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Recap: The Linearity Limit
The Precursor: Single-Layer Perceptron

Limitation: Can only model linear decision 
boundaries.
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The XOR Problem: Linearly Inseparable

Key Insight: No single straight line can separate the 
true values from the false values in an XOR function. 
To solve this, the decision boundary must be bent.



Solving XOR Using a Two-Layer Neural Network
• A two-layer neural network introduces a hidden layer with multiple neurons, which 

allows the network to create nonlinear decision boundaries.
• These hidden layer neurons can create intermediate representations that enable 

the XOR function to be modelled.
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Multilayer Perceptron (MLP)
or

Feedforward Network (FFN)



Multi-Layer Perception (1971) 
• The XOR problem revealed the necessity of multilayer neural networks, which is 

also known as Multi-Layer Perceptron (MLP). 
• MLPs contain one or more hidden layers between the input and output layers that 

enable modeling of nonlinear functions.
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• The first generation of MLPs was introduced by A. G. 
Ivakhnenko and V. Lapa. 
§ They published the first general, working learning 

algorithm for supervised deep feedforward MLPs in 
1971. 
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Feedforward Networks (FFNs)
• Today the term ”Feedforward Network" is more commonly used in deep 

learning, referring to Multi-Layer Perceptron (MLP).
• In addition, the layer of FFN is also referred as  a Fully Connected (FC) Layer.
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Feedforward Networks (FFNs)
• The number of layers in the FFNs (excluding the input layer) is known as depth
• Each layer can be seen as a vector-to-vector function which takes a vector of inputs 

from the previous layer and computes a scalar value.
• Below network can be seen as a composition of functions 

• "𝐲 = 𝑓< 𝐱 = 𝑓= 𝑓) 𝑓( 𝐱
§ 𝑓7 being the first hidden layer,
§ 𝑓8 being the second hidden layer,
§ 𝑓9 being the final output layer.

𝑓! ? 𝑓" ? 𝑓$ ?𝐱
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The Universal Approximation Theorem
SOLVING NON-LINEARITY WITH HIDDEN LAYERS

The Universal Approximation Theorem states that a feedforward 
network with a single hidden layer containing a finite number of 
neurons can approximate any continuous function. The hidden 
layers transform the input data into a higher-dimensional space 
where patterns become linearly separable.
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Matrix Representation of FFN
• Net input of the Hidden Layer 1: 𝐳(() = 𝐖(()𝐱 + 𝐛(()
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Matrix Representation of FFN
• Activations of the Hidden Layer 1 : 𝐚(() = 𝑔(() 𝐳(() = 𝑔(() 𝐖(()𝐱 + 𝐛(()
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Matrix Representation of FFN
Activations of the Layer 2: 𝐚(8) = 𝑔(8) 𝐖(8)𝐚(7) + 𝐛(8) = 𝑔(8) 𝐖(8)𝑔(7) 𝐖(7)𝐱 + 𝐛(7) + 𝐛(8)
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Matrix Representation of FFN
• Activations of the Output Layer: #𝐲 = 𝐚(") = 𝑔(") 𝐖(")𝐚($) + 𝐛(")
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Feedforward Neural Network Formulation
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Notation Definition for Hidden Layers
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Notation Definition for Weights
Layer 𝑙 − 1
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Layer 𝑙
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Notation Definition for Biases
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Notation Definition
Layer 𝑙 − 1

𝑛)*! nodes

Layer 𝑙
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(J) : input of the activation function for neuron 𝑖
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Notation Summary

𝑎M
(J) : Output of the 𝑖-th neuron in layer 𝑙.

𝐚(J): Output vector of a layer 𝑙.

𝑧M
(J): Net Input of the 𝑖-th neuron in layer 𝑙.

(Inputs of the activation function) 

𝐳(J): Net input vector of activation function 
in layer 𝑙.

𝑤M,N
(J): the weight connecting the 𝑗-th

neuron in layer 𝑙 − 1 to the 𝑖-th
neuron in layer 𝑙.

𝐖(J): the weight matrix connecting
layer 𝑙 − 1 to layer 𝑙.

𝑏M
(J): the bias of 𝑖-th neuron in layer 𝑙.

𝐛(J): a bias vector of neurons in layer 𝑙.
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Anatomy of the Architecture
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Example Feedforward Networks
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Traditional Activation Functions



What are Activation Functions?
• An Activation Function 𝑔 𝑧 decides 

whether a neuron should be 
activated or not.

• Activation functions introduce non-
linearity into the network, which is 
essential for modeling complex 
relationships in data. 

• Without non-linearity, the model 
would essentially be a linear model, 
which cannot approximate complex 
tasks

Pitts

⋮

𝑥!

𝑥"

𝑥#

𝑤#

𝑤!

𝑤" 𝑎𝑧 𝑔

1
𝑏

Activation
function

Linear
function

𝑎 = 𝑔 𝐰9𝐱 + 𝑏
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Why Add Non-Linear Activation Function? 

Linear functions produce linear 
decisions no matter the network size

Non-Linear 
activation functions 

allow us to 
approximate

arbitrarily complex 
functions.

• No Nonlinearity: A network of linear layers collapses into a single linear transformation, 
rendering deep architectures useless.

§ 𝑔 𝐖(") 𝑔 𝐖(!)𝐱 + 𝐛(!) + 𝐛(") = 𝐖(")𝐖(!)𝐱 + 𝐖(")𝐛(!) + 𝐛($)

=𝐖′𝐱 + 𝐛′

Drop or use linear activation function such as 𝑔 𝑧 = 𝑧 is
equivalent to a single linear layer.

• Non-linearity adds capacity to the model to 
approximate any continuous function to 
arbitrary accuracy given sufficiently many 
hidden units. 
• See “universal approximation theorem”

24

https://en.wikipedia.org/wiki/Universal_approximation_theorem


The Non-Linear Spark: Activation Functions
• Activation functions decide whether a neuron 'fires". They introduce non-linearity, 

preventing the network from collapsing into a simple linear regression.

𝑢 𝑧 = ,1, for 𝑧 ≥ 0
0, otherwise

𝑔 𝑧 = 𝑧



Binary Step and Linear Activation Functions
• Linear (or Identity) Function

𝑔 𝑧 = 𝑧 , then "𝑦 = 𝐰Z𝐱 + 𝑏
§ The activation is proportional to the input. 

§ It is only used in the output layer for Regression
applications.

• Binary Step Function (Non-Linear)

𝑢 𝑧 = @1, for 𝑧 ≥ 0
0, for 𝑧 < 0 and  !𝑦 = @1, 𝐰9𝐱 + 𝑏 ≥ 0

0, 𝐰9𝐱 + 𝑏 < 0

§ This is used for Binary Classification applications, but it 
is not a differentiable function and not used in modern 
neural network.

26

Linear  Function

Binary Step Function



Limitation of Binary Step Activation Function 
• The original Perceptron activation is harsh, firing 

only when weighted input sum exceeds threshold
• Thresholding logic means very similar input values 

can get completely different outputs
• 𝑧 = -0.01 and 0.01 get different outputs of 0 and 1
• Abrupt decision change comes from step function 

nature of perceptron
• For real applications, want smoother activation that 

gradually changes from 0 to 1
• Sigmoid function provides continuous smoothness 

and avoiding harsh cliff of the perceptron

Discrete

27

Continuous

Sigmoid Function



Sigmoid Activation Function
• The sigmoid function is an S-shaped curve (smoother decision function) that always 

returns an output between 0 and 1 that mapped from the range of −∞ to ∞. 
• It is especially used for models where we have to predict the probability as an 

output. Since probability of anything exists only between the range of 0 and 1, 
sigmoid is the right choice

§ 𝜎 𝑧 = (
([\:;

= (
([]^_ L`

§ 𝜎′ 𝑧 = a b `
a`

= 𝜎 𝑧 1 − 𝜎 𝑧

In the 1980s and early 1990s, the sigmoid function was 
the default activation function for neural networks.

• The sigmoid function is differentiable but has two problems: (1) a very small gradient (slop) for 
large positive and negative inputs and (2) a lack of zero-centeredness in its output. 

• These issues can create challenges during deep learning's backpropagation.
28

𝜎 𝑧 =
1

1 + 𝑒,5



Tanh Activation Function
• Tanh is aka as Hyperbolic Tangent function. The Tanh function also has an S-

shape similar to the sigmoid function while addressing its non-zero-centered 
problem with output range values in the range of -1 to 1.

In the late 1990s and early 2000s, the tanh function was a 
common choice of activation function for neural networks.

29

• Basically, Tanh is a shifted and stretched version of the 
sigmoid function, and the output of Tanh is symmetric 
around zero, leading to faster convergence

§ tanh 𝑧 = \;L\:;

\;[\:;
= ]^_ ` L]^_ L`

]^_ ` []^_ L`

§
a cdef `

a`
= 1 − tanh 𝑧 )

tanh 𝑧 =
𝑒: − 𝑒&:

𝑒: + 𝑒&:

https://www.youtube.com/watch?v=pfPDTxkXrfM

https://www.youtube.com/watch?v=pfPDTxkXrfM


Shortcomings of Sigmoid and Tanh
• The derivatives (gradients) of the both sigmoid and tanh functions are 

small for large positive and negative inputs, which can cause a Vanishing 
Gradient Problem during backpropagation in neural network training.

𝜎 𝑧 =
1

1 + 𝑒,5
𝑑𝜎
𝑑𝑧 = 𝜎 𝑧 1 − 𝜎 𝑧

tanh 𝑧 =
𝑒5 − 𝑒,5

𝑒5 + 𝑒,5
𝑑 tanh
𝑑𝑧 = 1 − tanh 𝑧 $
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Rectified Linear Unit (ReLU)
• ReLU activation function to the rescue. It is a piecewise linear function that 

outputs the input directly if it is positive, otherwise, it outputs zero. 

§ ReLU 𝑧 = max 0, 𝑧 = J𝑧 if 𝑧 ≥ 0
0 if 𝑧 < 0

§
a g]hi
a`

= J1 for 𝑧 ≥ 0
0 for 𝑧 < 0

It has become the default activation 
function for many types of neural 
networks because it is easier to train 
and computationally efficient.
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𝑑 ReLU
𝑑𝑧 = J1 for 𝑧 ≥ 0

0 for 𝑧 < 0



Leaky ReLU
• Leaky ReLU is an improvisation of the regular ReLU function that addresses 

the problem of zero gradient for negative values
• Unlike traditional ReLU functions, which set all negative values to zero, Leaky 

ReLU allows a small number of negative values to pass through

• Leaky ReLU 𝑧 = max 𝑧, 𝛼 T 𝑧 = J 𝑧 for 𝑧 ≥ 0
𝛼 T 𝑧 for 𝑧 < 0

• a h]djkg]lm
a`

= J1 for 𝑧 ≥ 0
𝛼 for 𝑧 < 0

• Commonly used 𝛼 = 0.01
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Leaky ReLU 𝑧



Softmax Activation 
for Multiclass Classification



Perceptron for Binary Classification
• Even with modern activation functions, perceptron is fundamentally still a binary classifier that 

outputs a probability 𝑃 𝑦 = 1|𝐱 representing its confidence that the input 𝐱 belongs to the positive 
class 𝑦 = 1. 

• Classification is determined by a standard threshold of 0.5: if !𝑦 ≥0.5 , the prediction is Positive (1); if 
!𝑦 <0.5, it is Negative (0).

𝜎 𝑧 =
1

1 + 𝑒*0

⋮

𝑥!

𝑥"

𝑥#
𝑤#

𝑤!

𝑤"

Inputs

𝜎

1

𝑏
Sigmoid

Activation

Output is the probability 
between 0 and 1 for 

positive (label 𝑦 = 1) 

"𝑦 = 𝜎 𝐰Z𝐱 + 𝑏
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= 𝑃 𝑦 = 1|𝐱
∑



Extend Perceptron to Multiclass Classification
• In multiclass classification, we can employ 𝐾 separate binary perceptron models, 

each tailored to a specific class, to estimate the probability of 𝑦N given 𝐱 (𝑃 𝑦N|𝐱 ). 
• By selecting the class with the highest probability score, we can determine the 

predicted class for the purpose of multiclass classification.

The outputs of these activations !𝑦4 are 
class-membership probabilities 
(Not mutually exclusive classes)

!𝑦!
!𝑦"
⋮
!𝑦R

=

𝜎 𝐰!
9𝐱 + 𝑏!

𝜎 𝐰"
9𝐱 + 𝑏"
⋮

𝜎 𝐰R
9𝐱 + 𝑏R

𝐰49 ∈ ℝ!×T and 𝑏 ∈ ℝR×! where 𝐾 is the number of classes
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⋮

𝑥!

𝑥"

𝑥#

:𝑦!

:𝑦"

:𝑦1

⋮

𝑤;,!

𝑤;,<

𝑤!,<

𝑤',!

1 𝑏!

𝑏'

𝑏; u
,2!

1

:𝑦, ≠ 1

𝜎∑

𝜎∑

𝜎∑

⋮



Softmax Activation: Multinomial Probability Output
• Softmax is just an exponential function that normalizes the activations so that they 

sum up to 1

• For example, output layer scores 𝐳 = 𝑧(, 𝑧), 𝑧=, 𝑧w, 𝑧x Z = 1.3, 5.1, 2.2, 0.7, 1.1 Z

softmax 𝐳 M =
𝑒`V

∑Ny(z 𝑒`W
for 𝑖 = 1,2, … , 𝐾 and 𝐾 is the number of classes

𝑒NI
∑OPQR 𝑒NJ

𝐳
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Softmax
activation function

=

"𝑦(
"𝑦)
"𝑦=
"𝑦w
"𝑦x

K
-6!

*

4𝑦- = 1



Softmax Activation: Multinomial Probability Output

Activations are class-
membership probabilities 

(mutually exclusive classes)

#𝐲 = softmax 𝐖𝐱 + 𝐛

"𝐲 =

"𝑦(
"𝑦)
"𝑦=
⋮
"𝑦z

=

0.02
0.90
0.05
0.01
0.02

Predicted
Class

Probabilities

argmax

∑ :𝑦!

∑ :𝑦"

∑ :𝑦1

⋮ ⋮

S
O
F
T
M
A
X

K
-6!

*

4𝑦- = 1

Example with 
K=5

𝑧!

𝑧"

𝑧1

⋮

𝑥!

𝑥"

𝑥#

1
𝑏!

𝑏'

𝑏;
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Softmax based Multiclass Classification

𝐖 ∈ ℝR×T and 𝐛 ∈ ℝR×! where 𝐾 is the number of classes

𝐱 = 𝑥!, 𝑥", … , 𝑥# 3 :𝐲 = :𝑦!, :𝑦", … , :𝑦1 3

𝐳 = 𝐖𝐱 + 𝐛

𝐖 =

𝑤!,! 𝑤!,"
𝑤",! 𝑤","

⋯ 𝑤!,T
⋯ 𝑤",T

⋮ ⋮
𝑤R,! 𝑤R,"

⋱ ⋮
⋯ 𝑤R,T

𝐛 =

𝑏!
𝑏"
⋮
𝑏1

!𝐲 =

!𝑦!
!𝑦"
⋮
!𝑦R

= softmax 𝐳 = softmax

𝑧!
𝑧"
⋮
𝑧R
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∑ :𝑦!

∑ :𝑦"

∑ :𝑦1

⋮ ⋮

S
O
F
T
M
A
X

𝑧!

𝑧"

𝑧1

⋮

𝑥!

𝑥"

𝑥#

1 𝑏!

𝑏'

𝑏;



Softmax Example
1

𝐳 =

𝑧!
𝑧"
⋮
𝑧R

=

𝑤!,! 𝑤!,"
𝑤",! 𝑤","

⋯ 𝑤!,T
⋯ 𝑤",T

⋮ ⋮
𝑤R,! 𝑤R,"

⋱ ⋮
⋯ 𝑤R,T

𝑥!
𝑥"
⋮
𝑥T

+

𝑏!
𝑏"
⋮
𝑏R

𝑒5!
∑-6!* 𝑒5#

𝑒5"
∑-6!* 𝑒5#

𝑒5$
∑-6!* 𝑒5#

𝑒5%
∑-6!* 𝑒5#

:
:
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⋮ ⋮

𝑥!

𝑥"

𝑥"

𝑥#

𝑧!

𝑧"

𝑧$

𝑧1

Green

Blue

Purple

Red

The output of Softmax represents a discrete 
probability distribution across classes.

Softmax

⋮

The softmax activation function is widely preferred as the output layer choice for 
classification applications.



Hyperparameters of MLPs (or FFNs)
• In MLPs, neurons are organized into layers. Hidden layers take inputs from neurons 

and pass their activations to other neurons
§ Note that when we count the number of layers, the input layer is NOT counted. 

Hyperparameters of the MLP Model :
• No. of Layers: 3 (𝐿 = 3)
• Input Layer: 4 neurons (𝑑 = 4)
• Layer 1: 4 neurons (𝑛! = 4) 
• Layer 2: 3 neurons (𝑛" = 3)
• Output Layer: 3 neuron (𝐾 = 𝑛% = 3) 
• Activation function: Sigmoid 𝜎

40

!𝐲 = 𝑓' 𝐱 = 𝜎 𝐖(%)𝜎 𝐖(")𝜎 𝐖(!)𝐱 + 𝐛(!) + 𝐛(") + 𝐛(%)

Model Parameters (Weights and Biases) 𝜃:= 𝐖(!), 𝐛(!) , 𝐖("), 𝐛(") , 𝐖(%), 𝐛(%)



MLP Exercise 1 for MLP using Sigmoid 
• Given a two-layer feedforward neural network (or MLP) using sigmoid activation functions, 

determine the output *𝑦 by representing the network in matrix form. 

• Include the intermediate results of net inputs 𝑧L
M and activations 𝑎L

M of the hidden layer 
and output layer.
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𝜎 𝑧 =
1

1 + 𝑒L`



Solution of Exercise 1 for MLP using Sigmoid
• The net input vector 𝐳(!) of the hidden layer is given by

§ 𝐳(!) =
𝑧!
(!)

𝑧'
(!) = 𝐖(!) 𝐱 + 𝐛(!) =

𝑤!,!
(!) 𝑤!,'

(!)

𝑤',!
(!) 𝑤',!

(!)
𝑥!
𝑥' +

𝑏!
(!)

𝑏'
(!)

§
𝑧!
(!)

𝑧'
(!) = 0.1 0.5

0.2 0.4
0.7
0.3 + 0.6

0.8 = 0.1×0.7 + 0.5×0.3 + 0.6
0.2×0.7 + 0.4×0.3 + 0.8 = 0.82

1.06

• The activation vector 𝐚(!) of the hidden layer is given by

§ 𝐚(!) =
𝑎!
(!)

𝑎'
(!) = 𝜎 𝒛(!) = 𝜎 0.82

1.06 = 1/(1 + 𝑒&=.?')
1/(1 + 𝑒&!.=@)

= 0.6942
0.7427

• The net input vector 𝐳($) of the output layer is given by

§ 𝐳(') = 𝑧!
(') =𝐖(')𝐚(!) + 𝐛(') = 𝑤!,!

(') 𝑤!,'
(') 𝑎!

(!)

𝑎'
(!) + 𝑏!

(') = 0.3 0.7 0.6942
0.7427 + 0.9 = 0.3×0.6942 + 0.7×0.7427 + 0.9 = 1.6282

• The activation vector 𝐚(!) of the output layer (output of the network 4𝑦)  is given by

§ h𝑦 = 𝐚(') = 𝑎!
(!) = 𝜎 𝒛(') = 𝜎 1.6282 = !

!AB+,../0/
= 0.8359

• The matrix representation of the MLP network is given by

§ h𝑦 = σ 𝐖(')𝜎 𝐖(!)𝐱 + 𝐛(!) + 𝐛(')
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𝜎 𝑧 =
1

1 + 𝑒&:



MLP Exercise 2 for MLP using ReLU
• Given a two-layer feedforward neural network (or MLP) using ReLU activation function for the hidden 

layer and linear activation function for the output layer, determine the output !𝑦 by representing the 
network in matrix form. 

• Include the intermediate results of net inputs 𝑧1
/ and activations 𝑎1

/ of the hidden layer and 
output layer.
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ReLU 𝑧 = max 0, 𝑧 = .0 for 𝑧 < 0
𝑧 for 𝑧 ≥ 0

Linear: 𝑔 𝑧 = 𝑧



Solution of Exercise 2 for MLP using ReLU
• The net input vector 𝐳(!) of the hidden layer is given by

§ 𝐳(!) =
𝑧!
(!)

𝑧'
(!) = 𝐖(!) 𝐱 + 𝐛(!) =

𝑤!,!
(!) 𝑤!,'

(!)

𝑤',!
(!) 𝑤',!

(!)
𝑥!
𝑥' +

𝑏!
(!)

𝑏'
(!)

§
𝑧!
(!)

𝑧'
(!) = 0.1 0.5

0.2 0.4
0.7
0.3 + 0.6

0.8 = 0.1×0.7 + 0.5×0.3 + 0.6
0.2×0.7 + 0.4×0.3 + 0.8 = 0.82

1.06

• The activation vector 𝐚(!) of the hidden layer is given by

§ 𝐚(!) =
𝑎!
(!)

𝑎'
(!) = ReLU 𝒛(!) = ReLU 0.82

1.06 = max(0, 0.82)
max(0, 1.06) = 0.82

1.06

• The net input vector 𝐳($) of the output layer is given by

§ 𝐳(') = 𝑧!
(') =𝐖(')𝐚(!) + 𝐛(') = 𝑤!,!

(') 𝑤!,'
(') 𝑎!

(!)

𝑎'
(!) + 𝑏!

(') = 0.3 0.7 0.82
1.06 + 0.9 = 0.3×0.82 + 0.7×1.06 + 0.9 = 1.888

• The activation vector 𝐚(!) of the output layer (output of the network 4𝑦)  is given by

§ h𝑦 = 𝐚(') = 𝑎!
(!) = 𝑔 𝒛(') = 𝑔 1.888 = 1.888

• The matrix representation of the MLP network is given by

§ 4𝑦 = 𝐖($)ReLU 𝐖(!)𝐱 + 𝐛(!) +𝐛($)
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ReLU 𝑧 = max 0, 𝑧

Linear: 𝑔 𝑧 = 𝑧



Why Deeper Neural Network is Better?



Universal Approximation Theorem (1989)

46

• Theorem: A multilayered network of neurons with a single hidden layer 
can be used to approximate any continuous function to any desired 
precision
§ 𝑓: ℝ~ → ℝK

• Only one hidden layer is enough
§ This refers to a Two-layer Feedforward Network

• one hidden layer and the output layer 

Hidden Layer

Output
Layer

Input
Layer

Why “deep” not “wide”?



Wide + Shallow vs Thin + Deep
• For two MLP networks with the same number of parameters but 

different width and depth, which one is better?
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Wide + Shallow vs Thin + Deep

Is the deeper the better?
• Handwritten digit 

recognition performance

• The deeper network uses 
less parameters to achieve 
the same performance.

It is better to have deeper network than wider network.
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Why Deep Networks Outperform with Reduced Parameters?

• Hierarchical representation: Deep networks learn progressively more 
abstract features, capturing intricate patterns and variations in the data.

• Reusing features: Deeper networks can share learned features across 
multiple layers, reducing redundancy and the need for additional parameters.

• Non-linear transformations: Deep networks employ non-linear activation 
functions, enabling them to model complex relationships and reduce the 
need for a wider network.

• Regularization effect: The architecture of deeper networks introduces noise 
and randomness, acting as a form of regularization, preventing overfitting and 
improving generalization performance.
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Loss, Cost, and Objective Functions



Components in Supervised Training

Model Loss Objective Optimization

Supervised

Neural Net

Deep Learning

51

• Model:  Output predicts from inputs (Neural Networks)
§ features of the house => predicted sale price

• Loss: Measure difference between predicts and ground truth labels
§ square loss = (predict_sale_price – actual_sale_price)2

§ MSE = Average of the square loss for all training samples 
• Objective: Any function to optimize during training

§ Minimize the MSE of the training data
• Optimization: Learn model parameters by solving the objective function



Objective of the MLP Modeling
• In order to approximate a function 𝑓, we typically leverage a training dataset 𝒟 consisting 

of noisy estimated samples 𝐱(L) along with their corresponding target values 𝐲(L) (labels).

§ 𝒟:= (𝐱(7),𝐲(7)), (𝐱(8),𝐲(8)), … , (𝐱(O),𝐲(O)) = 𝐱 L , 𝐲 L
LP7
O

• Our model, a Multilayer Perceptron (MLP) or Feedforward Networks, utilizes the function 
*𝐲 = 𝑓Q 𝐱 to make predictions *𝐲(L) = 𝑓Q 𝐱(L) that closely match the target values 𝐲(L).

• The main objective is to determine the optimal weights and biases parameters 𝜃 =

𝐖(M), 𝐛(M) LP7
R

for 𝑓Q, aiming to achieve a close approximation to 𝑓.

• The objective is to construct a model 𝑓Q 𝐱 L where the predicted values *𝐲(L) exhibit a 
strong alignment with the true labels 𝐲(L), which is assessed by a loss function to measure 
the difference between the predicted values *𝐲(L) and target values 𝐲(L)(labels). 
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Loss Function and Cost Function
• Loss Function: It is denoted as ℓ 𝐲(L), *𝐲(L) , is utilized to quantify the prediction error

between the model's prediction *𝐲(L) = 𝑓Q 𝐱 L and the true label 𝐲(L) for a single training 
example (𝐱(L),𝐲(L)) from the dataset 𝒟:= (𝐱 L ,𝐲(L)) LP7

O
.

• The loss function can be represented as

ℓ 𝐲(L), *𝐲(L) = ℓ 𝐲(L), 𝑓Q 𝐱 L

• During the training process, the model's parameters (weights and biases) 𝜃 are adjusted to 
minimize the total or average loss for a set of training examples.

• Cost Function: Average of loss functions over the entire training dataset. Measures overall 
model performance and is used for optimizing model parameters.

ℒ 𝜃 =
1
𝑁=

15!

3

ℓ 𝐲(1), 𝑓' 𝐱 1 =
1
𝑁 =
15!3

ℓ 𝐲(1), !𝐲(1)
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Loss Function vs Cost Function

Loss Function ℓ 𝑦(%), #𝑦(%)

• Error for a single data point (One 
sample in training set)

• Calculated many times for every 
training samples during the training 
cycle (epoch)

• Has only error terms

Cost Function ℒ 𝜃
• Average error of N-samples in the data 

(for the whole training dataset).

• Calculated once for entire training set 
during the training cycle (epoch).

• Can have other terms like regularization, 
etc.
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ℒ 𝜃 =
1
𝑁K

76!

8

ℓ 𝐲(7), 4𝐲(7) + 𝜆K
-69

:

𝑤-
$

Loss term Regularization term

ℓ456789# 𝐲(+), :𝐲(+) =
1
2
𝐲 + − :𝐲 +

"
"



Objective Functions
• The Cost Function, ℒ(𝜃), measures a model's performance by averaging errors 

across all training examples. It is a specific instance of the broader concept of an 
objective function, which defines the overall goal of the machine learning task.

• Objective Functions encompass what the model aims to optimize, such as 
minimizing errors, incorporating regularization, or maximizing rewards. 

• They formulate optimization problems in various learning scenarios, guiding the 
model to learn effectively from data.

§ Minimization:

§ Maximization:

𝜃∗ = argmin
<
ℒ 𝜃 = argmin

<
ℒ��� 𝜃

𝜃∗ = argmax
<

f
My(

�

P<(𝐱(M))
Maximum Likelihood
Estimation 

Objective function of 
regression problem



Cost and Loss Functions for Deep Learning
• Choosing the right loss/cost function depends on the specific problem and data, and 

it’s crucial for aligning model behavior with task objectives.
• Regression Loss:

• Mean Squared Error (MSE): Measures the average squared difference between the 
predicted and target values.

• Mean Absolute Error (MAE): Calculates the average absolute difference between the 
predicted and target values.

• Classification Loss:
• Binary Cross-Entropy (BCE): Used in binary classification tasks, it measures the dissimilarity 

between predicted and target probability distributions.
• Categorical Cross-Entropy (CCE): Suitable for multi-class classification, it quantifies the 

difference between predicted and target probability distributions.
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MSE and MAE Cost Functions for Regressions
• MSE and MAE are commonly used cost functions for Regressions tasks. For a single 

training example with predicted output  "𝐲(M) and target 𝐲(M), their losses are defined as

§ Squared Loss:

§ Absolute Loss:

• The Cost Functions using squared and absolute losses for a set of 𝑛 examples 
are defined as
§ Mean Square Error (MSE):

§ Mean Absolute Error (MAE):

ℓ456789# 𝐲(+), :𝐲(+) =
1
2

:𝐲 + − 𝐲 +
"
"
=
1
2
u
,2!

#

:𝑦,
(+) − 𝑦,

(+) "

ℓ7:4 𝐲(+), :𝐲(+) =u
,2!

#

𝑦,
(+) − :𝑦,

(+)

ℒ;<= =
1
𝑁
u
+2!

>
1
2

:𝐲 + − 𝐲 +
"
"
=
1
𝑁
u
+2!

>

u
,2!

#

𝑦,
+ − :𝑦,

+ "

ℒ;?= =
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𝑁
u
+2!
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u
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(+) − :𝑦,
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Simple Car MPG (Mile Per Gallon) Regression

58

• A Multi-Layer Perceptron (MLP) model is trained using the Car MPG Dataset to make 
regression predictions of Mile Per Gallon (continuous values), incorporating various car 
attributes like horsepower, weight, acceleration, and more.

S𝑞𝑢𝑎𝑟𝑒𝑑 𝑙𝑜𝑠𝑠
= 20.2 − 17.5 $

= 7.29

https://colab.research.google.com/drive/1QyWO7_TI4-F4vYOD-HhKHBHxcashfMW4

https://colab.research.google.com/drive/1QyWO7_TI4-F4vYOD-HhKHBHxcashfMW4


MSE and MAE Cost Functions for Regressions
• MSE penalizes larger prediction errors more significantly due to the squaring 

operation. This means that outliers or instances with larger errors contribute more 
to the overall loss. 

• MSE cost is more sensitive to outliers than MAE cost

MSE MAE
Outlier 

samples
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BCE: Loss Functions for Binary Classification
• If we want to classify an input only into two options, class 0 or class 1, we can use a 

single neuron output layer with sigmoid activation function.

*𝐲 = 𝜎 𝐖(R)⋯𝑔 𝐖(8)𝑔 𝐖(7)𝐱 + 𝐛(7) + 𝐛(8) ⋯+𝐛(R)

• Binary Cross Entropy (BCE) aka Negative Log Loss is commonly used for binary 
classification. The BCE loss function is defined as

BCE = −𝑦 log "𝑦 − 1 − 𝑦 log 1 − "𝑦 = J− log "𝑦 if 𝑦 = 1
− log 1 − "𝑦 if 𝑦 = 0

• Each predicted probability "𝑦 is compared to the actual class output value (𝑦 = 0 or 1) 
and the predicted probability can be calculated by the sigmoid function.
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Output 
between 
0 and 1



Visualization of Negative Log-Loss Function
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Negative Log-Loss Curve: Demonstrating the increasing penalty as predicted 
probabilities diverge from true labels. The steeper the curve, the higher the cost of 
being wrong.

−
lo
g
!𝑦

• For positive samples with label 𝑦 = 1

§ BCE = −1 i log !𝑦 − 1 − 1 log !𝑦
§ BCE = − log !𝑦

• :𝑦 = 1 => BCE = − log 1 = 0

• :𝑦 > 0.5 => BCE will be small when 
small when the prediction is correct 

• :𝑦 close to 0 => BCE is a very large when 
the prediction is wrong.

:𝑦

large 
loss

small 
loss

0.5



Visualization of BCE Loss Function
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− log( :𝑦) − log(1 − :𝑦)

0.0 1.0

−
lo
g
!𝑦

:𝑦

−log 5𝑦
− log(1 − 5𝑦)

if 𝑦 = 1 if 𝑦 = 0

BCE = −𝑦 log !𝑦 − 1 − 𝑦 log 1 − !𝑦 = @− log !𝑦 if 𝑦 = 1
− log 1 − !𝑦 if 𝑦 = 0



Binary Cross Entropy (BCE) Example
Training Dataset

𝑥!
(1) 𝑥"

(1) 𝑦(1)

1 0.5 1

0.9 0.9 0

3 0.7 1

2.9 0.9 0

3.5 0.8 1

4 1.2 1

1

0.5

1
1

0.9

0.9

1
1

!𝑦 = 0.7

Sigmoid 

Loss

𝑦(!) = 1, so:
BCE = −𝑦 log :𝑦 − 1 − 𝑦 log(1 − :𝑦)
= − log 0.7 = 0.15

𝑦(") = 0, so:
BCE = −𝑦 log :𝑦 − 1 − 𝑦 log(1 − :𝑦)
= − log 1 − 0.4 = 0.2

Binary cross-entropy (BCE) 

BCE = − 𝑦 log :𝑦 + 1 − 𝑦 log 1 − :𝑦 = .
− log :𝑦 for 𝑦 = 1
− log 1 − :𝑦 for 𝑦 = 0

!𝑦 = 0.4



Categorial Cross Entropy Loss (or Softmax Loss)
• It is a Softmax activation plus a cross-entropy loss for multi-class 

classification task

𝐳 "𝐲
CCE = −n

Ny(

z

𝑦N log "𝑦N

The target label 𝐲 is required to be represented by one-hot-encoding: 𝐲 =

𝑦!
𝑦"
𝑦$
𝑦%
⋮
𝑦1

=

0
0
1
0
⋮
0

=

"𝑦(
"𝑦)
"𝑦=
"𝑦w
"𝑦x
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Categorical Cross Entropy (CCE) Example
Training Dataset

1 0.5 1, 0, 0 n

0.9 0.9 0, 1, 0 n

3 0.7

2.9 0.9

3.5 0.8

4 1.2

1, 0, 0 n

0, 0, 1 n

1, 0, 0 n

0, 1, 0 n

Class 1: 1, 0, 0 @

Class 2: 0, 1, 0 @

Class 3: 0, 0, 1 @

0.9

0.9

1
1

Softmax

4𝑦!
($) = 0.04

Output

𝑦!
$ = 0

𝑦$
$ = 1

𝑦%
$ = 0

Label CCE Loss

−log 0.95 = 0.051

Categorical Cross-Entropy
(CCE) CCE = −u

,2!

1

𝑦, log :𝑦,
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𝑥!
(1) 𝑥"

(1) 𝐲(1)

4𝑦$
($) = 0.95

4𝑦%
($) = 0.01



Cross-Entropy Cost Function
• The Cost function ℒ 𝜃 using Categorial Cross-Entropy Loss for 𝐾

different class labels and training dataset with 𝑁 examples:

• This assumes one-hot encoded labels.

ℒ 𝜃 =:
%'(

)

:
*'(

+

−𝑦*
% log #𝑦*

%
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𝐲 =

𝑦!
𝑦"
𝑦$
𝑦%
⋮
𝑦1

=

0
0
1
0
⋮
0



Cross-Entropy Cost Function for Binary Classification

• Binary Cross-Entropy Cost  with 𝑦(%) ∈ 0, 1 (Sigmoid activation is used 
in the output layer as single output):

• Binary Cross-Entropy Cost with 𝐲(%) in one-hot encoding

ℒ 𝜃 = −n
My(

�

𝑦(M) log "𝑦�
M + 1 − 𝑦(M) log 1 − "𝑦�

M

ℒ 𝜃 = n
My(

�

n
Ny(

)

−𝑦N
M log "𝑦�

M

𝐲(M) = 1
0 𝑜𝑟 0

1
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Components in Supervised Training

Model Loss Objective Optimization

Supervised

Neural Net

Deep Learning

68

• Model:  Output predicts from inputs (Neural Networks)
§ features of the house => predicted sale price

• Loss: Measure difference between predicts and ground truth labels
§ square loss = (predict_sale_price – actual_sale_price)2

§ MSE = Average of the square loss for all training samples 
• Objective: Any function to optimize during training

§ Minimize the MSE of the training data
• Optimization: Learn model parameters by solving the objective function



Optimization



Gradient Descent
• Gradient descent is an optimization algorithm used to minimize the loss 

function by iteratively adjusting the network’s weights. It is a fundamental 
technique in training neural networks, including MLPs. The goal is to find the 
set of weights that minimize the loss function, thereby improving the model’s 
performance.

• The basic idea behind gradient descent is to iteratively update the model’s 
parameters (weights and biases) in the direction that reduces the loss 
function. This is done by computing the gradient of the loss function with 
respect to each parameter and then adjusting the parameters in the 
opposite direction of the gradient.



Function = MLP Model + A Set of Model Parameters

• #𝐲 = 𝑓, 𝐱 = 𝑔 𝐖(-)⋯𝑔 𝐖($)𝑔 𝐖(()𝐱 + 𝐛(() + 𝐛($) ⋯+ 𝐛(-)

• Formal definition for MLP (or Feedforward Networks)

§ 𝑓. 𝐱 where 𝜃 is the model parameter set of Feedforward Networks

• 𝜃:= 𝐖((), 𝐛((),𝐖($), 𝐛($), … ,𝐖(-), 𝐛(-)

Pick a function 𝑓, E = Pick a set of model parameters 𝜃.

Function set Different parameters 𝐖(1), 𝐛(1) (Weights and biases) => different 
functionsHyperparameters: No. of Layer 𝐿 and No. of nodes of each layer 𝑁/

Activation function (Sigmoid, ReLU, Softmax, etc)  

71



How to Pick a set of model parameters?
• To approximate a function 𝑓, we are generally given a dataset 𝒟:= 𝐱 M , 𝐲 M

My(
�

with 

labels 𝐲 M are noisy estimates of the target function 𝑓 𝐱 M at different points 𝐱 M .

§ A MLP neural network defines a function "𝑦 = 𝑓< 𝐱 with a set of model parameters 
𝜃:= 𝐖((), 𝐛((),𝐖()), 𝐛()), … ,𝐖(l), 𝐛(l) (weights and biases of the MLP model)

§ Goal is to find the parameters 𝜃 such that the model function 𝑓< 𝐱 best 
approximates the target 𝑓 𝐱 .

• How to find the values of the parameters i.e., Supervised training of the network?
• Gradient Descent is the most common optimization method used in deep learning to 

find the best parameter 𝜃∗ for a model 𝑓< 𝐱 using a loss/cost function:

72

𝜃∗ = min
'
ℒ 𝜃 = min

'

1
𝑁=

15!

3

ℓ 𝐲 1 , 𝑓' 𝐱 1



Gradient Descent Algorithm
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ℒ 𝜃

gradient

∇/ℒ(𝜃A)

𝜃∗ = min
/
ℒ 𝜃 = min

/

1
𝑁
u
+2!

>

ℓ 𝑦 + , 𝑓/ 𝐱 +

𝜃∗
𝜃

Step 0: Randomly initialize weights and biases 
parameters: 𝜃 = 𝐖(!), 𝐛(!),𝐖("), 𝐛("), … ,𝐖(,), 𝐛(,)

Step 1: Compute the cost function ℒ 𝜃 , which 
measures how well the model is performing of the 
dataset.
Step 2: Find the gradients of the cost function 
with respect to each parameters ∇<ℒ(𝜃�)
Step 3: Update the parameters by

𝜃�[( = 𝜃� − 𝜂 T ∇<ℒ(𝜃�)
where 𝜂 is the learning rate that determines how big 
the updates should be in each iteration 𝑡.
• Repeat the above steps 1 to 3, unit the cost is 

low enough or convergence.



Case Study: Regression
Predicting Boston Housing Prices

• Dataset: Boston Housing

• Input: 13 features (Crime, Rooms, Age)

• Output: Continuous Price.

Result: RMSE of 3.4



• We define a neural network with inputs equal to 
the 13 different attributes of houses. These 
connect to a hidden layer of 8 neurons, which 
connects to another hidden layer of 6 neurons. 
Output neuron count must match the input neuron 
count of the next layer.

• We generally use the Relu activation for hidden 
layers. The output layer has no activation function 
since this is a regression task predicting a 
continuous house prices.

75https://colab.research.google.com/drive/1IrjUJ_TuQXVNfPNXze0yuRgLr2ywJGe2?usp=sharing

https://colab.research.google.com/drive/1IrjUJ_TuQXVNfPNXze0yuRgLr2ywJGe2?usp=sharing


Case Study: Classification
The Iris Dataset

https://colab.research.google.com/drive/1EsatlPEY3fb21qgbMyel4Es_bM8sherJ
76

Softmax

Cross-Entropy Loss = -(1*log(0.85)+0*log(0.05)+0*log(0.10) = -log(0.85) = 0.16

𝑦! = 1

𝑦" = 0

𝑦" = 0

Ground Truth

The classification labels are 
one-hot encoder

Dataset: Iris (150 samples).
Input: 4 physical dimensions.
Output: Probability of species
Accuracy: ~98%

https://colab.research.google.com/drive/1EsatlPEY3fb21qgbMyel4Es_bM8sherJ


77https://colab.research.google.com/drive/1EsatlPEY3fb21qgbMyel4Es_bM8sherJ
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MLPs for Simple Regression and Classification 

• Boston Housing Dataset
§ 13 features and 506 records
§ A 3-Layer MLP (13-8-6-1)
§ No. of Parameters: 173

• 13*8+8*6+6*1+8+6+1

§ Performance: RMSE = 3.97

Regression

• Iris Flower Dataset
§ 4 features and 150 records
§ A 3-Layer MLP (4-8-6-3)
§ No. of Parameters: 187

• 13*8+8*6+6*3+8+6+3

§ Performance: 98% Accuracy  

Classification
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Challenges in Deep Architectures

Fix: Use ReLU activation
Fix: Use Dropout, L1/L2 
Regularization, Early Stop, 
Data Augmentation.

Fix: GPU acceleration & 
optimized frameworks 
(PyTorch/TensorFlow).



The Cornerstone of Deep Learning
• From basic MLPs to Large Language 

Models (LLMs) such as ChatGPT-5, 
Gemini 3 Pro, the architecture remains: 
Layers, Activation, and Backpropagation.

• MLPs (or FFNs) paved the way for the AI 
resolution, proving that machines can 
learn to approximate any continuous 
function in our universe.

+

Masked Multi-Head
Attention 

FFN

+

Embeddings

+

Linear

Softmax

Output sequence (shifted right)

Output Probabilities

𝐊𝐐 𝐕

Positional Encoding

LayerNorm

LayerNorm

N x
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