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All Things Are Number (Pythagoras, 570 - c. 495 BC)

* This famous philosophical proposition is attributed to
Pythagoras, the ancient Greek philosopher and
mathematician.

* Pythagoras and his followers (the Pythagorean school)

believed that numbers are the fundamental essence of all
things in the universe.

* They held that reality is ultimately mathematical—
harmony, form, and even moral principles can be
understood through numerical relationships.

* This idea profoundly influenced later thinkers, including

Plato, and laid early groundwork for the mathematization of
nature in Western science.



Galilei, Galileo (1564 - 1642)

[The universe] cannot be read until we have
learnt the language and become familiar with the
characters in which it is written. It is written in
mathematical language, and the letters are
triangles, circles and other geometrical figures,
without which means it is humanly impossible to

comprehend a single word.
Operell Saggiatore p. 171.




Demis Hassabis (DeepMind CEO, 2025)

* Demis Hassabis operates on the foundational belief that "everything is
computationally tractable," meaning the entire universe and all its
phenomena can, in theory, be modeled and understood by a sufficiently
powerful computer.

https://x.com/i/status/2000994920753144043



https://x.com/i/status/2000994920753144043

Four-Level of Understanding

1. Natural Language Understanding
= Employ human language to describe the concepts, problems and solutions in Al.

* e.g. Deep learning uses multi-layered artificial neural networks to recognize complex patterns
in data, resulting in state-of-the-art performance in domains such as CV and NLP.

2. Visual Understanding
= Utilize figures to visually represent concepts, problems and solutions in Al.
3. Mathematical Understanding

= Utilize mathematical equations to represent the concepts in Al.
* e.g. A MLP model can be expressed as Py(x) = softmax(W @ ReLU(W®x + b(D) + b?)

4. Implementation of Al System

= Implement deep learning research and applications using Python programming
language and frameworks like PyTorch.



EE4016 Prerequisites

* Prerequisites:

 Linear Algebra, Multi-variable Calculus and Probabilities, and

* Object-Oriented Programme (e.g. Python)

* Please be advised, EE4016 is a course with a STRONG mathematical and
programming components.

* Focus: Deep learning architectures trainable via gradient-based approaches.

* Linear Algebra and Matrix Calculus.
* Probability and Statistics.

* Skills gained through assighments and projects:

* Proficiency in Python and familiarity with deep learning libraries like PyTorch.



EE4016 Prerequisites

Linear Algebra: Matrix Multiplication

= Linear algebra is a fundamental concept that is essential for understanding neural
network algorithms, which are often formulated as matrix computations.

Differential Calculus: Derivative and Vector Calculus

= Differential multivariable calculus plays a key role in optimization techniques, specifically
differential programming using gradient descent.

Probability: Conditional Probability, Random Variable, Expectation, Variance

= Probability theory is another important area of math for deep learning as many
applications involve dealing with probabilistic models.

Programming: Python, Object-Oriented Programming, PyTorch



First Industrial Revolution (16th -17th Century)

 The First Industrial Revolution is linked to the First Scientific
Revolution, which established modern science.

* Newton's laws of motion provided a framework for
understanding physical forces, guiding engineering and
technological advancements.

e Newton’s Second Law of Motion:

d ( ) dzx Isaac Newton
ma=—(m-v) =m—
dt dt?
* This equation describes the relationship between force (F), mass (m), and
acceleration (a). It is fundamental to classical mechanics.

F

* Force is equal to rate of change of momentum (mass - velocity)


https://en.wikipedia.org/wiki/Isaac_Newton

Second Industrial Revolution (18th - 19th Century)

* The Second Scientific Revolution saw the development of electromagnetism.

 Maxwell's Equations:

Gauss's law for electricity Gauss's law for magnetism
p
V- E=— V-B=0
€o
Faraday's law of induction Ampére-Maxwell law
0B JE
VXE = —— VXB = ugJ + HOEOE James C. Maxwell
dt

* These four equations, formulated by James Clerk Maxwell, describe the behavior of electric (E) and

magnetic (B) fields and their interactions with charges (p) and currents (J).


https://www.google.com/url?sa=i&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FJames_Clerk_Maxwell&psig=AOvVaw2jhJjr9EE5YEhwVZqw5png&ust=1737383274114000&source=images&cd=vfe&opi=89978449&ved=0CBcQjhxqFwoTCPCWkpn_gYsDFQAAAAAdAAAAABAE

Maxwell’'s Equations

e Electric Fields and Charges (V - E =:p): Electric fields are generated by electric
0
charges, as described by Gauss's Law for Electricity.

* Magnetic Fields (V - B = 0) : Magnetic fields are generated by moving charges
(currents) and changing electric fields, as described by Ampere's Law with Maxwell's
addition.

* Induced Electric Fields (VXE = —%): Changing magnetic fields induce electric

fields, as described by Faraday's Law of Induction.

* No Magnetic Monopoles (VXB = ugJ + uoeo%t): Magnetic fields are continuous

and have no starting or ending points, as described by Gauss's Law for Magnetism.
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Third Industrial Revolution (20th Century)

 The Third Industrial Revolution, or Digital Revolution, started in the mid-20th
century, marked by digital technology, computing, and automation.

 Shannon's Information Entropy (Information Theory):

H(X) = = ) P(x;)log, P(x)

Claude Shannon

* The entropy H(X) of a random variable X measures the uncertainty or information
content in a system, where P(x;) is the probability of event x; .

» Significance: This equation is the foundation of information theory, enabling the
guantification of information and the development of data compression, error
correction, and communication systems.
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https://en.wikipedia.org/wiki/Claude_Shannon

Fourth Industrial Revolution (21st Century)??

First Industrial Revolution: What is physical force?
This era focused on harnessing mechanical power, driven by advancements in understanding forces like gravity
and motion, as defined by Newtonian physics, to revolutionize manufacturing and transportation.

Second Industrial Revolution: What is electromagnetism?

This period was defined by the mastery of electricity and magnetism, leading to breakthroughs in energy
generation, communication, and industrial automation, transforming society and infrastructure.

Third Industrial Revolution: What is information?
Marked by the rise of digital technology, computing, and the internet, this revolution centered on processing,
storing, and transmitting information, reshaping economies and global connectivity.

Fourth Industrial Revolution: What questions are we trying to answer?

This current era explores the integration of advanced technologies like Al, biotechnology, and quantum
computing, seeking to address complex challenges about humanity's future, ethics, and the relationship
between humans and machines.

12



Fourth Industrial Revolution (21st Century)??

* In the Al era, we may seek to answer: What is Intelligence?

= One current interpretation lies in autoregressive language models like ChatGPT,
which predict and assign probabilities to word sequences.

" These Al models compute the probability distribution of the next word w,,,; given
previous words Wy, Wo, ..., Wy, :

Po(Wri1lwy, wo, ., wy)

The next token’s probability distribution

43% | powerful =
(n)
37% | innovative 8.
=)
()
Deep Learning is very LLM 15% | complex > » powerful
s Wn+1
Wi, Wa, ..., Wy 3% | weak =
=
1% | limited -
—
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Fourth Industrial Revolution (21st Century)??

* Autoregressive Language Modeling is the task of predicting the next word

= TRk

= Deep Learning is very

powerful (43%) innovative (37%) complex (15%)

LLM —— Learping

Time=1 Deep —
i
Time=2 Deep Learning —
.
Time=3 Deep Learning is —!
v
Time=4 Deep Learningis very —

Time =5 Deep Learning is very powerful —

LLM(“Deep”) = Learning

LLM(“Deep Learning”) =is

LLM(“Deep Learning is”) = very

LLM(“Deep Learning is very”) = powerful

LLM(“Deep Learning is very powerful”) = <EOS>
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Hong Kong TV Game: GPT Game (XX F#E )

https://www.youtube.com/watch?v=pwTKrvqZOMo



https://www.youtube.com/watch?v=pwTKrvqZOMo

Linear Algebra



Scalar, Vector, Matrices, and Tensors : Notations

Scalar
Rank-0 tensor

x €ER
x = 5438

Vector
Rank-1 tensor

X € R" or x € R™*1

X1 1
X
X = :2 X = %
[ Xn -4-
XT — [xl xz cos xn]

where xT € RI*xn

Matrix
Rank-2 tensor

X € R™M o X € R"xXR™

An mXn Matrix X with m rows
and n columns:

X111 X120 X1im]
X21 X22 = Xom

Xn1 Xn1 " Xnml]
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Rank-3 Tensors

* In general, a tensor is a multidimensional array with more than 2 axes
(e.g. an RGB image)

X1,1 X120 Xim
* We write tensors in upper case, bold typeface g Xyy 2 Wl
* For a rank-3 tensor of shape nxXmxp : Fon gy 5 Bl
[Xn1 Xn1  Xnm
X € RMMXP o X € R"XR™ XRP P [Xn1 Xn1 " Xnm

We identify each element of a tensor via its indices (x; ; )

= Elements of a tensor are scalars and written in lower case non-boldface font

18



Tensor Notations

* Rank O Tensor, Scalar, R
* Rank 1 Tensor, Scalar, R™
e Rank 2 Tensor, Scalar, R"**™ .

e Rank 3 Tensor, Scalar, R™**MxP

rank O tensor
dimensions [ ]
scalar

Index [0,0]
rank 1 tensor rank 2 tensor
dimensions [5] dimensions [5, 3]
vector matrix

Tensors

https://ai.plainenglish.io/what-is-a-tensor-2715746a4785

Index [0,2,1]

rank 3 tensor
dimensions [4, 4, 2]


https://ai.plainenglish.io/what-is-a-tensor-2715746a4785

An Example of Rank-2 Tensor (Matrix)

* Arank 2 tensor, commonly recognized as a matrix, encompasses arrays of values arranged
in two dimensions, denoted as R™*™,

 Example: In image processing, a grayscale image can be represented as a matrix of pixel
values, where each element represents the intensity of light at a specific location. For
instance, a 28x28 matrix could represent a grayscale image with dimensions of 28 pixels by

28 pixels.
F

15 210 18
s

206 [174 [155 [252 [236 (201 (149 [178 (228 | &3 23

R 218 20 150 [216 [116 [149 1236 (187 | 86 150 | 79 | 38 [218 [ 241
W U 190 [224 1147 (108 (227 1210 127 102 | 35 (101 [ 266 | 224

s 2 150 (214 [173 | €6 1103 143 | 96 | SO 21109 (249 (215
s 21 187 [196 (235 | 75 18| &7 0} s |7 25 | 2Mm

43 183 (202 [ 237 | 145 0] 0] 12108 200 [138 [ 243 | 236

el 196 [ 206 [123 1207 177 |12 123 |00 (175 | 13| 96 [ 218



An Example of a 3D Tensor in Deep Learning

* A 3D tensor of a Red-Green-Blue (RGB) image of a dimension of 4x4x3:

3 Colour Channels

25

Height: 4 Units
(Pixels)

4

\. D

Width: 4 Units

(Phele) RGB color images with different resolutions can

A 4x4 RGB color image: X € RAX4X3 be represented by 3D tensors
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Pytorch Example: Element-wise Operations

>>> import torch

>>>

>>> a = torch.Tensor([26])
>>>

>>> print(type(a))

<class 'torch.Tensor'>

>>>

>>> print(a.shape)
torch.Size([1])

>>>

>>> # Creates a Random Torch Variable of size 5x3
>>> t = torch.rand(5,3)
>>> print(t)

tensor([[0.1942, 0.1000, 0.0924],
[0.5892, 0.0238, 0.8701],
[0.0924, 0.5316, 0.80051],
[0.5326, 0.0825, 0.0833],
[0.7445, 0.0825, 0.124911)

>>>

>>>

>>> print(t.shape)
torch.Size([5, 31)

>>> import torch

>>>

>>> p = torch.rand(4,4)
>>> q = torch.rand(4,4)
>>> ones = torch.ones(4,4)
>>>

>>> print(p)

tensor([[0.3725, 0.6177, ©
[0.7200, ©.7792, ©
[0.1337, ©.0337, ©
[0.7205, 0.3430, ©
>>> print(q)
tensor([[0.2651, 0.6778, ©
[0.3449, ©.8570, ©
[0.4027, 0.6261, ©
[0.7718, ©.7152, ©
>>> print(ones)
tensor([[1., 1., 1., 1.1,
[1., 1., 1., 1.1,
[ ; Ay Lw; A ]y
[1e; Aoy Aoy 2s1])

.1797,
.2947,
.7615,
.2765,

.1580,
L4514,
.9280,
.9063,

OO0 ®

o000 ®

.15301,
.13457,
.94571,
.516611)

.72911,
.31441,
.11111,
.627111)

>>> print(f"Addition:{p + q}")
Addition:tensor([[0.6376, 1.2955, ©.3377, 0.88201],
[1.0649, 1.6363, 0.7461, 0.4489],

[0.5364, 0.6597, 1.6895, 1.05681],
[1.4922, 1.0582, 1.1829, 1.143711)
>>>
>>> print(f"Subtraction:{p - ones}")
Subtraction:tensor([[-0.6275, -0.3823, -0.8203, -0.84701],
[-0.2800, -0.2208, -0.7053, -0.8655],
[-0.8663, -0.9663, -0.2385, -0.0543],
[-0.2795, -0.6570, -0.7235, -0.4834]1])
>>>
>>> print(f"Multiplication:{p * ones}")
Multiplication:tensor([[0.3725, 0.6177, ©.1797, ©.15301],
[0.7200, 0.7792, ©0.2947, 0.1345],
[0.1337, ©.0337, 0.7615, 0.9457],
[0.7205, ©.3430, 0.2765, 0.516611])
>>>
>>> print(f"Division:{p / q}")
Division:tensor([[1.4048, ©.9113, 1.1378, 0.2098],
[2.0872, 0.9092, 0.6529, 0.4276],
[0.3321, 0.0538, ©.8206, 8.51511,
[0.9335, ©.4796, 0.3051, ©.823811])

https://colab.research.google.com/drive/1ZrjtAJIWZ1HgNTQ98nMs SHtjA6QAbsB;



https://colab.research.google.com/drive/1ZrjtAJWZ1HgNTQ98nMs_SHtjA6QAbsBj

Representation of Matrix by Vectors

 Column Vector

C1
Co
c=|: cl=[c1 ¢ Cn]
Cn.
* Row Vector
r=1["nn n ]

e Matrix as combination of column or row vectors

aj1 Q12 Qg3 —nn- T T 1
A=1[Az1 Q22 Ax3|=|<T7|=]|c; ¢, C;3
azqy dzz 0ass < I3 ! 1 ]

23



Transpose

* The transpose X! of a column vector X become a row vector:
Xy
X2

| Xm

 The transpose X' of a matrix X mirrors it at its main diagonal:

X11  X12
X: x21 xzz ﬁXTzl
X31 X322

X11  X21 x31]
X12 X222 X32

24



Adding and Subtracting Vectors and Matrices

* We add/subtract vectors or matrices by adding/subtracting them

g

1+5 2+6]=[6 8]
3+7 448 10 12

elementwise

- o= 5| =0 -

3 6

* Examples
1+ 4

2+5
3+6

A=l 3wl fonso-]

25



Scalar Addition/Multiplication of Vectors and Matrices

* We can also add a scalar to a vector/matrix or multiply a vector/matrix by a scalar:

d=ab+c D=aB + ¢

 Example for scalar addition and scalar multiplication:

B g3 BT

 Example for broadcasting (shape of vector determines which type):
5 6] [11 _[5+1 6+1]_[6 7
5 el =612 si2l=ls 1ol

[; g]+[1 3]:[311 gig]z[g 191]

26



Vector and Matrix Multiplications

* Two vectors or matrices A and B can be multiplied if A has the same
number columns as B has rows (i.e. A € R™*™ agnd B € R™*™):

C=AB
* The matrix product is defined by .
A C=AB
/O b12
_ ) ) Tgn 12  A13P _ C12
‘i = Zajkbk} az1 Q22 Q3 @ 222  lex sz]
k ‘ 32

a a a bix c
11 12 b _ [ 11
21 =
az1 QG Aaszp C21 C22

27



Examples

* Example for matrix product:

3xX1+1x3 3x2+1x1 [6 7]

A:B ﬂ B:[; ﬂ:AB:[zx1+1x3 2x2+1x1) ~ l5 5

* Example for an inner product between two vectors (dot product):
az[g] b=[é]=>aTb=[3 2][§]=3x1+2x3=9

 Example for an outer product between two vectors: (= rank-1 matrix)

=] vl =B -3 29

28



Basic Matrix Operations

 Addition

e Subtraction

* Multiplication

|

a
C

b+[e
g

=g
s

ok

ok

|

[a+e
c+g

[a—e

ae + bg
ce +dg

b+ f
d+h

]

af + bh
cf +dh

Element-wise
Addition

Element-wise
Subtract

Dot product of
each row by
each column

29



Elementwise Vector and Matrix Multiplications

* For vectors X and y given by X1 V1
X2 Y2

X = . y Y = .
_x')’l_ _Yn_

* The elementwise multiplication between these two vectors is

[ X1 ] (V1] (X1 XY1]
X X X
xQy = 52 o )’:2 _ |[*2 :)’2
| Xn | Vn | | XnXYn.




Special Matrices

1 0 O
Identity Matrix, I=10 1 0

0O 0 1
Matrix Transpose,
a, ap
X=|by by
€1 €2

Symmetric Matrix,

0
Zero Matrix, 0 = [0

T _
X" =la, by ¢y

a3 bz c3

Diagonal Matrix,

31



Useful Matrix Properties

* Commutative Property * Multiplicative Identity
“"A+B=B+A =AlI=A
= AB # BA

* Additive Property of Zero
* Associative Property

"(A+B)+C=A+(B+0C)
= (AB)C = A(BC)

* Distributive Property
= A(B+C) = AB + AC

"A+0=A
* Transpose Property
= (AB)T = ATBT

32



Vector Norm

 The norm of a vector is a function that maps a vector to a positive value

* p-normforp =1

[R*"> R
d 1/p X4
_ b X
Ixll, = | D[] wherex = |2
j=1 '
| Xd

33



L1-Norm and L2-Norm

* L1-Norm (Euclidean norm)

d
Ixll = ) ||
=1

* L2-Norm (Euclidean norm)

p 1/2
||X||2=<Z(xj)2> = .

VK

34



Manhattan Distance L1 and Euclidian Distance L2

e Manhattan Distance L1

d
(332,?;/2)
Ix —yll; = zlxj -y
j=1

Y2 — Y1
* Euclidian Distance L2

(1,y1) L2 — T1

E
Ix=yllz = | (5 -)°
=1

\

35



Physical Meanings of Scale Product : av

e aisscaleandvisavector

V1 a-v
o f— f—
av=d [172] [Cl y Uz]

av

* Change only the length (scaling),
but keep direction fixed \Y

36



Inner or Dot Product

 The inner product of two vectors a and b, ?
ay] by
- o
An. by, b

is definedas a-b =a'b=b'a = a;b; + ayb, + -+ a,b,
n

a-b = a;-b = llallllblicos(6)
j=1

Note that the inner product is a scalar.

37



Cosine Distance Between Two Vectors

* |f O is the angle between a and b then

“a-b=a’b = |la]l|[bllcos(6)

* a-b areorthogonal (perpendicular) if and only if b
=a-b = |lal/||b]lcos(£907) = 0 a |
6 = 90°
* Cosine Distance of two vectors a and b is defined as ‘
a-b £
cos(8) = b

lalll[bl]]

38



Cosine Similarity (or Distance)

* Cosine similarity is a measure of similarity between two non-zero vectors. It
is calculated as the cosine of the angle 8 between the two vectors.

* Given two n-dimensional vectors a and b, their cosine similarity is defined as:
a-b
lalll[b]|

sim(a,b) = = cos(6)

* The cosine similarity calculates the angle between two vectol

= Cosine Similarity lies in the ranges [-1 to 1]: .
 when sim(a,b) = 1, the vectors are strongly similar with ¥ = v~
* when sim(a,b) = 0, the two vectors are orthogonal with 8 = +90°
 when sim(a,b) = —1, we have strongly dissimilar vectors with 8 = 180°

* All the intermediate values indicate the respective degree of similarity

39



Cosine Similarity — Geometric Interpretation

10°

v

The angle between the vector a
and b is 10°.

cos(10°) = 0.9848

The angles could be said to be 98% similar.

160°

v

The angle between the vector a
and b is 160°.

cos(160°) = —0.9756

The angles could be said to be 97% dissimilar.

40



Cosine Similarity Example

* Let’s suppose that we have two vectors a = [4,3]T and b = [8, 6] 7.

* First, we compute their dot product as follow:

3
6

= |lal| = V42 + 32 =25 =5 and]|/b|| = V82 + 62 =100 = 10

“a-b=a’b=[4 3][;|=4x8+3%6=50

* Then, we compute their cosine similarity as follows:

b
= 2 _ .28

= sim(a,b) = cos(0) = lal[llb|] — 5x10 _ 50

41



Calculus



First Scientific Revolution (16th -17th Century)

The First Scientific Revolution signalled the shift from

medieval to modern science, highlighted by Isaac
Newton’s pivotal contributions.

e Newton’s Second Law of Motion:

d d*x
ma=—m--v) =m—s Isaac Newton (1643-1727), the
dt dt? physicist who formulated the laws

of motion and invented Calculus

This equation describes the relationship between force (F), mass (m),
and acceleration (a). It is fundamental to classical mechanics.

F

Force is equal to rate of change of momentum (mass - velocity)



Differential Calculus: The Derivative

» Differential Calculus is fundamentally about understanding the rate of
change

* For a function f: IR = R (input and output are scalars), the derivative
f'(t) is a function describing the instantaneous rate of change or the
slope of f(t)

* Mathematically, the derivative is defined as:

fopy = YO e FEHD-F (D)
@) == = lim——

* Forexample: f(t) =3t? —4t=> f'(t) =6t—4= f'(1) =2



Recap: Derivative Table

c f(x)=c+x - —

£(x) = ax
flx) =x"
f(x) =a*
f(x) =e*

df
=1
dx
af
- — =qax
dx
d _
Y
dx
df X
—» — = (lna)a
— = (na)
- — =ce
dx

* f) =logax — o= (logge);

af

X

1

* f(x)=lnx - %c=—,x;t0

X X

* f(x) =sin(x) - %: = cos(x)
* f(x) =cos(x) - %: = —sin(x)

* f(x) =tan(x) - %c = —sec?(x)

X



Geometric Interpretation

* The derivative at an arbitrary point (ty) is equivalent to the slope of the

tangent line at that point.

T

f(to) -

Curve

y=f()

Tangent
line

Arbitrary
point




Differentiability

* A function is differentiable at a point if the limit defining the derivative exists.

* Functions that are not continuous or have sharp points (like y=|x|) are not
differentiable at those points.

y = x|

-3 -2 -1 0 1 2 3

Not continuous A sharp point



Multi-Variable Calculus: Partial Derivatives

* Function of Multiple Variables: Calculus extends to functions where the input
consists of n variables, resulting in a scalar output (f: R" — R)

= Example: f(x) = f ([2]) = f(xq1,xy) = x¥ + 3x,%, + x2

* Partial Derivatives: Since the input has multiple variables, we calculate partial

L 0
derivatives (é ). For examples
{

af

axl
* The partial derivative with respect to one variable is found by treating the
other variables as constants.

of

axz

= 2x; + 3x, and = 3x, + 2x,



Multi-Variable Calculus: The Gradient

* The Gradient Vf(x): The first-order derivative of a vector-to-scalar function is

called the Gradient. The gradient is typically represented as a column vector:

_ af -
o dxq
X1
X, of
wl) |
9x,, ]

" A(xZ +x2) T

X1 2 2 ax1 2X1

For example: f(x) = f([xz]) =xi +x5 = Vf(x) = 302 + x2) = 2le
1TX

dx,




Matrix Calculus: The Jacobian Matrix

* Vector-to-Vector Functions: The Jacobian Matrix is used when dealing with
multiple functions of multiple variables (f: R" —» R™).

f1(x1, x3) )
f2(x1, x72)

X%+ x,

= Example: f(x) = f(

x; + x5

 Definition: The Jacobian Matrix /(X) is the derivative of a vector-to-vector
function. For example:

0fi  0f1]
of(x) |ox, odx 2 1
0 =viw =52 =08 G =T

[dx; 0Xx,d




The Jacobian Matrix

* J(x) has dimensions mXn (where n is the number of inputs and m is the
number of outputs).

0A(x) 0A(®) 9i(X)]
T 0x4 dx; dxy,
o0 _|wpoor| |20 980 9500
J(x) = Vf(x) = ox = 25 = 01 dx, 9x,, e RMXn
VG ar 00 0 0
L 0xy 0x, axn i

= Each row in the Jacobian is the gradient (V) of one of the output functions.

= The component in row i and column j is the partial derivative of the i-th output function
(fi) with respect to the j-th input component (x;).



Application in Al: Differential Programming

* Differential Programming is the field relying on the application of
calculus to automatically calculate derivatives.

= The key idea behind training a neural network (identifying its weights) is
Gradient Descent.

= Training involves iteratively minimizing a Cost Function L(6;) that measures the
error of the neural network.

= Parameters (0;) are updated based on the calculated gradient (VgL(6;)) and a
learning rate (n):

Ory1 =0 — 1 VoL(6;)



The Gradient Descent Algorithm

Randomly initialize weights and biases

parameters: § = (WD, b W@ p@,  wh) pd} 0" = min £(0) = mein%i{) (y(i),fe (x@))
Compute the cost function L(6), which i=1
measures how well the model is performing of the
dataset. Lﬁ“
Find the gradients of the cost function o ¢ gradient
with respect to each parameters Vg £(6;) Cost ) l// VoL(6,)
Update the parameters by '”Crgt”;E“ta‘ ”
Orr1 =0 —1-VoL(6r) \ ;’I
where 7 is the learning rate that determines how big / :”
the updates should be in each iteration t. ertive of o — /Minimum Cost
* Repeat the above steps 1 to 3, unit the cost is 5 >0

low enough or convergence. 0"
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Chain Rule of Differential Calculus

* The Chain Rule: This fundamental rule expresses the derivative of a composite

function (like y = f(g(x))) in terms of the derivatives of its component functions
(f and g).
* Single-variable example:

= If y = f(u) and u = g(x) then we can use chain rule to find the derivative as

dy dy du
dx du dx

= Ify = u® and u = 2x? + x, then we have

_ 32 and du_4 +1 :’dy_dy du_
du wan dx x dx du dx

3u® - (4x+ 1) =3(2x* + x)*(4x + 1)
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Backpropagation

* Backpropagation is an efficient algorithm to compute gradients
Vg L(0;) of a loss function with respect to all the parameters in a neural
network by using the chain rule of calculus recursively.
9L(6)
26
parameter 0 separately (which would be very slow), backpropagation

* Key ldea: Instead of computing the gradient of the loss for every

computes gradients layer-by-layer backwards, reusing intermediate
results.



Efficient Gradient Computation using the Chain Rule

* In a neural network, which is a composite function of many layers, the chain rule is
utilized efficiently through matrix multiplication to compute the overall gradient

X1
Step 1: .| -
P Ly,
9at”  9alM]
Jy = dx;  0x,
' aagl) aagl)
dx;  0Ox, |

Step 2: [a
a

2 =

90
aagl)
aagz)

|0 agl)

o1
|~
¢ a

8at?]
aagl)
aagz)

aagl)_

(2)
a, .
Step 3:[ 2|27
a,
ay
aaf)
]3 = aj}
aa(z)



Backpropagation

By representing the derivative of each step (or layer) in the neural network as a Jacobian

matrix (/1, /», /3 ), the total gradient is calculated by multiplying these matrices.
* Matrix Multiplication Example:

A~

-39
0x
53;1 =J1:J2"]3

[ 0x,

This systematic calculation allows for efficient gradient computation for large networks.



Probability and Random Variables



Empirical Definition of Probability

 The probability of any event E can be defined as:

P(E) = lim count(E)

Nn—00 N

where count(E) is the number of times that E occurred in N
experiments

= Asyou repeat an experiment many times, the ratio approaches the true
probability

= Also interpreted as the chance of E occurring
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Probability of Equally Likely Outcomes

number of outcomesinE _ |E|

P(E) =

number of outcomesin S - |S|

* Examples
* Coin flip: S = {Head, Tails}
* Flipping two coins: S ={(H, H), (H, T), (T, H), (T, T)}
* Roll of 6-sided die: S ={1, 2, 3, 4, 5, 6}
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Core Probability Identities

* For an event E and a sample space S
"0<P(E)<1
=P(S)=1
=P(E)=1-P(E)

Ly




Log Probabilities

log P(E) (natural or base-10 log)
* Why use them?

= Handles tiny probabilities (no underflow)

= Turns products into sums (faster for computers)

 Example:
log(Py - Py -+ PB,) =logP; +logP, + -+ log P,



Random Variables

A random variable X maps outcomes to numbers.

* Discrete random variables:
= Examples: Dieroll: X = 1,2,3,4,5,6 and coin flips : X = 0,1,

Outcomes Values Probabilities
0 P(X = 0) = 0.5
Random X
Variabl =
ariavie 1 P(X=1)=05

 Continuous random variables: Real-number values
= Examples: Height, time, temperature
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Probability Mass Function (PMF)

* A PMF is used to describe the probability distribution of

* Roll a fair die: 6-sided dice with equal probability 1/6 for each of the 6 numbers

* Uppercase letter X for a random variable.

e Lowercase letter x for an observed value.

P(X=1)=P(X=2) = P(X = 3) = P(X = 4) = P({ = 5) = P(X = 6) =

* Short-hand notation: P(x) for P(X = x) € {1,2,3,4,5,6}

020 A

015 A

010 H

005 H

0.00

The PMF of Fair die discrete
random variable is a Uniform
Probability Distribution
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The PMF of the Sum of Two Dice Rolls

 The sum of two dice example in the equally likely probability section. Again, the
information that is provided in these graphs is the likelihood of a random variable

taking on different values.
6/36 7

2
/
1/36 %

2 3 4 5 6 7 8 9 10 11 12
X

DN
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Probability Density Function (pdf)

A pdfis used to describe the probability distribution of continuous
random variables x.

= Example: The PDF for adult male height might peak near 64 inches, showing
higher likelihood near the mean and lower likelihood farther away.

= Gaussian (Normal) pdf

Assume men’s

1 (x—L;)Z heights follow the
— 2 i
p(X) o2 e g Gaussian

distribution with an
average of 64

. . ) inches.
* p(x) is not a probability; it’s a density.

* The actual probability is the area under the curve:

Pla<X<h) = ff'p(x)dx

P(X = x) = 0 for any exact point x (because it's continuous)

75 80
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Properties of PDF/PMF

* Key Properties

Discrete Density (pmf or pdf)

= Discrete:

0.10 +

2xP(x) =1

0.00 -

[ | co nti n u o u s : oo . Continuous density (pdf)

[p()dx =1

T [ T T T
0 5 10 15 20 25 30
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Expectation of a Random Variable

The expectation of a random variable is a weighted average of the

possible values of x can take; each value being weighted according to
the probability of that event.

For discrete random variables, the expectation is defined as

E,[P(O] = ) x P(x)

X

For continuous random variables, the expectation is defined as

E, [p(x)] = j x p(x)dx

68



Variance of a Random Variable

 The variance is a measure of the "spread" of a random variable around the
mean. Variance for a random variable, x, with expected value E[x] = u is:

Var[x] = 0% = E[(x — 1)?]

* Semantically, this is the average distance of a sample from the distribution to
the mean. When computing the variance often we use a different (equivalent)
form of the variance equation:

Var[x] = E[x?] — E[x]?
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Common Distributions

f(X)

* Uniform Distributions: constant probability
= p(x):=U(a,b) o

1 ! !
0 otherwise

a b

* Normal Distributions: bell-shaped, defined by mean u and variance o
= p(x):=N(y,0%)

1 (x—p)?
e 2 a2

1
= p(x) = —




Multivariate Normal Distribution

* A multivariate normal distribution (also called a multivariate Gaussian distribution)
generalizes the one-dimensional normal distribution to multiple dimensions.

* ltis defined by
= Mean vector (expected values): i = [y, iz, o, tigl?,

= Covariance matrix X : A d Xd symmetric, positive semi-definite matrix where

2

_0-1 01, 012
2 g
y —[021 02 12
LN ] 2
0q1 012 Ogq

Captures variances (on the diagonal) and pairwise covariance (off-diagonal).



PDF of Multivariate Normal Distribution

* For a d-dimensional random vector x € Rd, the PDF is:

1 1

P =

where |X| is the determinant of the covariance matrix.

x-wTE 1 (x—p)

* Standard Bivariate Normal Distribution V' (0, 1)
= d=2
_ 10
L [o]

o 1

Standard Bivariate Normal Distribution, Correlation = 0

2|




Random Sampling

 There are 10 balls in the bin: 2 are red, 5 are green, and 3 are blue.

Random
Sampling

‘ What is probability of

getting a red ball?

2
P(red ball) = T0° 0.2
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Conditional Probability

* The probability of E given that (aka conditioned on) event B already
happened: E B

P(ENB)
P(B)

P(E|B) =

Probability that £ OCCUrS given
that B has already occurred | P(E)

1 P(B)
"] P(EnB) =P(E and B)
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Chain Rule of Probability

The chain rule of probability (also called the general product rule) lets you express
the joint probability of multiple events by breaking it down into a sequence of
conditional probabilities.

For any two events Aand AB: P(AN B) = P(A) - P(B|A)
For any n events A4, 4,, ..., 4, the joint probability is:

P(Al ﬂA2 N ﬂAn) - P(Al) 'P(A2|A1) ° P(Al) ° P(A3|A1 nAz) et P(AnlAl nAz ﬂ ce ﬂAn_l)

or

n

P(Aq, ..., A,) = P(A;|all previous events)
i=1

It always holds, even if events are dependent or independent. It’s how you multiply
probabilities step-by-step using conditionals.



Bayes’ Theorem

Prior probability Likelihood
P\(H) P(ElH/) (1701-1761)
P(E)

\

Marginal likelihood
/model evidence

P(H|E) =

o

Posterior probability



Theorem of Total Probability

* Lety,,y,, ..., Yy be aset of mutually exclusive events (i.e. y; N y; = 0) and
event X is the union of N mutually exclusive events, then

N
P(x) = ) PGly)P()
=1

* We can also represent p(y|x) as

P(x|y) P(y)
YN Px|y)P)

P(ylx) =



Join, Marginal and Conditional Probability

 Joint Probability (of X and Y)

P(x,y)
* Conditional Probability (of X conditioned onY)
P(x,y)
P(x|y) =
=)

* Marginal Probability (of Y)

P(y) = f P(x,y) dx

eX

78



Information Theory (1948): Self-Information

* Observing unlikely events is more informative than likely ones.

 Example: "Sun rose today" is uninformative; "solar eclipse today" is
informative (surprising). Quantify as "surprise level."

* Requirements: Low info for likely/certain events; high for unlikely;
additive for independents (e.g., two heads = twice one head).

* Definition: To satisfy all requirements, Claude Shannon define the
self-information of an event x as

[(x) = log( ) = —log P(x)

P(x)

where log refers to the natural logarithm and I(x) = 0.

Claude Shannon
(1916-2001)



Entropy: Average of Information

Entropy H (P) quantifies the uncertainty or average amount of information
(self-information) in a probability distribution P(x).
H(P) = —E,_p(log P(x)), where H(P) > 0

= Interpretation: Measures average bits (with base-2 log) needed to encode symbols from
P(x), setting the lower bound for data compression.

 Discrete Case: H(P)=—-),P(x)logP(x)
* Continuous Case (Differential Entropy): H(P) = — fx P(x)log P(x) dx

* Properties: Zero for deterministic distributions (no uncertainty); maximum for

uniform distributions (highest uncertainty).



Entropy Example

* Histograms of two discrete probability distributions over 30 bins

* The entropy of the broader distribution (on the right) is higher

Lower Entropy Higher Entropy
0.5 0.5

H=1.77 H = 3.09

0.25¢ 0.25¢

probabilities
probabilities

et




Advanced Math for Deep Learning (Optional)

e Kullback-Leibler Divergence

 Maximum Likelihood Estimation (MLE)



Kullback-Leibler Divergence (1951)

KL-Divergence (Dy; ) is a measure of how one probability distribution
P is different from a reference probability distribution Q.

P(x)] _

Dk (P]1Q) = —Ex-p [108 —E,-pllogQ(x)] + E,-p[log P(x)]

DR. SOLOMON KULLBACK

This can be rewritten as:

DKL(P”Q) =H(P»Q)—H(P)

Cross Entropy  Entropy
Key properties:
= Always non-negative: Dg; (p|lq) = 0
= Not a true distance (asymmetric): Dg; (P||Q) # Dy (Q||P)

= Smaller D,; means more similar of two distributions

DR. RICHARD A. LEIBLER




KL-Divergence: Visual Example

o0 x o0
D pll) = | p<x)1og%dx= [ pelogre) - ogacoldx
7@ /1Y 4 /1, 2 (Pl0)

J \ —.
/ / \\\ 02 \
d il i —» / A p()logp(x) —logq(x)]
/ / 0.1 | \ —» » \“\
/ [ : \ . @ \ 2 S
,//“,,.,./ | \\ e i & M‘

Original Gaussian PDF’s KL Area to be Integrated

For each point p(x) on the x-axis, we compute [logp(x) —log g(x)] and multiply the result by p(x). We then
plot the resulting y-value in the right-hand plot. This is how we get to the curve given in the right-hand plot. The
KL divergence is now defined as the area under the graph, which is shaded.

https://alpopkes.com/posts/machine learning/kl divergence/



https://alpopkes.com/posts/machine_learning/kl_divergence/

Probability vs Likelihood

5/36
4/36
3/36

2/36
* Normalized: sums/integrates to 1 over all possible data. 136

* Example: P(head|p = 0.5) = 0.5. 0

* Likelihood: Evaluates parameters given fixed

observed data. 6/36
5/36

4/36
3/36
2/36
1/36

e P(data| distribution)
* Probability: Predicts data given fixed parameters.

* Function of data; parameters held constant.

P(X =x)

* Function of parameters; data held constant.

Q|
S

* Not normalized—values don’t sum to 1 over
parameters.

* Used in maximum likelihood estimation (MLE) to find
best-fitting parameters.

* Example: After observing 7 heads in 10 tosses,
L(p|data) peaks nearp = 0.7 .

P(X = x)

EEEEEEEEEEESESEESESSSSSSSS

MY

[\

11 12

Core idea: Same mathematical expression P(data|@), but different perspectives—
probability forecasts outcomes; likelihood assesses model fit.



The Argmin and Argmax Operators

* Let X denote a set. We define the arg min and arg max operators as follows:

arg min f(x) = r){lel)r(l f(x) = {XIf(x) = gleigf(x')}

xeX

arg max f (x) = max f (1) = {x|f () = max f (x")}

XEX
* |n words:

° arg mel)I(l = the set of points (argument(s)) that achieve the smallest value of f
X

e arg max = the set of points that achieve the largest value of f
XEX

*  Examples:

= argminx® = 0
x€eR

" arg max cos(x) ={0,2m, 4}
x€[0,41]
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Maximum Likelihood Estimation (MLE)

 MLE is a statistical method for estimating parameters 6 of a probability
distribution py by maximizing the likelihood function, making the observed

data most probable.
» For a given dataset {x(),x(), .., xN)} from a real distribution pgasq ()
= Likelihood Function: L(6) = pg(data) = []; ve (x(i))
= Log-Likelihood (easier to maximize): L(6) = };;logpg (x(i))
= MLE estimate 0:

N
0" = arg max ZIOg pg(x(i))

=1



Maximum Likelihood Estimation

» Data Samples: {x),x@), ., x(M} from pga.q ()

N N N
6* = arg meaxl_[pg (x®) = arg max log (1_[ po (x () ) = argmax Z log pe (x®)
i=1 i=1 i=1

Maximum Likelihood Maximum Log Likelihood

Q

argmax ., [10gPe (x)] = arg max j Paata(x) logpg (x) dx

X

Paata () 10g pp () dx — j Paata () 108 Paasa () dx

X

arg max j
e X
(not related to 6)

Pe (x)
=argmax | Paara(x) 108

X Paata(X) * argmeln KL(pdata(x)”Pe(x))

Maximizing Likelihood (or Log Likelihood) = Minimizing KL Divergence



Homework

* Try to form your group project team with 5 members
e Start to discuss the project direction
* Performing research on the selected topics

* Send your group member list to instructor at eelmpo@cityu.edu.hk on
or before the Friday of week 3 (Jan 31, 2026)
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