Artificial Neurons

Al with Deep Learning
EE4016

Prof. Lai-Man Po

Department of Electrical Engineering
City University of Hong Kong

Week 2 Messages

Recommended Technical Presentation for Group Project Development on
"Upscaling Images with Neural Networks" by Geoffrey Litt

= https://www.youtube.com/watch?v=RhUmSeko1ZE

= This is a great technical presentation for students to learn about industry presentation styles and
to identify the topic of your group project.

Students, please form a 5-person project team on or before Jan 31, 2026, and send
your list of members to Lai-Man Po at eelmpo@cityu.edu.hk .

On the other hand, students are strongly recommended to try Google Colab to
practice programming skills using Python and PyTorch.
= Colab Python Tutorial:
* https://colab.research.google.com/drive/1IMVBWrWYDNEitrAjBmp7F85 sSyXdhzZH4
= Deep Dive in PyTorch:
* https://www.youtube.com/watch?v=A-rzknbjp5M&list=PLv8Cp2NvcY8DOSrHYWZWyOhV8r9eNierl&index=1

https://www.youtube.com/watch?v=RhUmSeko1ZE
mailto:eelmpo@cityu.edu.hk
https://colab.research.google.com/github/cs231n/cs231n.github.io/blob/master/python-colab.ipynb
https://www.youtube.com/watch?v=A-rzknbjp5M&list=PLv8Cp2NvcY8D0SrHYWZWyOhV8r9eNierl&index=1

The Evolution and Rise of Diffusion Models in Al

e https://medium.com/@Impo/from-words-to-pixels-the-evolution-and-rise-of-diffusion-models-in-ai-1053a95deabd

Autoencoders (1987)

T=x
INpUtie = > > = v === === " Ideally, they are identical - -~~~ -~~~
z=E(x)
Encoder Decoder A
Z_ x > Z > x
E(x) D(z)

Low-dimensional
Latent vector
(Bottleneck)

Variational Autoencoders (VAEs, 2013)

Input 3 Reconstructed
Mean Vector Sampling
z~N(, 0%)
.y - u
Probabilistic . Probabilistic
Encoder S 4 z Decoder [=PX
q¢(2z]%) 2 iiitarit pe(x|2)
Distribution
Variance N(u,0?)

Vector

Reconstructed
" Input

Generative Adversarial Networks (GANs, 2014)

X = (x®,2®), ., x™)

Real dataset

Real

X ~ Pdata

Fake

z~p,=N(0,1)
/ Generator
R \ G(2)

Real
or
Fake

Discriminator
D(x)

X~ DPg

Diffusion Models (2015 — Present)

Noisy Image

e DDPM Denoiser

\ Denoised Image

Xt

Noise Predictor
Network

—

\ € (x¢,)

https://medium.com/@lmpo/from-words-to-pixels-the-evolution-and-rise-of-diffusion-models-in-ai-1053a95deabd

A Brief History Al with Deep Learning

i First E E Second E E E Third
! Golden Age ! ! Golden Age | : : Golden Age
' A » S » i
: : I I : AlexNet
Birth 2012
of Al Backpropagation SVMs
ADALINE 4
1956 1959 XOR 1986 1995 Transformer)
Artificial Turing | Problem Neocognitron { RBM 0 C2aotszPT
%
Neuron Test Perceptron 1969 1980 UAT cny Initialization | GAN | GPT-3
1943 1950 19f7 ‘ ‘ 19189 908 2006 2014 | 2020

&V ‘Ji’"x‘

1. From Artificial Neuron to Perceptron

McCulloch-Pitts Rosenblatt Widrow-Hoff 2. From Perceptron to Adaline (Delta Learning Rule)
@ e 3. Start the First Golden Age of Al
g O
o D)

From Logic Gates to Learning Machines

The Evolution of Artificial Neurons: A Technical Retrospective

Input vector x

Dendrites X0
Wo

; —>x1 Wq
é g \ Output
W,

Synapse

)

\\m

\

Dendrites f Sona
(}O \\ \(

/
‘@ a———n S a—2 3| f 9
Axon
¥/
/ \/‘\\ Synapse “§'> >» \
b S Activation
Synapsg — .
Xd Function g(+)

The Journey
1943: McCulloch-Pitts Neuron (Logic) 1 - 1957: The Perceptron (Learning) |/ 1959: ADALINE (Optimization) A

= First mathematical model of a neuron, X, W, « Invented by Frank Rosenblatt. LMS « Developed by Bernard Widrow and Marcian Hoff.
1 « Based on all-or-none logic. \ I + First trainable neural network. « Used the Delta Rule (LMS algorithm) for learning.
0 « Introduced the cancept of threshold logic units. x:’ » Utiiized the perceptron learning rule for Y . Minimized mean squared error.

« Laid the foundation for digital computers. X-n weight adjustment. + Precursor to modern backpropagation.

« Capable of learning linear classifications.

McCulloch & Pitts Neuron Model
(1943)

McCulloch & Pitts (MP) Neuron Model (1943)

* MP Neuron is a highly simplified mathematical model to mimic biologic neuron.

* It takes binary inputs (0 or 1), computes their weighted sum, and generates a binary
output (0 or 1) by applying a threshold-based activation function.

A Biologic Neuron

electrical

synapse signal

dendrite

A McCulloch-Pitts Neuron

X
01} x Wy cell body

axon ~
0,1} x, y €{0,1}
T
d
{0;1} Xd Z=ZW]'°X]'
j=1
Synapse ~ 1 ifz>T Threshold-based
y = g(Z) = {0 otherwise Activation Function

McCulloch and Pitts: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 1943 7

Proving Computation: Neural Logic Gates

* McCulloch and Pitts demonstrated that arranging these simple units could replicate

fundamental Boolean logic, effectively proving neural networks could compute.

AND Gate
I1 1
T2 1
1
3
Fires only if all 3

inputs are active.

OR Gate NOT Gate
I 1
L9 1 I1 ®

1

L3

Fires if at least 1
input is active.

Inhibitory signal
suppresses output.

The 'Static' Bottleneck

The fatal flaw of the MP Neuron was
the lack of adaptability.

McCulloch-Pitts Neuron

* For every new logical task, a human
operator had to manually calculate
and set the weights and thresholds.

Summation Thre;hold 5) € {0, 1}

* The system was a hard-coded circuit,
unable to learn from data or correct

. NO LEARNING ALGORITHM.
Its own errors.

No automated learning method was developed to identify these parameters for desired functions,
which greatly restricted its practical applications.

Rosenblatt’s Perceptron
Frank Rosenblatt ¢ Cornell Aeronautical Laboratory

(1957)

Rosenblatt’s Perceptron Model (1957)

1. The perceptron is an advanced form of the MP Neuron, capable of processing real-valued inputs
x; € R and approximating a broad spectrum of complex functions.

2. Rosenblatt introduced the perceptron learning rule, a method for adjusting weights to reduce
classification errors.

X1
AN

[X1] W2 N

X, Xy Z ! y ER
. .

x=|.]€eR? : :
X ' \
- Wq \
real-valued input [xg4 ; Threshold-based Activation Function ﬁ

-

_ ~ 1 ifz>T Frank Rosenblatt
— S X - — — -
z Z Wit y=92) {0 otherwise

Mathematical Reformulation: The Bias Term

e Use the bias term (b = —T) to replace the threshold, then the activation become a

unit step function u(z)

bias
b
X1 Wy
14 ‘: ~ 1 ifz=>0
X = 7) =
: :) 0) y=9) {O otherwise
Wg \ Unit Step
Xg Activation Function
= WJ xj+b 9(2) =u(z) = L ifz=0
0 otherwise

welghted sum with bias

12

Perceptron Model Representation (1)

* By folding the threshold into the weights as a 'bias, we simplify the math. Instead
of checking if the sum reaches a target, the neuron learns an internal offset.

X = [xlerJ ey xd]T W = [Wl, Wy, ..o, Wd]T

Net Input

d
Z=Zijj+b=WTX+b where h = —T
=

y=g9()=gWw'x+Dh)

In original Perception, the activation function is a Unit
Step function u(z) :

5 = u(z) = 0, for z<O0
Inputs Y= |1, forz=0

13

Perceptron Model Representation (2)

A more convenient notation is often used, where the bias term b is
represented as wg , and an additional feature x5 = 1 is prepended to
each input vector.

_ T
xg=1 1 X = [1,xq, Xy, ..., X4q]

w = [wo, Wy, Wy, .., wy]T

Net Input
d

zZ = i wjxj=wa
(=0

AN

bias unit “included” asw, = b

) =g(2) = g(wTx
Inputs x € R**? V=9 =gWx)

14

Perceptron Notations

_ T
X = [x1,%p, o, Xg4] X = [1,x, %y, e, xg]”
_ T
w = [w,wy, ..,wy]T b w = [wy, Wy, Wy, ..., wy]T
1
X1
y Xy y
d d
Wq s — T w
y=g Zw-x-+b =g(w'x+Db) d n _ T
Xd o Xq y=g\) wix |=gWwXx)
j=0

In modern neural networks, the activation functions can be Identify (linear) function: g(z) = z for regression
applications and Sigmoid function: a(z) = 1/(1 + e™%) for binary classification applications

15

Perceptron’s Vector Representations

X1 w1
X2 Wr

X = . W = : b
Xd Wy

y=gwix+b) = g([W1 wy e Wy

+ b> = gwixqy + -+ wyxg + b)

1 Wo
x:le} w:lugl] wo=bandx, =1
Xq Wq

?—g(WTX)—g<[W0 Wi o Wy

> = g(Wwo +wyxq + -+ wgxg)

16

Biological Neuron vs Perceptron

cell body

electrical
signal

synapse
dendrite

Biological Neuron

1
Real value
inputs
X1 cell body
output axon
X2 —p- 5}
y =gwix+b)
N\
axon from ° Linear Activation
> X4 f . f .
previous neuron unction unction

synapse

Artificial Neuron

17

Perceptron Pioneers: How Rosenblatt Launched Neural Networks

* Frank Rosenblatt’s perceptron was the first hardware implementation of a trainable neural network,
igniting early enthusiasm for the potential of machine learning.

* |ts adaptability enabled perceptrons to classify patterns in high-dimensional spaces, laying the
groundwork for early image recognition systems.

SENSORY ASSOCIATION RESPONSE

TS UNITS TS perceptron
(S-UNITS) RETUNAL (A-UNITS) (R-UNITS)
—— ! AO0N
CIRCUITS o 7
|
¢ R
o 0 2
Vo |
2 R
"I.I' 4 > - 3
i . A [}]
00000 ° ° Ry
:*‘.’ '
0o, o R
l,:..n.t ry 5
:" 1
O N
L)
n:t‘ o s
ot |
0
0 o S]

R NETWORK OF
L__ 7 *MANY-TO-ONE® CONNECTIONS.
BANOON" CORNECT I0NS FEED-BACK LOOPS NOT SHONN

Figure | ORGANIZATION OF THE MARK | PERCEPTRON

18

Perceptron Exercise 1

e A perceptron is provided with weights w; = 0.7, w, = 0.6, and a bias b = —1. You are
asked to compute the predicted output $ for different input vectors x = [x1,x,]7:[0,0]7,
[0,1]7,[1,0]%, [1,1]". The perceptron’s activation function is a binary step function

9(z) = u(2).
* Additionally, you need to determine the Boolean function represented by this perceptron

G 1 ifz>T

b = = -
9(2) = u(z) {O otherwise

(1)~

(22) ™

19

Solution

The perceptron’s output can be computed using the following formula:
1 ifz>T
0 otherwise

J=gW'x+b)=u((wr wz] [2] + b) He) ={

* Forthe input vector x = [0,0]7 , the output is

y=u([0.7 0.6] [8] —1) =u(-1) =0 ’
* Forthe input vectorx = [0,1]7, the output is
y=u(l07 06 [(1)] —1) =u(0.6— 1) = u(-0.4) = 0
* Fortheinputvectorx =[1,0]7, the output is S —
y=u([0.7 0.6] [(1)] ~1)=u(07-1D=u(-03)=0 |) ? (E’ g,
* Fortheinputvectorx =[1,1]7, the output is AND (1) 1 (1)

y=u(l0.7 06 [ﬂ —1) =u(0.7+06-1) =u(0.3) = 1
Based on the above results, this perceptron represents the Boolean AND gate.

20

Rosenblatt’s Perceptron Learning (1957)

Rosenblatt also devised a supervised learning algorithm for the Perceptron, enabling it

- Y N
to learn from a training dataset D := {(x(l),y(‘))}izl.

Crucially, the Perceptron represented a
major breakthrough by introducing the idea
of learning through adaptive weight
updates.

Its learning rule adjusts the model’s
weights iteratively based on prediction
errors, allowing it to solve problems that
are linearly separable.

As a result, the Perceptron can effectively
discover a linear decision boundary to
classify data points.

Predict

Compare

Calculate Error =
Ytarget ~ Yprediction

Adjust Weights
based on error
direction.

21

Perceptron Learning Rule

1. Initialization: Start with random weights w; and a bias term as wy,.

2. Forward Pass: For each training example X = [1, X1, X5, ..., x4 |7 with label y € {0,1},
compute the predicted output y as follows:

d

~ 1 ifz>T
Z= z Wi Xj and § = u(z) = {0 otherwise
j=0

3. Error Calculation: Calculate the error as the difference between the true label y and the
predicted label ¥ :
error =y —9
4. Weight Update: Update the weights and bias based on the error:
Wj = W; + 1]+ error - X;

5. Iteration: Repeat steps 2—4 for a fixed number of iterations or until the weights converge.

where 7 is the learning rate between 0 and 1.

This algorithm converge when all the training samples are classified correctly.

Perceptron Learning Example (PyTorch)

https://colab.research.google.com/drive/1HGt XwybylY1UMuQF3dHHYdghHPZlo-5#scrollTo=me F1WpPDX5e

= |n this example, a linearly separable toy dataset is used to training a Perceptron using

feature 2

Rosenblatt’s Perceptron Learning Algorithm

Training set
® classO0
m class1
mm,
.l o
u]
--' I
o] ..F .-
mn
o L . mB
o 0
° o o
o
[J) ®
Pl
8 e o
o
o
° o
o
-3 -2 -1 0 1 2

feature 1

feature 2

2

-1

Test set
® class0
m class1l
o
- Eo
" . |
L. um
- o
o =
ul
o. °
o]
0 1 2 3

feature 1

23

https://colab.research.google.com/drive/1HGt_XwybylY1UMuQF3dHHYdqhHPZIo-5

Define the Perceptron Model using PyTorch

class Perceptron():
def _ init (self, num_ features):
self.num_ features = num features
self.weights = torch.zeros(num_features, 1, dtype=torch.float32)
self.bias = torch.zeros(1l, dtype=torch.float32)

Placeholder vectors so they don't need to be recreated each time
self.ones = torch.ones(1)
self.zeros = torch.zeros(1l)

def forward(self, x):
linear = torch.mm(x, self.weights) + self.bias
predictions = torch.where(linear > 0., self.ones, self.zeros)
return predictions

def backward(self, x, y):
predictions = self.forward(x)
errors = y - predictions
return errors

def train(self, x, y, epochs):
for e in range(epochs):
for i in range(y.shape[0]):
use view because backward expects a matrix (i.e., 2D tensor)
errors = self.backward(x[i].reshape(l, self.num features), y[i]).reshape(-1)
self.weights += (errors * x[i]).reshape(self.num features, 1)
self.bias += errors

def evaluate(self, x, y):
predictions = self.forward(x).reshape(-1)
accuracy = torch.sum(predictions == y).float() / y.shape[0]
return accuracy

Training the Perceptron

ppn = Perceptron(num_ features=2)

X train tensor = torch.tensor(X_train, dtype=torch.float32)
y_train_tensor

torch.tensor(y_train, dtype=torch.float32)
ppn.train(X_train tensor, y train_tensor, epochs=5)

print('Model parameters:')
print(' Weights: %s' % ppn.weights)
print(' Bias: %s' % ppn.bias)
Model parameters:
Weights: tensor([[1.2734],
[1.34641])

Bias: tensor([-1.])

N :.:... - :l
" Rl
2- T &
¢ 0-‘.. .l
.. ° -~ o []
0 -) o e} -
@
HEE Sy *
-2 @ .1DGD
.v .' ° .
® ® & . el
—4
.
-2 0 2 4
|eration O

25

Evaluating the Model

[

1

X _test_tensor = torch.tensor (X test, dtype=torch.float32)

y_test_tensor

torch.tensor(y_test, dtype=torch.float32)

test_acc = ppn.evaluate(X test tensor, y_test_ tensor)
print('Test set accuracy: %.2f%%' % (test_acc*100))

Test set accuracy:

93.33%

Training Set

Test Set
® classO
- class 1
2 O -
o .
1+ uy ".l
O
i o]
0]
] ..
_1 -
] ° .. o
—2 a | . L | . | L
-2 -1 0 1 2

26

Python Tutorial with Google Colab

https://colab.research.google.com/drive/1IMVBWrWYDNEitrAjBmp7F85 sSyXdhZH4

cO & LA _PyTorch.ipynb ¥¢ & B & 2, Share @

File Edit View Insert Runtime Tools Help

Q Commands + Code + Text > Runall + Connect GPU ¥ A
{= Table of contents 0O X Vo B 7R
I§ Linear Algebra Review with v W Linear Algebra Review with PyTorch for Deep Learning

@ PyTorch for Deep Learning

< Basic Concepts and Notation A Comprehensive Guide to Linear Algebra Concepts with Practical PyTorch

o 1.2 Matrix Operations Implementation
1.3 Matrix Multiplication o .))

(] Linear algebra is the mathematical foundation of deep learning and artificial intelligence. This notebook provides
Prolperlties of Matrix a hands-on review of essential linear algebra concepts with practical implementations using PyTorch, one of the
Multiplication

most popular deep learning frameworks.

Special Matrices

@ Learning Objectives

2.2 Diagonal Matrix .
¢ Understand fundamental linear algebra concepts

2.3 Symmetric and Anti- e Learn to implement linear algebra operations in PyTorch
tric Matri N . .
symmetric Matrices « Visualize mathematical concepts for better understanding

Vector Norms ¢ Connect theory with practical deep learning applications

https://colab.research.google.com/drive/1MVBWrWYDNEitrAjBmp7F85_sSyXdhZH4

1957 News about the Rosenblatt’s Perceptron

* Inthe 1950s, Rosenblatt predicted to
the New York Times that Perceptrons
would be capable of:

* Recognizing individuals and
addressing them by name

* Translating speech from one
language to another, either verbally
or in written form

* These ambitious claims, reminiscent of
2022's Al breakthrough of ChatGPT,
generated significant excitement and
anticipation for the potential of artificial
intelligence.

https://www.youtube.com/watch?v=cNxadbrN al

28

https://www.youtube.com/watch?v=cNxadbrN_aI

The Linear Trap: Limitations of the Step Function

Linearly Separable Non-Linearly Separable

1. Rosenblatt's Convergence Theorem guarantees a solution only for linearly separable data.
For non-linearly separable, the Perceptron learning will oscillate infinitely.

2. Furthermore, because the Step Function is discrete (jumping from O to 1), the error signal
provides no information about "how close" the prediction was.

ADALINE (aka Delta Rule Learning)
(1959)

1959: ADALINE (Adaptive Linear Neron)
Widrow & Hoff ¢ Stanford University

error=y—gw'x)=y—wlx=y—z

Learning happens here

Calculation (on the continuous sum z),
« BEFORE the threshold.

[Output
§ |, > ’ 1
Net Input z _— (Oor 1)
Summation Threshold
Logic

Weight update Error

<]
A

<N
Marcial’,’g‘, off

https://www.youtube.com/watch?v=skfNIwEbagck

https://www.youtube.com/watch?v=skfNlwEbqck

ADALINE (or Delta Learning Rule)

1. Initialization: Start with random weights w; and a bias term as wy,.

2. Forward Pass: For each training example x = [1, x;, X5, ..., x4] T with label y € {0,1}, compute the
predicted output ¥ as follows:

d
2—2 x; and y=u(z) = L if 220
AR Y= ~ |0, otherwise
j=1

3. Error Calculation: Calculate the error as the difference between the true label y and the net input z :
error =y — z
4. Weight Update: Update the weights and bias based on the error:
Wj = W; +1-error - X;

5. Iteration: Repeat steps 2—4 for a fixed number of iterations or until the weights converge.

ADALINE enables smoother weight adjustment and convergence on non-linearly separable datasets.

The Shift to Continuous Error

Perceptron Training Loop ADALINE Training Loop
. . 1
NetanUt Unit s_tep Wo Netinput Unit step
= Z _— function x 4 function
=3 ! Output ! &‘ o ;)w,-xj Output
> u(z) 9 €{0,1) : : > > u(z) —>9€{0,1)
Xd Wd
‘y A 4 -
Weight update | Error computation I .Xve'?:t u(pdate) At Er;orrrg?rfput_atlon
w; « w; +n(error)x; | error=y—j Wi T Wi T ReTToryX) y-?
error € {—1,0,1} (Discrete) error € R (Continuous Real Value)
Coarse adjustments. Hard to optime. Precise adjustments. Minimizes magnitude of error.

ADALINE asks "How much were we wrong?", not just "Were we wrong?"

Stochastic Gradient Descent Algorithm

e SGD Algorithm

1. Initializew = 0 € R4+1

2. For every training epoch:
A. For every (X(i),y(i)) €ED:
a) 9O = wTx®
b) VL(w) = (9@ —y®)x®

C) Wew—1-VL(w)

/\

Learning rate Gradient
O0<n<1 (Slope of the cost function)

Cost

Initial
Gradient

Weight ,'
\ VL(W)
1
']

Incremental

Step \ ﬂ
Y l/':
/N

/ Minimum COSt
Derivative of Cost

>

Weight

Move along the negative direction of the slope

of the cost function £(w) until we find a

minimum value

34

SGD using MSE Cost Function

 We assume the error of the model is measured by Mean Square Error (MSE). Then,
the cost function L(w) can be defined as

N N
1 . . 1
L(w) = Ez:(y(l) _ 5;(1))2 :_22 y(l) . f(X(‘))
=1 i=1

where yﬁ) is the predicted output and y(i) is the target output (label) of a training
example x®) in a training dataset D: = {(x®),y W), (x@,y @), . (x™), y*¥))}

* Based on this cost function, we need to find the gradient for updating the
weights

https://towardsdatascience.com/from-the-perceptron-to-adaline-1730e33d41c5

35

https://towardsdatascience.com/from-the-perceptron-to-adaline-1730e33d41c5

How to find the Gradient VL(w)?

.2 Mean Squared Error (MSE) loss often scaled by factor % for
Lw) =2 = (O —9®) -
N - 2 convenience (Note that the activation
function is the identity function

N N
oL(w) Jd [1 1 9 in Delta Learning Rule: g(z) =
— — @) _ 5@ - y® — Q) p
VL(w) = dw; Ow (NZ (' =5%))‘ _1 g(w'x)) z=g'(2)=1)

=1
e 9 1o 9
_ E M _ (D) M _ (1) = E' M _ @ g (D)
N (y g(wTx)) W (y g(wTx) N g(wTx))(SwTx®) aw, (w X))

i=1

1

N
. . 0 : . .
(y(z) _ g(wTX(l))) (_a_W] (WTX(l))> ZTVZ (y(z) _ g(wa(l))) (t) NZ(y(z) y @) x®
i=1

1

-

=1

Vector Gradients:

VL(w) = 0L (w)

NE(ya) — y®)x®

J

https://towardsdatascience.com/from-the-perceptron-to-adaline-1730e33d41c5

36

https://towardsdatascience.com/from-the-perceptron-to-adaline-1730e33d41c5

SGD Weight Update Rule

* In SGD, the model parameters w are updated for each sample (x(i),y(i)) € D.
* The gradient of the cost function £L(w) is defined withn = 1:

N
VL(W) = 0Lw) _ % Z(y(i) —y®)x® = (§O — yO)x® = (WTx® — y®)x®
i=1

* The parameters update at iteration can be expressed as

0L(w) B

Vector Representation:

wew—nVL(w) =w—7n(§® —y®O)x®

https://towardsdatascience.com/from-the-perceptron-to-adaline-1730e33d41c5

37

https://towardsdatascience.com/from-the-perceptron-to-adaline-1730e33d41c5

SGD vs ADALINE Rule

e SGD Algorithm

1. Initializew = 0 € R4*1

2. For every training epoch:

A. For every (x(i),y(i)) € D:

e ADALINE Learning Rule

1. Initializew =0 € R¢*+1
2. For every training epoch:

A. For every (x(i),y(i)) €ED:

a) VLw) = (wix® —y®)x® a) error = y® —wlx®

b) W «w—1-vL(w) b) WewW+7-error -x®

The ADALINE Learning Rule and Gradient Descent (GD) share similarities in their objective of

minimizing an error function, the ADALINE Learning Rule can be considered as a special case of GD
when applied to a single training example at a time, which is called Stochastic Gradient Descent (SGD).

ADALINE in Python

* Colab: https://colab.research.google.com/drive/1riUZ2DmV_3s4ngdHImmjMMX6kyoC3dYL?usp=sharing

* In this notebook, ADALINE is implemented in Python, which is based on the source code of Stat453.

O >4 ® classO =
27 o | m class1

https://colab.research.google.com/drive/1riUZ2DmV_3s4ngdHImmjMMX6kyoC3dYL?usp=sharing

ADALINE Open Up the 1st Golden Age

: First :
| Golden Age !
Birth : | AlexNet DeepSeek-R1
of Al Backpropagation SVMs 2(‘)‘12 2025
1956 AIiALINE YOR 1986 1995 Transformer o1 1
Artificial Turing 1 959 Problem Neocognitron 1 . 2017 5024
Neuron Test |Perceptron 1969 1980 UAT oy Initialization
1943 1950 1957

McCulloch-Pitts

X1
X2
X3 -
Xn :

1970

1980

Minsky-Papert

Rumelhart, Hinton et al.

LeCun

Hinton-Ruslan Krizhevsky et al. Vaswani

40

Artificial Neuron Evolution Summary

| WModel | _nputs | Activation | _Learning Mechanism

MP Neuron Binary {0. 1} Threshold None
(1943) (Fixed Weights)
Perceptron Real R Unit Step Perceptron Rule
(1957) (Discrete Error)
ADALINE Real R Linear LMS / Gradient Descent

(1959) (for learning) (Continuous Error)

41

The XOR Problem (1969)

* In 1969, Minsky and Papert proved that single-layer neurons cannot
solve non-linear problems like XOR. This led to the first 'Al Winter'.

Truth Table for XOR '
(0,1) (11)
X Y X XOR Y 1+ @ »
0 0] 0
> \ Not Linearly

0 1 1 Separable
1 0] 1

o+ @ (©0 @ o
1 1 0 ! e

42

XOR Problem Started the First Dark Age Winter (1969-1986)

First
. Dark Age !

Birth | l AlexNet DeepSeek-R1

of Al Backpropagation SVMs 29‘12 2025

1956 ADALINE XOR 1986 1995 Transformer ol |

H - 1
Artificial Turing | 19‘?9 Problem Neocognitron RBM 2017 CgEngZPT 2024
Neuron Test |Perceptron 1969 1980 UAT oy Initialization GPT-3 t GPT-4V
1943 1950 1957 1989 2006 2020 2023
1998

1970 1980 2010 2020

») WY v
McCulloch-Pitts Rosenblatt Widrow-Hoff Minsky-Papert Rumelhart, Hinton etal. LeCun Hinton-Ruslan Krizhevsky et al. Vaswani

43

Stacking Neurons to Bend Boundaries

* The Solution to XOR: Hidden layers allow the network to combine
multiple linear decisions to create non-linear shapes.

Input Layer Hidden Layer Output Layer

44

