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Recap: The Linearity Limit

The Precursor: Single-Layer Perceptron

Limitation: Can only model linear decision
boundaries.

The XOR Problem: Linearly Inseparable
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Key Insight: No single straight line can separate the
true values from the false values in an XOR function.
To solve this, the decision boundary must be bent.



Solving XOR Using a Two-Layer Neural Network
* A two-layer neural network introduces a hidden layer with multiple neurons, which
allows the network to create nonlinear decision boundaries.

* These hidden layer neurons can create intermediate representations that enable
the XOR function to be modelled.
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Activation function is the unit step function u(z)
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Multilayer Perceptron (MLP)
or
Feedforward Network (FFN)



Multi-Layer Perception (1971)

* The XOR problem revealed the necessity of multilayer neural networks, which is
also known as Multi-Layer Perceptron (MLP).

* MLPs contain one or more hidden layers between the input and output layers that
enable modeling of nonlinear functions.

* The first generation of MLPs was introduced by A. G.
Ivakhnenko and V. Lapa.

= They published the first general, working learning . Q»/o:.
algorithm for supervised deep feedforward MLPs in e
1971. e
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Feedforward Networks (FFNs)

 Today the term "Feedforward Network" is more commonly used in deep
learning, referring to Multi-Layer Perceptron (MLP).

* |In addition, the layer of FFN is also referred as a Fully Connected (FC) Layer.

Input Hidden Layer 1 Hidden Layer 2 Layer 3

Y1 7 Predicted Output

a®
Y2 *f’—l ‘—a@) l(”‘

Y3 = =Softmax(W®a® + b®)

a(z) ReLU(W®@a® + p®@)
a® = ReLU(W®x + bM)



Feedforward Networks (FFNs)

The number of layers in the FFNs (excluding the input layer) is known as depth

Each layer can be seen as a vector-to-vector function which takes a vector of inputs
from the previous layer and computes a scalar value.

Below network can be seen as a composition of functions

§=fo® = f; (L))

= f; being the first hidden layer,

Input Hidden Layer 1

= f, being the second hidden layer,
= f3 being the final output layer.

f1() » f2() » f3()




The Universal Approximation Theorem
SOLVING NON-LINEARITY WITH HIDDEN LAYERS

Input Hidden Layer 1  Output Layer

9, L Transformed
Space

Input
Space

The Universal Approximation Theorem states that a feedforward
network with a single hidden layer containing a finite number of
neurons can approximate any continuous function. The hidden
layers transform the input data into a higher-dimensional space
where patterns become linearly separable.

Feature Extraction



Matrix Representation of FFN

 Net input of the Hidden Layer 1: z(D) = WDx + (D)
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z(D = WDx + b js called Net Input (Inputs of the activation function)
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Matrix Representation of FFN

» Activations of the Hidden Layer 1: at®) = gD (z(M)) = gM(WwDx + pD)

Input

X1
X = X2

X3

X4
a® =

r, (D

W(l) =

of layer 1

€D

= gW(zM) = g

Activation function

€D
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b =

_bil)_
b

11




Matrix Representation of FFN

Activations of the Layer 2: a®®? = g@(W@a® + p@) = gO(WRgO(WDx + b)) + b?)
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W® p®

2 —

a® —

(a;”’| @ (@)
%1) Wii Wig2
a,
(2) — (2) (2)
N Wi = W1 Wiy
?1) w® @
la,”’ | W31 3,2
2 (2) (2) 2)
a§ ) Wii Wiz W3
@) - (2 (2) (2) 2)
a, | = g® Woi Wy, Wyg
2) (2) (2) 2)
as W31 W35 W33

(2)
W3
(2)
W, 3

(2)
W33

(2)
Wi 4
(2)
W4
(2)
W34

(2)7
Wi 4

(2)
W, 4

(2)

W34

p@

2) = |,@
b@® = p]
p@

b(2)

+[bs?
@

12



Matrix Representation of FFN

» Activations of the Output Layer: § = a®® = g©®)(W®a@ + p®)

a;” Wiy wy wig b

a® = aEZJ Ww® = W2(,31) WZ(?Z) W2(,33) b® = [p®
o] w® W w®. b

5, -a§3)‘ -W1(,31) W1(,32) W1(,33)- —agz)- _b§3)_

§ = }:,2 _ ags) :g(s) Wz(i) W2(,32) W2('33) agz) n b§3)
V2] |o®)] w® w® wO|[e®] b

§=a® = g®(WOh® 4 p®)

= g® (W gD (W2gD(WDx + b®) + b@) + b®)

Feedforward neural network is just a function of input vector x.
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Feedforward Neural Network Formulation

Input vector

a® =x

Input Layer Layer 1 Layer 2

Output

= gO(WDx +b®)

2@

i _

. Output
Y vector

= g®O(WP@a® 4+ p®)

a® = gO(WWOal-D 1 p®)

§=f,x) = gOW®E .. g(WDgO(WDx + bD) + b@) . + b®)

14




Notation Definition for Hidden Layers

Layer[ — 1

n;_, nodes

o-ag
o-0g

Layer [

n; nodes

Output of a neuron:
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Notation Definition for Weights

Layer[ — 1

Layer [

n;_, nodes

n; nodes

Layer ([ — 1) to Layer [
wO

;]\ From neuron j of Layer [ — 1
to neuron [ of Layer [

ni—1
A
| \
o OREEEEH O B
Wit Wiz Wini_,
) ) )
wO =| W21 Wao 0 Woqn .
. . . . [~ nl
) ) )
_Wnl,l Wnl,Z Wnl,nl_l_

Weights between two layers is a matrix
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Notation Definition for Biases

Layerl — 1

Layer [

n;_, nodes

n; nodes

bl.(l) : Bias for neuron i at layer [

pb®D =

_bil)_
bV

}
by,
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Notation Definition
()

Layer I — 1 Layer [ : input of the activation function for neuron i
n;_q nodes n; nodes at layer [ (Net Input)

@ _ ., O 1-1) (l) a=v @ (1-1) D
z; =W ay +w, Ja, +-t+w LN11n11+b

_ (l)_
ni—1
0 _ 0 _(1-1) Q) (l)
z; —Zwl]a] + b; z® = [%2
/=1 0

0 l
agl) — g(l) (Zl(l)) a(l) _la, | = g(l) Zé)
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Notation Summary

)
Wl,]
neuron in layer (I — 1) to the i-th
neuron in layer [.

al@ : Output of the i-th neuron in layer [. : the weight connecting the j-th

a(: Output vector of a layer L.

WO: the weight matrix connecting

Zl-(l): Net Input of the i-th neuron in layer [. layer (1 — 1) to layer .

(Inputs of the activation function) 0 , _ ,
b;”: the bias of i-th neuron in layer [.

z(: Net input vector of activation function
in layer L. b®: a bias vector of neurons in layer .
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Anatomy of the Architecture

INPUT LAYERS HIDDEN LAYERS OUTPUT LAYERS

—— o e e e e e e e e e o = = ey
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Y1 :
:

A |
Y2 §
L Output |
vector :

:

1

A 1
VK :
1

a® = gO(WOal-D 4 pO)
Receives raw data The engine of the network. Performs transformations

(features). Denoted via weights and activations to learn intermediate
as vector x. representations.

Produces the final prediction §
(probability or value).



Example Feedforward Networks

Input Layer 1 Layer 2 Layer 3

Y1 7 Predicted Output

(3)
Vo = f’—[ ‘-aﬂ”—l (3)

Y3 24 = SoftmaX(W(3)a(2) +b®)

a® = ReLU(W®a® + b@)
a® = ReLU(WWx + bM)

9 = fp(x) = Softmax(W®ReLU(W @ ReLU(WDx + bD) + b®) + b®) a) = gO(Wwhal= +p®)

Model Parameters (Weights and Biases): § = {(W1),bD), (W& b®), (W3 p®)}

21



Traditional Activation Functions



What are Activation Functions?

 An Activation Function g(z) decides

whether a neuron should be

activated or not.

e Activation functions introduce non-
linearity into the network, which is
essential for modeling complex
relationships in data.

* Without non-linearity, the model
would essentially be a linear model, Xd function
which cannot approximate complex
tasks

Linear Activation

function



Why Add Non-Linear Activation Function?

* No Nonlinearity: A network of linear layers collapses into a single linear transformation,
rendering deep architectures useless.

- g(W® g(WDx + b®) + b@) = WOWDx + (WDbD 4+ p®)

=W'x+Db’

Drop or use linear activation function such as g(z) = z is

equivalent to a single linear layer. Linear functions produce linear
decisions no matter the network size

* Non-linearity adds capacity to the model to

approximate any continuous function to Non-Linear
arbitrary accuracy given sufficiently many ac“"at'ogl‘;gcvcﬂf:s
hidden units. approximate

arbitrarily complex

* See “universal approximation theorem” functions

24


https://en.wikipedia.org/wiki/Universal_approximation_theorem

The Non-Linear Spark: Activation Functions

e Activation functions decide whether a neuron 'fires". They introduce non-linearity,
preventing the network from collapsing into a simple linear regression.

Unit Step Sigmoid Tanh
1

1 1
_ |1, for z=0 8.5
u(z) = {0, otherwise }/ tanh(z)
0.5 1 + 4 + :
= E T 2 3
8lz) 1+e2
R — 1 2 3 B
Legacy / Not Differentiable
Linear RelLU Leaky RelLU
9(z) =z 1
i i
05l 5. max(0,z) 0.54
A 05 05 1 0.1 -1 - 05 1
-0.5¢ ‘ ‘ -0.5¢
ol =1 9.5 0.5 1 |

Identity Function Prevents Dead Neurons



Binary Step and Linear Activation Functions
Linear Function
* Linear (or Identity) Function _— e

g(z) =z,theny =wlix+b .

= The activation is proportional to the input.
= |tis only used in the output layer for Regression N e
applications. S

Binary Step Function

* Binary Step Function (Non-Linear)

, for z>0 and © = 1, wix+b=>0 10-
, for z<0 Y7o, w'x+b<0

u(z) = {(1)

0.5-

= This is used for Binary Classification applications, but it |,
is not a differentiable function and not used in modern

-5.0 25 0.0 2.5 5.0

neural network.
26



Limitation of Binary Step Activation Function

* The original Perceptron activation is harsh, firing
only when weighted input sum exceeds threshold

* Thresholding logic means very similar input values
can get completely different outputs

Step Function

* z =-0.01 and 0.01 get different outputs of 0 and 1

Discrete
* Abrupt decision change comes from step function
Sigmoid Function
nature of perceptron 1
* Forreal applications, want smoother activationthat | —
gradually changes fromOto 1

0.5
* Sigmoid function provides continuous smoothness J
and avoiding harsh cliff of the perceptron

27



Sigmoid Activation Function

* The sigmoid function is an S-shaped curve (smoother decision function) that always
returns an output between 0 and 1 that mapped from the range of —oo to co.

* Itis especially used for models where we have to predict the probability as an
output. Since probability of anything exists only between the range of 0 and 1,
sigmoid is the right choice

1
1 AR -| ESNT O
"= og(z) = =
(2) 1+e~ 2  1+exp(-2) o(z) = 7 +1e—Z
w N d49(2) _ 0.5
o' (z) = = a(z)(l — a(z)) J
In the 1980s and early 1990s, the sigmoid function was
the default activation function for neural networks. 0

* The sigmoid function is differentiable but has two problems: (1) a very small gradient (slop) for
large positive and negative inputs and (2) a lack of zero-centeredness in its output.

* These issues can create challenges during deep learning's backpropagation.
28



Tanh Activation Function

* Tanh is aka as Hyperbolic Tangent function. The Tanh function also

shape similar to the sigmoid function while addressing its non-zero-

problem with output range values in the range of -1 to 1.

 Basically, Tanh is a shifted and stretched version of the --------------
sigmoid function, and the output of Tanh is symmetric

around zero, leading to faster convergence |
= tanh(z) = ef—e”” _ exp(z)—exp(-2z)

has an S-
centered

eZ+e~? exp(z)+exp(—2z) 0

. dranh@ _ g tanh(z)?

dz

In the late 1990s and early 2000s, the tanh function was a
common choice of activation function for neural networks. = """~

https://www.youtube.com/watch?v=pfPDTxkXrfM

29


https://www.youtube.com/watch?v=pfPDTxkXrfM

Shortcomings of Sigmoid and Tanh

* The derivatives (gradients) of the both sigmoid and tanh functions are
small for large positive and negative inputs, which can cause a Vanishing
Gradient Problem during backpropagation in neural network training.

1 1.0

a(z) = 14+ e2 — sigmoid tanh(z) = € ° — tanh

do — derivative d tanh ez +e % — derivative
_— = — 0.8} dan

dz U(Z)(l U(Z)) e 1 — tanh(2)? 05}

0.2 \ '
00 . Y -1.0b

-6 -4 -2 ) 2 4 6
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Rectified Linear Unit (ReLU)

* RelU activation function to the rescue. It is a piecewise linear function that
outputs the input directly if it is positive, otherwise, it outputs zero.

z ifz=0
= ReLU (z) = max(0,z) = =
( ) ( ) 0 1fZ<O dReLU={1 for z>0
dz 0 forz<O0
; d ReLLU _ 1 for 7 2 0 ; ReLU activation function : Derivative
dz 0 for z<O0 4_ .

It has become the default activation
function for many types of neural

o, ® N N 1
networks because it is easier to train

and computationally efficient. ’



Leaky RelLU

* Leaky RelU is an improvisation of the regular ReLU function that addresses
the problem of zero gradient for negative values

* Unlike traditional ReLU functions, which set all negative values to zero, Leaky
RelLU allows a small number of negative values to pass through

for z >0
- Leaky ReLU(z) = ) =1 % = Leaky ReLU(z2)
eaky ReLU(z) = max(z, a - z) {a-z for 72 2 0

dLeakyReLU |1 for z =0
dz a for z<O0

e Commonlyuseda = 0.01




Softmax Activation
for Multiclass Classification



Perceptron for Binary Classification

* Even with modern activation functions, perceptron is fundamentally still a binary classifier that
outputs a probability P(y = 1|x) representing its confidence that the input x belongs to the positive

classy = 1.
* Classification is determined by a standard threshold of 0.5: if § =0.5, the prediction is Positive (1); if
y <0.5, it is Negative (0).

b
@ Sigmoid
W1 Activation

)
ol

W N\
@ - 9 =0c(wT'x+b)
: - P(y - 1|X) 6 -4 -2 0 2 4 6
Waq Output is the probability 1
@ between 0 and 1 for a(z) = 1+ e—2

positive (label y = 1)
Inputs
34



Extend Perceptron to Multiclass Classification

* In multiclass classification, we can employ K separate binary perceptron models,
each tailored to a specific class, to estimate the probability of y; given x (P(yj|x)).

* By selecting the class with the highest probability score, we can determine the
predicted class for the purpose of multiclass classification.

(V1] _U(W{X + by)]
V2| _|o(wlx + b))

Ykl lo(wkx + by)d

ij e R¥%% and b € RE*® where K is the number of classes

The outputs of these activations y; are i
class-membership probabilities z yi#1
(Not mutually exclusive classes) j=1

35



Softmax Activation: Multinomial Probability Output

* Softmax is just an exponential function that normalizes the activations so that they
sumuptol

* For example, output layer scores z = [z4, 25, 23, 24, 25| = [1.3,5.1,2.2,0.7, 1.1]"

Z.
e l
softmax(z); = K 7 fori = 1,2,...,K and K is the number of classes
j=1€¢"’
Softmax
Output
IafnjyglrJ activation function Probabilities
1.3 0.02] [V1]
5.1 eZi 0.90 5;2 K
Z 2.2 | — =) 0.05| = 5;3 z yi =1
K Zj [
0.7 j=1°¢ 001 [y, U=
| 1.1 ] 0.02f [,
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Softmax Activation: Multinomial Probability Output

y = softmax(Wx + b)

by

\Q~

\

><>§—|-nom

— k=

argmax

<

-

Activations are class-
membership probabilities
(mutually exclusive classes)

Example with

K=5
Y11 10.02-
Y2 0.90 Predicted
y3|=10.05 Class
: 0.01| Probabilities
Ve -0.02-

K
2.5
j=1
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Softmax based Multiclass Classification

X = [xq, %3, ---:xd]T Yy =199, ""yK]T
(W11 Wiz 0 Wig] b,
Wa1 W32 W3 a
W = . b = Ibz
— P, Wg1 Wk Wk d by
S
o W € RX¥%4 gnd b € RE*1  where K is the number of classes
F
T % Zz=Wx+b
M
A PaN -
X Y1 Z1
1 Z
V= y:Z = softmax(z) = softmax| | 7
— Jx __’)71{ Zx
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Softmax Example

Softmax The output of Softmax represents a discrete
probability distribution across classes.

e“

YK e% W
ezz m

N

e’
Purple _ - _ s o . - 4 -
YK e Z Wi1 Wip Wia7 [*1 by
;= Zy| W21 Wap Wa,a | | X2 + b,
Zg Wk1 Wgkp2 Wk allXa by

25(:1 er

The softmax activation function is widely preferred as the output layer choice for
classification applications.

39



Hyperparameters of MLPs (or FFNs)

* In MLPs, neurons are organized into layers. Hidden layers take inputs from neurons
and pass their activations to other neurons

= Note that when we count the number of layers, the input layer is NOT counted.

Input Hidden Layer 1

Hidden Layer 2 Hyperparameters of the MLP Model :
* No. of Layers: 3 (L = 3)

Qutput Input Layer: 4 neurons (d = 4)
S * Llayer 1: 4 neurons (n, = 4)
—_— * Layer 2: 3 neurons (n, = 3)
e Output Layer: 3 neuron (K = n3 = 3)
_ e Activation function: Sigmoid o

7= fo(x) = o(WOag(WRg(WDHx + D) + b@) 4+ b®)

Model Parameters (Weights and Biases) 8: = {(W®,b®), (W®,b®), (W&, b))}
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MLP Exercise 1 for MLP using Sigmoid

e Given a two-layer feedforward neural network (or MLP) using sigmoid activation functions,
determine the output ¥ by representing the network in matrix form.

* Include the intermediate results of net inputs zY and activations a'”

i ; ~ of the hidden layer
and output layer.

1

7 e

Input Layer Hidden Layer  Output Layer




Solution of Exercise 1 for MLP using Sigmoid

The net input vector z(1 of the hidden layer is given by

L@ B ) P 10
= zW= : : [x]+ o
z 2 b,

) %1) WD x4+ p® = o
2
@
[21)] _ [0.1 0.5 [821 N [821 _ [0.1x0.7 + 0.5%0.3 + 0.6] _ [0.82]

€Y)
Wo1 Waq

0.2 0.4 0.2x0.7 + 0.4x0.3 + 0.8 1.06

The activation vector a(P) of the hidden layer is given by

€y

. _ || 2 _ (10827 _ [1/(1+ 7)) _ 10.6942
a = [a?)] = O'(Z(l)) =0 ([1.06]) = [1/(1 + e—1.06)l - [0_74_27 63

The net input vector z(® of the output layer is given by

o
o

0.6942

+|p?] =103 071 [0.7427

= 2@ =[P = W®@a® +b@ = [w? W] [ | +10.9] = 0.3x0.6942 + 0.7x0.7427 + 0.9 = 1.6282

The activation vector a(!) of the output layer (output of the network ¥) is given by

= §=a® = [af)] = 0(z®) = 0(1.6282) =——=, = 0.8359

—1.6282
The matrix representation of the MLP network is given by
= 7 =c(W@g(WDx + bD) + b@)
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MLP Exercise 2 for MLP using RelLU

* Given a two-layer feedforward neural network (or MLP) using ReLU activation function for the hidden

layer and linear activation function for the output layer, determine the output y by representing the
network in matrix form.

* Include the intermediate results of net inputs Zi(l) and activations al@ of the hidden layer and
output layer.

ReLU (z) = max(0,z) = {2 igl‘: j i 8

Linear: g (z) = z

Input Layer Hidden Layer  Output Layer
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Solution of Exercise 2 for MLP using RelLU

The net input vector z( of the hidden layer is given by ReLU (z) = max(0, z)

Linear: g (z) =z

(€)) D
X2 bgl)

-z = [?1) = WO x+b® = [T e
tg;] _ [0.1 0.5] [89 N [821 _ [0.1x0.7 + 0.5%0.3 + 0.6] _ [0.82]

Wy1
“lo2 04 0.2x0.7 + 0.4x0.3 + 0.8] ~ [1.06

The activation vector a(P) of the hidden layer is given by

<

€y

a 0.82 max(0, 0.82)] 0.82
a Lgn] ReLU(z®) = ReLU ([oc]) [max(O, 106)) = 106 -

The net input vector z(® of the output layer is given by
o

o

0.82

_[,@]_ = [w 2
. Z(Z)_[21 ]_w<2>a<1)+b(2)—[w1(,1) wl(,z)][ 1.06

+[6P] =103 071[7 2]+ [0.9] = 0.3x0.82 + 0.7x1.06 + 0.9 = 1.888

The activation vector a(!) of the output layer (output of the network ¥) is given by
= j=a® = [af)] = g(z®) = g(1.888) = 1.888

The matrix representation of the MLP network is given by
= 9= W@ReLU(WDx + b)) + b
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Why Deeper Neural Network is Better?



Universal Approximation Theorem (1989)

Theorem: A multilayered network of neurons with a single hidden layer

can be used to approximate any continuous function to any desired

precision
= f:R™ > R"
* Only one hidden layer is enough

= This refers to a Two-layer Feedforward Network
* one hidden layer and the output layer

Why “deep” not “wide”?

X Y DR
A AR S SRS NS
LU

T
1770075007V gS

N
7%

Hidden Layer

46



Wide + Shallow vs Thin + Deep

* For two MLP networks with the same number of parameters but
different width and depth, which one is better?

Simple Neural Network Deep Learning Neural Network

@ nput Layer () Hidden Layer @ Output Layer
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Wide + Shallow vs Thin + Deep

Is the deeper the better?

* Handwritten digit
recognition performance

xR
.
—

-

0

o
g

N

* The deeper network uses

(Fn]

less parameters to achieve

AN
LA

the same performance.

Parameters

1 hidden layer o3 hidden layers

It is better to have deeper network than wider network.
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Why Deep Networks Outperform with Reduced Parameters?

* Hierarchical representation: Deep networks learn progressively more
abstract features, capturing intricate patterns and variations in the data.

* Reusing features: Deeper networks can share learned features across
multiple layers, reducing redundancy and the need for additional parameters.

* Non-linear transformations: Deep networks employ non-linear activation
functions, enabling them to model complex relationships and reduce the
need for a wider network.

* Regularization effect: The architecture of deeper networks introduces noise
and randomness, acting as a form of regularization, preventing overfitting and
improving generalization performance.

49



Loss, Cost, and Objective Functions



Components in Supervised Training

[ Supervised ]

[ Model ] [ Loss ] [Objective] [Optimization]

A 4

[ Neural Net ]

A 4

[ Deep Learning ]

Model: Output predicts from inputs (Neural Networks)
= features of the house => predicted sale price
Loss: Measure difference between predicts and ground truth labels
= square loss = (predict_sale_price — actual_sale_price)?
= MSE = Average of the square loss for all training samples
Objective: Any function to optimize during training
=  Minimize the MSE of the training data
Optimization: Learn model parameters by solving the objective function
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Objective of the MLP Modeling

In order to approximate a function f, we typically leverage a training dataset D consisting
of noisy estimated samples x(9) along with their corresponding target values y( (labels).

= D= [(xD vy (x@ v V) ¢ = [(x@® yONY

D: = {(x Vo), (x4 yt), L (xWY )y )} = {(x Y )}i=1

Our model, a Multilayer Perceptron (MLP) or Feedforward Networks, utilizes the function
¥ = fy(x) to make predictions §) = f, (x(i)) that closely match the target values y®.

The main objective is to determine the optimal weights and biases parameters 6 =

{(wl, b(l))}f=1 for f, aiming to achieve a close approximation to f.

The objective is to construct a model f,(xY)) where the predicted values § exhibit a
strong alignment with the true labels y®), which is assessed by a loss function to measure
the difference between the predicted values )7(") and target values y(i)(labels).
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Loss Function and Cost Function

Loss Function: It is denoted as £y, §V), is utilized to quantify the prediction error
between the model's prediction §() = f, (X(i)) and the true label y(® for a single training

example (x(V,y®) from the dataset D: = {(x(i),y(i))};\’:l.

The loss function can be represented as
p(y®,50) = ¢ (ya), £, (Xa)))

During the training process, the model's parameters (weights and biases) 8 are adjusted to
minimize the total or average loss for a set of training examples.

Cost Function: Average of loss functions over the entire training dataset. Measures overall
model performance and is used for optimizing model parameters.

N
L(O) = %Z{)(y(i),fe (X(i))) :]_t z {)(y(i)’s;(i))

i=1N
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Loss Function vs Cost Function

Loss Function f(y(i), y@) Cost Function L(6)

* Error for a single data point (One * Average error of N-samples in the data

sample in training set) (for the whole training dataset).
e Calculated many times for every * Calculated once for entire training set

training samples during the training during the training cycle (epoch).

cycle (epoch) * Can have other terms like regularization,
e Has only error terms etc. y .

e eay9,90) =2 0 - g0 O =R 3 A0S i) )
Loss term Regularization term
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Objective Functions

 The Cost Function, £(0), measures a model's performance by averaging errors
across all training examples. It is a specific instance of the broader concept of an
objective function, which defines the overall goal of the machine learning task.

* Objective Functions encompass what the model aims to optimize, such as
minimizing errors, incorporating regularization, or maximizing rewards.

* They formulate optimization problems in various learning scenarios, guiding the
model to learn effectively from data.

= Minimization: 6* = argmin £(0) = arg min Lysg(8) Objectiye function of
0 6 regression problem

Maximum Likelihood
Estimation

N
= Maximization: G* = arg maxl_[ PQ(X(i))
]
i=1



Cost and Loss Functions for Deep Learning

* Choosing the right loss/cost function depends on the specific problem and data, and
it’s crucial for aligning model behavior with task objectives.

* Regression Loss:

* Mean Squared Error (MSE): Measures the average squared difference between the
predicted and target values.

* Mean Absolute Error (MAE): Calculates the average absolute difference between the
predicted and target values.
* Classification Loss:

* Binary Cross-Entropy (BCE): Used in binary classification tasks, it measures the dissimilarity
between predicted and target probability distributions.

* Categorical Cross-Entropy (CCE): Suitable for multi-class classification, it quantifies the
difference between predicted and target probability distributions.
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MSE and MAE Cost Functions for Regressions

 MSE and MAE are commonly used cost functions for Regressions tasks. For a single
training example with predicted output )Ar(i) and target y(i) their losses are defined as

QU

= Squared Loss: ¢54,4rea(y®, §9) =_;||§,(i) _y(i)”z :_;Z 61 _ (l)

= Absolute Loss: £4,5(y®,59) —Z| O _ 5 ®

* The Cost Functions using squared and absolute losses for a set of n examples
are defined as

N d
= Mean Square Error (MSE): .. _Nz_”y(l)_y(z)” _Nz<z D _ (t) )
i=1 =1

j=1

N d
= Mean Absolute Error (MAE): Lyag = Nz <Z D _5® )
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Simple Car MPG (Mile Per Gallon) Regression

« A Multi-Layer Perceptron (MLP) model is trained using the Car MPG Dataset to make
regression predictions of Mile Per Gallon (continuous values), incorporating various car
attributes like horsepower, weight, acceleration, and more.

Cylinders =8

m \ 9 h 9 ; Displacement = 307.0
G| MPG |

COMBINED' COMBINED' COMBINED'

\\\

Horsepower = 130.0 ‘\\ﬂ

Miles Per Gallon

Weight = 3504 mpg = 17.5

Acceleration =12.0

Model Year =70

Squared loss
= (20.2 — 17.5)?
=7.29

Origin=1

https://colab.research.google.com/drive/1QyWO7 TI4-F4vYOD-HhKHBHxcashfMW4
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MSE and MAE Cost Functions for Regressions

 MSE penalizes larger prediction errors more significantly due to the squaring
operation. This means that outliers or instances with larger errors contribute more

to the overall loss.
e MSE cost is more sensitive to outliers than MAE cost

MSE MAE

/oo Outlier
o /samples o
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BCE: Loss Functions for Binary Classification

* If we want to classify an input only into two options, class 0 or class 1, we can use a

single neuron output layer with sigmoid activation function.

§ = o(W® .. g(WDg(WDx + b®) + b®) -+ + b®)

-10 -5 ) 5 10

e Binary Cross Entropy (BCE) aka Negative Log Loss is commonly used for binary
classification. The BCE loss function is defined as

—log(y) if y=1

BCE = —ylog( — (1 —y)log(1 — %) = {_ log(1—9) if y=0

Output

between
Oand 1

* Each predicted probability ¥ is compared to the actual class output value (y =0 or 1)

and the predicted probability can be calculated by the sigmoid function.
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Visualization of Negative Log-Loss Function

Negative Log-Loss Curve: Demonstrating the increasing penalty as predicted
probabilities diverge from true labels. The steeper the curve, the higher the cost of

being wrong.

* For positive samples with label y = 1
* BCE = —1-log(y) — (1 — 1) log(y)
= BCE = —log(y)
* y=1=>BCE = —log(1) =0

* 9 > 0.5 =>BCE will be small when
small when the prediction is correct

* y close to 0 => BCE is a very large when
the prediction is wrong.

Range of negative log-likelihood

large
loss

small
\IOSS
OjO 0j2 0.l4 0.5 0j6 0j8 1j0
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Visualization of BCE Loss Function

—log(¥) if y=1

BCE = —ylog(y) — (1 —y)log(1 —¥) = {_ log(1—9) ify=0

Visualization of Log-Loss Functions

0.2 0.4 0.6 0.8

y

0.0 1.0



Binary Cross Entropy (BCE) Example

Training Dataset

xii) xéi) o
1 05 1
09 09 0
3 07 1
29 0.9 0
3.5 0.8 1
4 1.2 1

5}:

BCE=—ylog(y) — (1 —y)log(1—7)

Binary cross-entropy (BCE)

y?) =0, so:

U4 BCE=—ylog(y) — (1 —y)log(1 — 9)
= —log(1—0.4) = 0.2

BCE = —[ylog(®) + (1 —y)log(1l — p)] = {

—log(9) fory=1
—log(1—9) fory=20




Categorial Cross Entropy Loss (or Softmax Loss)

* It is a Softmax activation plus a cross-entropy loss for multi-class
classification task

?:;Q?t activast?c;can}i)r(\ction FIRRERIINES
"3 0.02] Y1 ;
5.1 eZi g [o90] |92 )
Z 22— —% —0.05|=|95| CCE= _zyj log(5)
0.7 D i1 €7 0.01| |9, j=1
(1.1 ] 0.02] |9 V17

Y2
The target label y is required to be represented by one-hot-encoding:y = |7 =

- OR OO

Lykd L0



Categorical Cross Entropy (CCE) Example

Training Dataset

xii) xéi)

1 0.5

0.9 09 [0,1,0]
3 0.7 [1,0,0]

29 09 [0,0,1]

3.5 08 [1,0,0]
4 12 [0,1,0]"
Class 1:[1,0,0]"
Class 2:[0,1,0]"
Class 3:[0,0,1]"

9 =095 yP =1

Output Label CCE Loss

P =004 yP =0

—log(0.95) = 0.051
A

P =001 y@ =0

Softmax
K Categorical .Cross—Entropy
CCE = — Z y;log(9;) (CCE)
j=1
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Cross-Entropy Cost Function

* The Cost function L(8) using Categorial Cross-Entropy Loss for K
different class labels and training dataset with N examples:

N K
L(O) = z z —y,gl) log (j},g'))
i=1 k=1
* This assumes one-hot encoded labels. V17

Y2
Y3

Ok O O

Lygd L0



Cross-Entropy Cost Function for Binary Classification

» Binary Cross-Entropy Cost with y € {0, 1} (Sigmoid activation is used
in the output layer as single output):

N

£0) == [y©1og(5”) + (1 - y®) log (1 - 5]

i=1

- Binary Cross-Entropy Cost with y*) in one-hot encoding y® = [(1)] or [(1)]
N 2
0= 33 s 3

i=1j=1
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Components in Supervised Training

[ Supervised ]

[ Model ] [ Loss ] [Objective] [Optimization]

A 4

[ Neural Net ]

A 4

[ Deep Learning ]

Model: Output predicts from inputs (Neural Networks)
= features of the house => predicted sale price
Loss: Measure difference between predicts and ground truth labels
= square loss = (predict_sale_price — actual_sale_price)?
= MSE = Average of the square loss for all training samples
Objective: Any function to optimize during training
=  Minimize the MSE of the training data
Optimization: Learn model parameters by solving the objective function
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Optimization



Gradient Descent

* Gradient descent is an optimization algorithm used to minimize the loss
function by iteratively adjusting the network’s weights. It is a fundamental
technique in training neural networks, including MLPs. The goal is to find the
set of weights that minimize the loss function, thereby improving the model’s
performance.

* The basic idea behind gradient descent is to iteratively update the model’s
parameters (weights and biases) in the direction that reduces the loss
function. This is done by computing the gradient of the loss function with
respect to each parameter and then adjusting the parameters in the
opposite direction of the gradient.



Function = MLP Model + A Set of Model Parameters

¢ 9= %) = g(WD . g(WD g(WDx + D) + b@) ... 4 D)

Function set Different parameters W, b9 (Weights and biases) => different

Hyperparameters: No. of Layer L and No. of nodes of each layer N;
Activation function (Sigmoid, ReLU, Softmax, etc)

* Formal definition for MLP (or Feedforward Networks)

" fo(x) where 0 is the model parameter set of Feedforward Networks

¢ 0: = {W(l)’ bW w®@ p@ . wb) b(L)}

Pick a function fy(-) = Pick a set of model parameters 6.
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How to Pick a set of model parameters?

* To approximate a function f, we are generally given a dataset D: = {(x(i), y("))}ll.v=1 with
labels y(i) are noisy estimates of the target function f(x(i)) at different points x(®.
= A MLP neural network defines a function y = fy(x) with a set of model parameters
0:={WD bD w@ p@  wh pd} (weights and biases of the MLP model)

= Goal is to find the parameters 0 such that the model function fg(x) best
approximates the target f(x).

* How to find the values of the parameters i.e., Supervised training of the network?

* Gradient Descent is the most common optimization method used in deep learning to
find the best parameter 8* for a model fg(x) using a loss/cost function:

N
1 | |
0" = min £(6) = m&“ﬁz / (y@,ﬁg (X(l)))
i=1
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Gradient Descent Algorithm

Randomly initialize weights and biases N
arameters: § = {WO bO w2 p@  wo po * — mi _ min— y @, £, (xD
p { } 0° = min £(0) = min NZ D, o (x))

Compute the cost function L(6), which
measures how well the model is performing of the

dataset. £ §9)
Find the gradients of the cost function o P gradient
with respect to each parameters Vo £(6;) Cost ) \ ,/ VoL(6,)
Update the parameters by '”Crgt”:)“ta‘ "
Ory1 =0 —1-VgL(6r) \ ;’I
where 7 is the learning rate that determines how big / / :"
the updates should be in each iteration . A /Minimum Cost
* Repeat the above steps 1 to 3, unit the cost is ? >0

low enough or convergence. 0"
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Case Study: Regression
Predicting Boston Housing Prices

Dataset: Boston Housing

Input: 13 features (Crime, Rooms, Age)

Output: Continuous Price.

CRIM =0.00632

ZN=18.0

INDUS =2..31

AA
VNS
N

{/
HOMHO
X X/
Wgiivg
i ‘)‘W’/»
(\

CHAS=0

Predicted
House Price
21.7186

NOX =0.538

D

\
A
4 i }‘v VK 7
B .Aﬂ"""&. O
0\
YN
<] .’ 1\ 75 2K\
|/

Result: RMSE of 3.4

RM =6.575

AGE =65.2

LSTAT =49.8

| a
R EE
0T

CRIM
0.00632
0.02731
0.02729
0.03237

0.06905

ZN

18.0

0.0

0.0

0.0

0.0

INDUS CHAS
2.31 0
7.07 0
7.07 0
2.18 0
2.18 0

NOX
0.538
0.469
0.469
0.458

0.458

RM AGE DIS RAD TAX PTRATIO B LSTAT PRICE
6.575 65.2 4.0900 1 296 15.3 396.90 4.98 24.0
6.421 78.9 4.9671 2 242 17.8 396.90 9.14 21.6
7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7
6.998 45.8 6.0622 3 222 18.7 394.63 2.94 33.4
7.147 542 6.0622 3 222 18.7 396.90 5.33 36.2




We define a neural network with inputs equal to
the 13 different attributes of houses. These
connect to a hidden layer of 8 neurons, which
connects to another hidden layer of 6 neurons.
Output neuron count must match the input neuron
count of the next layer.

We generally use the Relu activation for hidden
layers. The output layer has no activation function
since this is a regression task predicting a
continuous house prices.

# Train for 1000 epochs.

for epoch in range(1000):
optimizer.zero grad()
out = model(x).flatten()
loss = loss_fn(out, y)
loss.backward()
optimizer.step()

# Display status every 100 epochs.
if epoch % 100 ==
print (£"Epoch {epoch}, loss: {loss.item()}")

# Create the MLP model

model = nn.Sequential(
nn.Linear(x.shapel1], 8),
nn.ReLU(),
nn.Linear(8, 6),
nn.ReLU(),
nn.Linear(6, 1)

)

# PyTorch 2.0 Model Compile (improved performance)
model = torch.compile(model,backend="aot eager").to(device)

# Define the loss function for regression
loss_fn = nn.MSELoss()

# Define the optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

Epoch @, loss: 465.50482177734375

Epoch 100, loss: 53.02699661254883
Epoch 200, loss: 31.836122512817383
Epoch 300, loss: 22.47687339782715
Epoch 400, loss: 17.252151489257812
Epoch 500, loss: 16.156105041503906
Epoch 600, loss: 15.53399658203125

Epoch 700, loss: 14.966448783874512
Epoch 800, loss: 14.444727897644043
Epoch 900, loss: 13.904496192932129

print(f"Final score (RMSE): {score}")

Final score (RMSE): 3.397397994995117

score = np.sqrt(metrics.mean_squared_error(pred.cpu().detach(), y.cpu().detach()))

https://colab.research.google.com/drive/1IrjU) TuQXVNfPNXzeOyuRgLr2yw)Ge2?usp=sharing 75
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Case Study: Classification
The Iris Dataset

Sepal length =6.7

Sepal width =4.5

Petal length =5.0

Petal width = 2.4

Dataset: Iris (150 samples).
Input: 4 physical dimensions.
Output: Probability of species
Accuracy: ~“98%

Ground Truth

(@]
?
yz = 0.05 ﬁ'
—_— o
~+
D
>
(@]
(@]
95 = 0.10 2
®
Softmax

aJe s|aqe| uoiealyisse|d ayl

Cross-Entropy Loss = -(1*log(0.85)+0*1og(0.05)+0*log(0.10) = -log(0.85) = 0.16

https://colab.research.google.com/drive/1EsatIPEY3fb21qgbMyel4Es bM8sher)
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145
146
147
148

149

sepal_1 sepal_w petal_l1l petal w

5.1
4.9
4.7
4.6

5.0

G
6.3
6.5
6.2

5.9

3.5
3.0
3.2
3.1

3.6

3.0
2.5
3.0
3.4

3.0

150 rows x 5 columns

1.4
1.4
1.3
15

1.4

5.2
5.0
B2
5.4

5.1

0.2
0.2
0.2
0.2

0.2

2.3
1.9
2.0
2.3

1.8

species
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa

Iris-setosa

Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica

Iris-virginica

model = nn.Sequential(
nn.Linear(x.shape[1], 8),
nn.ReLU(),
nn.Linear(8, 6),
nn.ReLU(),
nn.Linear(6, len(species)),
nn.Softmax(dim=1),

)

correct

= accuracy_score(y, predict_classes)
print(f"Accuracy: {correct}")

S+ Accuracy: 0.98

https://colab.research.google.com/drive/1EsatIPEY3fb21ggbMyel4Es bM8sher)

# PyTorch 2.0 Model Compile
# Enables ahead-of-time (AOT) compilation using the eager mode backend.
model = torch.compile(model,backend="aot_eager")

cross_entropy_loss = nn.CrossEntropyLoss() # cross entropy loss
optimizer = torch.optim.SGD(model.parameters(), 1r=0.01) # SGD optimizer

# optimizer = torch.optim.Adam(model.parameters(), 1r=0.01) # Adam optimizer

model.train()
for epoch in range(2000):
optimizer.zero_grad()
out = model(x)
# CrossEntropyLoss combines nn.Softmax() and nn.NLLLoss()
loss = cross_entropy_loss(out, y)
loss.backward()
optimizer.step()

if epoch % 100 == 0:
print(f"Epoch {epoch}, loss: {loss.item()}")

77


https://colab.research.google.com/drive/1EsatlPEY3fb21qgbMyel4Es_bM8sherJ

MLPs for Simple Regression and Classification

Regression

CRIM =0.00632

IN=180 \\\(/ . \
/N
WA OO
INDUS = 2..31 A \k\\‘v
i \\{\‘Q/
SO
CHAS=0 ] \\:“;\\V‘{{
\‘.z&ﬁ A
VA Predicted
NOX=0.538 “' House Price
21.7186

RM=6.575

AGE =65.2

LSTAT = 49.8

* Boston Housing Dataset
= 13 features and 506 records
= A 3-Layer MLP (13-8-6-1)
= No. of Parameters: 173
e 13*8+8*6+6*1+8+6+1
= Performance: RMSE = 3.97

Classification

O
v
SR BN

JAR A “Qﬁ
) \S
RN
N -

\\07}’"&\0

* Iris Flower Dataset
= 4 features and 150 records
= A 3-Layer MLP (4-8-6-3)
= No. of Parameters: 187
e 13*8+8*6+6*3+8+6+3
= Performance: 98% Accuracy
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Challenges in Deep Architectures

Vanishing Gradient

Gradient

In deep networks, gradients can
shrink exponentially, halting
learning.

/\

Fix: Use RelLU activation

Overfitting

Overfit

Good Fit

The model memorizes training
data but fails on new data.

/\

Fix: Use Dropout, L1/L2
Regularization, Early Stop,
Data Augmentation.

Computational Cost

Large matrices require massive
parallel processing power.
/\

Fix: GPU acceleration &
optimized frameworks
(PyTorch/TensorFlow).




The Cornerstone of Deep Learning

* From basic MLPs to Large Language
Models (LLMs) such as ChatGPT-5,
Gemini 3 Pro, the architecture remains:
Layers, Activation, and Backpropagation.

 MLPs (or FFNs) paved the way for the Al
resolution, proving that machines can
learn to approximate any continuous
function in our universe.

Output Probabilities

4
[ Softmax ]
X
[ Linear ]
,———l;l—x —————————————————
[ FFN |

R T,

+ Positional Encoding ]

(  Embeddings )

Output sequence (shifted right)
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