
Multi-Layer Perceptron
(MLP)

AI with Deep Learning
EE4016

Prof. Lai-Man Po
Department of Electrical Engineering

City University of Hong Kong

Content
• The XOR Problem of Perceptron

§ Solving XOR problem by Two-Layer Neural Networks

• Multi-Layer Perceptron (MLP) Architectures
§ Matrix Representation of MLPs
§ Activation Functions: Identify (Linear), Binary Step, Sigmoid, Tanh, ReLU, Leaky ReLU, and

Softmax
§ Why Deeper Neural Networks is Better?

• Loss, Cost and Objective Functions
§ Square loss, Absolute loss, MSE, MAE
§ Binary Cross-Entropy Loss and Categorial Cross-Entropy Loss

• Gradient Descent
• Colab Examples: MPG Regression and IRIS Flower Classification

2

Recap: The Linearity Limit
The Precursor: Single-Layer Perceptron

Limitation: Can only model linear decision
boundaries.

3

⋮

𝑥!

𝑥"

𝑥#

∑

𝑤#

𝑤!

𝑤" !𝑦𝑔

1

𝑏
bias

The XOR Problem: Linearly Inseparable

Key Insight: No single straight line can separate the
true values from the false values in an XOR function.
To solve this, the decision boundary must be bent.

Solving XOR Using a Two-Layer Neural Network
• A two-layer neural network introduces a hidden layer with multiple neurons, which

allows the network to create nonlinear decision boundaries.
• These hidden layer neurons can create intermediate representations that enable

the XOR function to be modelled.

Output Layer

"𝑦

−1
−2

1

−1

1

1

𝑎!

𝑎"

Hidden Layer

𝑥(

𝑥)

1

1

1

−1

𝑧!

𝑧"

1
𝑧!, 𝑧" 𝑎!, 𝑎"𝑥!, 𝑥" !𝑦

0, 0

0, 1

1, 0

1, 1

−1, 1

0, 0

0, 0

1, −1

0, 1

1, 1

1, 1

1 , 0

0

1

1

0

Activation function is the unit step function 𝑢 𝑧

𝑔 𝑧 = 𝑢 𝑧 = .1, 𝑧 ≥ 0
0, otherwise

𝑢 $

𝑢 $

𝑢 $𝑧

XOR

Multilayer Perceptron (MLP)
or

Feedforward Network (FFN)

Multi-Layer Perception (1971)
• The XOR problem revealed the necessity of multilayer neural networks, which is

also known as Multi-Layer Perceptron (MLP).
• MLPs contain one or more hidden layers between the input and output layers that

enable modeling of nonlinear functions.

Pe
rce

ptr
on

1950 1980 1990 2000 2010 20201943

MP N
eu

ron

ML
P

1965 -19711960

• The first generation of MLPs was introduced by A. G.
Ivakhnenko and V. Lapa.
§ They published the first general, working learning

algorithm for supervised deep feedforward MLPs in
1971.

6

Feedforward Networks (FFNs)
• Today the term ”Feedforward Network" is more commonly used in deep

learning, referring to Multi-Layer Perceptron (MLP).
• In addition, the layer of FFN is also referred as a Fully Connected (FC) Layer.

7

𝐱 =

𝑥!
𝑥"
𝑥%
𝑥&

Layer 3

𝑥!

𝑥"

𝑥$

𝑥%

1

𝑎!
(!)

𝑎$
(!)

𝑎%
(!)

𝑎&
(!)

1

𝑎!
($)

𝑎$
($)

𝑎%
($)

𝑎!
(%)

𝑎!
(%)

1

:𝑦!

Input

𝑎!
(%)

= Softmax 𝐖(%)𝐚($) +𝐛(%)

:𝑦"

:𝑦$

Predicted Output

𝐖(!), 𝐛(!) 𝐖($), 𝐛($)

𝐖(%), 𝐛(%)

Hidden Layer 1 Hidden Layer 2

𝐚(!) = ReLU 𝐖(!)𝐱 + 𝐛(!)
𝐚($) = ReLU 𝐖($)𝐚(!) +𝐛($)

4𝐲 =
4𝑦!
4𝑦$
4𝑦%

= 𝐚(%) =
𝑎!
(%)

𝑎$
(%)

𝑎%
(%)

Feedforward Networks (FFNs)
• The number of layers in the FFNs (excluding the input layer) is known as depth
• Each layer can be seen as a vector-to-vector function which takes a vector of inputs

from the previous layer and computes a scalar value.
• Below network can be seen as a composition of functions

• "𝐲 = 𝑓< 𝐱 = 𝑓= 𝑓) 𝑓(𝐱
§ 𝑓7 being the first hidden layer,
§ 𝑓8 being the second hidden layer,
§ 𝑓9 being the final output layer.

𝑓! ? 𝑓" ? 𝑓$?𝐱

8

!𝐲 = 𝑓' 𝐱

The Universal Approximation Theorem
SOLVING NON-LINEARITY WITH HIDDEN LAYERS

The Universal Approximation Theorem states that a feedforward
network with a single hidden layer containing a finite number of
neurons can approximate any continuous function. The hidden
layers transform the input data into a higher-dimensional space
where patterns become linearly separable.

Input
Space

Output Layer

𝑥!

𝑥"

𝑥$

𝑥%

1

𝑎!
(!)

𝑎$
(!)

𝑎%
(!)

𝑎&
(!)

1

𝑎!
($)

𝑎!
($)

:𝑦!

Input

𝑎!
($)

:𝑦"

:𝑦$

Hidden Layer 1

Transformed
Space

Feature Extraction

Matrix Representation of FFN
• Net input of the Hidden Layer 1: 𝐳(() = 𝐖(()𝐱 + 𝐛(()

𝐱 =

𝑥!
𝑥"
𝑥%
𝑥&

𝐖(!) =

𝑤!,!
(!) 𝑤!,"

(!) 𝑤!,$
(!) 𝑤!,%

(!)

𝑤",!
(!) 𝑤","

(!) 𝑤",$
(!) 𝑤",%

(!)

𝑤$,!
(!) 𝑤$,"

(!) 𝑤$,$
(!) 𝑤$,%

(!)

𝑤%,!
(!) 𝑤%,"

(!) 𝑤%,$
(!) 𝑤%,%

(!)

𝐛(!) =

𝑏!
(!)

𝑏"
(!)

𝑏$
(!)

𝑏%
(!)

𝐳(!) =

𝑧!
(!)

𝑧"
(!)

𝑧%
(!)

𝑧&
(!)

=

𝑤!,!
(!) 𝑤!,"

(!) 𝑤!,%
(!) 𝑤!,&

(!)

𝑤",!
(!) 𝑤","

(!) 𝑤",%
(!) 𝑤",&

(!)

𝑤%,!
(!) 𝑤%,"

(!) 𝑤%,%
(!) 𝑤%,&

(!)

𝑤&,!
(!) 𝑤&,"

(!) 𝑤&,%
(!) 𝑤&,&

(!)

𝑥!
𝑥"
𝑥%
𝑥&

+

𝑏!
(!)

𝑏"
(!)

𝑏%
(!)

𝑏&
(!)

𝑧!
(!) = 𝑤!,!

(!)𝑥! + 𝑤!,"
(!)𝑥" + 𝑤!,%

(!)𝑥% + 𝑤!,&
(!)𝑥& + 𝑏!

(!)
𝐚(!)

10

Input

Layer 1

𝑎!
!

𝑎$
!

𝑎%
!

𝑎&
!

𝑥7

𝑥8

𝑥9

𝑥:

1

𝐖(!), 𝐛(!)

𝑎!
(!)

𝑎"
(!)

𝑎$
(!)

𝑎%
(!)

𝐳(!) = 𝐖(!)𝐱 + 𝐛(!) is called Net Input (Inputs of the activation function)

𝑏!
(!)

𝑤!,!
(!)

𝑤!,%
(!)

𝑤!,&
(!)

𝑤!,'
(!)

Matrix Representation of FFN
• Activations of the Hidden Layer 1 : 𝐚(() = 𝑔(() 𝐳(() = 𝑔(() 𝐖(()𝐱 + 𝐛(()

𝐱 =

𝑥!
𝑥"
𝑥%
𝑥&

𝐖(!) =

𝑤!,!
(!) 𝑤!,"

(!) 𝑤!,$
(!) 𝑤!,%

(!)

𝑤",!
(!) 𝑤","

(!) 𝑤",$
(!) 𝑤",%

(!)

𝑤$,!
(!) 𝑤$,"

(!) 𝑤$,$
(!) 𝑤$,%

(!)

𝑤%,!
(!) 𝑤%,"

(!) 𝑤%,$
(!) 𝑤%,%

(!)

𝐛(!) =

𝑏!
(!)

𝑏"
(!)

𝑏$
(!)

𝑏%
(!)

𝐳(!) =

𝑧!
(!)

𝑧"
(!)

𝑧$
(!)

𝑧%
(!)

𝐚(!) =

𝑎!
(!)

𝑎"
(!)

𝑎%
(!)

𝑎&
(!)

= 𝑔(!) 𝐳(!) = 𝑔(!)

𝑤!,!
(!) 𝑤!,"

(!) 𝑤!,%
(!) 𝑤!,&

(!)

𝑤",!
(!) 𝑤","

(!) 𝑤",%
(!) 𝑤",&

(!)

𝑤%,!
(!) 𝑤%,"

(!) 𝑤%,%
(!) 𝑤%,&

(!)

𝑤&,!
(!) 𝑤&,"

(!) 𝑤&,%
(!) 𝑤&,&

(!)

𝑥!
𝑥"
𝑥%
𝑥&

+

𝑏!
(!)

𝑏"
(!)

𝑏%
(!)

𝑏&
(!)

Input

Layer 1

𝑎!
!

𝑎$
!

𝑎%
!

𝑎&
!

1

𝐖(!), 𝐛(!)

𝑎!
(!)

𝑎"
(!)

𝑎$
(!)

𝑎%
(!)

𝐚(!)

11

𝑥7

𝑥8

𝑥9

𝑥:
Activation function
of layer 1

Matrix Representation of FFN
Activations of the Layer 2: 𝐚(8) = 𝑔(8) 𝐖(8)𝐚(7) + 𝐛(8) = 𝑔(8) 𝐖(8)𝑔(7) 𝐖(7)𝐱 + 𝐛(7) + 𝐛(8)

𝐚(!) =

𝑎!
(!)

𝑎"
(!)

𝑎$
(!)

𝑎%
(!)

𝐖(") =

𝑤!,!
(") 𝑤!,"

(") 𝑤!,%
(") 𝑤!,&

(")

𝑤",!
(") 𝑤","

(") 𝑤",%
(") 𝑤",&

(")

𝑤%,!
(") 𝑤%,"

(") 𝑤%,%
(") 𝑤%,&

(")

𝐛(") =
𝑏!
(")

𝑏"
(")

𝑏$
(")

𝐚(") =
𝑎!
(")

𝑎"
(")

𝑎$
(")

= 𝑔(")
𝑤!,!
(") 𝑤!,"

(") 𝑤!,$
(") 𝑤!,%

(")

𝑤",!
(") 𝑤","

(") 𝑤",$
(") 𝑤",%

(")

𝑤$,!
(") 𝑤$,"

(") 𝑤$,$
(") 𝑤$,%

(")

𝑎!
(!)

𝑎"
(!)

𝑎$
(!)

𝑎%
(!)

+
𝑏!
(")

𝑏"
(")

𝑏$
(")

Layer 1 Layer 2

𝑎!
!

𝑎$
!

𝑎%
!

𝑎&
!

𝑎!
$

𝑎$
$

𝑎%
$

1

𝑎!
(")

𝑎"
(")

𝑎%
(")

𝐚(")
𝐚(!)

𝐖($), 𝐛($)

12

Matrix Representation of FFN
• Activations of the Output Layer: #𝐲 = 𝐚(") = 𝑔(") 𝐖(")𝐚($) + 𝐛(")

𝐚(") =
𝑎!
(")

𝑎"
(")

𝑎%
(")

𝐖(%) =

𝑤!,!
(%) 𝑤!,"

(%) 𝑤!,%
(%)

𝑤",!
(%) 𝑤","

(%) 𝑤",%
(%)

𝑤%,!
(%) 𝑤%,"

(%) 𝑤%,%
(%)

𝐛($) =
𝑏!
($)

𝑏"
($)

𝑏$
($)

!𝐲 =
!𝑦!
!𝑦"
!𝑦"

=
𝑎!
(%)

𝑎"
(%)

𝑎%
(%)

= 𝑔(%)
𝑤!,!
(%) 𝑤!,"

(%) 𝑤!,%
(%)

𝑤",!
(%) 𝑤","

(%) 𝑤",%
(%)

𝑤%,!
(%) 𝑤%,"

(%) 𝑤%,%
(%)

𝑎!
(")

𝑎"
(")

𝑎%
(")

+
𝑏!
(%)

𝑏"
(%)

𝑏%
(%)

!𝐲 = 𝐚(%) = 𝑔(%) 𝐖(%)𝐡(") + 𝐛(%)

!𝐲 = 𝑔(%) 𝐖(%)𝑔(") 𝐖"𝑔(!) 𝐖(!)𝐱 + 𝐛(!) + 𝐛(") + 𝐛(%)

Feedforward neural network is just a function of input vector 𝐱.

Layer 2

𝑎!
$

𝑎$
$

𝑎%
$

𝑎!
%

𝑎$
%

1

𝐚(") 𝐚(%)

*𝑦7

*𝑦8 !𝐲

𝐖(%), 𝐛(%)

13

𝑎%
% *𝑦9

Output
Layer

Feedforward Neural Network Formulation

!𝐲 = 𝑓' 𝐱 = 𝑔(,) 𝐖(,)⋯𝑔(") 𝐖(")𝑔(!) 𝐖(!)𝐱 + 𝐛(!) + 𝐛(") ⋯+ 𝐛(,)

𝐚(-) = 𝐱

Layer 1

𝑎!
!

𝑎$
!

𝑎(!
!

𝑥7

𝑥8

𝑥=

1 1𝐖(!), 𝐛(!)

Input Layer

:
:

:
:

Input vector

Layer 2

𝑎$
$

𝑎$
$

𝑎("
$

1𝐖($), 𝐛($)

:
:

…
…

…

𝐖()), 𝐛())

…

𝑎!
)

𝑎$
)

𝑎*
)

:
:

*𝑦7

*𝑦8

*𝑦?

"𝐲
Output
vector

𝐚(!)
= 𝑔(!) 𝐖(!)𝐱 + 𝐛(!)

𝐚($)
= 𝑔($) 𝐖($)𝐚(!) +𝐛($)

Output
Layer

Layer L

14

𝐚(+) = 𝑔(+) 𝐖(+)𝐚(+,!) +𝐛(+)

Notation Definition for Hidden Layers

𝑎!
(+,!)

𝑎$
(+,!)

𝑎-
(+,!)

Layer 𝑙 − 1

𝑛)*! nodes

:
:

:
:

𝑎!
())

𝑎"
())

𝑎+
())

Layer 𝑙
𝑛) nodes

:
:

:
:

Output of a neuron:

𝑎!
(#)

Layer 𝑙

neuron 𝑖

𝐚(J) =

𝑎(
(J)

𝑎)
(J)

⋮
𝑎K.
(J)

15

Notation Definition for Weights
Layer 𝑙 − 1

𝑛)*! nodes

Layer 𝑙
𝑛) nodes 𝑤!,&

(#)
Layer (𝑙 − 1) to Layer 𝑙

From neuron 𝑗 of Layer 𝑙 − 1
to neuron 𝑖 of Layer 𝑙

𝐖(/) =

𝑤!,!
(/) 𝑤!,"

(/)

𝑤",!
(/) 𝑤","

(/)

⋯ 𝑤!,0./0
(/)

⋯ 𝑤",0./0
(/)

⋮ ⋮
𝑤0.,!
(/) 𝑤0.,"

(/)
⋱ ⋮
⋯ 𝑤0.,0./0

(/)

Weights between two layers is a matrix

𝑛J

𝑛JL(

𝑎!
(+,!)

𝑎$
(+,!)

𝑎-
(+,!)

:
:

:
:

𝑎!
())

𝑎"
())

𝑎+
())

:
:

:
:

𝑤!,!
())

𝑤+,,
())

𝑤!,,
())

𝑤",,
())

𝑤",!
())

𝑤+,!
())

16

Notation Definition for Biases

𝑎!
(+,!)

𝑎$
(+,!)

𝑎-
(+,!)

Layer 𝑙 − 1

𝑛)*! nodes

:
:

:
:

𝑎!)

𝑎")

𝑎+
)

Layer 𝑙
𝑛) nodes

:
:

:
:

𝑏!)

𝑏")

𝑏+
)

𝑏%
(&) : Bias for neuron 𝑖 at layer 𝑙

𝐛(J) =

𝑏(
(J)

𝑏)
(J)

⋮
𝑏K.
(J)

1

17

Notation Definition
Layer 𝑙 − 1

𝑛)*! nodes

Layer 𝑙
𝑛) nodes

𝑧M
(J) : input of the activation function for neuron 𝑖

at layer 𝑙 (Net Input)

𝑧1
(/) = 𝑤1,!

(/)𝑎!
(/2!) + 𝑤1,"

(/)𝑎"
(/2!) +⋯+ 𝑤1,3./0

(/) 𝑎0./0
(/2!) + 𝑏1

(/)

𝑧1
(/) = =

45!

0./0

𝑤1,4
(/)𝑎4

(/2!) + 𝑏1
(/)

𝐳()) =

𝑧!
())

𝑧"
())

⋮
𝑧-$
())

𝐚()) =

𝑎!
())

𝑎"
())

⋮
𝑎-$
())

= 𝑔())

𝑧!
())

𝑧"
())

⋮
𝑧-$
())

Activation function input at each layer is a vector

𝑎!
(%&!)

𝑎'
(%&!)

𝑎(
(%&!)

:
:

:
:

𝑎+
())

:
:

𝑏+
())

1

𝑤1,!
(/)

𝑤1,"
(/)

𝑤1,4
(/)

𝑎1
(/) = 𝑔(/) 𝑧1

(/)

18

Notation Summary

𝑎M
(J) : Output of the 𝑖-th neuron in layer 𝑙.

𝐚(J): Output vector of a layer 𝑙.

𝑧M
(J): Net Input of the 𝑖-th neuron in layer 𝑙.

(Inputs of the activation function)

𝐳(J): Net input vector of activation function
in layer 𝑙.

𝑤M,N
(J): the weight connecting the 𝑗-th

neuron in layer 𝑙 − 1 to the 𝑖-th
neuron in layer 𝑙.

𝐖(J): the weight matrix connecting
layer 𝑙 − 1 to layer 𝑙.

𝑏M
(J): the bias of 𝑖-th neuron in layer 𝑙.

𝐛(J): a bias vector of neurons in layer 𝑙.

19

Anatomy of the Architecture

𝐚(.) = 𝐱

𝑎!
!

𝑎$
!

𝑎(!
!

𝑥7

𝑥8

𝑥=

1 1𝐖(!), 𝐛(!)

:
:

:
:

𝑎!
$

𝑎$
$

𝑎("
$

1𝐖('), 𝐛(')

:
:

…
…

…
…

𝑎!
)

𝑎$
)

𝑎*
)

:
:

*𝑦7

*𝑦8

*𝑦?

:𝐲
Output
vector

Layer L

𝑎!
()!

𝑎%
()!

𝑎*!"#
()!

1𝐖(),!), 𝐛(),!)

:
:

𝐖(), 𝐛())

Receives raw data
(features). Denoted
as vector 𝐱.

The engine of the network. Performs transformations
via weights and activations to learn intermediate

representations.

𝐚(+) = 𝑔(+) 𝐖(+)𝐚(+,!) +𝐛(+) Produces the final prediction 4𝐲
(probability or value).

HIDDEN LAYERS OUTPUT LAYERS INPUT LAYERS

Example Feedforward Networks

21

:𝐲 = 𝑓/ 𝐱 = Softmax 𝐖($)ReLU 𝐖(")ReLU 𝐖(!)𝐱 + 𝐛(!) + 𝐛(") + 𝐛($)

Model Parameters (Weights and Biases): 𝜃 = 𝐖(!), 𝐛(!) , 𝐖("), 𝐛(") , 𝐖($), 𝐛($)

𝐚(-) = 𝐱 =

𝑥!
𝑥"
𝑥%
𝑥&

Layer 3

𝑥!

𝑥"

𝑥$

𝑥%

1

𝑎!
(!)

𝑎$
(!)

𝑎%
(!)

𝑎&
(!)

1

𝑎!
($)

𝑎$
($)

𝑎%
($)

𝑎!
(%)

𝑎!
(%)

1

:𝑦!

Input

𝑎!
(%)

= Softmax 𝐖(%)𝐚($) +𝐛(%)

:𝑦"

:𝑦$

Predicted Output

𝐖(!), 𝐛(!) 𝐖($), 𝐛($)

𝐖(%), 𝐛(%)

Layer 1 Layer 2

𝐚(!) = ReLU 𝐖(!)𝐱 + 𝐛(!)
𝐚($) = ReLU 𝐖($)𝐚(!) +𝐛($)

4𝐲 =
4𝑦!
4𝑦$
4𝑦%

= 𝐚(%) =
𝑎!
(%)

𝑎$
(%)

𝑎%
(%)

𝐚(+) = 𝑔(+) 𝐖(+)𝐚(+,!) +𝐛(+)

Traditional Activation Functions

What are Activation Functions?
• An Activation Function 𝑔 𝑧 decides

whether a neuron should be
activated or not.

• Activation functions introduce non-
linearity into the network, which is
essential for modeling complex
relationships in data.

• Without non-linearity, the model
would essentially be a linear model,
which cannot approximate complex
tasks

Pitts

⋮

𝑥!

𝑥"

𝑥#

𝑤#

𝑤!

𝑤" 𝑎𝑧 𝑔

1
𝑏

Activation
function

Linear
function

𝑎 = 𝑔 𝐰9𝐱 + 𝑏

23

Why Add Non-Linear Activation Function?

Linear functions produce linear
decisions no matter the network size

Non-Linear
activation functions

allow us to
approximate

arbitrarily complex
functions.

• No Nonlinearity: A network of linear layers collapses into a single linear transformation,
rendering deep architectures useless.

§ 𝑔 𝐖(") 𝑔 𝐖(!)𝐱 + 𝐛(!) + 𝐛(") = 𝐖(")𝐖(!)𝐱 + 𝐖(")𝐛(!) + 𝐛($)

=𝐖′𝐱 + 𝐛′

Drop or use linear activation function such as 𝑔 𝑧 = 𝑧 is
equivalent to a single linear layer.

• Non-linearity adds capacity to the model to
approximate any continuous function to
arbitrary accuracy given sufficiently many
hidden units.
• See “universal approximation theorem”

24

https://en.wikipedia.org/wiki/Universal_approximation_theorem

The Non-Linear Spark: Activation Functions
• Activation functions decide whether a neuron 'fires". They introduce non-linearity,

preventing the network from collapsing into a simple linear regression.

𝑢 𝑧 = ,1, for 𝑧 ≥ 0
0, otherwise

𝑔 𝑧 = 𝑧

Binary Step and Linear Activation Functions
• Linear (or Identity) Function

𝑔 𝑧 = 𝑧 , then "𝑦 = 𝐰Z𝐱 + 𝑏
§ The activation is proportional to the input.

§ It is only used in the output layer for Regression
applications.

• Binary Step Function (Non-Linear)

𝑢 𝑧 = @1, for 𝑧 ≥ 0
0, for 𝑧 < 0 and !𝑦 = @1, 𝐰9𝐱 + 𝑏 ≥ 0

0, 𝐰9𝐱 + 𝑏 < 0

§ This is used for Binary Classification applications, but it
is not a differentiable function and not used in modern
neural network.

26

Linear Function

Binary Step Function

Limitation of Binary Step Activation Function
• The original Perceptron activation is harsh, firing

only when weighted input sum exceeds threshold
• Thresholding logic means very similar input values

can get completely different outputs
• 𝑧 = -0.01 and 0.01 get different outputs of 0 and 1
• Abrupt decision change comes from step function

nature of perceptron
• For real applications, want smoother activation that

gradually changes from 0 to 1
• Sigmoid function provides continuous smoothness

and avoiding harsh cliff of the perceptron

Discrete

27

Continuous

Sigmoid Function

Sigmoid Activation Function
• The sigmoid function is an S-shaped curve (smoother decision function) that always

returns an output between 0 and 1 that mapped from the range of −∞ to ∞.
• It is especially used for models where we have to predict the probability as an

output. Since probability of anything exists only between the range of 0 and 1,
sigmoid is the right choice

§ 𝜎 𝑧 = (
([\:;

= (
([]^_ L`

§ 𝜎′ 𝑧 = a b `
a`

= 𝜎 𝑧 1 − 𝜎 𝑧

In the 1980s and early 1990s, the sigmoid function was
the default activation function for neural networks.

• The sigmoid function is differentiable but has two problems: (1) a very small gradient (slop) for
large positive and negative inputs and (2) a lack of zero-centeredness in its output.

• These issues can create challenges during deep learning's backpropagation.
28

𝜎 𝑧 =
1

1 + 𝑒,5

Tanh Activation Function
• Tanh is aka as Hyperbolic Tangent function. The Tanh function also has an S-

shape similar to the sigmoid function while addressing its non-zero-centered
problem with output range values in the range of -1 to 1.

In the late 1990s and early 2000s, the tanh function was a
common choice of activation function for neural networks.

29

• Basically, Tanh is a shifted and stretched version of the
sigmoid function, and the output of Tanh is symmetric
around zero, leading to faster convergence

§ tanh 𝑧 = \;L\:;

\;[\:;
=]^_ ` L]^_ L`

]^_ ` []^_ L`

§
a cdef `

a`
= 1 − tanh 𝑧)

tanh 𝑧 =
𝑒: − 𝑒&:

𝑒: + 𝑒&:

https://www.youtube.com/watch?v=pfPDTxkXrfM

https://www.youtube.com/watch?v=pfPDTxkXrfM

Shortcomings of Sigmoid and Tanh
• The derivatives (gradients) of the both sigmoid and tanh functions are

small for large positive and negative inputs, which can cause a Vanishing
Gradient Problem during backpropagation in neural network training.

𝜎 𝑧 =
1

1 + 𝑒,5
𝑑𝜎
𝑑𝑧 = 𝜎 𝑧 1 − 𝜎 𝑧

tanh 𝑧 =
𝑒5 − 𝑒,5

𝑒5 + 𝑒,5
𝑑 tanh
𝑑𝑧 = 1 − tanh 𝑧 $

30

Rectified Linear Unit (ReLU)
• ReLU activation function to the rescue. It is a piecewise linear function that

outputs the input directly if it is positive, otherwise, it outputs zero.

§ ReLU 𝑧 = max 0, 𝑧 = J𝑧 if 𝑧 ≥ 0
0 if 𝑧 < 0

§
a g]hi
a`

= J1 for 𝑧 ≥ 0
0 for 𝑧 < 0

It has become the default activation
function for many types of neural
networks because it is easier to train
and computationally efficient.

31

𝑑 ReLU
𝑑𝑧 = J1 for 𝑧 ≥ 0

0 for 𝑧 < 0

Leaky ReLU
• Leaky ReLU is an improvisation of the regular ReLU function that addresses

the problem of zero gradient for negative values
• Unlike traditional ReLU functions, which set all negative values to zero, Leaky

ReLU allows a small number of negative values to pass through

• Leaky ReLU 𝑧 = max 𝑧, 𝛼 T 𝑧 = J 𝑧 for 𝑧 ≥ 0
𝛼 T 𝑧 for 𝑧 < 0

• a h]djkg]lm
a`

= J1 for 𝑧 ≥ 0
𝛼 for 𝑧 < 0

• Commonly used 𝛼 = 0.01

32

Leaky ReLU 𝑧

Softmax Activation
for Multiclass Classification

Perceptron for Binary Classification
• Even with modern activation functions, perceptron is fundamentally still a binary classifier that

outputs a probability 𝑃 𝑦 = 1|𝐱 representing its confidence that the input 𝐱 belongs to the positive
class 𝑦 = 1.

• Classification is determined by a standard threshold of 0.5: if !𝑦 ≥0.5 , the prediction is Positive (1); if
!𝑦 <0.5, it is Negative (0).

𝜎 𝑧 =
1

1 + 𝑒*0

⋮

𝑥!

𝑥"

𝑥#
𝑤#

𝑤!

𝑤"

Inputs

𝜎

1

𝑏
Sigmoid

Activation

Output is the probability
between 0 and 1 for

positive (label 𝑦 = 1)

"𝑦 = 𝜎 𝐰Z𝐱 + 𝑏

34

= 𝑃 𝑦 = 1|𝐱
∑

Extend Perceptron to Multiclass Classification
• In multiclass classification, we can employ 𝐾 separate binary perceptron models,

each tailored to a specific class, to estimate the probability of 𝑦N given 𝐱 (𝑃 𝑦N|𝐱).
• By selecting the class with the highest probability score, we can determine the

predicted class for the purpose of multiclass classification.

The outputs of these activations !𝑦4 are
class-membership probabilities
(Not mutually exclusive classes)

!𝑦!
!𝑦"
⋮
!𝑦R

=

𝜎 𝐰!
9𝐱 + 𝑏!

𝜎 𝐰"
9𝐱 + 𝑏"
⋮

𝜎 𝐰R
9𝐱 + 𝑏R

𝐰49 ∈ ℝ!×T and 𝑏 ∈ ℝR×! where 𝐾 is the number of classes

35

⋮

𝑥!

𝑥"

𝑥#

:𝑦!

:𝑦"

:𝑦1

⋮

𝑤;,!

𝑤;,<

𝑤!,<

𝑤',!

1 𝑏!

𝑏'

𝑏; u
,2!

1

:𝑦, ≠ 1

𝜎∑

𝜎∑

𝜎∑

⋮

Softmax Activation: Multinomial Probability Output
• Softmax is just an exponential function that normalizes the activations so that they

sum up to 1

• For example, output layer scores 𝐳 = 𝑧(, 𝑧), 𝑧=, 𝑧w, 𝑧x Z = 1.3, 5.1, 2.2, 0.7, 1.1 Z

softmax 𝐳 M =
𝑒`V

∑Ny(z 𝑒`W
for 𝑖 = 1,2, … , 𝐾 and 𝐾 is the number of classes

𝑒NI
∑OPQR 𝑒NJ

𝐳

36

Softmax
activation function

=

"𝑦(
"𝑦)
"𝑦=
"𝑦w
"𝑦x

K
-6!

*

4𝑦- = 1

Softmax Activation: Multinomial Probability Output

Activations are class-
membership probabilities

(mutually exclusive classes)

#𝐲 = softmax 𝐖𝐱 + 𝐛

"𝐲 =

"𝑦(
"𝑦)
"𝑦=
⋮
"𝑦z

=

0.02
0.90
0.05
0.01
0.02

Predicted
Class

Probabilities

argmax

∑ :𝑦!

∑ :𝑦"

∑ :𝑦1

⋮ ⋮

S
O
F
T
M
A
X

K
-6!

*

4𝑦- = 1

Example with
K=5

𝑧!

𝑧"

𝑧1

⋮

𝑥!

𝑥"

𝑥#

1
𝑏!

𝑏'

𝑏;

37

Softmax based Multiclass Classification

𝐖 ∈ ℝR×T and 𝐛 ∈ ℝR×! where 𝐾 is the number of classes

𝐱 = 𝑥!, 𝑥", … , 𝑥# 3 :𝐲 = :𝑦!, :𝑦", … , :𝑦1 3

𝐳 = 𝐖𝐱 + 𝐛

𝐖 =

𝑤!,! 𝑤!,"
𝑤",! 𝑤","

⋯ 𝑤!,T
⋯ 𝑤",T

⋮ ⋮
𝑤R,! 𝑤R,"

⋱ ⋮
⋯ 𝑤R,T

𝐛 =

𝑏!
𝑏"
⋮
𝑏1

!𝐲 =

!𝑦!
!𝑦"
⋮
!𝑦R

= softmax 𝐳 = softmax

𝑧!
𝑧"
⋮
𝑧R

38

∑ :𝑦!

∑ :𝑦"

∑ :𝑦1

⋮ ⋮

S
O
F
T
M
A
X

𝑧!

𝑧"

𝑧1

⋮

𝑥!

𝑥"

𝑥#

1 𝑏!

𝑏'

𝑏;

Softmax Example
1

𝐳 =

𝑧!
𝑧"
⋮
𝑧R

=

𝑤!,! 𝑤!,"
𝑤",! 𝑤","

⋯ 𝑤!,T
⋯ 𝑤",T

⋮ ⋮
𝑤R,! 𝑤R,"

⋱ ⋮
⋯ 𝑤R,T

𝑥!
𝑥"
⋮
𝑥T

+

𝑏!
𝑏"
⋮
𝑏R

𝑒5!
∑-6!* 𝑒5#

𝑒5"
∑-6!* 𝑒5#

𝑒5$
∑-6!* 𝑒5#

𝑒5%
∑-6!* 𝑒5#

:
:

39

⋮ ⋮

𝑥!

𝑥"

𝑥"

𝑥#

𝑧!

𝑧"

𝑧$

𝑧1

Green

Blue

Purple

Red

The output of Softmax represents a discrete
probability distribution across classes.

Softmax

⋮

The softmax activation function is widely preferred as the output layer choice for
classification applications.

Hyperparameters of MLPs (or FFNs)
• In MLPs, neurons are organized into layers. Hidden layers take inputs from neurons

and pass their activations to other neurons
§ Note that when we count the number of layers, the input layer is NOT counted.

Hyperparameters of the MLP Model :
• No. of Layers: 3 (𝐿 = 3)
• Input Layer: 4 neurons (𝑑 = 4)
• Layer 1: 4 neurons (𝑛! = 4)
• Layer 2: 3 neurons (𝑛" = 3)
• Output Layer: 3 neuron (𝐾 = 𝑛% = 3)
• Activation function: Sigmoid 𝜎

40

!𝐲 = 𝑓' 𝐱 = 𝜎 𝐖(%)𝜎 𝐖(")𝜎 𝐖(!)𝐱 + 𝐛(!) + 𝐛(") + 𝐛(%)

Model Parameters (Weights and Biases) 𝜃:= 𝐖(!), 𝐛(!) , 𝐖("), 𝐛(") , 𝐖(%), 𝐛(%)

MLP Exercise 1 for MLP using Sigmoid
• Given a two-layer feedforward neural network (or MLP) using sigmoid activation functions,

determine the output *𝑦 by representing the network in matrix form.

• Include the intermediate results of net inputs 𝑧L
M and activations 𝑎L

M of the hidden layer
and output layer.

41

𝜎 𝑧 =
1

1 + 𝑒L`

Solution of Exercise 1 for MLP using Sigmoid
• The net input vector 𝐳(!) of the hidden layer is given by

§ 𝐳(!) =
𝑧!
(!)

𝑧'
(!) = 𝐖(!) 𝐱 + 𝐛(!) =

𝑤!,!
(!) 𝑤!,'

(!)

𝑤',!
(!) 𝑤',!

(!)
𝑥!
𝑥' +

𝑏!
(!)

𝑏'
(!)

§
𝑧!
(!)

𝑧'
(!) = 0.1 0.5

0.2 0.4
0.7
0.3 + 0.6

0.8 = 0.1×0.7 + 0.5×0.3 + 0.6
0.2×0.7 + 0.4×0.3 + 0.8 = 0.82

1.06

• The activation vector 𝐚(!) of the hidden layer is given by

§ 𝐚(!) =
𝑎!
(!)

𝑎'
(!) = 𝜎 𝒛(!) = 𝜎 0.82

1.06 = 1/(1 + 𝑒&=.?')
1/(1 + 𝑒&!.=@)

= 0.6942
0.7427

• The net input vector 𝐳($) of the output layer is given by

§ 𝐳(') = 𝑧!
(') =𝐖(')𝐚(!) + 𝐛(') = 𝑤!,!

(') 𝑤!,'
(') 𝑎!

(!)

𝑎'
(!) + 𝑏!

(') = 0.3 0.7 0.6942
0.7427 + 0.9 = 0.3×0.6942 + 0.7×0.7427 + 0.9 = 1.6282

• The activation vector 𝐚(!) of the output layer (output of the network 4𝑦) is given by

§ h𝑦 = 𝐚(') = 𝑎!
(!) = 𝜎 𝒛(') = 𝜎 1.6282 = !

!AB+,../0/
= 0.8359

• The matrix representation of the MLP network is given by

§ h𝑦 = σ 𝐖(')𝜎 𝐖(!)𝐱 + 𝐛(!) + 𝐛(')

42

𝜎 𝑧 =
1

1 + 𝑒&:

MLP Exercise 2 for MLP using ReLU
• Given a two-layer feedforward neural network (or MLP) using ReLU activation function for the hidden

layer and linear activation function for the output layer, determine the output !𝑦 by representing the
network in matrix form.

• Include the intermediate results of net inputs 𝑧1
/ and activations 𝑎1

/ of the hidden layer and
output layer.

43

ReLU 𝑧 = max 0, 𝑧 = .0 for 𝑧 < 0
𝑧 for 𝑧 ≥ 0

Linear: 𝑔 𝑧 = 𝑧

Solution of Exercise 2 for MLP using ReLU
• The net input vector 𝐳(!) of the hidden layer is given by

§ 𝐳(!) =
𝑧!
(!)

𝑧'
(!) = 𝐖(!) 𝐱 + 𝐛(!) =

𝑤!,!
(!) 𝑤!,'

(!)

𝑤',!
(!) 𝑤',!

(!)
𝑥!
𝑥' +

𝑏!
(!)

𝑏'
(!)

§
𝑧!
(!)

𝑧'
(!) = 0.1 0.5

0.2 0.4
0.7
0.3 + 0.6

0.8 = 0.1×0.7 + 0.5×0.3 + 0.6
0.2×0.7 + 0.4×0.3 + 0.8 = 0.82

1.06

• The activation vector 𝐚(!) of the hidden layer is given by

§ 𝐚(!) =
𝑎!
(!)

𝑎'
(!) = ReLU 𝒛(!) = ReLU 0.82

1.06 = max(0, 0.82)
max(0, 1.06) = 0.82

1.06

• The net input vector 𝐳($) of the output layer is given by

§ 𝐳(') = 𝑧!
(') =𝐖(')𝐚(!) + 𝐛(') = 𝑤!,!

(') 𝑤!,'
(') 𝑎!

(!)

𝑎'
(!) + 𝑏!

(') = 0.3 0.7 0.82
1.06 + 0.9 = 0.3×0.82 + 0.7×1.06 + 0.9 = 1.888

• The activation vector 𝐚(!) of the output layer (output of the network 4𝑦) is given by

§ h𝑦 = 𝐚(') = 𝑎!
(!) = 𝑔 𝒛(') = 𝑔 1.888 = 1.888

• The matrix representation of the MLP network is given by

§ 4𝑦 = 𝐖($)ReLU 𝐖(!)𝐱 + 𝐛(!) +𝐛($)

44

ReLU 𝑧 = max 0, 𝑧

Linear: 𝑔 𝑧 = 𝑧

Why Deeper Neural Network is Better?

Universal Approximation Theorem (1989)

46

• Theorem: A multilayered network of neurons with a single hidden layer
can be used to approximate any continuous function to any desired
precision
§ 𝑓: ℝ~ → ℝK

• Only one hidden layer is enough
§ This refers to a Two-layer Feedforward Network

• one hidden layer and the output layer

Hidden Layer

Output
Layer

Input
Layer

Why “deep” not “wide”?

Wide + Shallow vs Thin + Deep
• For two MLP networks with the same number of parameters but

different width and depth, which one is better?

47

Wide + Shallow vs Thin + Deep

Is the deeper the better?
• Handwritten digit

recognition performance

• The deeper network uses
less parameters to achieve
the same performance.

It is better to have deeper network than wider network.

48

Why Deep Networks Outperform with Reduced Parameters?

• Hierarchical representation: Deep networks learn progressively more
abstract features, capturing intricate patterns and variations in the data.

• Reusing features: Deeper networks can share learned features across
multiple layers, reducing redundancy and the need for additional parameters.

• Non-linear transformations: Deep networks employ non-linear activation
functions, enabling them to model complex relationships and reduce the
need for a wider network.

• Regularization effect: The architecture of deeper networks introduces noise
and randomness, acting as a form of regularization, preventing overfitting and
improving generalization performance.

49

Loss, Cost, and Objective Functions

Components in Supervised Training

Model Loss Objective Optimization

Supervised

Neural Net

Deep Learning

51

• Model: Output predicts from inputs (Neural Networks)
§ features of the house => predicted sale price

• Loss: Measure difference between predicts and ground truth labels
§ square loss = (predict_sale_price – actual_sale_price)2

§ MSE = Average of the square loss for all training samples
• Objective: Any function to optimize during training

§ Minimize the MSE of the training data
• Optimization: Learn model parameters by solving the objective function

Objective of the MLP Modeling
• In order to approximate a function 𝑓, we typically leverage a training dataset 𝒟 consisting

of noisy estimated samples 𝐱(L) along with their corresponding target values 𝐲(L) (labels).

§ 𝒟:= (𝐱(7),𝐲(7)), (𝐱(8),𝐲(8)), … , (𝐱(O),𝐲(O)) = 𝐱 L , 𝐲 L
LP7
O

• Our model, a Multilayer Perceptron (MLP) or Feedforward Networks, utilizes the function
*𝐲 = 𝑓Q 𝐱 to make predictions *𝐲(L) = 𝑓Q 𝐱(L) that closely match the target values 𝐲(L).

• The main objective is to determine the optimal weights and biases parameters 𝜃 =

𝐖(M), 𝐛(M) LP7
R

for 𝑓Q, aiming to achieve a close approximation to 𝑓.

• The objective is to construct a model 𝑓Q 𝐱 L where the predicted values *𝐲(L) exhibit a
strong alignment with the true labels 𝐲(L), which is assessed by a loss function to measure
the difference between the predicted values *𝐲(L) and target values 𝐲(L)(labels).

52

Loss Function and Cost Function
• Loss Function: It is denoted as ℓ 𝐲(L), *𝐲(L) , is utilized to quantify the prediction error

between the model's prediction *𝐲(L) = 𝑓Q 𝐱 L and the true label 𝐲(L) for a single training
example (𝐱(L),𝐲(L)) from the dataset 𝒟:= (𝐱 L ,𝐲(L)) LP7

O
.

• The loss function can be represented as

ℓ 𝐲(L), *𝐲(L) = ℓ 𝐲(L), 𝑓Q 𝐱 L

• During the training process, the model's parameters (weights and biases) 𝜃 are adjusted to
minimize the total or average loss for a set of training examples.

• Cost Function: Average of loss functions over the entire training dataset. Measures overall
model performance and is used for optimizing model parameters.

ℒ 𝜃 =
1
𝑁=

15!

3

ℓ 𝐲(1), 𝑓' 𝐱 1 =
1
𝑁 =
15!3

ℓ 𝐲(1), !𝐲(1)

53

Loss Function vs Cost Function

Loss Function ℓ 𝑦(%), #𝑦(%)

• Error for a single data point (One
sample in training set)

• Calculated many times for every
training samples during the training
cycle (epoch)

• Has only error terms

Cost Function ℒ 𝜃
• Average error of N-samples in the data

(for the whole training dataset).

• Calculated once for entire training set
during the training cycle (epoch).

• Can have other terms like regularization,
etc.

54

ℒ 𝜃 =
1
𝑁K

76!

8

ℓ 𝐲(7), 4𝐲(7) + 𝜆K
-69

:

𝑤-
$

Loss term Regularization term

ℓ456789# 𝐲(+), :𝐲(+) =
1
2
𝐲 + − :𝐲 +

"
"

Objective Functions
• The Cost Function, ℒ(𝜃), measures a model's performance by averaging errors

across all training examples. It is a specific instance of the broader concept of an
objective function, which defines the overall goal of the machine learning task.

• Objective Functions encompass what the model aims to optimize, such as
minimizing errors, incorporating regularization, or maximizing rewards.

• They formulate optimization problems in various learning scenarios, guiding the
model to learn effectively from data.

§ Minimization:

§ Maximization:

𝜃∗ = argmin
<
ℒ 𝜃 = argmin

<
ℒ��� 𝜃

𝜃∗ = argmax
<

f
My(

�

P<(𝐱(M))
Maximum Likelihood
Estimation

Objective function of
regression problem

Cost and Loss Functions for Deep Learning
• Choosing the right loss/cost function depends on the specific problem and data, and

it’s crucial for aligning model behavior with task objectives.
• Regression Loss:

• Mean Squared Error (MSE): Measures the average squared difference between the
predicted and target values.

• Mean Absolute Error (MAE): Calculates the average absolute difference between the
predicted and target values.

• Classification Loss:
• Binary Cross-Entropy (BCE): Used in binary classification tasks, it measures the dissimilarity

between predicted and target probability distributions.
• Categorical Cross-Entropy (CCE): Suitable for multi-class classification, it quantifies the

difference between predicted and target probability distributions.

56

MSE and MAE Cost Functions for Regressions
• MSE and MAE are commonly used cost functions for Regressions tasks. For a single

training example with predicted output "𝐲(M) and target 𝐲(M), their losses are defined as

§ Squared Loss:

§ Absolute Loss:

• The Cost Functions using squared and absolute losses for a set of 𝑛 examples
are defined as
§ Mean Square Error (MSE):

§ Mean Absolute Error (MAE):

ℓ456789# 𝐲(+), :𝐲(+) =
1
2

:𝐲 + − 𝐲 +
"
"
=
1
2
u
,2!

#

:𝑦,
(+) − 𝑦,

(+) "

ℓ7:4 𝐲(+), :𝐲(+) =u
,2!

#

𝑦,
(+) − :𝑦,

(+)

ℒ;<= =
1
𝑁
u
+2!

>
1
2

:𝐲 + − 𝐲 +
"
"
=
1
𝑁
u
+2!

>

u
,2!

#

𝑦,
+ − :𝑦,

+ "

ℒ;?= =
1
𝑁
u
+2!

>

u
,2!

#

𝑦,
(+) − :𝑦,

(+)

57

Simple Car MPG (Mile Per Gallon) Regression

58

• A Multi-Layer Perceptron (MLP) model is trained using the Car MPG Dataset to make
regression predictions of Mile Per Gallon (continuous values), incorporating various car
attributes like horsepower, weight, acceleration, and more.

S𝑞𝑢𝑎𝑟𝑒𝑑 𝑙𝑜𝑠𝑠
= 20.2 − 17.5 $

= 7.29

https://colab.research.google.com/drive/1QyWO7_TI4-F4vYOD-HhKHBHxcashfMW4

https://colab.research.google.com/drive/1QyWO7_TI4-F4vYOD-HhKHBHxcashfMW4

MSE and MAE Cost Functions for Regressions
• MSE penalizes larger prediction errors more significantly due to the squaring

operation. This means that outliers or instances with larger errors contribute more
to the overall loss.

• MSE cost is more sensitive to outliers than MAE cost

MSE MAE
Outlier

samples

59

BCE: Loss Functions for Binary Classification
• If we want to classify an input only into two options, class 0 or class 1, we can use a

single neuron output layer with sigmoid activation function.

*𝐲 = 𝜎 𝐖(R)⋯𝑔 𝐖(8)𝑔 𝐖(7)𝐱 + 𝐛(7) + 𝐛(8) ⋯+𝐛(R)

• Binary Cross Entropy (BCE) aka Negative Log Loss is commonly used for binary
classification. The BCE loss function is defined as

BCE = −𝑦 log "𝑦 − 1 − 𝑦 log 1 − "𝑦 = J− log "𝑦 if 𝑦 = 1
− log 1 − "𝑦 if 𝑦 = 0

• Each predicted probability "𝑦 is compared to the actual class output value (𝑦 = 0 or 1)
and the predicted probability can be calculated by the sigmoid function.

60

Output
between
0 and 1

Visualization of Negative Log-Loss Function

61

Negative Log-Loss Curve: Demonstrating the increasing penalty as predicted
probabilities diverge from true labels. The steeper the curve, the higher the cost of
being wrong.

−
lo
g
!𝑦

• For positive samples with label 𝑦 = 1

§ BCE = −1 i log !𝑦 − 1 − 1 log !𝑦
§ BCE = − log !𝑦

• :𝑦 = 1 => BCE = − log 1 = 0

• :𝑦 > 0.5 => BCE will be small when
small when the prediction is correct

• :𝑦 close to 0 => BCE is a very large when
the prediction is wrong.

:𝑦

large
loss

small
loss

0.5

Visualization of BCE Loss Function

62

− log(:𝑦) − log(1 − :𝑦)

0.0 1.0

−
lo
g
!𝑦

:𝑦

−log 5𝑦
− log(1 − 5𝑦)

if 𝑦 = 1 if 𝑦 = 0

BCE = −𝑦 log !𝑦 − 1 − 𝑦 log 1 − !𝑦 = @− log !𝑦 if 𝑦 = 1
− log 1 − !𝑦 if 𝑦 = 0

Binary Cross Entropy (BCE) Example
Training Dataset

𝑥!
(1) 𝑥"

(1) 𝑦(1)

1 0.5 1

0.9 0.9 0

3 0.7 1

2.9 0.9 0

3.5 0.8 1

4 1.2 1

1

0.5

1
1

0.9

0.9

1
1

!𝑦 = 0.7

Sigmoid

Loss

𝑦(!) = 1, so:
BCE = −𝑦 log :𝑦 − 1 − 𝑦 log(1 − :𝑦)
= − log 0.7 = 0.15

𝑦(") = 0, so:
BCE = −𝑦 log :𝑦 − 1 − 𝑦 log(1 − :𝑦)
= − log 1 − 0.4 = 0.2

Binary cross-entropy (BCE)

BCE = − 𝑦 log :𝑦 + 1 − 𝑦 log 1 − :𝑦 = .
− log :𝑦 for 𝑦 = 1
− log 1 − :𝑦 for 𝑦 = 0

!𝑦 = 0.4

Categorial Cross Entropy Loss (or Softmax Loss)
• It is a Softmax activation plus a cross-entropy loss for multi-class

classification task

𝐳 "𝐲
CCE = −n

Ny(

z

𝑦N log "𝑦N

The target label 𝐲 is required to be represented by one-hot-encoding: 𝐲 =

𝑦!
𝑦"
𝑦$
𝑦%
⋮
𝑦1

=

0
0
1
0
⋮
0

=

"𝑦(
"𝑦)
"𝑦=
"𝑦w
"𝑦x

64

Categorical Cross Entropy (CCE) Example
Training Dataset

1 0.5 1, 0, 0 n

0.9 0.9 0, 1, 0 n

3 0.7

2.9 0.9

3.5 0.8

4 1.2

1, 0, 0 n

0, 0, 1 n

1, 0, 0 n

0, 1, 0 n

Class 1: 1, 0, 0 @

Class 2: 0, 1, 0 @

Class 3: 0, 0, 1 @

0.9

0.9

1
1

Softmax

4𝑦!
($) = 0.04

Output

𝑦!
$ = 0

𝑦$
$ = 1

𝑦%
$ = 0

Label CCE Loss

−log 0.95 = 0.051

Categorical Cross-Entropy
(CCE) CCE = −u

,2!

1

𝑦, log :𝑦,

65

𝑥!
(1) 𝑥"

(1) 𝐲(1)

4𝑦$
($) = 0.95

4𝑦%
($) = 0.01

Cross-Entropy Cost Function
• The Cost function ℒ 𝜃 using Categorial Cross-Entropy Loss for 𝐾

different class labels and training dataset with 𝑁 examples:

• This assumes one-hot encoded labels.

ℒ 𝜃 =:
%'(

)

:
*'(

+

−𝑦*
% log #𝑦*

%

66

𝐲 =

𝑦!
𝑦"
𝑦$
𝑦%
⋮
𝑦1

=

0
0
1
0
⋮
0

Cross-Entropy Cost Function for Binary Classification

• Binary Cross-Entropy Cost with 𝑦(%) ∈ 0, 1 (Sigmoid activation is used
in the output layer as single output):

• Binary Cross-Entropy Cost with 𝐲(%) in one-hot encoding

ℒ 𝜃 = −n
My(

�

𝑦(M) log "𝑦�
M + 1 − 𝑦(M) log 1 − "𝑦�

M

ℒ 𝜃 = n
My(

�

n
Ny(

)

−𝑦N
M log "𝑦�

M

𝐲(M) = 1
0 𝑜𝑟 0

1

67

Components in Supervised Training

Model Loss Objective Optimization

Supervised

Neural Net

Deep Learning

68

• Model: Output predicts from inputs (Neural Networks)
§ features of the house => predicted sale price

• Loss: Measure difference between predicts and ground truth labels
§ square loss = (predict_sale_price – actual_sale_price)2

§ MSE = Average of the square loss for all training samples
• Objective: Any function to optimize during training

§ Minimize the MSE of the training data
• Optimization: Learn model parameters by solving the objective function

Optimization

Gradient Descent
• Gradient descent is an optimization algorithm used to minimize the loss

function by iteratively adjusting the network’s weights. It is a fundamental
technique in training neural networks, including MLPs. The goal is to find the
set of weights that minimize the loss function, thereby improving the model’s
performance.

• The basic idea behind gradient descent is to iteratively update the model’s
parameters (weights and biases) in the direction that reduces the loss
function. This is done by computing the gradient of the loss function with
respect to each parameter and then adjusting the parameters in the
opposite direction of the gradient.

Function = MLP Model + A Set of Model Parameters

• #𝐲 = 𝑓, 𝐱 = 𝑔 𝐖(-)⋯𝑔 𝐖($)𝑔 𝐖(()𝐱 + 𝐛(() + 𝐛($) ⋯+ 𝐛(-)

• Formal definition for MLP (or Feedforward Networks)

§ 𝑓. 𝐱 where 𝜃 is the model parameter set of Feedforward Networks

• 𝜃:= 𝐖((), 𝐛((),𝐖($), 𝐛($), … ,𝐖(-), 𝐛(-)

Pick a function 𝑓, E = Pick a set of model parameters 𝜃.

Function set Different parameters 𝐖(1), 𝐛(1) (Weights and biases) => different
functionsHyperparameters: No. of Layer 𝐿 and No. of nodes of each layer 𝑁/

Activation function (Sigmoid, ReLU, Softmax, etc)

71

How to Pick a set of model parameters?
• To approximate a function 𝑓, we are generally given a dataset 𝒟:= 𝐱 M , 𝐲 M

My(
�

with

labels 𝐲 M are noisy estimates of the target function 𝑓 𝐱 M at different points 𝐱 M .

§ A MLP neural network defines a function "𝑦 = 𝑓< 𝐱 with a set of model parameters
𝜃:= 𝐖((), 𝐛((),𝐖()), 𝐛()), … ,𝐖(l), 𝐛(l) (weights and biases of the MLP model)

§ Goal is to find the parameters 𝜃 such that the model function 𝑓< 𝐱 best
approximates the target 𝑓 𝐱 .

• How to find the values of the parameters i.e., Supervised training of the network?
• Gradient Descent is the most common optimization method used in deep learning to

find the best parameter 𝜃∗ for a model 𝑓< 𝐱 using a loss/cost function:

72

𝜃∗ = min
'
ℒ 𝜃 = min

'

1
𝑁=

15!

3

ℓ 𝐲 1 , 𝑓' 𝐱 1

Gradient Descent Algorithm

73

ℒ 𝜃

gradient

∇/ℒ(𝜃A)

𝜃∗ = min
/
ℒ 𝜃 = min

/

1
𝑁
u
+2!

>

ℓ 𝑦 + , 𝑓/ 𝐱 +

𝜃∗
𝜃

Step 0: Randomly initialize weights and biases
parameters: 𝜃 = 𝐖(!), 𝐛(!),𝐖("), 𝐛("), … ,𝐖(,), 𝐛(,)

Step 1: Compute the cost function ℒ 𝜃 , which
measures how well the model is performing of the
dataset.
Step 2: Find the gradients of the cost function
with respect to each parameters ∇<ℒ(𝜃�)
Step 3: Update the parameters by

𝜃�[(= 𝜃� − 𝜂 T ∇<ℒ(𝜃�)
where 𝜂 is the learning rate that determines how big
the updates should be in each iteration 𝑡.
• Repeat the above steps 1 to 3, unit the cost is

low enough or convergence.

Case Study: Regression
Predicting Boston Housing Prices

• Dataset: Boston Housing

• Input: 13 features (Crime, Rooms, Age)

• Output: Continuous Price.

Result: RMSE of 3.4

• We define a neural network with inputs equal to
the 13 different attributes of houses. These
connect to a hidden layer of 8 neurons, which
connects to another hidden layer of 6 neurons.
Output neuron count must match the input neuron
count of the next layer.

• We generally use the Relu activation for hidden
layers. The output layer has no activation function
since this is a regression task predicting a
continuous house prices.

75https://colab.research.google.com/drive/1IrjUJ_TuQXVNfPNXze0yuRgLr2ywJGe2?usp=sharing

https://colab.research.google.com/drive/1IrjUJ_TuQXVNfPNXze0yuRgLr2ywJGe2?usp=sharing

Case Study: Classification
The Iris Dataset

https://colab.research.google.com/drive/1EsatlPEY3fb21qgbMyel4Es_bM8sherJ
76

Softmax

Cross-Entropy Loss = -(1*log(0.85)+0*log(0.05)+0*log(0.10) = -log(0.85) = 0.16

𝑦! = 1

𝑦" = 0

𝑦" = 0

Ground Truth

The classification labels are
one-hot encoder

Dataset: Iris (150 samples).
Input: 4 physical dimensions.
Output: Probability of species
Accuracy: ~98%

https://colab.research.google.com/drive/1EsatlPEY3fb21qgbMyel4Es_bM8sherJ

77https://colab.research.google.com/drive/1EsatlPEY3fb21qgbMyel4Es_bM8sherJ

https://colab.research.google.com/drive/1EsatlPEY3fb21qgbMyel4Es_bM8sherJ

MLPs for Simple Regression and Classification

• Boston Housing Dataset
§ 13 features and 506 records
§ A 3-Layer MLP (13-8-6-1)
§ No. of Parameters: 173

• 13*8+8*6+6*1+8+6+1

§ Performance: RMSE = 3.97

Regression

• Iris Flower Dataset
§ 4 features and 150 records
§ A 3-Layer MLP (4-8-6-3)
§ No. of Parameters: 187

• 13*8+8*6+6*3+8+6+3

§ Performance: 98% Accuracy

Classification

78

Challenges in Deep Architectures

Fix: Use ReLU activation
Fix: Use Dropout, L1/L2
Regularization, Early Stop,
Data Augmentation.

Fix: GPU acceleration &
optimized frameworks
(PyTorch/TensorFlow).

The Cornerstone of Deep Learning
• From basic MLPs to Large Language

Models (LLMs) such as ChatGPT-5,
Gemini 3 Pro, the architecture remains:
Layers, Activation, and Backpropagation.

• MLPs (or FFNs) paved the way for the AI
resolution, proving that machines can
learn to approximate any continuous
function in our universe.

+

Masked Multi-Head
Attention

FFN

+

Embeddings

+

Linear

Softmax

Output sequence (shifted right)

Output Probabilities

𝐊𝐐 𝐕

Positional Encoding

LayerNorm

LayerNorm

N x

80

