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All Things Are Number (Pythagoras, 570 – c. 495 BC)

• This famous philosophical proposition is attributed to 
Pythagoras, the ancient Greek philosopher and 
mathematician.

• Pythagoras and his followers (the Pythagorean school) 
believed that numbers are the fundamental essence of all 
things in the universe.

• They held that reality is ultimately mathematical—
harmony, form, and even moral principles can be 
understood through numerical relationships.

• This idea profoundly influenced later thinkers, including 
Plato, and laid early groundwork for the mathematization of 
nature in Western science.



Galilei, Galileo (1564 – 1642)
[The universe] cannot be read until we have 
learnt the language and become familiar with the 
characters in which it is written. It is written in 
mathematical language, and the letters are 
triangles, circles and other geometrical figures, 
without which means it is humanly impossible to 
comprehend a single word.

OpereII Saggiatore p. 171.



Demis Hassabis (DeepMind CEO, 2025)
• Demis Hassabis operates on the foundational belief that "everything is 

computationally tractable," meaning the entire universe and all its 
phenomena can, in theory, be modeled and understood by a sufficiently 
powerful computer.

https://x.com/i/status/2000994920753144043

https://x.com/i/status/2000994920753144043


Four-Level of Understanding
1. Natural Language Understanding

§ Employ human language to describe the concepts, problems and solutions in AI.
• e.g. Deep learning uses multi-layered artificial neural networks to recognize complex patterns 

in data, resulting in state-of-the-art performance in domains such as CV and NLP.

2. Visual Understanding
§ Utilize figures to visually represent concepts, problems and solutions in AI.

3. Mathematical Understanding
§ Utilize mathematical equations to represent the concepts in AI.

• e.g. A MLP model can be expressed as 𝑃! 𝐱 = softmax 𝐖(#)ReLU 𝐖(%)𝐱 + 𝐛(%) + 𝐛(#)

4. Implementation of AI System
§ Implement deep learning research and applications using Python programming 

language and frameworks like PyTorch.
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EE4016 Prerequisites
• Prerequisites:

• Linear Algebra, Multi-variable Calculus and Probabilities, and
• Object-Oriented Programme (e.g. Python)

• Please be advised, EE4016 is a course with a STRONG mathematical and 
programming components.
• Focus: Deep learning architectures trainable via gradient-based approaches.
• Linear Algebra and Matrix Calculus.
• Probability and Statistics.

• Skills gained through assignments and projects:
• Proficiency in Python and familiarity with deep learning libraries like PyTorch.
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EE4016 Prerequisites
• Linear Algebra: Matrix Multiplication

§ Linear algebra is a fundamental concept that is essential for understanding neural 
network algorithms, which are often formulated as matrix computations.

• Differential Calculus: Derivative and Vector Calculus

§ Differential multivariable calculus plays a key role in optimization techniques, specifically 
differential programming using gradient descent.

• Probability: Conditional Probability, Random Variable, Expectation, Variance

§ Probability theory is another important area of math for deep learning as many 
applications involve dealing with probabilistic models.

• Programming: Python, Object-Oriented Programming, PyTorch
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First Industrial Revolution (16th -17th Century)
• The First Industrial Revolution is linked to the First Scientific 

Revolution, which established modern science. 
• Newton's laws of motion provided a framework for 

understanding physical forces, guiding engineering and 
technological advancements.

• Newton’s Second Law of Motion:

𝐹 = 𝑚𝑎 =
𝑑
𝑑𝑡

𝑚 ' 𝑣 = 𝑚
𝑑!𝑥
𝑑𝑡!

Isaac Newton

• This equation describes the relationship between force (𝐹), mass (𝑚), and 
acceleration (𝑎). It is fundamental to classical mechanics.

• Force is equal to rate of change of momentum (mass $ velocity)
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https://en.wikipedia.org/wiki/Isaac_Newton


Second Industrial Revolution (18th - 19th Century)
• The Second Scientific Revolution saw the development of electromagnetism.
• Maxwell's Equations:

• These four equations, formulated by James Clerk Maxwell, describe the behavior of electric (𝐄) and 
magnetic (𝐁) fields and their interactions with charges (𝜌) and currents (𝐉).

∇ $ 𝐄 =
𝜌
𝜖!

∇ $ 𝐁 = 0

∇×𝐄 = −
𝜕𝐁
𝜕𝑡

∇×𝐁 = 𝜇!𝐉 + 𝜇!𝜖!
𝜕𝐄
𝜕𝑡

James C. Maxwell

Gauss's law for electricity Gauss's law for magnetism

Faraday's law of induction Ampère-Maxwell law
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https://www.google.com/url?sa=i&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FJames_Clerk_Maxwell&psig=AOvVaw2jhJjr9EE5YEhwVZqw5png&ust=1737383274114000&source=images&cd=vfe&opi=89978449&ved=0CBcQjhxqFwoTCPCWkpn_gYsDFQAAAAAdAAAAABAE


Maxwell’s Equations
• Electric Fields and Charges (∇ $ 𝐄 = "

#&
): Electric fields are generated by electric 

charges, as described by Gauss's Law for Electricity. 

• Magnetic Fields (∇ $ 𝐁 = 0) : Magnetic fields are generated by moving charges 
(currents) and changing electric fields, as described by Ampère's Law with Maxwell's 
addition.

• Induced Electric Fields (∇×𝐄 = − $𝐁
$&

): Changing magnetic fields induce electric 
fields, as described by Faraday's Law of Induction.

• No Magnetic Monopoles (∇×𝐁 = 𝜇!𝐉 + 𝜇!𝜖!
$𝐄
$&

): Magnetic fields are continuous 
and have no starting or ending points, as described by Gauss's Law for Magnetism.
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Third Industrial Revolution (20th Century)
• The Third Industrial Revolution, or Digital Revolution, started in the mid-20th 

century, marked by digital technology, computing, and automation.
• Shannon's Information Entropy (Information Theory):

• The entropy 𝐻 𝑋 of a random variable 𝑋 measures the uncertainty or information 
content in a system, where 𝑃 𝑥! is the probability of event 𝑥! .

• Significance: This equation is the foundation of information theory, enabling the 
quantification of information and the development of data compression, error 
correction, and communication systems.

Claude Shannon

𝐻 𝑋 = −5
'(%

)

𝑃 𝑥' log# 𝑃 𝑥'
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https://en.wikipedia.org/wiki/Claude_Shannon


Fourth Industrial Revolution (21st Century)??
• First Industrial Revolution: What is physical force?

This era focused on harnessing mechanical power, driven by advancements in understanding forces like gravity 
and motion, as defined by Newtonian physics, to revolutionize manufacturing and transportation.

• Second Industrial Revolution: What is electromagnetism?
This period was defined by the mastery of electricity and magnetism, leading to breakthroughs in energy 
generation, communication, and industrial automation, transforming society and infrastructure.

• Third Industrial Revolution: What is information?
Marked by the rise of digital technology, computing, and the internet, this revolution centered on processing, 
storing, and transmitting information, reshaping economies and global connectivity.

• Fourth Industrial Revolution: What questions are we trying to answer?
This current era explores the integration of advanced technologies like AI, biotechnology, and quantum 
computing, seeking to address complex challenges about humanity's future, ethics, and the relationship 
between humans and machines.
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Fourth Industrial Revolution (21st Century)??
• In the AI era, we may seek to answer: What is Intelligence?

§ One current interpretation lies in autoregressive language models like ChatGPT, 
which predict and assign probabilities to word sequences. 

§ These AI models compute the probability distribution of the next word 𝑤()* given 
previous words 𝑤*, 𝑤+, … ,𝑤( :

𝑃! 𝑤"#$|𝑤$, 𝑤%, … , 𝑤"
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Fourth Industrial Revolution (21st Century)??
• Autoregressive Language Modeling is the task of predicting the next word

§ 文字接龙

§ Deep Learning is very _______. powerful (43%)   innovative (37%)  complex (15%)  weak (3%)  limited (1%)   
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Hong Kong TV Game: GPT Game (文字接龙)

https://www.youtube.com/watch?v=pwTKrvqZOMo

https://www.youtube.com/watch?v=pwTKrvqZOMo


Linear Algebra



Scalar, Vector, Matrices, and Tensors : Notations

Scalar
Rank-0 tensor
𝑥 ∈ ℝ

Vector
Rank-1 tensor
𝐱 ∈ ℝ! or 𝐱 ∈ ℝ!×#

Matrix
Rank-2 tensor
𝐗 ∈ ℝ!×$ or 𝐗 ∈ ℝ!×ℝ$

𝐗 =

𝑥%,% 𝑥%,#
𝑥#,% 𝑥#,#

⋯ 𝑥%,+
⋯ 𝑥#,+

⋮ ⋮
𝑥),% 𝑥),%

⋯ ⋮
⋯ 𝑥),+

𝐱 =

𝑥*
𝑥+
⋮
𝑥(

𝐱1 = 𝑥* 𝑥+ ⋯ 𝑥(

where 𝐱1 ∈ ℝ*×(

𝑥 = 5438 • An m×𝑛 Matrix 𝐗 with 𝑚 rows 
and 𝑛 columns:

𝐱 =
1
2
3
4

𝐗 =
1 3 4
4 5 6
7 8 9
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Rank-3 Tensors
• In general, a tensor is a multidimensional array with more than 2 axes 

(e.g. an RGB image)
• We write tensors in upper case, bold typeface
• For a rank-3 tensor of shape 𝑛×𝑚×𝑝 :

• We identify each element of a tensor via its indices (𝑥%,',()
§ Elements of a tensor are scalars and written in lower case non-boldface font

𝐗 ∈ ℝ!×$×) or 𝐗 ∈ ℝ!×ℝ$ ×ℝ)

18

𝑝
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Tensor Notations

https://ai.plainenglish.io/what-is-a-tensor-2715746a4785

• Rank 0 Tensor, Scalar, ℝ

• Rank 1 Tensor, Scalar, ℝ(

• Rank 2 Tensor, Scalar, ℝ(×4

• Rank 3 Tensor, Scalar,ℝ(×4×5

https://ai.plainenglish.io/what-is-a-tensor-2715746a4785


An Example of Rank-2 Tensor (Matrix)
• A rank 2 tensor, commonly recognized as a matrix, encompasses arrays of values arranged 

in two dimensions, denoted as ℝ"×$.
• Example: In image processing, a grayscale image can be represented as a matrix of pixel 

values, where each element represents the intensity of light at a specific location. For 
instance, a 28x28 matrix could represent a grayscale image with dimensions of 28 pixels by 
28 pixels.



An Example of a 3D Tensor in Deep Learning
• A 3D tensor of a Red-Green-Blue (RGB) image of a dimension of 4x4x3:

A 4x4 RGB color image: 𝐗 ∈ ℝ6×6×7

21

RGB color images with different resolutions can 
be represented by 3D tensors



Pytorch Example: Element-wise Operations

https://colab.research.google.com/drive/1ZrjtAJWZ1HgNTQ98nMs_SHtjA6QAbsBj

https://colab.research.google.com/drive/1ZrjtAJWZ1HgNTQ98nMs_SHtjA6QAbsBj


Representation of Matrix by Vectors
• Column Vector

• Row Vector

• Matrix as combination of column or row vectors

𝐜 =

𝑐*
𝑐+
⋮
𝑐(

𝐜8 = 𝑐* 𝑐+ ⋯ 𝑐(

𝐫 = 𝑟* 𝑟+ ⋯ 𝑟(

𝐀 =
𝑎** 𝑎*+ 𝑎*7
𝑎+* 𝑎++ 𝑎+7
𝑎7* 𝑎7+ 𝑎77

=
← 𝐫*→
← 𝐫+→
← 𝐫7→

=
↑ ↑ ↑
𝐜* 𝐜+ 𝐜7
↓ ↓ ↓
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Transpose
• The transpose 𝐱* of a column vector 𝐱 become a row vector:

• The transpose 𝐗* of a matrix 𝐗 mirrors it at its main diagonal:

𝐱 =

𝑥*
𝑥+
⋮
𝑥4

𝐱8 = 𝑥* 𝑥+ ⋯ 𝑥4

𝐗 =
𝑥** 𝑥*+
𝑥+* 𝑥++
𝑥7* 𝑥7+

⇒ 𝐗8 =
𝑥** 𝑥+* 𝑥7*
𝑥*+ 𝑥++ 𝑥7+
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Adding and Subtracting Vectors and Matrices

• We add/subtract vectors or matrices by adding/subtracting them 
elementwise

• Examples

𝐚 =
1
2
3

𝐛 =
4
5
6
⇒ 𝐚 + 𝐛 =

1 + 4
2 + 5
3 + 6

=
5
7
9

𝐀 = 1 2
3 4 𝐁 = 5 6

7 8 ⇒ 𝐀 + 𝐁 = 1 + 5 2 + 6
3 + 7 4 + 8 = 6 8

10 12
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Scalar Addition/Multiplication of Vectors and Matrices
• We can also add a scalar to a vector/matrix or multiply a vector/matrix by a scalar:

• Example for scalar addition and scalar multiplication:

• Example for broadcasting (shape of vector determines which type):

𝐝 = 𝑎𝐛 + 𝑐 𝐃 = 𝑎𝐁 + 𝑐

2 5 6
7 8 + 1 = 2×5 + 1 2×6 + 1

2×7 + 1 2×8 + 1 = 11 13
15 17

5 6
7 8 + 1

2 = 5 + 1 6 + 1
7 + 2 8 + 2 = 6 7

9 10

5 6
7 8 + 1 3 = 5 + 1 6 + 3

7 + 1 8 + 3 = 6 9
8 11
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Vector and Matrix Multiplications
• Two vectors or matrices 𝐀 and 𝐁 can be multiplied if 𝐀 has the same 

number columns as 𝐁 has rows (i.e. 𝐀 ∈ ℝ$×! and 𝐁 ∈ ℝ!×$):

• The matrix product is defined by 

𝐂 = 𝐀𝐁

𝑐9: =T
;

𝑎:;𝑏;:
𝑎$$ 𝑎$% 𝑎$&
𝑎%$ 𝑎%% 𝑎&$

𝑏$$
𝑏%$
𝑏&$

𝑏$%
𝑏%%
𝑏&%

=
𝑐$$ 𝑐$%
𝑐%$ 𝑐%%

𝐀 𝐁 𝐂 = 𝐀𝐁

𝑎$$ 𝑎$% 𝑎$&
𝑎%$ 𝑎%% 𝑎&$

𝑏$$
𝑏%$
𝑏&$

𝑏$%
𝑏%%
𝑏&%

=
𝑐$$ 𝑐$%
𝑐%$ 𝑐%%

27



Examples
• Example for matrix product:

• Example for an inner product between two vectors (dot product):

• Example for an outer product between two vectors: (= rank-1 matrix)

𝐀 = 3 1
2 1 𝐁 = 1 2

3 1 ⇒ 𝐀𝐁 = 3×1 + 1×3 3×2 + 1×1
2×1 + 1×3 2×2 + 1×1 = 6 7

5 5

𝐚 = 3
2 𝐛 = 1

3 ⇒ 𝐚,𝐛 = 3 2 1
3 = 3×1 + 2×3 = 9

𝐚 = 3
2 𝐛 = 1

3 ⇒ 𝐚𝐛, = 3
2 1 3 = 3×1 3×3

2×1 2×3 = 3 9
2 6
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Basic Matrix Operations
• Addition

• Subtraction

• Multiplication

Element-wise 
Addition

Element-wise 
Subtract

Dot product of 
each row by 
each column

29

𝑎 𝑏
𝑐 𝑑 + 𝑒 𝑓

𝑔 ℎ = 𝑎 + 𝑒 𝑏 + 𝑓
𝑐 + 𝑔 𝑑 + ℎ

𝑎 𝑏
𝑐 𝑑 − 𝑒 𝑓

𝑔 ℎ = 𝑎 − 𝑒 𝑏 − 𝑓
𝑐 − 𝑔 𝑑 − ℎ

𝑎 𝑏
𝑐 𝑑

𝑒 𝑓
𝑔 ℎ = 𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ

𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ



Elementwise Vector and Matrix Multiplications

𝐱⨀𝐲 =

𝑥*
𝑥+
⋮
𝑥(

⨀

𝑦*
𝑦+
⋮
𝑦(

=

𝑥*×𝑦*
𝑥+×𝑦+
⋮

𝑥(×𝑦(

𝐱 =

𝑥*
𝑥+
⋮
𝑥(

,  𝐲 =

𝑦*
𝑦+
⋮
𝑦(

• For vectors 𝐱 and 𝐲 given by

• The elementwise multiplication between these two vectors is 
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Special Matrices

Zero Matrix,Identity Matrix,

Matrix Transpose,

Symmetric Matrix,

𝟎 =
0 0 0
0 0 0
0 0 0

𝐈 =
1 0 0
0 1 0
0 0 1

𝐗 =
𝑎* 𝑎+ 𝑎7
𝑏* 𝑏+ 𝑏7
𝑐* 𝑐+ 𝑐7

𝐗8 =
𝑎* 𝑏* 𝑐*
𝑎+ 𝑏+ 𝑐+
𝑎7 𝑏7 𝑐7

𝐗 =
𝑎* 𝑏* 𝑐*
𝑏* 𝑏+ 𝑐+
𝑐* 𝑐+ 𝑐7

= 𝐗8

Diagonal Matrix,

𝐃 =
𝑎 0 0
0 𝑏 0
0 0 𝑐
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Useful Matrix Properties
• Commutative Property

§ 𝐀 + 𝐁 = 𝐁 + 𝐀
§ 𝐀𝐁 ≠ 𝐁𝐀

• Associative Property
§ 𝐀 + 𝐁 + 𝐂 = 𝐀 + 𝐁 + 𝐂

§ 𝐀𝐁 𝐂 = 𝐀 𝐁𝐂
• Distribu=ve Property

§ 𝐀 𝐁 + 𝐂 = 𝐀𝐁 + 𝐀𝐂

• Multiplicative Identity

§ 𝐀𝐈 = 𝐀

• Additive Property of Zero

§ 𝐀 + 𝟎 = 𝐀

• Transpose Property

§ 𝐀𝐁 * = 𝐀*𝐁*
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Vector Norm
• The norm of a vector is a function that maps a vector to a positive value

• 𝑝-norm for 𝑝 ≥ 1
𝑓:ℝ! → ℝ

𝐱 5 = T
:B*

C

𝑥:
5

*/5

where 𝐱 =

𝑥*
𝑥+
⋮
𝑥C

𝐱 5
5 =T

:B*

C

𝑥:
5
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L1-Norm and L2-Norm
• L1-Norm (Euclidean norm)

• L2-Norm (Euclidean norm)

𝐱 + = T
:B*

C

𝑥:
+

*/+

= T
:B*

C

𝑥:
+ = 𝐱8𝐱 */+

𝐱 * =T
:B*

C

𝑥:
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Manhattan Distance L1 and Euclidian Distance L2

• Manhattan Distance L1

• Euclidian Distance L2

𝐱 − 𝐲 + = T
:B*

C

𝑥: − 𝑦:
+

𝐱 − 𝐲 * =T
:B*

C

𝑥: − 𝑦:

35



Physical Meanings of Scale Product : 𝑎𝐯
• 𝑎 is	scale	and	𝐯 is	a	vector

• 𝑎𝐯 = 𝑎
𝑣#
𝑣+ =

𝑎 O 𝑣#
𝑎 O 𝑣+

• Change only the length (scaling), 
but keep direction fixed 𝐯

𝑎𝐯
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Inner or Dot Product
• The inner product of two vectors 𝐚 and 𝐛,

is defined as  𝐚 O 𝐛 = 𝐚,𝐛 = 𝐛,𝐚 = 𝑎#𝑏# + 𝑎+𝑏+ +⋯+ 𝑎!𝑏!

Note that the inner product is a scalar.

𝐚 =

𝑎*
𝑎+
⋮
𝑎(

𝐛 =

𝑏*
𝑏+
⋮
𝑏(

𝐚 O 𝐛 =R
'-#

!

𝑎' O 𝑏' = 𝐚 𝐛 cos 𝜃

𝐚

𝐛
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Cosine Distance Between Two Vectors
• If 𝜃 is the angle between 𝐚 and 𝐛 then

§ 𝐚 # 𝐛 = 𝐚_𝐛 = 𝐚 𝐛 cos 𝜃

• 𝐚 O 𝐛 are orthogonal (perpendicular) if and only if 

§ 𝐚 # 𝐛 = 𝐚 𝐛 cos ±90` = 0

• Cosine Distance of two vectors 𝐚 and 𝐛 is defined as

𝐚

𝐛

𝐛

𝐚

cos 𝜃 =
𝐚 O 𝐛
𝐚 𝐛

38
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Cosine Similarity (or Distance)
• Cosine similarity is a measure of similarity between two non-zero vectors. It 

is calculated as the cosine of the angle 𝜃 between the two vectors.

• Given two n-dimensional vectors 𝐚 and 𝐛, their cosine similarity is defined as:

sim 𝐚, 𝐛 =
𝐚$𝐛
𝐚 𝐛

= cos 𝜃

§ The cosine similarity calculates the angle between two vectors. 

§ Cosine Similarity lies in the ranges [-1 to 1]:
• when sim 𝐚, 𝐛 = 1, the vectors are strongly similar with 𝜃 = 0E

• when sim 𝐚, 𝐛 = 0,  the two vectors are orthogonal with 𝜃 = ±90E

• when sim 𝐚, 𝐛 = −1,  we have strongly dissimilar vectors with 𝜃 = 180E

• All the intermediate values indicate the respective degree of similarity
39



Cosine Similarity – Geometric Interpretation

𝐚

𝐛

The angle between the vector 𝐚
and 𝐛 is 10!.

cos 10! = 0.9848

The angles could be said to be 98% similar.

10!

𝐚

𝐛

The angle between the vector 𝐚
and 𝐛 is 160!.

cos 160! = −0.9756

The angles could be said to be 97% dissimilar.

160!
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Cosine Similarity Example
• Let’s suppose that we have two vectors 𝐚 = 4, 3 , and 𝐛 = 8, 6 ,. 

• First, we compute their dot product as follow:

§ 𝐚 $ 𝐛 = 𝐚8𝐛 = 4 3 8
6 = 4×8 + 3×6 = 50

§ 𝐚 = 4+ + 3+ = 25 = 5 and 𝐛 = 8+ + 6+ = 100 = 10

• Then, we compute their cosine similarity as follows:

§ sim 𝐚, 𝐛 = cos 𝜃 =
𝐚/𝐛
𝐚 𝐛

= *6
H×*!

= *6
H!
= 0.28
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Calculus



First Scientific Revolution (16th -17th Century)
• The First Scientific Revolution signalled the shift from 

medieval to modern science, highlighted by Isaac 
Newton’s pivotal contributions.

• Newton’s Second Law of Motion:

𝐹 = 𝑚𝑎 =
𝑑
𝑑𝑡 𝑚 ' 𝑣 = 𝑚

𝑑!𝑥
𝑑𝑡!

Isaac Newton (1643–1727), the 
physicist who formulated the laws 
of motion and invented Calculus

• This equation describes the relationship between force (𝐹), mass (𝑚), 
and acceleration (𝑎). It is fundamental to classical mechanics.

• Force is equal to rate of change of momentum (mass O velocity)



Differential Calculus: The Derivative
• Differential Calculus is fundamentally about understanding the rate of 

change
• For a function 𝑓:ℝ → ℝ (input and output are scalars), the derivative 
𝑓1(𝑡) is a function describing the instantaneous rate of change or the 
slope of f(t)

• Mathematically, the derivative is defined as:

𝑓1(𝑡) =  23 4
24

= lim
5→7

3 485 93(4)
5

• For example: 𝑓 𝑡 = 3𝑡+ − 4𝑡 ⇒ 𝑓I 𝑡 = 6𝑡 − 4 ⇒ 𝑓I 1 = 2



Recap: Derivative Table

• 𝑓 𝑥 = 𝑐 + 𝑥 → 23
2<
= 1

• 𝑓 𝑥 = 𝑎𝑥 → 23
2<
= 𝑎𝑥

• 𝑓 𝑥 = 𝑥! → 23
2<
= 𝑛𝑥!9#

• 𝑓 𝑥 = 𝑎< → 23
2<
= ln 𝑎 𝑎<

• 𝑓 𝑥 = 𝑒< → 23
2<
= 𝑒<

• 𝑓 𝑥 = log= 𝑥 → 23
2<
= log= 𝑒

#
<

• 𝑓 𝑥 = ln 𝑥 → 23
2<
= #

<
, 𝑥 ≠ 0

• 𝑓 𝑥 = sin 𝑥 → 23
2<
= cos 𝑥

• 𝑓 𝑥 = cos 𝑥 → 23
2<
= −sin 𝑥

• 𝑓 𝑥 = tan 𝑥 → 23
2<
= −sec+ 𝑥
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Geometric Interpretation
• The derivative at an arbitrary point (𝑡7) is equivalent to the slope of the 

tangent line at that point.

𝑓 𝑡'

𝑡' 𝑡

Δ𝑡

𝑓( 𝑡' =
Δ𝑦
Δ𝑡

Curve
𝑦 = 𝑓 𝑡



Differentiability
• A function is differentiable at a point if the limit defining the derivative exists. 

• Functions that are not continuous or have sharp points (like y=∣x∣) are not 
differentiable at those points.

Not continuous A sharp point



Multi-Variable Calculus: Partial Derivatives
• Function of Multiple Variables: Calculus extends to functions where the input 

consists of 𝑛 variables, resulting in a scalar output (𝑓:ℝ" → ℝ)

§ Example: 𝑓 𝐱 = 𝑓
𝑥8
𝑥9 = 𝑓 𝑥8, 𝑥9 = 𝑥89 + 3𝑥8𝑥9 + 𝑥99

• Partial Derivatives: Since the input has multiple variables, we calculate partial 

derivatives (#$
#%!

). For examples

§
$N
$O0

= 2𝑥* + 3𝑥+ and $N
$O1

= 3𝑥+ + 2𝑥+

• The partial derivative with respect to one variable is found by treating the 
other variables as constants.



Multi-Variable Calculus: The Gradient
• The Gradient ∇𝑓 𝐱 : The first-order derivative of a vector-to-scalar function is 

called the Gradient. The gradient is typically represented as a column vector:

∇𝑓 𝐱 = ∇𝑓

𝑥%
𝑥#
⋮
𝑥)

=

𝜕𝑓
𝜕𝑥%
𝜕𝑓
𝜕𝑥#
⋮
𝜕𝑓
𝜕𝑥)

For example: 𝑓 𝐱 = 𝑓
𝑥$
𝑥% = 𝑥$% + 𝑥%% ⇒ ∇𝑓 𝐱 =

𝜕 𝑥"# + 𝑥##

𝜕𝑥"
𝜕 𝑥$% + 𝑥%%

𝜕𝑥%

= 2𝑥$
2𝑥%



Matrix Calculus: The Jacobian Matrix
• Vector-to-Vector Functions: The Jacobian Matrix is used when dealing with 

multiple functions of multiple variables (𝑓:ℝ" → ℝ&).

§ Example: 𝐟 𝐱 = 𝐟 𝑓8 𝑥8, 𝑥9
𝑓9 𝑥8, 𝑥9

= 𝑥89 + 𝑥9
𝑥8 + 𝑥99

• Definition: The Jacobian Matrix 𝐽 𝐱 is the derivative of a vector-to-vector 
function. For example:

𝐽 𝐱 = ∇𝐟 𝐱 =
𝜕𝐟 𝐱
𝜕𝐱 =

𝜕𝑓8
𝜕𝑥8

𝜕𝑓8
𝜕𝑥9

𝜕𝑓9
𝜕𝑥8

𝜕𝑓9
𝜕𝑥9

= 2𝑥8 1
1 2𝑥9



The Jacobian Matrix
• 𝐽 𝐱 has dimensions 𝑚×𝑛 (where 𝑛 is the number of inputs and 𝑚 is the 

number of outputs).

§ Each row in the Jacobian is the gradient (∇) of one of the output functions.
§ The component in row 𝑖 and column 𝑗 is the partial derivative of the 𝑖-th output function 

(𝑓!) with respect to the 𝑗-th input component (𝑥=).

𝐽 𝐱 = ∇𝐟 𝐱 =
𝜕𝐟 𝐱
𝜕𝐱

=

∇𝑓$ 𝐱 )

∇𝑓% 𝐱 )

⋮
∇𝑓* 𝐱 )

=

𝜕𝑓$ 𝐱
𝜕𝑥$

𝜕𝑓$ 𝐱
𝜕𝑥%

𝜕𝑓% 𝐱
𝜕𝑥$

𝜕𝑓% 𝐱
𝜕𝑥%

⋯
𝜕𝑓$ 𝐱
𝜕𝑥"

⋯
𝜕𝑓% 𝐱
𝜕𝑥"

⋮ ⋮
𝜕𝑓* 𝐱
𝜕𝑥$

𝜕𝑓* 𝐱
𝜕𝑥%

⋱ ⋮

⋯
𝜕𝑓* 𝐱
𝜕𝑥"

∈ ℝ*×"



Application in AI: Differential Programming
• Differential Programming is the field relying on the application of 

calculus to automatically calculate derivatives.
§ The key idea behind training a neural network (identifying its weights) is 

Gradient Descent.

§ Training involves iteratively minimizing a Cost Function ℒ(𝜃&) that measures the 
error of the neural network.

§ Parameters (𝜃&) are updated based on the calculated gradient (∇hℒ(𝜃&)) and a 
learning rate (𝜂): 

𝜃&)* = 𝜃& − 𝜂 $ ∇hℒ(𝜃&)



The Gradient Descent Algorithm
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ℒ 𝜃

gradient

∇!ℒ(𝜃,)

𝜃∗ = min
!
ℒ 𝜃 = min

!

1
𝑁
q
./$

0

ℓ 𝑦 . , 𝑓! 𝐱 .

𝜃∗
𝜃

Step 0: Randomly initialize weights and biases 
parameters: 𝜃 = 𝐖(%), 𝐛(%),𝐖(#), 𝐛(#), … ,𝐖(2), 𝐛(2)

Step 1: Compute the cost function ℒ 𝜃 , which 
measures how well the model is performing of the 
dataset.
Step 2: Find the gradients of the cost function 
with respect to each parameters ∇hℒ(𝜃&)
Step 3: Update the parameters by

𝜃&)* = 𝜃& − 𝜂 $ ∇hℒ(𝜃&)
where 𝜂 is the learning rate that determines how big 
the updates should be in each iteration 𝑡.
• Repeat the above steps 1 to 3, unit the cost is 

low enough or convergence.



Chain Rule of Differential Calculus
• The Chain Rule: This fundamental rule expresses the derivative of a composite 

function (like 𝑦 = 𝑓 𝑔 𝑥 ) in terms of the derivatives of its component functions 
(𝑓 and 𝑔).

• Single-variable example: 
§ If 𝑦 = 𝑓 𝑢 and 𝑢 = 𝑔 𝑥 then we can use chain rule to find the derivative as

𝑑𝑦
𝑑𝑥

=
𝑑𝑦
𝑑𝑢

$
𝑑𝑢
𝑑𝑥

§ If 𝑦 = 𝑢7 and 𝑢 = 2𝑥+ + 𝑥, then we have 

𝑑𝑦
𝑑𝑢

= 3𝑢# and
𝑑𝑢
𝑑𝑥

= 4𝑥 + 1 ⇒
𝑑𝑦
𝑑𝑥

=
𝑑𝑦
𝑑𝑢

Z
𝑑𝑢
𝑑𝑥

= 3𝑢# Z (4𝑥 + 1) = 3 2𝑥# + 𝑥 # 4𝑥 + 1
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Backpropagation
• Backpropagation is an efficient algorithm to compute gradients 
∇>ℒ(𝜃4) of a loss function with respect to all the parameters in a neural 
network by using the chain rule of calculus recursively.

• Key Idea: Instead of computing the gradient of the loss ?ℒ(>)
?>

for every 

parameter 𝜃 separately (which would be very slow), backpropagation 
computes gradients layer-by-layer backwards, reusing intermediate 
results.



Efficient Gradient Computation using the Chain Rule
• In a neural network, which is a composite function of many layers, the chain rule is 

utilized efficiently through matrix multiplication to compute the overall gradient

𝐱 =
𝑥%
𝑥#

𝑥$

𝑥%

1

𝑎"
(")

𝑎#
(")

1

𝑎"
(#)

𝑎#
(#)

𝑎"
(&)

1

s𝑦

𝐖("), 𝐛(") 𝐖(#), 𝐛(#) 𝐖(&), 𝐛(&)

Step 1: 𝑥"𝑥# →
𝑎"
(")

𝑎#
(")

𝐽" =

𝜕𝑎"
(")

𝜕𝑥"
𝜕𝑎"

(")

𝜕𝑥%
𝜕𝑎%

(")

𝜕𝑥"
𝜕𝑎%

(")

𝜕𝑥%

Step 2: 𝑎"
(")

𝑎#
(") →

𝑎"
(#)

𝑎#
(#)

𝐽% =

𝜕𝑎"
(%)

𝜕𝑎"
(")

𝜕𝑎"
(%)

𝜕𝑎%
(")

𝜕𝑎%
(%)

𝜕𝑎"
(")

𝜕𝑎%
(%)

𝜕𝑎%
(")

Step 3:
𝑎$
(%)

𝑎%
(%) → s𝑦

𝐽& =

𝜕9𝑦
𝜕𝑎"

(%)

𝜕 9𝑦
𝜕𝑎%

(%)



Backpropagation

• By representing the derivative of each step (or layer) in the neural network as a Jacobian 
matrix (𝐽8, 𝐽9, 𝐽B ), the total gradient is calculated by multiplying these matrices.

• Matrix Multiplication Example:

C DE
CF3
C DE
CF4

= 𝐽8 6 𝐽9 6 𝐽B

• This systematic calculation allows for efficient gradient computation for large networks.

𝐱 =
𝑥%
𝑥#

𝑥$

𝑥%

1

𝑎"
(")

𝑎#
(")

1

𝑎"
(#)

𝑎#
(#)

𝑎"
(&)

1

s𝑦

𝐖("), 𝐛(") 𝐖(#), 𝐛(#) 𝐖(&), 𝐛(&)



Probability and Random Variables 



Empirical Definition of Probability
• The probability of any event 𝐸 can be defined as:

𝑃 𝐸 = lim
!→A

count 𝐸
𝑁

where count 𝐸 is the number of times that 𝐸 occurred in 𝑁
experiments

§ As you repeat an experiment many times, the ratio approaches the true 
probability

§ Also interpreted as the chance of E occurring
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Probability of Equally Likely Outcomes

𝑃 𝐸 = tuvwxy `z `u{|`vx} ~t �
tuvwxy `z `u{|`vx} ~t �

= �
�

• Examples

• Coin flip: 𝑆 = {Head, Tails}

• Flipping two coins: 𝑆 = {(H, H), (H, T), (T, H), (T, T)}

• Roll of 6-sided die: 𝑆 = {1, 2, 3, 4, 5, 6}

60



Core Probability Identities
• For an event 𝐸 and a sample space 𝑆

§ 0 ≤ 𝑃 𝐸 ≤ 1

§ 𝑃 𝑆 = 1

§ 𝑃 𝐸 = 1 − 𝑃 3𝐸 𝐸

g𝐸

𝑆
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Log Probabilities

log 𝑃 𝐸 (natural or base-10 log)

• Why use them?
§ Handles tiny probabilities (no underflow)

§ Turns products into sums (faster for computers)

• Example:
log 𝑃# O 𝑃+ O ⋯ O 𝑃! = log𝑃# + log𝑃+ +⋯+ log𝑃!



Random Variables
A random variable X maps outcomes to numbers.
• Discrete random variables: Finite/countable values

§ Examples: Die roll: 𝑋 = 1,2,3,4,5,6 and coin flips : 𝑋 = 0,1,

• Continuous random variables: Real-number values
§ Examples: Height, time, temperature

X=Random  
Variable

Outcomes Probabilities

𝑃 𝑋 = 0 = 0.5

𝑃 𝑋 = 1 = 0.5
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Probability Mass Function (PMF)

The PMF of Fair die discrete 
random variable is a Uniform 
Probability Distribution

64

• A PMF is used to describe the probability distribution of discrete random 
variables. 

• Roll a fair die: 6-sided dice with equal probability 1/6 for each of the 6 numbers
• Uppercase letter 𝑋 for a random variable.
• Lowercase letter 𝑥 for an observed value.

𝑃 𝑋 = 1 = 𝑃 𝑋 = 2 = 𝑃 𝑋 = 3 = 𝑃 𝑋 = 4 = 𝑃 𝑋 = 5 = 𝑃 𝑋 = 6 =
1
6

• Short-hand notation: 𝑃 𝑥 for 𝑃 𝑋 = 𝑥 ∈ 1,2,3,4,5,6



The PMF of the Sum of Two Dice Rolls
• The sum of two dice example in the equally likely probability section. Again, the 

information that is provided in these graphs is the likelihood of a random variable 
taking on different values.
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Probability Density Function (pdf)

Assume men’s 
heights follow the 
Gaussian 
distribution with an 
average of 64
inches.
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• A pdf is used to describe the probability distribution of continuous 
random variables x.
§ Example: The PDF for adult male height might peak near 64 inches, showing 

higher likelihood near the mean and lower likelihood farther away.
§ Gaussian (Normal) pdf

𝑝 𝑥 = '
!()"

𝑒*
#$% "

"&"

• 𝑝 𝑥 is not a probability; it’s a density. 
• The actual probability is the area under the curve: 

• 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = ∫5
6𝑝 𝑥 𝑑𝑥

• 𝑃 𝑋 = 𝑥 = 0 for any exact point 𝑥 (because it's continuous)



Properties of PDF/PMF
• Key Properties

§ Discrete:

§ Continuous:

∫ 𝑝(𝑥)𝑑𝑥 =	1

∑x𝑃(𝑥)	=	1
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Expectation of a Random Variable
• The expectation of a random variable is a weighted average of the 

possible values of 𝑥 can take; each value being weighted according to 
the probability of that event.

• For discrete random variables, the expectation is defined as 

𝔼% 𝑃 𝑥 =E
%

𝑥 𝑃 𝑥

• For continuous random variables, the expectation is defined as

𝔼% 𝑝(𝑥) = H𝑥 𝑝 𝑥 𝑑𝑥
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Variance of a Random Variable
• The variance is a measure of the "spread" of a random variable around the 

mean. Variance for a random variable, 𝑥, with expected value 𝔼 𝑥 = 𝜇 is:

Var 𝑥 = 𝜎! = 𝔼 𝑥 − 𝜇 !

• Semantically, this is the average distance of a sample from the distribution to 
the mean. When computing the variance often we use a different (equivalent) 
form of the variance equation:

Var 𝑥 = 𝔼 𝑥! − 𝔼 𝑥 !
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Common Distributions
• Uniform Distributions: constant probability

§ 𝑝 𝑥 := 𝒰(𝑎, 𝑏)

§ 𝑝 𝑥 = e
%

;<=
𝑎 ≤ 𝑥 ≤ 𝑏

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Normal Distributions: bell-shaped, defined by mean 𝜇 and variance 𝜎+

§ 𝑝 𝑥 := 𝒩(𝜇, 𝜎#)

§ 𝑝 𝑥 = %
#>?'

𝑒<
(
'
)*+ '

,'



Multivariate Normal Distribution
• A multivariate normal distribution (also called a multivariate Gaussian distribution) 

generalizes the one-dimensional normal distribution to multiple dimensions.

• It is defined by
§ Mean vector (expected values): 𝛍 = 𝜇%, 𝜇#, … , 𝜇@ , ,

§ Covariance matrix 𝚺 : A 𝑑×𝑑 symmetric, positive semi-definite matrix where

𝚺 =

𝜎%# 𝜎%#
𝜎#% 𝜎##

⋯ 𝜎%#
⋯ 𝜎%#

⋮ ⋮
𝜎@% 𝜎%#

⋱ ⋮
⋯ 𝜎@#

Captures variances (on the diagonal) and pairwise covariance (off-diagonal).



PDF of Multivariate Normal Distribution
• For a 𝑑-dimensional random vector 𝐱 ∈ ℝC, the PDF is:

𝑝 𝐱 =
1

2𝜋 @ 𝚺
𝑒<

%
# 𝐱<𝛍 -𝚺*( 𝐱<𝛍

where 𝚺 is the determinant of the covariance matrix.

• Standard Bivariate Normal Distribution 𝒩(𝟎, 𝐈)
§ 𝑑 = 2

§ 𝛍 = 0
0

§ 𝚺 = 1 0
0 1



Random Sampling
• There are 10 balls in the bin: 2 are red, 5 are green, and 3 are blue.

Random 
Sampling

What is probability of 
getting a red ball?

𝑃 red ball =
2
10

= 0.2

73



Conditional Probability
• The probability of 𝐸 given that (aka conditioned on) event 𝐵 already 

happened:

𝑃 𝐸|𝐵 =
" #∩%
" %

Probability that 𝐸 occurs given 
that 𝐵 has already occurred 𝑃 𝐸

𝑃 𝐵
𝑃 𝐸 ∩ 𝐵 = 𝑃 𝐸 and 𝐵

𝐵𝐸

𝐸 ∩ 𝐵
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Chain Rule of Probability
• The chain rule of probability (also called the general product rule) lets you express 

the joint probability of multiple events by breaking it down into a sequence of 
conditional probabilities.

• For any two events 𝐴 and 𝐴𝐵: 𝑃 𝐴 ∩ 𝐵 = 𝑃(𝐴) ( 𝑃 𝐵|𝐴
• For any 𝑛 events 𝐴*, 𝐴+, … , 𝐴( , the joint probability is:

𝑃 𝐴$ ∩𝐴% ∩⋯∩𝐴" = 𝑃(𝐴$) { 𝑃 𝐴%|𝐴$ Z 𝑃(𝐴%) Z 𝑃 𝐴D|𝐴% ∩ 𝐴# Z ⋯ Z 𝑃 𝐴)|𝐴% ∩ 𝐴# ∩⋯∩ 𝐴)<%
or

𝑃 𝐴%, … , 𝐴) =x
'(%

)
𝑃 𝐴'|𝑎𝑙𝑙 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑣𝑒𝑛𝑡𝑠

• It always holds, even if events are dependent or independent. It’s how you multiply 
probabilities step-by-step using conditionals.



Bayes’ Theorem

𝑃 𝐻|𝐸 = " & ' " #|&
" #

Prior probability Likelihood

Marginal likelihood
/model evidence

Posterior probability

Thomas Bayes
(1701-1761)



Theorem of Total Probability
• Let 𝑦', 𝑦!, … , 𝑦+ be a set of mutually exclusive events (i.e. 𝑦, ∩ 𝑦- = 0) and 

event 𝑋 is the union of 𝑁 mutually exclusive events, then

𝑃 𝑥 = E
,.'

+

𝑃 𝑥|𝑦, 𝑃(𝑦,)

• We can also represent 𝑝 𝑦|𝑥 as

𝑃 𝑦|𝑥 = / %|1 / 1
∑!'(
) / %|1! /(1!)



Join, Marginal and Conditional Probability
• Joint Probability (of 𝑋 and 𝑌)

• Conditional Probability (of 𝑋 conditioned on 𝑌)

• Marginal Probability (of 𝑌)

𝑃 𝑥, 𝑦

𝑃 𝑥|𝑦 =
𝑃 𝑥, 𝑦
𝑃 𝑦

𝑃 𝑦 = n
<∈C

𝑃 𝑥, 𝑦 𝑑𝑥
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Information Theory (1948): Self-Information
• Observing unlikely events is more informative than likely ones.

• Example: "Sun rose today" is uninformative; "solar eclipse today" is 
informative (surprising). Quantify as "surprise level."

• Requirements: Low info for likely/certain events; high for unlikely; 
additive for independents (e.g., two heads = twice one head).

• Definition: To satisfy all requirements, Claude Shannon define the 
self-information of an event 𝑥 as

𝐼 𝑥 = log
1

𝑃 𝑥
= − log 𝑃 𝑥

where log refers to the natural logarithm and 𝐼 𝑥 ≥ 0.

Claude Shannon 
(1916-2001)



Entropy: Average of Information
• Entropy 𝐻 𝑃 quantifies the uncertainty or average amount of information

(self-information) in a probability distribution 𝑃 𝑥 . 

𝐻 𝑃 = −𝔼%~/ log 𝑃 𝑥 , where 𝐻 𝑃 ≥ 0
§ Interpretation: Measures average bits (with base-2 log) needed to encode symbols from 
𝑃 𝑥 , setting the lower bound for data compression.

• Discrete Case: 𝐻 𝑃 = −∑O 𝑃 𝑥 log 𝑃 𝑥

• Continuous Case (Differential Entropy): 𝐻 𝑃 = −∫O 𝑃 𝑥 log 𝑃 𝑥 𝑑𝑥

• Properties: Zero for deterministic distributions (no uncertainty); maximum for 
uniform distributions (highest uncertainty).



Entropy Example
• Histograms of two discrete probability distributions over 30 bins

• The entropy of the broader distribution (on the right) is higher
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Lower Entropy Higher Entropy



Advanced Math for Deep Learning (Optional)

• Kullback-Leibler Divergence

• Maximum Likelihood Estimation (MLE)



Kullback-Leibler Divergence (1951)

𝐷|} 𝑃||𝑄 = −𝔼O~� log � O
� O

= −𝔼O~� log 𝑄 𝑥 + 𝔼O~� log 𝑃 𝑥

KL-Divergence (𝐷|}) is a measure of how one probability distribution 
𝑃 is different from a reference probability distribution 𝑄.

This can be rewritten as:

𝐷DE 𝑃||𝑄 = 𝐻 𝑃,𝑄 − 𝐻(𝑃)

Key properties:
§ Always non-negative: 𝐷|} 𝑝||𝑞 ≥ 0
§ Not a true distance (asymmetric): 𝐷|} 𝑃||𝑄 ≠ 𝐷|} 𝑄||𝑃
§ Smaller 𝐷E2 means more similar of two distributions

Cross Entropy Entropy



KL-Divergence: Visual Example

https://alpopkes.com/posts/machine_learning/kl_divergence/

𝐷GH 𝑝||𝑞 = A
IJ

J
𝑝 𝑥 log

𝑝(𝑥)
𝑞(𝑥) 𝑑𝑥 =

A
IJ

J
𝑝 𝑥 log 𝑝(𝑥) − log 𝑞(𝑥) 𝑑𝑥

For each point 𝑝 𝑥 on the x-axis, we compute log 𝑝(𝑥) − log 𝑞(𝑥) and multiply the result by 𝑝 𝑥 . We then 
plot the resulting y-value in the right-hand plot. This is how we get to the curve given in the right-hand plot. The 
KL divergence is now defined as the area under the graph, which is shaded.

𝑝 𝑥 log𝑝(𝑥) − log𝑞(𝑥)

𝑝 𝑥 𝑞(𝑥)

https://alpopkes.com/posts/machine_learning/kl_divergence/


Probability vs Likelihood
• Probability: Predicts data given fixed parameters.

• Function of data; parameters held constant.
• Normalized: sums/integrates to 1 over all possible data.
• Example: 𝑃 head|𝑝 = 0.5 = 0.5 .

• Likelihood: Evaluates parameters given fixed 
observed data.
• Function of parameters; data held constant.
• Not normalized—values don’t sum to 1 over 

parameters.
• Used in maximum likelihood estimation (MLE) to find 

best-fitting parameters.
• Example: After observing 7 heads in 10 tosses, 
𝐿 𝑝|𝑑𝑎𝑡𝑎 peaks near 𝑝 = 0.7 .

𝑃 data| distribution

𝐿 distribution| data

×

9

Core idea: Same mathematical expression 𝑃 data|𝜃 , but different perspectives—
probability forecasts outcomes; likelihood assesses model fit.



The Argmin and Argmax Operators
• Let 𝑋 denote a set. We define the arg min and arg max operators as follows:

• In words:
• arg min

S∈U
= the set of points (argument(s)) that achieve the smallest value of 𝑓

• arg max
S∈U

= the set of points that achieve the largest value of 𝑓

• Examples:

§ argmin
S∈ℝ

𝑥# = 0

§ arg max
S∈[X,Y>]

cos(𝑥) = 0,2𝜋, 4𝜋

arg min
S∈U

𝑓(𝑥) = min
S∈U

𝑓(𝑥) = 𝑥|𝑓 𝑥 = min
S[∈U

𝑓(𝑥[)

arg max
S∈U

𝑓(𝑥) = max
S∈U

𝑓(𝑥) = 𝑥|𝑓 𝑥 = max
S[∈U

𝑓(𝑥[)
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Maximum Likelihood Estimation (MLE)
• MLE is a statistical method for estimating parameters 𝜃 of a probability 

distribution 𝑝> by maximizing the likelihood function, making the observed 
data most probable.

• For a given dataset 𝑥('), 𝑥(!), … , 𝑥(+) from a real distribution 𝑝?@A@(𝑥)
§ Likelihood Function: 𝐿 𝜃 = 𝑝h 𝑑𝑎𝑡𝑎 = ∏9 𝑝h 𝑥(9)

§ Log-Likelihood (easier to maximize): 𝐿 𝜃 = ∑9 log 𝑝h 𝑥(9)

§ MLE estimate 𝜃:

𝜃∗ = argmax
R

M
!S8

T

log 𝑝R 𝑥(!)



Maximum Likelihood Estimation
• Data Samples: 𝑥(*), 𝑥(+), … , 𝑥(�) from 𝑝C�&�(𝑥)

𝜃∗ = argmax
!
x
'(%

]

𝑝! 𝑥(') = argmax
!

log x
'(%

]

𝑝!(𝑥(')) = argmax
!

5
'(%

]

log 𝑝! 𝑥(')

≈ argmax
!

𝔼S~_:;<;(S) log 𝑝!(𝑥) = arg max
!

�
S
𝑝@=`= 𝑥 log 𝑝! 𝑥 𝑑𝑥

= arg max
!

�
S
𝑝@=`= 𝑥 log 𝑝! 𝑥 𝑑𝑥 − �

S
𝑝@=`= 𝑥 log 𝑝@=`=(𝑥) 𝑑𝑥

(not related to 𝜃)

= arg max
!
�
S
𝑝@=`= 𝑥 log

𝑝! 𝑥
𝑝@=`=(𝑥)

𝑑𝑥 = argmin
!

𝐷E2 𝑝@=`=(𝑥)||𝑝! 𝑥

Maximizing Likelihood (or Log Likelihood) = Minimizing KL Divergence

Maximum Log Likelihood 

𝑝@=`=(𝑥)

Maximum Likelihood 



Homework
• Try to form your group project team with 5 members

• Start to discuss the project direction

• Performing research on the selected topics

• Send your group member list to instructor at eelmpo@cityu.edu.hk on 
or before the Friday of week 3 (Jan 31, 2026)
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