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Multirate Digital Signal Processing
• The increasing need in modern digital systems to process data at more than 

one sampling rate has led the development of a new sub-area in DSP known 
as multirate digital signal processing (MDSP).

• The two primary operations in MDSP are:

§ Decimation (Down Sampling) : decrease the sampling rate Fs of a given 
signal x[n]

§ Interpolation (Up Sampling) : increase the sampling rate Fs of a given 
signal x[n]



Decimation (Down Sampling)
• Decimation  is used to decrease the sampling rate of an input signal.
• The decimation factor is confined to an integer such as M=3

• The output signal y[m] is obtained by taking every Mth sample of the input 
signal. 

• If M=3, we should just take  every third sample of x[n] to form the desired 
signal y[m]

y[m]

x[n] y[m]

Mx[n]
Fs Fs/Mn0 1 2 3 4 5 6 0 1 2 m
M=3; Fs= sampling frequency



Decimation Example
• x[n] = {1, 2, 4, 3, 5, -6, -8, 2, -3, 2, 6, 8, 9, 7, 5, 2}

• y[m] = {1, 3, -8, 2, 9, 2}

• The output signal y[n] is obtained by taking every Mth sample of the input signal. If M = 3, 
we should just take every second sample of x[n] to form the desired signal y[m].

• Obviously, it only makes sense to reduce the sampling rate if the information constant of 
the signal we wish to preserve is band limited to Fs /6 (Half the desired sampling rate)
§ It is because the spectral components above this frequency will be aliased into 

frequencies below Fs /6 according to the sampling rule.

Down sample by 3



A Times M Decimator Configuration
• The signal x[n] is first passed through a digital lowpass filter that 

attenuates the band from 𝜔 > 𝜋/𝑀 (Fs /2M to Fs /2 ) to prevent 
aliasing. 
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Spectral interpretation of decimation of a signal                          
from 6kHz to 2kHz 
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Decimator Configuration

𝜋/𝑀-𝜋/𝑀

𝐻 𝑒!"

𝜔

M
𝑥[𝑛]

𝐹-

𝑦[𝑚]

𝐹-/𝑀

Digital Lowpass Filter



Why Decimation?
• In practice, decimator may require, for example when an audio signal is 

over sampled 4 times at Fs = 176.4kHz for releasing the analog anti-
aliasing lowpass filter requirement.

• In order to match the standard Compact Disc Audio sample rate of 
44.1kHz, we need to down sample the digital signal. 

• So the first step in the decimation process must be the digital filtering of 
the signal x[n] is band limited to Fs /(2× 4) = 22.05kHz



Which Type of Digital Filter (IIR or FIR) should be Used?

• IIR filter has an obvious  shortcoming. We cannot take advantage of the 
fact that we only have to compute every Nth output, since previous 
outputs are required to compute the Mth output. No saving is realized.

• FIR filter implies that we can do the computations at the rate of fs/M. 
Thus, using an FIR filter in the decimation process will lead to a 
significantly lower computation rate. Another advantage of using an FIR 
filter is the fact  that we can easily design linear phase filters and this  is 
desirable in many applications.



Decimation of FIR Filtering improve Efficiency



Interpolation (Up Sampling)
• The process of interpolation involves a sampling rate increase such as L=3

• The sequence x[n] was derived by sampling x(t) at a sampling rate Fs and we 
want to obtain a sequence y[n] that approximates as closely as possible the  
sequence that would have been obtained had we sampled x(t) at the rate L Fs.

• Interpolation involves inserting (L-1) zero samples between samples x[n] and 
x[n-1]. (Zero Insertion)

L
x[n] y[m]

Fs L Fs 



Interpolation Examples by Zeros Insertion 
x[n]={1, 2, 4, 3, -5, 6, -7, 2, 4, 3}

2

y[m]={1,0,2,0,4,0,3,0,-5,0,6,0,-7,0,2,0,4,0,3,0}

x[n]={1, 2, 4, 3, -5, 6, -7, 2, 4, 3}

3
y[m]={1,0,0,2,0,0,4,0,0,3,0,0,-5,0,0,6,0,0,-7,0,0,2,0,0,4,0,0,3,0,0}



Interpolation Example L
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• We observe that to go from 𝑋 𝑒$% to 𝑌 𝑒$% , we have to pass x[n] through a 
lowpass digital filter designed at the L Fs sampling rate that attenuates sufficiently 
any frequency components above Fs/2.
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Interpolator Configuration
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• To recover the original signal, the upsampled sequence  is required to 
pass through a digital lowpass filter that attenuates the band from 
𝜔 > 𝜋/𝐿. 



xL Interpolator Configuration

• Example: x[n] = {1, 0.9, -0.5}, Let L = 3, then, w[m] = {1, 0, 0, 0.9, 0, 0, -0.5, 0, 0}

• The digital lowpass filter joins all the samples of w[m] to produce a waveform 
as if x[n] has been sampled at L Fs

L
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Filter

x[n] w[m] y[m]

Fs L Fs L Fs

x[n] w[m] y[m]

Insert L-1 zeros Filtered signal



Interpolator Characteristics
• We assume that behind each x[n], there are L-1  zero samples when we 

computing an output w[n]

• Note that for each sample of x[n], three output samples y[n] are 
obtained

• Obviously, the same reasoning that led us to  believe that FIR filters are 
preferable in the  decimation process holds here also.



Typical Interpolation Implementation



Example of x2 Decimator Design
• Decimation of x[n] = {2, 6, 4, 2, 6, 8, 4, 2, 4, 4} with M=2

• Digital Lowpass Filter with impulse response of h[n] = {1/2, 1/2}

• w[m] = x[n]*h[n] = {4, 5, 3, 4, 7, 6, 3, 3, 4, 2}

• y[m] = {4, 3, 7, 3, 4}

M=2
x[n] w[m] y[m]

Fs Fs Fs /M

h[n]



Example of x2 Interpolator Design
• Interpolation of x[n] = {1, 3, 5, 3, 7} with L=2

• Digital Lowpass Filter with impulse response of h[n] = {1/2, 1, 1/2}

• w[m] = {1, 0, 3, 0, 5, 0, 3, 0, 7, 0}

• y[m] = w[m]*h[m] = {1, 2, 3, 4, 5, 4, 3, 5, 7, 3.5}

L=2
x[n] w[m] y[m]

Fs L Fs L Fs

h[n]



Interpolator Design Example

• What should be the sample rate of the output signal y[m]?
§ Fs’ = 3x8 = 24kHz

• What should be the cut-off frequency of the digital lowpass filter?
§ The cut-off frequency should be ωc = p /3, which corresponding to Fs’ /6   = 

24k/6 = 4kHz

L=3
Digital

Lowpass
Filter

x[n] w[m] y[m]

Fs = 8kHz Fs’ = ?
Bandwidth = 2kHz



Sampling Rate Conversion by Non-Integer Factors

• In some applications, the need often arises  to change the sampling rate 
by a non-integer factor
§ An example is transferring data from the  compact disk (CD) system at a rate of 

44.1kHz to a digital audio tape (DAT) at 48 kHz

§ This can be achieved by increasing the data rate  of the CD by a factor of 48/44.1, 
a non-integer

§ In practice, such a non-integer factor is  represented by a rational number, that is 
a ration of two integers say L and M

§ The sampling frequency change is then achieved  by first interpolating the data 
by L and then  decimating by M



Sampling Rate Conversion of 44.1kHz to 48kHz
• The interpolation process must be performed before decimation, 

otherwise the decimation process will remove some of the desired 
frequency components

• CD at 44.1kHz  =>  DAT at 48kHz, which can be converted by

• Therefore if we up sample by L=160 and then down sample by M=147, 
we can achieve the desired sample rate conversion.

𝐿
𝑀 =

48000
44100 =

2! . 3 . 5"

2# . 3# . 5# . 7# =
160
147



Interpolator and Decimator Configuration

• The two Digital Lowpass Filters, 𝐻0 𝑒12 and 𝐻3 𝑒12 can be combined into a single 
filter since they are in cascade and have a common sampling frequency
§ If M > L, then the resulting operation is a decimation process by a non-integer 
§ If M < L, then the resulting operation is an interpolation

L=160
x[n] w[m]

Fs =
44.1kHz

M=147
y[m]

L Fs L Fs

L Fs

L Fs /M
= 46kHz

Interpolator Decimator
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Sampling Rate Conversion by  Non-Integer Factors

• The two Digital Lowpass Filters, 𝐻$ 𝑒%& and 𝐻# 𝑒%& can be combined 
into a single lowpass filter 𝐻 𝑒%& with cut-off frequency 𝜔' :

§ 𝜔+ = min ,
-
, ,
.

L
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M
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Sampling Rate Conversion Example
• Figure below shows sampling rate conversion  by non-integer factors.

• Calculate the values of L and M as well as the cut-off frequency of the 
digital lowpass filter.

L
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⇒ 𝑓6 =

8000
2 · 5
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Illustration of Interpolation by a factor 3/2
The sample rate is first 
increased by 3, by inserting 
two zero-value samples for  
each sample of x[n] and low-
pass filtered to yield q[m]. 
The filtered data is then  
reduced by a factor of 2 by 
retaining only one sample for 
every two samples of  q[m].

3
Lowpass
Filter
h[m]

x[n] w[m] q[m]

Fs
2

y[k]

LFs‘/M



MDSP Example 1
• An input signal 𝑥 𝑛 with spectrum 𝑋 𝑒12 is shown below. The input signal is 

applied to the system shown below. Sketch 𝑋 𝑒12 , 𝑊 𝑒12 , 𝑉 𝑒12 , 
𝑌 𝑒12 against 𝜔.

𝜔 𝜔

𝐻 𝑒!"𝑋 𝑒!"



Solution of Example 1
𝑋 𝑒!"

𝑊 𝑒!"

𝑉 𝑒!"

𝑌 𝑒!"

𝐻 𝑒!"

𝜔

𝜔

𝜔
𝜔

𝜔



MDSP Example 2
• An input signal 𝑥 𝑛 with spectrum 𝑋 𝑒12 is shown below. The input signal is 

applied to the system shown below. 
• The ideal lowpass filter H(z) has a gain factor of 1 in the passband and a cut-off 

frequency 𝜔 =p/5.

• Sketch 𝑋 𝑒12 , 𝑊 𝑒12 , 𝑉 𝑒12 , 𝑌 𝑒12 against 𝜔.

x[n] w[n] v[n] y[n]𝑋 𝑒$%

𝐻 𝑒!"

𝜔

𝜔
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Computational Requirement (1) 
• The lowpass decimation or interpolation filter can be designed either as 

an FIR or an IIR digital filter

• In the case of single-rate digital signal processing, IIR digital filters are, in 
general, computationally more efficient than equivalent FIR digital 
filters, and are therefore preferred where computational cost needs to 
be minimized



Computational Requirement (2) 

• This issue is not quite the same in the case of multirate digital signal 
processing

• To illustrate this point further, consider the factor-of-M decimator 
shown below

• If the decimation filter H(z) is an FIR filter of length N implemented in a 
direct form, then
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Computational Requirement (3) 
• Now, the down-sampler keeps only every M-th sample of v[n] at its 

output

• Hence, it is sufficient to compute v[n] only for values of n that are 
multiples of M and skip the computations of in-between samples

• This leads to a factor of M savings in the computational complexity

• Now assume H(z) to be an IIR filter of order K with a  transfer function
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Computational Requirement (4) 
• Its direct form implementation is given by

• Since v[n] is being down-sampled, it is sufficient to compute v[n] only 
for values of n that are integer multiples of M

!-----= ][][][ 21 21 nwdnwdnw
][][ nxKnwdK +--
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Computational Requirement (5) 
• However, the intermediate signal w[n] must be computed for all values 

of n

• For example, in the computation of

K+1 successive values of w[n] are still required

• As a result, the savings in the computation in this case is going to be less 
than a factor of M

][][][][ KMwpMwpMwpMv K -++-+= !110



Computational Requirement (6) 
• For the case of interpolator design, very similar arguments hold

• If H(z) is an FIR interpolation filter, then the computational savings is by 
a factor of L (since v[n] has  L-1 zeros between its consecutive nonzero 
samples)

• On the other hand, computational savings is significantly less with IIR 
filters



Modulation



Modulation (1)
• In the time domain, modulation is the 

process of multiplying an input signal 𝑥 𝑛
with a sinusoidal signal known as the carrier, 
illustrated in the diagram on the right. 

• According to the modulation property of the 
discrete-time Fourier transform: 

• In the frequency domain, the modulated 
signal comprises two shifted versions of the 
original signal, translated by the carrier 
frequency. 
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1
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Modulation (2)

Time Domain Frequency Domain
𝑥 𝑛 cos𝜔( 𝑛 1

2 𝑋 𝑒% &)&& + 𝑋 𝑒% &*&&

𝑥 𝑛 sin𝜔( 𝑛 1
2𝑗 𝑋 𝑒% &)&& + 𝑋 𝑒% &*&&

𝑥 𝑛 𝑒%&&+ 𝑒% &)&&



Modulation Example 1
• 𝑥(𝑡) is the input signal for the system shown below. The analogue signal 𝑥(𝑡) has 

the spectrum 𝑋(𝑓) given by:

• 𝐻 𝑒$% is an ideal lowpass filter (gain=10) with cut-off frequency 𝑓6 = 125 Hz. 
Sketch, one above another, 𝑋 𝑒$% , 𝑃 𝑒$% , 𝑉 𝑒$% , 𝑌 𝑒$% against 𝜔 . 

cos𝜔% 𝑛
𝜔% = 2𝜋×10(

𝐻 𝑒!"

𝜔



Solution
• 𝐹* =

+
,
= 2.5 kHz

• Carrier Frequency :
§ 𝜔% = 2𝜋10(𝑇 = 0.8𝜋

• LPF Cut-off Frequency :

§ 𝜔$ = 2𝜋 )*+
*.+×)%)

= 0.1𝜋
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Modulation Example 2
• The sampling period T of the input signal shown in the figure below is 

125 μs. The relative frequency is θ = ωT. The first oscillator generates a 
carrier with a relative frequency θ1 = ω1T , where ω1 = 2π .2.103 rad / 
sec. The second

• oscillator generates a carrier with a relative frequency θ =(ωc+ω)T, 
whereω =2π.103rad/sec. The low-pass

• 21c

• filter has the following characteristics:



Adaptive Filters



Digital Transmission using Adaptive Equalization


