))

26



Inverse Systems for LIT Systems



Inverse Systems for LIT Systems

x[n] =———s h[n]

et [ 71]

h{n] * x[n] —— h;[n] == x[n| = hy[n] * y[n]

Inverse System

* Interms of system functions in z-transforms:
Y(z) =H(z)X(z) and X(z) = H;(z)Y(z)=>H(z) H;(z) =1 z-plane

= H;(z) =

1
H(z)

* For a stable inverse system, ROC of H;(z) must include the unit circle (|z| = 1)

= For causal system, the poles of the H;(z) must inside the unit circle

= The poles of H;(z) are the zeros of H(2)

* For a stable system with inverse system exit:

= Both of the zeros and poles have to be insider the unit circle.



Inverse Systems for LIT Systems

Rational Transfer functions of LTI systems can be expressed as

bo + blz_l + + bM_le_l + bMZ_M _ K Hlkw=1(1 - ﬁkz_k)
ao + CllZ_l + o + ClN_1ZN_1 + ClNZ_N ﬁ=1(1 - Gka_k)

= [, are zeros and the ay, are poles of the system H(z)

The inverse system 1 [Te=1(1 — agz™)
HI(Z) - M -k
K e=1(1 = Brz™)
" [3,, become the poles and the a; become zeros of the inverse system

Stable/Causal H(Z) => |ak| <1 For a stable/causal system with

an inverse system, both zeros

Stable/Causa| HI(Z) = |:Bk| <1 and poles must be inside the

unit circle.




Inverse System Example 1

* Multipath Communication: T \/
= Difference Equation Model

= y[n] = x[n] + px[n — 1] y[n]
* Does a stable/causal inverse system exist?
H(z) =14 pz~1 Im
with Pole at z = 0 and Zeroat z = —p 3fc'|te i}
* If|f| < 1 (Zero of H(z) is inside the unit circle) _f
= The inverse system exit X -
H(2) = 5= =>yIn] = x[n] - By[n]

> Re



Inverse System Example 2

z71-05

Does a stable/causal inverse system exist? H(z) =

The transfer function of the inverse system is given by
1-09z7 1-09z7}
z71-0.5 1—-2z"1
For ROC |z| < 2, it is stable but non-causal

Hy(z) =

Unit

circle |

1—-0.9z71

Im

For ROC |z| > 2, it is causal but unstable

A stable/causal inverse system does not exist.

0.9,/1

N K

> Re



Inverse System Example 3

: : z7t =2
* Does a stable/causal inverse system exist? H(z) = 09,1
* The transfer function of the inverse system is given by Im
H.(z) = 1-09z7  11-09z71 un
) =1 -y T T 21-0521
e For ROC |z| < 0.5, it is unstable and non-causal e

For ROC |z| > 0.5, it is causal and stable

A stable/causal inverse system exist.

> Re



Minimum Phase Systems

» A stable/causal system has a stable/causal inverse system if and only if
all poles and zeros are inside unit circle.

= This is called Minimum Phase System.

e Can show that phase lag of a system with poles/zero inside the unit
circle is less than that of any other system with identical magnitude

response
* Any rational system function
H(z) = Hpin(2) Hap(Z)

Minimum All Pass
Phase



All-Pass Systems



All-Pass Systems

* An all-pass filter is one whose magnitude response |H,,(e/*)| is
constant for all frequencies:

= All pass : |Hap(ej“’)| =1 or Constant

= However, the phase response is not identically zero.

1
* Poles and Zeros of all-pass systems in conjugate reciprocal .} 2=
pairs p i
771 _ F Poles : ¢; = re/? : %d) \‘:
H (Z) — l " Re
@p 1—c;z1 11 '
CLZ Z i _ jo \ ;
=1 eros.— = —e Y
¢, T \ ,

L.M. Po 35



Magnitude Response of All-Pass Systems

P 4 % Poles : ¢; = re’/?
7 ( ) Z — Ci
YA =
a -
P L 11—zt Zeros:c; = lej"b
=1 "L T

* To show : |Hap(ej‘“)| =1, considerP =1

. e_jw_c* e—ja)(l_c*eja)) |e—ja)||1_c*eja)|
Jw = - =
[Hap () 1—ce J® 1—ce J® |1 — ce |
—cee] _|-ceToy|_pl_

1 =ce i@ [1=ceJ®|  |b|



Pole-Zero Patterns of All-Pass Systems

* If |zy] is the modulus of a pole of H(z), then 1/|z,| is the modulus of a zero
of H(z) {i.e. the modulus of poles and zeros are reciprocals of one another}.

Im

Im
F 1
0 ¢
% a _rele |
1 e \\\\ ‘re_jwo l” 1
a 1 X/ 1
a REN a
e 1
_e_]wo

r

A Single Pole All-Pass System A Two-Pole All-Pass System

L.M. Po
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Example of All-Pass System .

Z ~—a
H(Z) ~ 1-qz™1
* Magnitude Response N P
e
a
H(e) =H@]| _,,
. e /¥ —q e /?(1 — ael?)
|H(e]w)| = 1 — ge—J® - 1 — ge—J® le7 /@] =1

1—ael® .
=1 The Magnitude Response

1 —qe J@

L.M. Po 38
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Phase Responses of All-Pass Systems

When 0 < a < 1, the zero lies on the
positive real axis. The phase over O

<O <mis positive,at w =0t is
equal to m and decreases until w =
1, where it is zero.

When -1< a <0, the zero lies on the
negative real axis. The phase over 0
< w <1 is negative, starting at O for

w = 0 and decreases to -t at w =Tt

A

LH(e®)

a=0.5

39
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The Transfer Function of All-Pass Systems

* A more interesting all-pass filter is one that is described by

a,+a,_1z7t+ - +a,z7 4 g z7F

H,,(z) =
ap(2) 1+a,z7 +-+a,_1z7 14 +q,z7L

where ag =1

* If we define the polynomial A(z) as
L

A(Z) = Zakz_k a0=]_
k=0
-1
Az

e H(ed)|* = H(z) - H(z™Y) =1

Hyp(z) =z~
* j.e. all-pass filter

40
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All-Pass System Example

Show that the following transfer function H(z) can be obtained using a parallel
connection of two all-pass filters.

H(z) = 10 — 6271
. 34271
H )_9+32_1+1+32_1_3+1+32"1
2) = 34271 B 34271
1\ 1+ 3271
H) =3+ (5)—
LYJ 1 +§Z_1
\ J
All-pass
Filter All-pass

Filter

41



A Second Order Resonant System
(Complex Poles)
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A Second Order Resonant System

* The transfer function of a 2nd order resonant system can be expressed as

1 7?2

H(z) = =
(2) 1+a,z7'4+a,z72 z24+a,z+a,

* |t has a pair of complex conjugate poles

pp =rel? =rcoswy+jrsinw,

p, =re ¥ =rcoswy—jrsinwg

x/n]

—( " » y/n]

unit circle

4 Im
N
Wo
4 :Re
/1
0

43



* All pole system has poles only (without counting the zeros at the origin)

2 2 2

z z z
z2+a,z+a, (z-p1)(z-p;) (z-rei®o)(z-re~j®o)

H(z) =

2 2
H(z) = Z _ Z

z2-r(e/®04+eJ®0)z+12  z2-27 COS WoZ+12

 Comparing with the two equations, we have

a, = —2rcoswy and a, = r?

aq _ 27Tf0
2+/az w0 Fs

* Wy is resonant frequency

Then, coswy = —

L.M. Po



Magnitude Response of 2"d Order Resonant System

2

Z 50
H(Z) =Z2+a1Z+a2 w0l
A = —27 COS Wy ay
_ -1|_
dB
1 -0.94 0.5
I -1.16 0.7
I11 -1.34 0.9
IV -1.41 0.99

L.M. Po 45



Example 1

Sketch the magnitude response for the system having the transfer function

1+ z71
H(Z) = T T
(1-09e/5271) (1 - 0.9e T3z71)
.TT
 The system has a zero at z = —1 and complex conjugate poles at z = 0.9¢%%

* Thus, the magnitude response will be zero at w, = 7 and large at wy = ij% because the poles

are close to the unit circle.

s H(E®)]

W= j<
Magnitude
¢ Response \A

A

L

4

L.M. Po

/4

E%

3

w =

>
w
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Example 2

Sketch the approximate magnitude response from the pole-zero map given below:

4 dB
A
Im(z)

| D
ﬂ x\ K
2
»
/QXJ Re(z) \
lz|= 1

L.M. Po 47
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Example 3

Sketch the approximate magnitude response from the pole-zero map given below:

A Im(2) A |H(ej“’)|in dB

+0.5X

1 Re(2)

) 1
1 Pl -7 -2

Band-Stop Filter (Notch Filter)

L.M. Po 48



Notch Filter Design
Using
Pole-Zero Placement



Notch Filters

L.M. Po

When a zero is placed at a given point on the z-plane, the
frequency response will be zero at the corresponding
point.

A pole on the other hand produces a peak at the
corresponding frequency point.

Poles that are close to the unit circle give rise large peaks,
whereas zeros close to or on the unit circle produces
troughs or minima.

Thus, by strategically placing poles and zeros on the z-plane,
we can obtain sample lowpass or other frequency selective
filters such as notch filters.

unit circle

- » Re

z-plane

50



Pole-Zero Placement Notch Filter Design

e Obtain, by the pole-zero placement method, the |H ()l
transfer function of a sample digital notch filter that

meets the following specifications:

= Notch frequency fyotcn : 50 Hz F;‘gy 2

= 3 dB bandwidth of the Notch Af : +5Hz “‘\\

= Sampling frequency F, : 500Hz 0 50 250
Im

 The radius, r of the poles is determined by i
Af :
r=1—-\—|m A%w

F:g — Re

51
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Use of a Pair of Complex Zeros

* To reject the component at 50Hz, place a pair of
complex zeros at points on the unit circle corresponds

to 50Hz. i.e. at angle of
« w=0T=2m-50-—= 4027
500

* To achieve a sharp notch filter and improved amplitude
response on either side of the notch frequency, a pair of
complex conjugate zeros are placed at a radius r < 1.

r=1—(i—f)n=1—(£)n=0.937

unit circle

> Re

52
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Notch Filter Transform Function

* Based on the pole-zero locations, we can obtain the transfer function of the notch
filter by

(z _ e—jO.Zrc)(Z _ ejO.Zrc)

(z — 0.937e—702m)(z — 0.937¢/0-2)
22 41— (ejO.Zn n e—jO.Zn)

22 + 0.878 — 0.937(eJ027 4 ¢—j02m),

H(z) =

z2 +1—2cos(0.21)
z2 4+ 0.878 — 2x0.937 cos(0.27)

1= 1.6180z7 1 + z72
" 1—15161z"1+ 0.87822

53



Python Code : Notch Filter’s Pole-Zero Plot

import matplotlib.pyplot as plt -1 -2
import numpy as np 1 - 1.6180Z + VA
import cmath H(Z) —

import control 1 - 1.51612_1 + O.878Z_2

# Define the Poles and Zeros of the Notch Filter

Pl = cmath.rect(0.937,np.pi*0.2) Pole Zero Map
P2 = cmath.rect(0.937,-np.pi*0.2) 0.6 - 0O
zl = cmath.rect(l,np.pi*0.2) X
z2 = cmath.rect(l,-np.pi*0.2) 0.4 -
poles = [pl, p2]
zeros = [zl, z2] 0.2 1

fay

o

g 00
# Determine the polynomial of the transfer function g
H(z)=B(z)/A(z) from the poles and zeros -
b = np.poly(zeros) -0.2 1
a = np.poly(poles)

—-0.4 -

tf = control.TransferFunction (b, a) —0.6 - xo

control.pzmap (tf)
plt.show()

-0.50 -0.25 000 0.25 0.50 0.75 100 125
Real



Python Code : Notch Filter's Magnitude Response

from scipy import signal

Notch Filter : Magnitude Response

import numpy as np

w, h = signal.freqz(b, a, £s=500) 10

import matplotlib.pyplot as plt 0.8 -

fig = plt.figure()

axl = fig.add subplot(l, 1, 1) L.

axl.set title(' Notch Filter : Magnitude Response') 3 0.6 -
g

axl.plot(w, abs(h), 'r') = 0.4 -

axl.set ylabel ('Magnitude', color='b')

axl.set xlabel ('Frequency [Hz]')

axl.grid() 0.2 1

plt.axis('tight')

plt.show () 0.0 +— T

0 50 100 150 200 250
Frequency [Hz]



