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EE4015 Face-to-Face Mid-Term Exam
• The Face-to-Face Mid-Term Exam will be held on November 8, 2022 (Tuesday of Week 11).
• The exam time is 2 hours. Students should arrive at the venue at least 5 minutes before the 

start of the exam.
• The Mid-Term Exam is an open-note exam. Students can use "Scientific Calculator" and "All 

Handouts", including exercises and assignments.
§ In addition to hard copies of handouts, students can also use smartphones, tablets or 

iPads to read notes, but the electronic device must be set to airplane mode. During the 
exam, you are not allowed to communicate with others and search on the Internet. 
During the exam, investigators will check from time to time whether your electronic 
device is in airplane mode.

• Students need to use their own answer sheets (such as A4 paper) to answer the questions.
• The mid-term exam will cover up to week 8.



Content
Frequency Response Analysis
• Frequency Response Estimation
• Magnitude and Phase Responses
• Frequency Response of FIR Systems
• All-Pass Filters
• Second Order Resonant Filter
• Notch Filter Design using Pole-Zero 

Placement

Structures for Discrete-Time Systems
• Block Diagram Representation

• Signal Flow Graph Representation

• Non-Recursive Structures for FIR System
§ Direct Form and Cascade From

• Recursive Structures for IIR System

§ Direct Form, Canonic Form, Cascade 
Form and Parallel Form

• Comparison of Different Structures
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Structures for Discrete-Time Systems
• In practical, we need to use different structures to realize discrete-time systems in

hardware or software.

• Discrete-time LTI system with rational transfer function 𝐻(𝑧) can be represented as :

• Or the corresponding linear constant coefficient difference equation 

where x[n] and y[n] are the system input and output
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Recursive and Non-Recursive Structures

There are two types of structures for realization of Discrete-Time Systems
• Non-recursive : No feedback paths (𝑎! = 0)

§ It is always used for implementation of Finite Impulse Response (FIR)
systems. 

• Recursive : At least one feedback path (𝑎! ≠ 0)
§ It is commonly used for implementation of Infinite Impulse Response (IIR) 

systems, but FIR systems are also possible to be implemented by recursive 
structure.
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Feed Forward Feedback
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Implementation of Difference Equations
• The implementation of difference equations requires delayed values of the

§ input
§ output
§ intermediate results 

• Computing y[n] involves y[n-1], y[n-2], …, y[n-N], and x[n], x[n-1],…,x[n-M]. That is, 
we need
§ Delay elements or storage
§ Multipliers
§ Adders (subtraction is considered as addition)
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Complexity of the Discrete-Time Systems
How many storage elements are needed? 
How many multipliers are needed?
How many adders are needed?
• Computations of y[n] can be arranged in different ways to give the same difference 

equation, which leads to different structures for realization of discrete-time LTI 
systems

• 4 basic forms of implementations : Direct Form, Canonic Form, Cascade Form and 
Parallel Form 

• An implementation can be represented using either a Block Diagram or a Signal 
Flow graph
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Block Diagram Representation
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Features of these Basic Operations
• Although an adder can generally deal with more than two sequences, here we 

consider two signals in order to align with practical implementation in 
microprocessors.

• When 𝛼 > 1 , it corresponds to signal amplification while the signal is attenuated 
for 𝛼 < 1 . Note that a multiplier usually has the highest implementation or 
computational cost and thus it is desired to reduce the number of multipliers in 
different systems.

• The transfer function 𝑧%' corresponds to a unit delay. It can be implemented by 
providing a storage register for each unit delay in digital implementation. If the 
required number of samples of delay is 𝐷 > 1 , then the corresponding system 
function is 𝑧!".
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Signal Flow Graph Representation
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Features of Signal Flow Graph
• Its basic elements are branches with directions, and nodes. That is, a signal flow 

graph is a set of directed branches that connect at nodes.
• Signal at a node of a flow graph is equal to the sum of the signals from all branches 

connecting to the node.
• Signal out of a branch is equal to the branch gain times the signal into the branch.
• Branch gain can refer to a scalar or a transfer function of 𝑧!# corresponding to 

multiplication or unit delay operation, respectively.
• When the branch gain is unity, it is left unlabeled.
• A signal flow graph provides an alternative but equivalent graphical representation 

to a block diagram structure
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Block Diagram and Signal Flow Graph Examples
• Draw the block diagram and signal flow graph representations of a LTI system whose 

input and output y[n] satisfy the following difference equation:

2 adders, 3 multipliers and 2 delay elements are required to implement the system.
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Structure for Non-Recursive DT Systems
• Non-recursive structures do not have feedback paths and commonly used 

for realization of Finite Impulse Response (FIR) Digital Filters.
• For FIR filter, its transfer function does not contain pole. That is, setting 𝑎$ = 1 and 
𝑎# = 𝑎% = ⋯ = 𝑎& = 0 in the general difference equation yields a FIR system:

• While the corresponding difference equation is:

𝑦 𝑛 = .
'($

)
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Direct Form
• Basically, the difference equation coefficients of the FIR DT systems 

corresponding to the impulse response h[n]:

• Then, the difference equation can be written as

• The direct form follows straightforwardly form the difference equation. 

𝑦 𝑛 = .
'($

)
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Direct Form of FIR Systems
• The implementation needs memory locations for storing 𝑀 previous 

inputs of 𝑥[𝑛] , 𝑀+ 1multiplications and 𝑀 additions for computing 
each output value of 𝑦[𝑛].
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Cascade Form
• The transfer function of FIR system can also be expressed as products of second-

order polynomial system functions via factorization:

• Where 𝑀+ = (𝑀 + 1)/2 is the largest integer contained in (𝑀 + 1)/2 . 
• Note that when 𝑀 is odd, one of the 𝛽%' will be zero. 
• Assuming that 𝑀 is even, this implementation needs 𝑀 storage elements, 3𝑀/2

multiplications and 𝑀 additions, for computing each output value of 𝑦[𝑛].

Why second-order polynomial instead of first-order polynomial?
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Cascade Form of FIR System
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Four Types of Causal Linear Phase FIR Systems

• For casual FIR systems, if their impulse response ℎ 𝑛 satisfied the 
symmetrical property, then the systems will have linear phase responses.

• The symmetrical impulse response property is defined as

• There 4 types of linear phase FIR systems:
§ Type I : Odd Positive Symmetric – 𝑀 is odd  and ℎ 𝑛 = ℎ 𝑀 − 1 − 𝑛

§ Type II : Even Positive Symmetric – 𝑀 is even and ℎ 𝑛 = ℎ 𝑀 − 1 − 𝑛

§ Type III : Odd Negative Symmetric – 𝑀 is odd and ℎ 𝑛 = −ℎ 𝑀 − 1 − 𝑛

§ Type IV : Even Negative Symmetric – 𝑀 is even and ℎ 𝑛 = −ℎ 𝑀 − 1 − 𝑛

ℎ 𝑛 = ±ℎ 𝑀 − 1 − 𝑛 , 𝑛 = 0,1,… ,𝑀 − 1
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Positive Symmetry Impulse Responses

ℎ 𝑛 = ℎ 𝑀 − 1 − 𝑛

𝐻 𝑒!" = 𝑒#!(
" %#&

' ) ℎ
𝑀 − 1
2 + 2 0

)*&

(%#+)/'

ℎ
𝑀 − 1
2 − 𝑘 cos 𝑘𝜔

Odd Positive Symmetry 
(Type I)

M=13
(odd)

ℎ 𝑛 = ℎ 𝑀 − 1 − 𝑛

𝐻 𝑒!" = 𝑒#!(
" %#&

' ) 2 0
)*&

(%#+)/'

ℎ
𝑀 − 1
2 − 𝑘 cos((𝑘 −

1
2)𝜔)

Even Positive Symmetry 
(Type II)

M=12
(even)

9 11

19L.M. Po



Negative Symmetry Impulse Responses
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FIR Filter Structures
• Direct Form structure for an FIR filter:
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Direct Form Structure with Linear-Phase FIR Structures

• Direct form structure for an FIR filter:

• Linear-Phase structures:

§ N even:

§ N Odd:
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Linear-Phase 
FIR Filter 
Structures
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IIR Filter Structures



Structures for Recursive DT System
• Infinite Impulse Response (IIR) DT systems are always realized by 

recursive structures with at least one feedback paths.
• The corresponding transfer function of IIR system is

• Basically, it is the general form of any discrete-time LTI system.
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Direct Form (or Direct Form I)
• Based on the general form of IIR transfer function, its difference equation 

can be decomposed into a pair of difference equations

• The direct form can also be obtained by decomposing H(z) into two 
transfer functions as

• where

and

and
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Direct Form
• In the z-transform domain, we 

have

This direct form implementation needs (M+N) 
memory locations, (M+N+1) multiplications and 
(M+N) additions, for computing each output values of 
y[n].

H1(z) H2(z)
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Canonic Form (or Direct Form II)
• For the IIR  LTI system, we can first pass x[n] through the filter H2(z) to 

produce an intermediate signal w[n]. The w[n] is then passed through 
the system H1(z) to give y[n]:

• Applying inverse z-transform, we get:

• Which can be considered as an alternative direct form.

and

and
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Canonic Form
H2(z) H1(z) Canonic form of IIR filter 

This structure can save N memory locations.
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Why Canonic Form?
• Assume M=N. Since the same signals w[n], w[n-1],…, w[n-N], are stored 

in the two chains of storage elements, they can be combined to reduce 
the memory requirement.

• In general, the minimum number of delay elements required is 
max(M,N).

• It is called canonic form because this implementation involves the 
minimum number of storages.
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Example of Recursive Filter Structures
• Draw the block diagrams using the direct and canonic forms for the LTI 

system whose transfer function is

• Then, the difference equations
§ For direct form

§ For canonic form
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Examples of Direct Form and Canonic Form

Direct Form of Second-Order IIF Filter Canonic Form of Second-Order IIF Filter
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Cascade Form (1)
• We factorize the numerator and denominator polynomials in terms of 

second-order polynomial system functions as

• Without loss of generality, it is assumed that 𝑁 ≥ 𝑀 so that 𝑁) =
𝑁 + 1 /2 . 

• Note that when M or N is odd, one of the 𝛽*! or 𝛼*! will be zero.
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Cascade Form (2)
• Each second-order subsystem

• can be realized in either the direct or canonic form. Nevertheless, the 
canonic form is preferred because it requires the minimum number of 
delay elements.

• In IIR filter implementation, we can group the numerator and 
denominator in different ways, leading to different pole and zero 
combinations in each of the second-order sections.
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Four Possible Cascade Realizations for 4th Order IIR Filter
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Complexity of Cascade Form
• To save the computational complexity, we express the transfer function in 

cascade form as

• Where 𝐺 = 𝛽!"𝛽!#…𝛽!$! , 𝛽!"% = 𝛽"&/𝛽!& and 𝛽#"% = 𝛽#&/𝛽!&, 𝑘 =
1,2, … , 𝑁

• Assuming that 𝑁 is even with 𝑁 = 𝑀, the cascade implementation needs 𝑁
or 2𝑁 delay elements, (2𝑁 + 1) multiplications and 2𝑁 additions, for 
computing each y[n]. That is , its memory and computational requirements 
are equal to those of the direct or canonic form.
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Example
• Draw the signal flow graph using the cascade form with first-order 

sections for the LTI system whose transfer function is

• For each first-order section, canonic form is assumed.
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Solution
• Solving the quadratic equations of the numerator and denominator polynomials, we 

can factorize H(z) as

• There are four possible 
cascade forms for H(z)

• Note that although all four realizations are equivalent for infinite precision, they 
may differ in actual implementation when finite-precision numbers are employed.
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4 Possible Cascade Realizations
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Parallel Form
• The ideal of the parallel form is similar to the partial fraction expansion 

of z-transform

• Where 𝑁) = 𝑁 + 1 /2 . But now we use second-order sections in 
order to ensure all 𝛾#! , 𝛾'! , 𝛼'! and 𝛼*! are real.

• Note that when 𝑀 < 𝑁 , the first summation term will not be included.
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Example : Parallel Form
• Draw the block diagram using parallel form for a LTI system whose 

transfer function is
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Solution (1)
• Following the long division, we can obtain

Parallel Form with Second-Order Section
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Solution (2)
• As the poles of H(z) are real, we can also express H(z) in terms of first-

order sections as

Parallel Form with First-Order Sections
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Example
• Determine the transfer function H(z) and the difference equation which 

relates x[n] and y[n] for 
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Solution (1)
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Solution (2)
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Comparison of Difference Structures
• The major factors that affect our choice of a specific realization are computational 

complexity, memory requirement, and finite word-length effects. Assuming that M is 
even with M=N:

FIR Filter using Non-Recursive Structure Comparison

IIR Filter using Recursive  Structure Comparison
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• Computations of the direct form can be reduced if the FIR filter coefficients 
are symmetric or anti-symmetric.

• When the filter coefficients are expressed using infinite precision numbers, all 
realizations are same. However, in practice, they are processed in registers 
which have finite word-lengths. In the presence of quantization errors, the 
cascade and parallel realizations are more robust than the direct and canonic 
forms, that is, they have frequency responses closer to the desired responses.

• FIR filters are less sensitive than IIR filters to finite word-length effects.

• For a feasible system, it should be causal and stable.

• In cascade and parallel realizations of IIR filters, system stability can be easily 
monitored by checking pole locations.
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