
Artificial Neurons
AI with Deep Learning

EE4016
Prof. Lai-Man Po

Department of Electrical Engineering
City University of Hong Kong

Week 2 Messages
• Recommended Technical Presentation for Group Project Development on

"Upscaling Images with Neural Networks" by Geoffrey Litt
§ https://www.youtube.com/watch?v=RhUmSeko1ZE
§ This is a great technical presentation for students to learn about industry presentation styles and

to identify the topic of your group project.

• Students, please form a 5-person project team on or before Jan 31, 2026, and send
your list of members to Lai-Man Po at eelmpo@cityu.edu.hk .

• On the other hand, students are strongly recommended to try Google Colab to
practice programming skills using Python and PyTorch.
§ Colab Python Tutorial:

• https://colab.research.google.com/drive/1MVBWrWYDNEitrAjBmp7F85_sSyXdhZH4
§ Deep Dive in PyTorch:

• https://www.youtube.com/watch?v=A-rzknbjp5M&list=PLv8Cp2NvcY8D0SrHYWZWyOhV8r9eNierl&index=1

2

https://www.youtube.com/watch?v=RhUmSeko1ZE
mailto:eelmpo@cityu.edu.hk
https://colab.research.google.com/github/cs231n/cs231n.github.io/blob/master/python-colab.ipynb
https://www.youtube.com/watch?v=A-rzknbjp5M&list=PLv8Cp2NvcY8D0SrHYWZWyOhV8r9eNierl&index=1

The Evolution and Rise of Diffusion Models in AI
• https://medium.com/@lmpo/from-words-to-pixels-the-evolution-and-rise-of-diffusion-models-in-ai-1053a95deabd

Autoencoders (1987)

Variational Autoencoders (VAEs, 2013)

Generative Adversarial Networks (GANs, 2014)

Diffusion Models (2015 – Present)

3

https://medium.com/@lmpo/from-words-to-pixels-the-evolution-and-rise-of-diffusion-models-in-ai-1053a95deabd

A Brief History AI with Deep Learning

1940 1950 1960 1970 1980 1990 2000 2010 2020

Artificial
Neuron

1943
Perceptron

1957

ADALINE
1959 XOR

Problem
1969

Backpropagation
1986

CNN
1998

RBM
Initialization

2006

AlexNet
2012SVMs

1995

First Dark Age

UAT
1989

GAN
2014

Transformer
2017

GPT-3
2020

ChatGPT
2022

McCulloch-Pitts Widrow-HoffRosenblatt

Second Dark Age

Neocognitron
1980

4

Birth
of AI
1956

Turing
Test
1950

First
Golden Age

Second
Golden Age

Third
Golden Age

1. From Artificial Neuron to Perceptron
2. From Perceptron to Adaline (Delta Learning Rule)
3. Start the First Golden Age of AI

From Logic Gates to Learning Machines
The Evolution of Artificial Neurons: A Technical Retrospective

𝑤!

𝑤"
𝑤#

𝑤$

𝑥!

𝑥"

𝑥#

𝑥$

#𝑦

Input vector 𝐱

Activation
Function 𝑔 #

Output

McCulloch & Pitts Neuron Model
(1943)

McCulloch & Pitts (MP) Neuron Model (1943)
• MP Neuron is a highly simplified mathematical model to mimic biologic neuron.
• It takes binary inputs (0 or 1), computes their weighted sum, and generates a binary

output (0 or 1) by applying a threshold-based activation function.

McCulloch Pitts

McCulloch and Pitts: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 1943 7

⋮

𝑥"

𝑥#

𝑥$
𝑤$

𝑤"

𝑤# #𝑦 ∈ {0,1}𝑔

synapse

dendrit
e

axon

cell body

A Biologic Neuron

synapse

axon

A McCulloch-Pitts Neuron

Σ

𝑧 =&
!"#

$

𝑤! # 𝑥!	

*𝑦 = 𝑔 𝑧 = ,1 if	𝑧 ≥ 𝑇	
0 otherwise

Threshold-based
Activation Function

{0,1}

{0,1}

{0,1}

Proving Computation: Neural Logic Gates
• McCulloch and Pitts demonstrated that arranging these simple units could replicate

fundamental Boolean logic, effectively proving neural networks could compute.

The 'Static' Bottleneck
The fatal flaw of the MP Neuron was
the lack of adaptability.

• For every new logical task, a human
operator had to manually calculate
and set the weights and thresholds.

• The system was a hard-coded circuit,
unable to learn from data or correct
its own errors. NO LEARNING ALGORITHM.

McCulloch-Pitts Neuron

No automated learning method was developed to identify these parameters for desired functions,
which greatly restricted its practical applications.

Rosenblatt’s Perceptron
Frank Rosenblatt • Cornell Aeronautical Laboratory

(1957)

Rosenblatt’s Perceptron Model (1957)
1. The perceptron is an advanced form of the MP Neuron, capable of processing real-valued inputs

𝑥! ∈ ℝ	and approximating a broad spectrum of complex functions.
2. Rosenblatt introduced the perceptron learning rule, a method for adjusting weights to reduce

classification errors.

Frank Rosenblatt

⋮

𝑥"

𝑥#

𝑥$
𝑤$

𝑤"

𝑤# #𝑦 ∈ ℝ𝑔Σ

𝑧 =&
!"#

$

𝑤! # 𝑥!	 *𝑦 = 𝑔 𝑧 = ,1 if	𝑧 ≥ 𝑇	
0 otherwise

Threshold-based Activation Function

⋮

real-valued input

𝐱 =

𝑥!
𝑥"
⋮
𝑥#

∈ ℝ#

Mathematical Reformulation: The Bias Term
• Use the bias term (𝑏 = −𝑇) to replace the threshold, then the activation become a

unit step function 𝑢 𝑧

12

⋮

𝑥"

𝑥#

𝑥$
𝑤$

𝑤"

𝑤# Σ
⋮

bias
𝑏

0

Unit Step
Activation Function

𝑔 𝑧 = 𝑢 𝑧 = 21 if	𝑧 ≥ 0	
0 otherwise

'𝑦 = 𝑔 𝑧 = +1 if	𝑧 ≥ 0	
0 otherwise

𝑧 = >
%&"

$

𝑤% ? 𝑥% + 𝑏

weighted sum with bias

Perceptron Model Representation (1)
• By folding the threshold into the weights as a 'bias, we simplify the math. Instead

of checking if the sum reaches a target, the neuron learns an internal offset.

'𝑦 = 𝑔 𝑧 = 𝑔 𝐰$𝐱 + 𝑏

where 𝑏 = −𝑇

⋮

𝑥"

𝑥#

𝑥$

∑

𝑤$

𝑤"

𝑤#

Inputs

(𝑦𝑔

1

𝑏
bias

In original Perception, the activation function is a Unit
Step function 𝑢 𝑧 	:

𝐱 = 𝑥!, 𝑥", … , 𝑥# $ 𝐰 = 𝑤!, 𝑤", … , 𝑤# $

𝑧 =B
%&!

#

𝑤% 	𝑥% + 𝑏 = 𝐰$𝐱 + 𝑏

'𝑦 	= 𝑢 𝑧 = +0, for	 𝑧 < 0
1, for	 𝑧 ≥ 0

Net Input

13

Perceptron Model Representation (2)
• A more convenient notation is often used, where the bias term 𝑏 is

represented as 𝑤%	, and an additional feature 𝑥% = 1	is prepended to
each input vector.

'𝑦 = 𝑔 𝑧 = 𝑔 𝐰$𝐱

bias unit “included” as 𝑤' = 𝑏	

𝐱 = 1, 𝑥!, 𝑥", … , 𝑥# $

𝐰 = 𝑤', 𝑤!, 𝑤", … , 𝑤# $

Inputs 𝐱 ∈ ℝ#(!

⋮

𝑥"

𝑥#

𝑥$

∑

𝑤$

𝑤"

𝑤# (𝑦𝑔

1

𝑤! = 𝑏 = −𝑇

𝑥' = 1

𝑧 =B
%&'

#

𝑤% 	𝑥% = 𝐰$𝐱

Net Input

14

*𝑦 = 𝑔 &
!"#

$

𝑤!	𝑥! + 𝑏 = 𝑔 𝐰%𝐱 + 𝑏 *𝑦 = 𝑔 &
!"&

$

𝑤!	𝑥! = 𝑔 𝐰%𝐱

⋮

𝑥"

𝑥#

𝑥$
𝑤$

𝑤"

𝑤# (𝑦

𝑏

1

⋮

𝑥"

𝑥#

𝑥$
𝑤$

𝑤"

𝑤# (𝑦

1
𝑤!

Perceptron Notations
𝐱 = 𝑥!, 𝑥", … , 𝑥# $

𝐰 = 𝑤!, 𝑤", … , 𝑤# $

𝐱 = 1, 𝑥!, 𝑥", … , 𝑥# $

𝐰 = 𝑤', 𝑤!, 𝑤", … , 𝑤# $

15

𝑏

In modern neural networks, the activation functions can be Identify (linear) function: 𝑔 𝑧 = 𝑧 for regression
applications and Sigmoid function: 𝜎 𝑧 = 1/(1 + 𝑒'() for binary classification applications

⋮ ⋮

Perceptron’s Vector Representations

'𝑦 = 𝑔 𝐰$𝐱 + 𝑏 = 𝑔 𝑤! 𝑤" ⋯ 𝑤#

𝑥!
𝑥"
⋮
𝑥#

+ 𝑏 = 𝑔 𝑤!𝑥! +⋯+ 𝑤#𝑥# + 𝑏

'𝑦 = 𝑔 𝐰$𝐱 = 𝑔 𝑤' 𝑤! ⋯ 𝑤#

1
𝑥!
⋮
𝑥#

= 𝑔 𝑤' + 𝑤!𝑥! +⋯+ 𝑤#𝑥#

𝐱 =

𝑥"
𝑥#
⋮
𝑥$

𝐰 =

𝑤"
𝑤#
⋮
𝑤$

𝐱 =

1
𝑥"
⋮
𝑥$

𝐰 =

𝑤!
𝑤"
⋮
𝑤$

𝑤' = 𝑏 and 𝑥' = 1

16

𝑏

Biological Neuron vs Perceptron

Pitts

⋮

𝑥"

𝑥#

𝑥$

𝑤$

𝑤"

𝑤# (𝑦𝑧 𝑔

1
𝑏

output axon

Activation
function

Linear
function

Real value
inputs

17

Biological Neuron Artificial Neuron

*𝑦 	= 𝑔 𝐰%𝐱 + 𝑏

dendrite

synapse

axon from
previous neuron

cell bodycell body

Perceptron Pioneers: How Rosenblatt Launched Neural Networks
• Frank Rosenblatt’s perceptron was the first hardware implementation of a trainable neural network,

igniting early enthusiasm for the potential of machine learning.
• Its adaptability enabled perceptrons to classify patterns in high-dimensional spaces, laying the

groundwork for early image recognition systems.

18

Perceptron Exercise 1
• A perceptron is provided with weights 𝑤= = 0.7, 𝑤> = 0.6,	and a bias 𝑏 = −1. You are

asked to compute the predicted output ,𝑦	 for different input vectors 𝐱 = 𝑥=, 𝑥> ?: 0, 0	 ?,
0, 1	 ?, 1, 0	 ?, 1, 1	 ?. The perceptron’s activation function is a binary step function
𝑔 𝑧 = 𝑢(𝑧).

• Additionally, you need to determine the Boolean function represented by this perceptron

𝑥J
∑

𝑤!

𝑤"

(𝑦𝑔

1
𝑏

𝑥K

𝑔 𝑧 = 𝑢 𝑧 = +1 if	𝑧 ≥ 𝑇	
0 otherwise

19

Solution
The perceptron’s output can be computed using the following formula:

'𝑦 = 𝑔 𝐰$𝐱 + 𝑏 = 𝑢(𝑤! 𝑤"
𝑥!
𝑥" + 𝑏)

• For the input vector 𝑥 = 0, 0) , the output is

 #𝑦 = 𝑢 0.7 0.6 0
0 − 1 = 𝑢 −1 = 0

• For the input vector 𝑥	 = 0, 1) , the output is

#𝑦 = 𝑢 0.7 0.6 0
1 − 1 = 𝑢 0.6 − 1 = 𝑢 −0.4 = 0

• For the input vector 𝑥	 = 1, 0) , the output is

 #𝑦 = 𝑢 0.7 0.6 1
0 − 1 = 𝑢 0.7 − 1 = 𝑢 −0.3 = 0

• For the input vector 𝑥	 = 1, 1) , the output is

 #𝑦 = 𝑢 0.7 0.6 1
1 − 1 = 𝑢 0.7 + 0.6 − 1 = 𝑢 0.3 = 1

Based on the above results, this perceptron represents the Boolean AND gate.

20

𝑢 𝑧 = ,1 if	𝑧 ≥ 𝑇	
0 otherwise

Rosenblatt’s Perceptron Learning (1957)
Rosenblatt also devised a supervised learning algorithm for the Perceptron, enabling it

to learn from a training dataset	𝒟 ≔ 𝐱 Q , 𝑦 Q
QRJ
S

.

21

• Crucially, the Perceptron represented a
major breakthrough by introducing the idea
of learning through adaptive weight
updates.

• Its learning rule adjusts the model’s
weights iteratively based on prediction
errors, allowing it to solve problems that
are linearly separable.

• As a result, the Perceptron can effectively
discover a linear decision boundary to
classify data points.

𝐰 ← 𝐰 + 𝜂 ? 𝑦 − #𝑦 ? 𝐱

Perceptron Learning Rule
1. Initialization: Start with random weights 𝑤% 	 and a bias term as 𝑤'.
2. Forward Pass: For each training example 𝐱 = 1, 𝑥!, 𝑥", … , 𝑥# $ 	with label 𝑦 ∈ {0,1},
compute the predicted output '𝑦	as follows:

𝑧 =B
%&'

#

𝑤% 	𝑥% and '𝑦 = 𝑢 𝑧 = +1 if	𝑧 ≥ 𝑇	
0 otherwise

3. Error Calculation: Calculate the error as the difference between the true label 𝑦 and the
predicted label '𝑦	:

𝑒𝑟𝑟𝑜𝑟 = 𝑦 − '𝑦
4. Weight Update: Update the weights and bias based on the error:

𝑤% = 𝑤% + 𝜂 P 𝑒𝑟𝑟𝑜𝑟 P 𝑥%
5. Iteration: Repeat steps 2–4 for a fixed number of iterations or until the weights converge.

 where 𝜂 is the learning rate between 0 and 1.

This algorithm converge when all the training samples are classified correctly.

Perceptron Learning Example (PyTorch)
• Colab: https://colab.research.google.com/drive/1HGt_XwybylY1UMuQF3dHHYdqhHPZIo-5#scrollTo=me_F1WpPDX5e

§ In this example, a linearly separable toy dataset is used to training a Perceptron using
Rosenblatt’s Perceptron Learning Algorithm

23

https://colab.research.google.com/drive/1HGt_XwybylY1UMuQF3dHHYdqhHPZIo-5

Define the Perceptron Model using PyTorch

24

Training the Perceptron

25

Evaluating the Model

Test SetTraining Set

26

Python Tutorial with Google Colab

27

https://colab.research.google.com/drive/1MVBWrWYDNEitrAjBmp7F85_sSyXdhZH4

https://colab.research.google.com/drive/1MVBWrWYDNEitrAjBmp7F85_sSyXdhZH4

1957 News about the Rosenblatt’s Perceptron
• In the 1950s, Rosenblatt predicted to

the New York Times that Perceptrons
would be capable of:
• Recognizing individuals and

addressing them by name
• Translating speech from one

language to another, either verbally
or in written form

• These ambitious claims, reminiscent of
2022's AI breakthrough of ChatGPT,
generated significant excitement and
anticipation for the potential of artificial
intelligence.

https://www.youtube.com/watch?v=cNxadbrN_aI

28

https://www.youtube.com/watch?v=cNxadbrN_aI

The Linear Trap: Limitations of the Step Function

1. Rosenblatt's Convergence Theorem guarantees a solution only for linearly separable data.
For non-linearly separable, the Perceptron learning will oscillate infinitely.

2. Furthermore, because the Step Function is discrete (jumping from 0 to 1), the error signal
provides no information about "how close" the prediction was.

Linearly Separable Non-Linearly Separable

ADALINE (aka Delta Rule Learning)
(1959)

1959: ADALINE (Adaptive Linear Neron)
Widrow & Hoff • Stanford University

𝑒𝑟𝑟𝑜𝑟 = 𝑦 − 𝑔 𝐰&𝐱 = 𝑦 −𝐰&𝐱 = 𝑦 − 𝑧

Bernard Widrow

Marcian Hoffhttps://www.youtube.com/watch?v=skfNlwEbqck

https://www.youtube.com/watch?v=skfNlwEbqck

ADALINE (or Delta Learning Rule)
1. Initialization: Start with random weights 𝑤% 	 and a bias term as 𝑤'.
2. Forward Pass: For each training example 𝐱 = 1, 𝑥!, 𝑥", … , 𝑥# ;	with label 𝑦 ∈ {0,1}, compute the
predicted output '𝑦	as follows:

𝑧 =B
%&!

#

𝑤% 	𝑥% and '𝑦 = 𝑢 𝑧 = +1, if	 𝑧 ≥ 0	
0, otherwise

3. Error Calculation: Calculate the error as the difference between the true label 𝑦 and the net input 𝑧	:
𝑒𝑟𝑟𝑜𝑟 = 𝑦 − 𝑧

4. Weight Update: Update the weights and bias based on the error:
𝑤% = 𝑤% + 𝜂 P 𝑒𝑟𝑟𝑜𝑟 P 𝑥%

5. Iteration: Repeat steps 2–4 for a fixed number of iterations or until the weights converge.

ADALINE enables smoother weight adjustment and convergence on non-linearly separable datasets.

The Shift to Continuous Error
Perceptron Training Loop ADALINE Training Loop

Coarse adjustments. Hard to optime. Precise adjustments. Minimizes magnitude of error.

ADALINE asks "How much were we wrong?", not just "Were we wrong?"

error	 ∈ −1, 0, 1 	(Discrete) error	 ∈ ℝ	(Continuous	Real	Value)

Stochastic Gradient Descent Algorithm
• SGD Algorithm

1. Initialize 𝐰 = 0 ∈ ℝ!"#

2. For every training epoch:

A. For every 𝐱(X), 𝑦(X) ∈ 𝒟	:	
a) (𝑦(Q) = 𝐰V𝐱(Q)

b) 	∇ℒ 𝐰 = (𝑦(Q) − 𝑦(Q) 𝐱(Q)

c) 𝐰 ← 𝐰 − 𝜂 9 ∇ℒ 𝐰

Learning rate Gradient
(Slope of the cost function)

Move along the negative direction of the slope
of the cost function	ℒ 𝐰 until we find a

minimum value
0 < 𝜂 ≤ 1

34

∇ℒ 𝐰

SGD using MSE Cost Function
• We assume the error of the model is measured by Mean Square Error (MSE). Then,

the cost function ℒ 𝐰 can be defined as

where (𝑦 Q is the predicted output and 𝑦 Q is the target output (label) of a training

example 𝐱(Q) in a training dataset 𝒟:= 𝐱(J), 𝑦 J , 𝐱(K), 𝑦 K , … , 𝐱(S), 𝑦 S

• Based on this cost function, we need to find the gradient for updating the
weights

ℒ 𝐰 =
1
2B
<&!

=

𝑦 < − '𝑦 < "
=
1
2B
<&!

=

𝑦 < − 𝑓 𝐱 <
𝟐

35
https://towardsdatascience.com/from-the-perceptron-to-adaline-1730e33d41c5

https://towardsdatascience.com/from-the-perceptron-to-adaline-1730e33d41c5

How to find the Gradient ∇ℒ 𝐰 ?
ℒ 𝐰 =

1
𝑁
>
*&"

+
1
2
𝑦 * − #𝑦 * #

∇ℒ 𝐰 =
𝜕ℒ 𝐰
𝜕𝑤%

=
𝜕
𝜕𝑤%

1
𝑁
>
*&"

+
1
2
𝑦 * − #𝑦 *

#

=
1
2𝑁

𝜕
𝜕𝑤%

>
*&"

+

𝑦(*) − 𝑔 𝐰)𝑥(*)
#

=
1
𝑁
>
*&"

+

𝑦(*) − 𝑔 𝐰)𝐱(*)
𝜕
𝜕𝑤%

𝑦(*) − 𝑔 𝐰)𝐱(*) =
1
𝑁
>
*&"

+

𝑦 * − 𝑔 𝐰)𝐱(*) −
𝜕𝑔

𝜕 𝐰)𝐱(*)
?
𝜕
𝜕𝑤%

𝐰)𝐱(*)

=
1
𝑁
>
*&"

+

𝑦 * − 𝑔 𝐰)𝐱(*) −
𝜕
𝜕𝑤%

𝐰)𝐱(*) =
1
𝑁
>
*&"

+

𝑦 * − 𝑔 𝐰)𝐱(*) −𝑥%
* =

1
𝑁
>
*&"

+

#𝑦(*) − 𝑦 * 𝑥%
*

(Note that the activation
function is the identity function
in Delta Learning Rule: g 𝑧 =
𝑧 ⇒ 𝑔. 𝑧 = 1)

Mean Squared Error (MSE) loss often scaled by factor ½ for
convenience

Vector Gradients:
∇ℒ 𝐰 =

𝜕ℒ 𝐰
𝜕𝑤%

=
1
𝑁
B
<&!

=

'𝑦(<) − 𝑦 < 𝐱(<)

36
https://towardsdatascience.com/from-the-perceptron-to-adaline-1730e33d41c5

https://towardsdatascience.com/from-the-perceptron-to-adaline-1730e33d41c5

SGD Weight Update Rule
• In SGD, the model parameters 𝑤 are updated for each sample 𝐱(Q), 𝑦(Q) ∈ 𝒟.

• The gradient of the cost function ℒ 𝐰 is defined with 𝑛 = 1	:

• The parameters update at iteration can be expressed as

∇ℒ 𝐰 =
𝜕ℒ 𝐰
𝜕𝑤%

=
1
𝑁
>
*&"

+

#𝑦(*) − 𝑦 * 𝐱(*) = #𝑦(*) − 𝑦(*) 𝐱(*) = 𝐰)𝐱(*) − 𝑦(*) 𝐱(*)

𝑤% ← 𝑤% − 𝜂
𝜕ℒ 𝐰
𝜕𝑤%

= 𝑤% − 𝜂 '𝑦 < − 𝑦 < 𝐱%
<

𝐰 ← 𝐰− 𝜂∇ℒ 𝐰 = 𝐰− 𝜂 '𝑦(<) − 𝑦(<) 𝑥(<)
Vector Representation:

37
https://towardsdatascience.com/from-the-perceptron-to-adaline-1730e33d41c5

https://towardsdatascience.com/from-the-perceptron-to-adaline-1730e33d41c5

SGD vs ADALINE Rule
• SGD Algorithm

1. Initialize 𝐰 = 0 ∈ ℝ!"#

2. For every training epoch:

A. For every 𝐱(Q), 𝑦(Q) ∈ 𝒟	:	
a) 	∇ℒ 𝐰 = 𝐰$𝐱(<) − 𝑦(<) 𝐱(<)

b) 𝐰	 ← 𝐰 − 𝜂 9 ∇ℒ 𝐰

• ADALINE Learning Rule

1. Initialize 𝐰	 = 0 ∈ ℝ!"#

2. For every training epoch:

A. For every 𝐱(Q), 𝑦(Q) ∈ 𝒟	:
a) 𝑒𝑟𝑟𝑜𝑟 = 𝑦(!) −𝐰$𝐱(!)

b) 𝐰 ← 𝐰 + 𝜂 0 𝑒𝑟𝑟𝑜𝑟 0 𝐱(!)

38

The ADALINE Learning Rule and Gradient Descent (GD) share similarities in their objective of
minimizing an error function, the ADALINE Learning Rule can be considered as a special case of GD

when applied to a single training example at a time, which is called Stochastic Gradient Descent (SGD).

−𝜂 P ∇ℒ 𝐰 =−𝜂 𝐰$𝐱 < − 𝑦 < 𝐱 < = 𝜂 𝑦(<) −𝐰$𝐱(<) 𝐱 < = 𝜂 P 𝑒𝑟𝑟𝑜𝑟 P 𝐱(<)

ADALINE in Python
• Colab: https://colab.research.google.com/drive/1riUZ2DmV_3s4ngdHImmjMMX6kyoC3dYL?usp=sharing

• In this notebook, ADALINE is implemented in Python, which is based on the source code of Stat453.

39

https://colab.research.google.com/drive/1riUZ2DmV_3s4ngdHImmjMMX6kyoC3dYL?usp=sharing

ADALINE Open Up the 1st Golden Age

1940 1950 1960 1970 1980 1990 2000 2010 2020

Artificial
Neuron

1943
Perceptron

1957

ADALINE
1959 XOR

Problem
1969

Backpropagation
1986

CNN
1998

RBM
Initialization

2006

AlexNet
2012SVMs

1995

UAT
1989

Transformer
2017

GPT-3
2020

ChatGPT
2022

VaswaniMcCulloch-Pitts Krizhevsky et al.Hinton-RuslanLeCunRumelhart, Hinton et al.Minsky-PapertWidrow-HoffRosenblatt

40

Birth
of AI
1956

Turing
Test
1950

First
Golden Age

Neocognitron
1980

GPT-4V
2023

DeepSeek-R1
2025

o1
2024

Artificial Neuron Evolution Summary

Model Inputs Activation Learning Mechanism
MP Neuron

(1943)
Binary {0. 1} Threshold None

(Fixed Weights)
Perceptron

(1957)
Real ℝ Unit Step Perceptron Rule

(Discrete Error)
ADALINE

(1959)
Real ℝ Linear

(for learning)
LMS / Gradient Descent

(Continuous Error)

41

The XOR Problem (1969)
• In 1969, Minsky and Papert proved that single-layer neurons cannot

solve non-linear problems like XOR. This led to the first 'Al Winter'.

Minsky-Papert

42

1940 1950 1960 1970 1980 1990 2000 2010 2020

Artificial
Neuron

1943
Perceptron

1957

ADALINE
1959 XOR

Problem
1969

Backpropagation
1986

CNN
1998

RBM
Initialization

2006

AlexNet
2012SVMs

1995

UAT
1989

Transformer
2017

GPT-3
2020

ChatGPT
2022

VaswaniMcCulloch-Pitts Krizhevsky et al.Hinton-RuslanLeCunRumelhart, Hinton et al.Minsky-PapertWidrow-HoffRosenblatt

43

Birth
of AI
1956

Turing
Test
1950

Neocognitron
1980

First
Dark Age

GPT-4V
2023

DeepSeek-R1
2025

o1
2024

XOR Problem Started the First Dark Age Winter (1969-1986)

Stacking Neurons to Bend Boundaries
• The Solution to XOR: Hidden layers allow the network to combine

multiple linear decisions to create non-linear shapes.

44

