

Backpropagation

Applied Deep Learning
EE5438

Prof. Lai-Man Po
Department of Electrical Engineering
City University of Hong Kong

Message 1: Submission of Project Proposal

- **Just a friendly reminder:** The deadline to submit your group project proposal is **Feb 14, 2026, at 11pm**. Please submit a PDF file with the project title, list of group members, and other necessary details to the CANVAS group project assignment.
- Only one proposal per group is required, and it should be submitted by the project's team leader.
- You can find more information about the group project on the course website:
 - <https://www.ee.cityu.edu.hk/~lmpo/ee4016/projects.html>
- Remember, **each group should assign a project leader** who will be responsible for submitting the proposal on CANVAS.
- The file name should follow this format:
 - Filename format : Proposal_GroupNumber_ProjectName.pdf
 - Filename example: Proposal_Group01_Audio_Classification.pdf

Message 2: Assignment 1

Image Classification with Multi-Layer Perceptron

- The assignment 1 is now available in the schedule webpage for download. The deadline for the assignment 1 is **Saturday of Week 5 (Feb 21, 2026)**.
 - https://www.ee.cityu.edu.hk/~lmpo/ee4016/pdf/2026_EE4016_Ass01.pdf
 - Colab: <https://colab.research.google.com/drive/1zSe-32cpojFYT2oxySvrAdSbMLr4vY9I#scrollTo=hjkFuokaRv3G>
- **The answers of the section A must be handwritten** and then scan the answer sheets into a single pdf file.
- Submit the answer sheets and Colab notebook of the Assignment 1 as a zip file to this CANVAS assignment 1:
 - Filename format : **Assignment01_StudentName_StudentID.zip**
 - Filename example: **Assignment01_Chen_Hoi_501234567.zip**

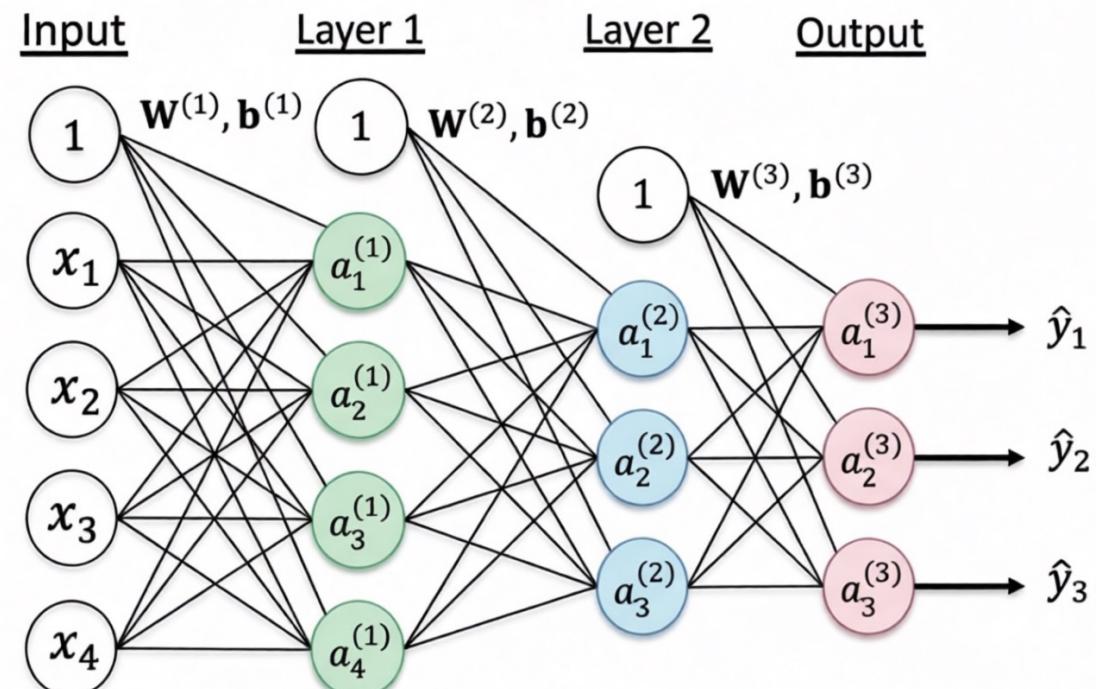
Anatomy of the MLP Architecture

Context: An MLP consists of an input layer, one or more hidden layers, and an output layer. Nodes are connected via weighted connections.

Notation:

- l : Layer index
- $\mathbf{W}^{(l)}$: Weight matrix for layer l
- $\mathbf{b}^{(l)}$: Bias vector for layer l
- $g^{(l)}$: Activation function

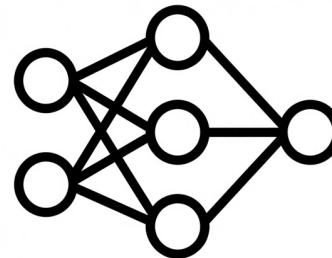
$$\mathbf{a}^{(l)} = g^{(l)}(\mathbf{W}^{(l)}\mathbf{a}^{(l-1)} + \mathbf{b}^{(l)})$$



$$\hat{\mathbf{y}} = f_{\theta}(\mathbf{x}) = \text{Softmax}(\mathbf{W}^{(3)} \text{ReLU}(\mathbf{W}^{(2)} \text{ReLU}(\mathbf{W}^{(1)} \mathbf{x} + \mathbf{b}^{(1)}) + \mathbf{b}^{(2)}) + \mathbf{b}^{(3)})$$

MLP based Model Design

- Based on the problems to define the **Hyperparameters** of the MLP architecture:
 - Input dimension (d)
 - Network Depth (L)
 - Number of neurons of each layer ($n_l: l = 1, 2, \dots, L$)
 - Output dimension ($K = n_L$)
 - Activation functions ($\sigma, \tanh, \text{ReLU}, \text{softmax}$)
 - **Cost function $\mathcal{L}(\theta)$**
- The MLP model can be represented by a **set of weights and biases parameters θ** as
 - $\theta := \{(\mathbf{W}^{(l)}, \mathbf{b}^{(l)})\}_{l=1}^L$
 - $\hat{y} = f_{\theta}(\mathbf{x}) = g(\mathbf{W}^{(L)} \dots g(\mathbf{W}^{(2)} g(\mathbf{W}^{(1)} \mathbf{x} + \mathbf{b}^{(1)}) + \mathbf{b}^{(2)}) \dots + \mathbf{b}^{(L)})$
- For a given dataset \mathcal{D} , use **Gradient Descent** with **backpropagation** to find the **optimal model parameter set θ^*** that minimizes a **cost function $\mathcal{L}(\theta)$**

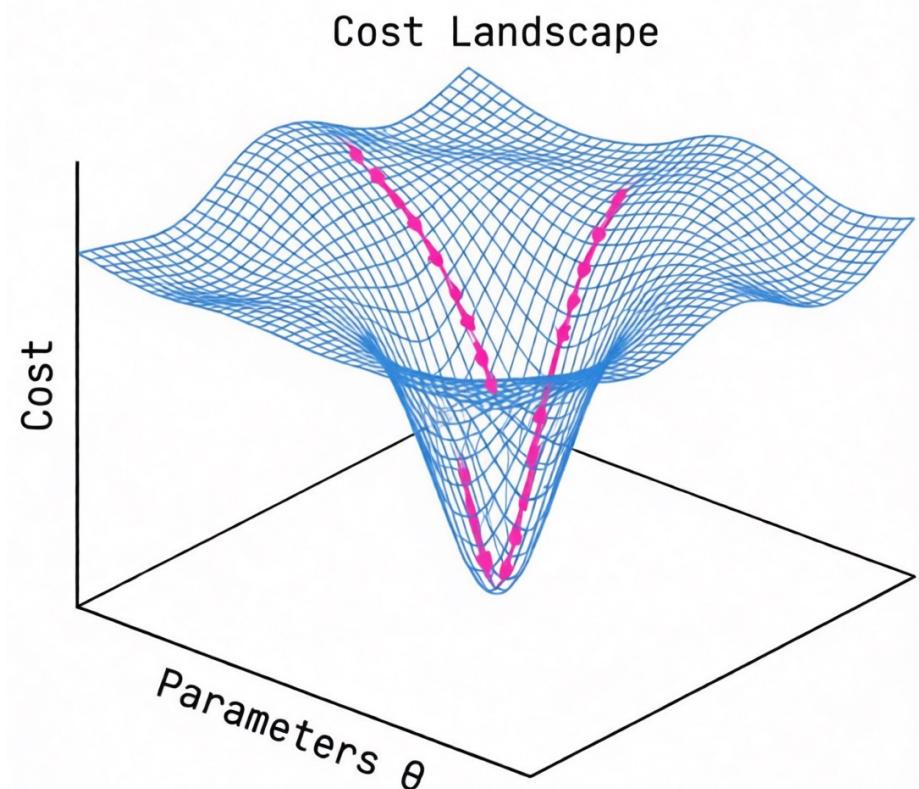


The Training Objective: Minimizing Cost

For a given dataset $\mathcal{D} := \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^N$, the goal of training is **to find the optimal set of parameters θ** (weights and biases) that minimizes the **cost function $\mathcal{L}(\theta)$** between predictions $\hat{\mathbf{y}}^{(i)}$ and targets $\mathbf{y}^{(i)}$.

$$\theta^* = \arg \min_{\theta} \mathcal{L}(\theta)$$

$$\mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^N \text{loss}(\mathbf{y}^{(i)}, \hat{\mathbf{y}}^{(i)})$$



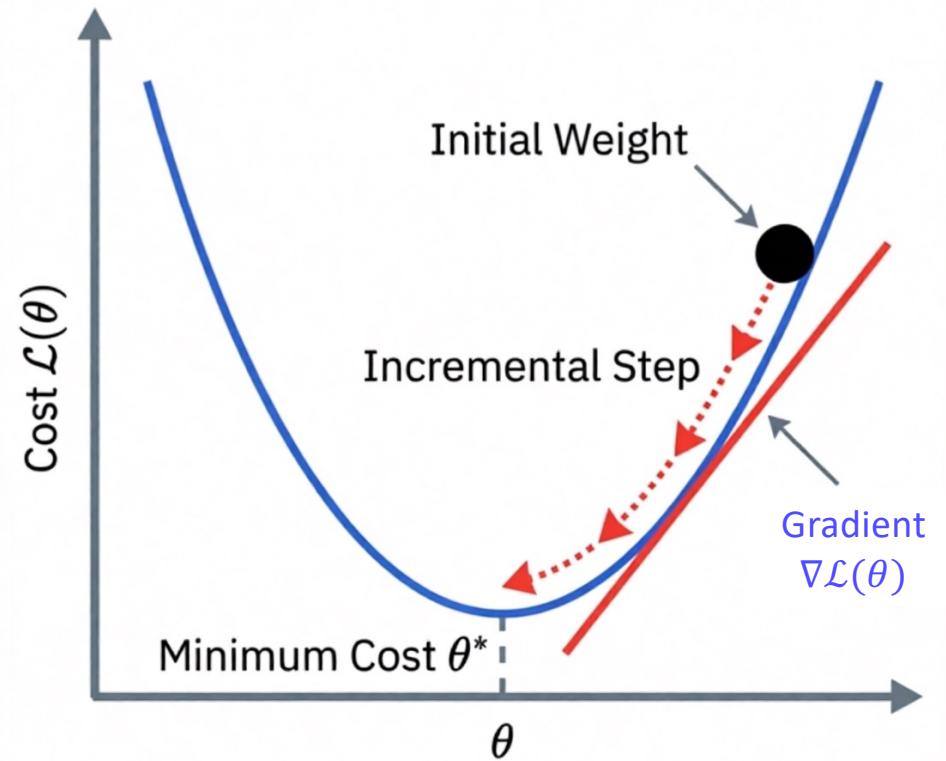
The Strategy: Gradient Descent

1. **Initialize:** Randomly set weights θ
2. **Compute Cost:** Measure performance $\mathcal{L}(\theta)$.
3. **Find Gradient:** Calculate $\nabla \mathcal{L}(\theta)$ (direction of steepest ascent).
4. **Update:** Step down the hill.

$$\theta_{new} = \theta_{old} - \eta \cdot \nabla \mathcal{L}(\theta)$$

η = Learning Rate (step size)

- Repeat steps 2 to 4, until the cost is low enough or convergence.



The Computational Bottleneck

Why Backpropagation?

Gradient Descent Formula:

$$\theta_{new} = \theta_{old} - \eta \cdot \nabla \mathcal{L}(\theta)$$

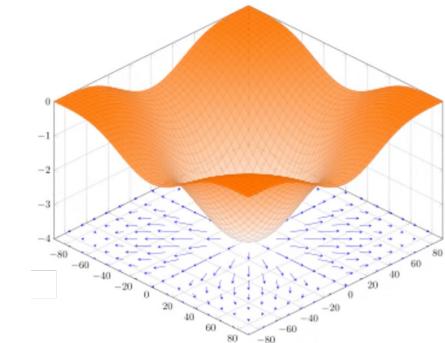
Naive Approach (Finite Differences):

- Perturb each parameter individually.
- Requires $\mathbf{O}(N)$ forward passes for N parameters.
- **Infeasible** for large models (e.g., 1M params \rightarrow 1M forward passes per update!).

The Challenge:

- Modern networks have millions of parameters. Calculating the gradient this way has **Exponential Complexity**.

$$\nabla \mathcal{L}(\theta_t) = \begin{bmatrix} \vdots \\ \frac{\partial \mathcal{L}(\theta_t)}{\partial w_{i,j}^{(l)}} \\ \vdots \\ \frac{\partial \mathcal{L}(\theta_t)}{\partial b_i^{(l)}} \end{bmatrix}$$



This is what we need to calculate efficiently

To efficiently compute the gradient when dealing with a large number of parameters, we employ a technique known as **backpropagation**.

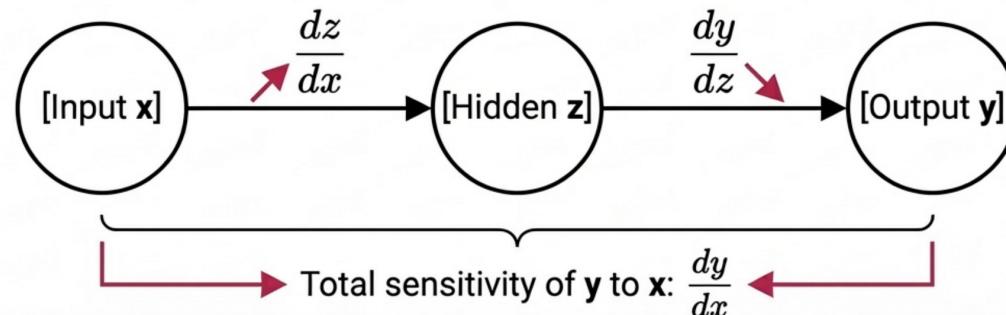
Backpropagation

$$\frac{\partial \mathcal{L}}{\partial w_{i,j}^{(l)}} = \delta_i^{(l)} \cdot a_j^{(l-1)}$$

The Engine: The Chain Rule

- Backpropagation leverages the Chain Rule to compute gradients for ALL parameters simultaneously in one backward sweep.

$$\frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dx}$$



Reduces complexity from exponential to linear, making Deep Learning feasible.

Overview of Backpropagation Algorithm

- The backpropagation algorithm uses the **Chain Rule** to efficiently compute gradients $\frac{\partial \mathcal{L}}{\partial w_{i,j}^{(l)}}$ in gradient descent-based network training.

$$\frac{\partial \mathcal{L}}{\partial w_{i,j}^{(l)}} = \frac{\partial \mathcal{L}}{\partial z_i^{(l)}} \cdot \frac{\partial z_i^{(l)}}{\partial w_{i,j}^{(l)}} = \delta_i^{(l)} \cdot a_j^{(l-1)}$$

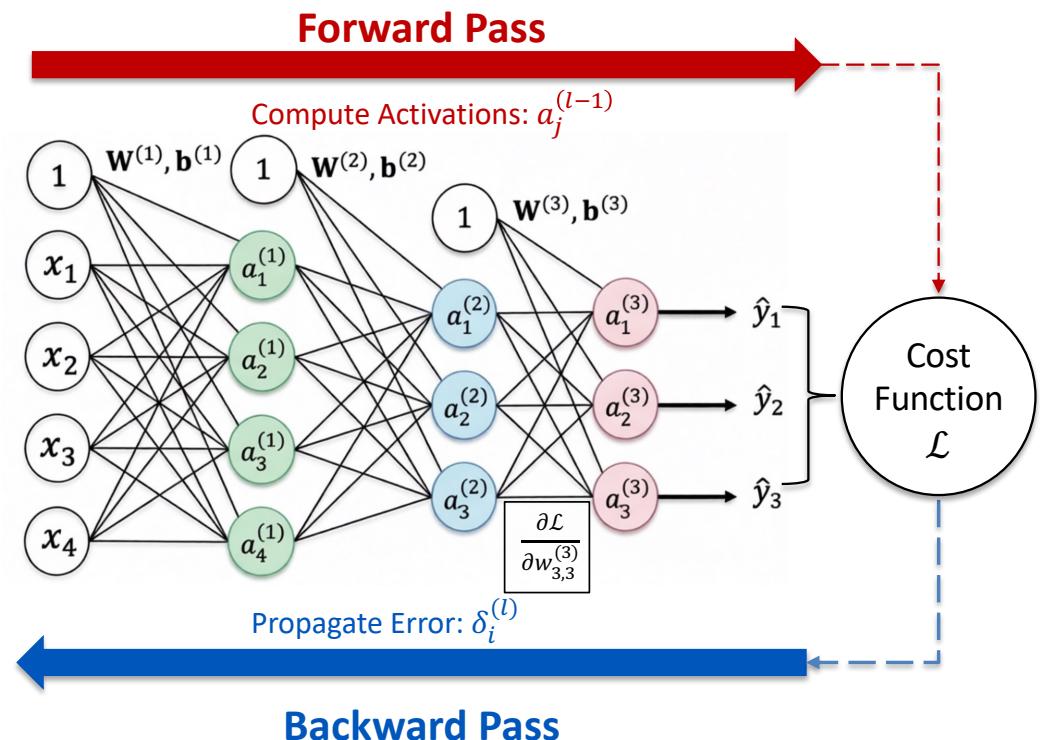
- Forward Pass:** $a_j^{(l)}$

Compute activation layer by layer. **Save these values.**

- Backward Pass:**

$$\delta_i^{(l)} = g'(l) \left(z_i^{(l)} \right) \sum_k \left(w_{k,i}^{(l+1)} \cdot \delta_k^{(l+1)} \right)$$

Compute error signals (δ) in reverse order.
Reuse cached values.



Step: The Forward Pass

- Generating Predictions and Caching Activations

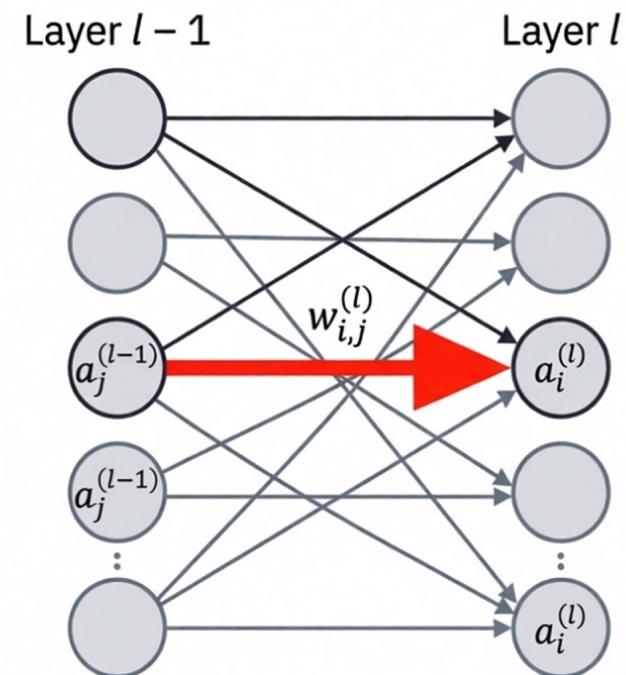
$$\text{Net Input: } z_i^{(l)} = \sum_{j=1}^{n_{l-1}} w_{i,j}^{(l)} a_j^{(l-1)} + b_i^{(l)}$$

$$\text{Activation: } a_i^{(l)} = g^{(l)}(z_i^{(l)})$$

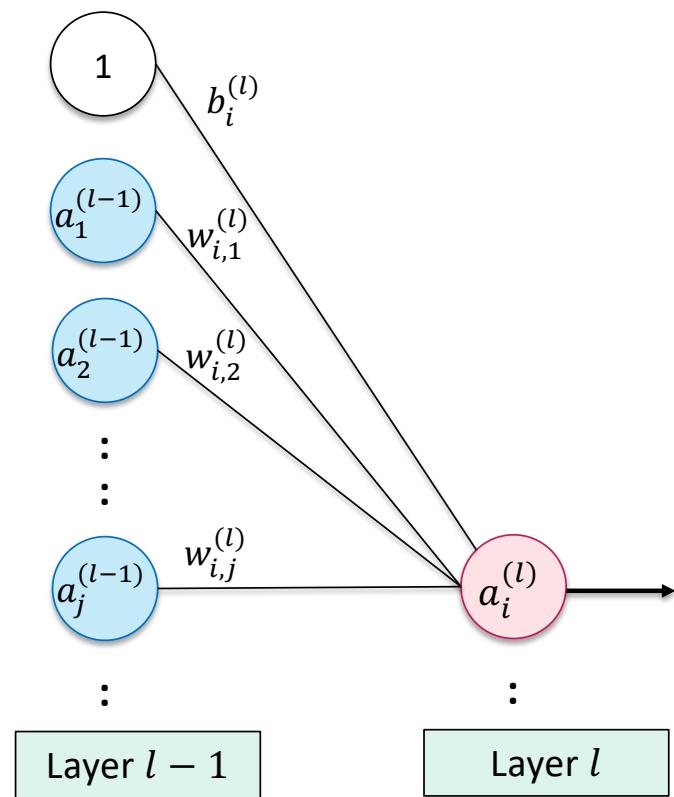
The Key Identity (Cached Value):

$$\frac{\partial z_i^{(l)}}{\partial w_{i,j}^{(l)}} = a_j^{(l-1)}$$

The activation from the previous layer IS the partial derivative we need later. We store it.



$\frac{\partial z_i^{(l)}}{\partial w_{i,j}^{(l)}}$ and $\frac{\partial z_i^{(l)}}{\partial b_i^{(l)}}$ ($l = 1, 2, \dots, n_l$)



$$a_i^{(l)} = g^{(l)} \left(\sum_{j=1}^{n_{l-1}} w_{i,j}^{(l)} a_j^{(l-1)} + b_i^{(l)} \right)$$

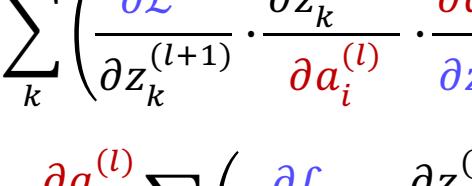
$a_i^{(l)} = g^{(l)} (z_i^{(l)})$ where $z_i^{(l)}$ is the net input and $g^{(l)}(\cdot)$ is the activation function

$$z_i^{(l)} = \sum_{j=1}^{n_{l-1}} w_{i,j}^{(l)} a_j^{(l-1)} + b_i^{(l)}$$

$$\frac{\partial z_i^{(l)}}{\partial w_{i,j}^{(l)}} = a_j^{(l-1)} \text{ and } \frac{\partial z_i^{(l)}}{\partial b_i^{(l)}} = 1$$

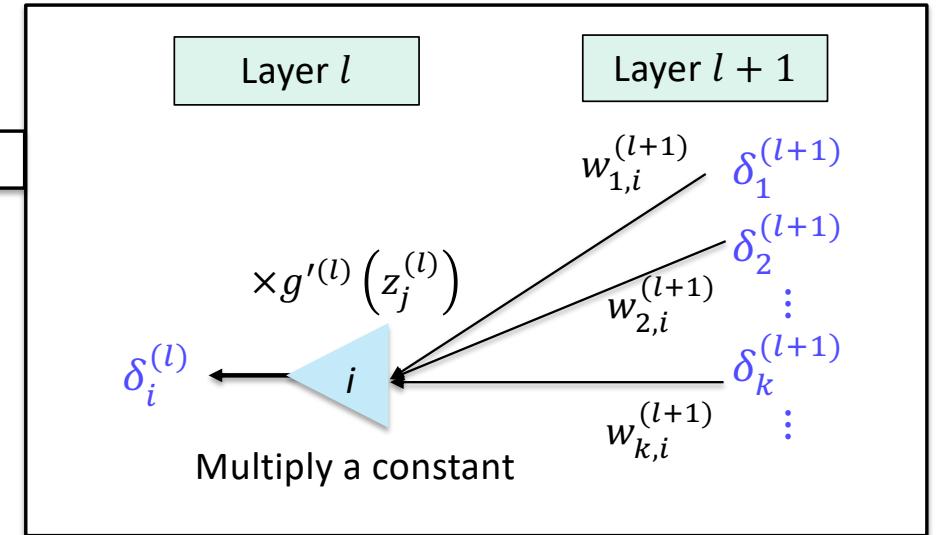
$\frac{\partial \mathcal{L}}{\partial z_i^{(l)}} = \delta_i^{(l)}$: the propagated gradient corresponding to the l -th layer and i -th neuron

$$\delta_i^{(l)} = \frac{\partial \mathcal{L}}{\partial z_i^{(l)}} = \sum_k \left(\frac{\partial \mathcal{L}}{\partial z_k^{(l+1)}} \cdot \frac{\partial z_k^{(l+1)}}{\partial a_i^{(l)}} \cdot \frac{\partial a_i^{(l)}}{\partial z_i^{(l)}} \right)$$

$$= \frac{\partial a_i^{(l)}}{\partial z_i^{(l)}} \sum_k \left(\frac{\partial \mathcal{L}}{\partial z_k^{(l+1)}} \cdot \frac{\partial z_k^{(l+1)}}{\partial a_i^{(l)}} \right)$$


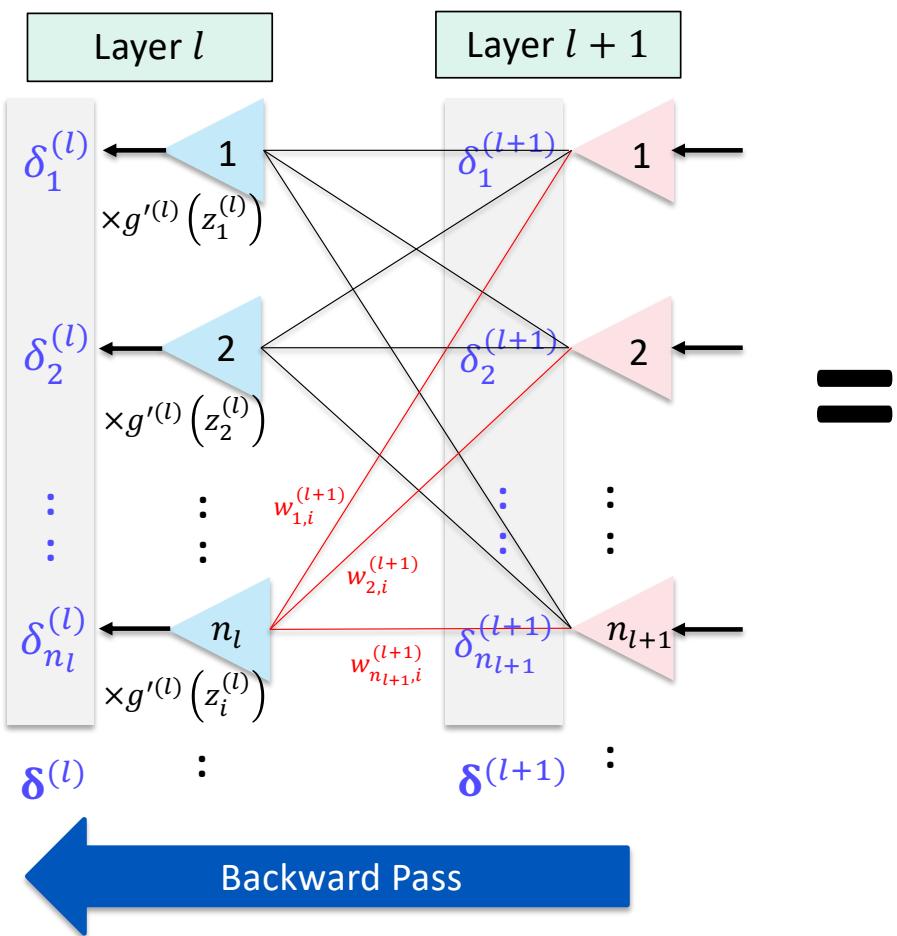
Gradient of the Activation function $\frac{\partial a_i^{(l)}}{\partial z_i^{(l)}} = g'(l) \left(z_i^{(l)} \right)$

$$z_k^{(l+1)} = \sum_j w_{k,j}^{(l+1)} a_j^{(l)} + b_k^{(l+1)} \Rightarrow \frac{\partial z_k^{(l+1)}}{\partial a_i^{(l)}} = w_{k,j}^{(l+1)}$$



$$\delta_i^{(l)} = g'^{(l)}(z_i^{(l)}) \sum_k \left(\delta_k^{(l+1)} w_{k,i}^{(l+1)} \right)$$

$\frac{\partial \mathcal{L}(\theta)}{\partial z_i^{(l)}} = \delta_i^{(l)}$ is just a scaled weighted sum of $\delta_k^{(l+1)}$ of the upper layer (Backpropagation)



$$\delta_i^{(l)} = g'(l) (z_i^{(l)}) \sum_k (w_{k,i}^{(l+1)} \delta_k^{(l+1)})$$

The backpropagation process begins by calculating the **delta terms** $\delta_k^{(L)}$ for the output layer L . It then systematically computes the delta terms $\delta_k^{(l)}$ for each preceding layer l , using the delta terms $\delta_k^{(l+1)}$ from the layer immediately above it.

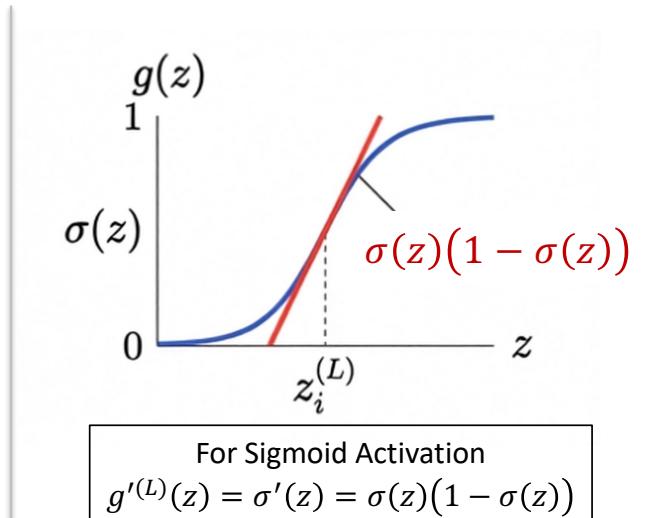
Step 2: Backward Pass (Output Layer)

- Calculating the Initial Error Signal

$$\delta_i^{(L)} = \frac{\partial \mathcal{L}}{\partial \hat{y}_i} \cdot \frac{\partial \hat{y}_i}{\partial z_i^{(L)}} = \frac{\partial \mathcal{L}}{\partial \hat{y}_i} \cdot g'^{(L)}(z_i^{(L)})$$

Gradient of Cost
(How wrong was the prediction?)

Derivative of Activation
(How sensitive is the neuron?)

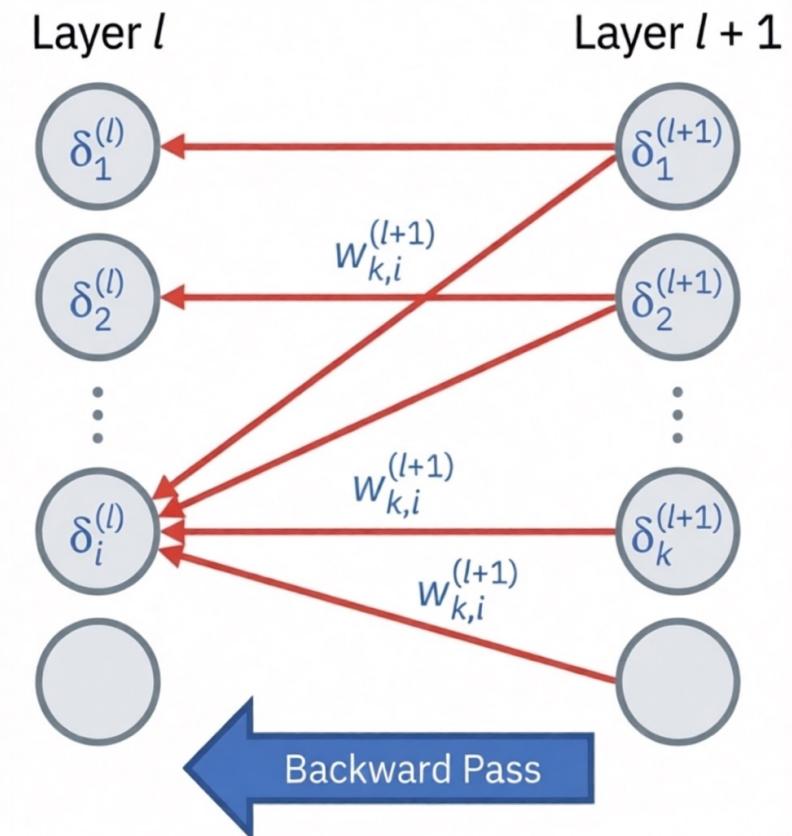


Step 3: Backward Pass (Hidden Layers)

Propagating the Error Recursively

$$\delta_i^{(l)} = g'(z_i^{(l)}) \sum_k (w_{k,i}^{(l+1)} \delta_k^{(l+1)})$$

The error for the current layer is the **weighted sum of errors** from the layer ahead.



Overall Backward Pass

We begin at the end (last Layer L).

1. Initialization: compute $\delta^{(L)}$ based on $\nabla \mathcal{L}(\hat{y})$

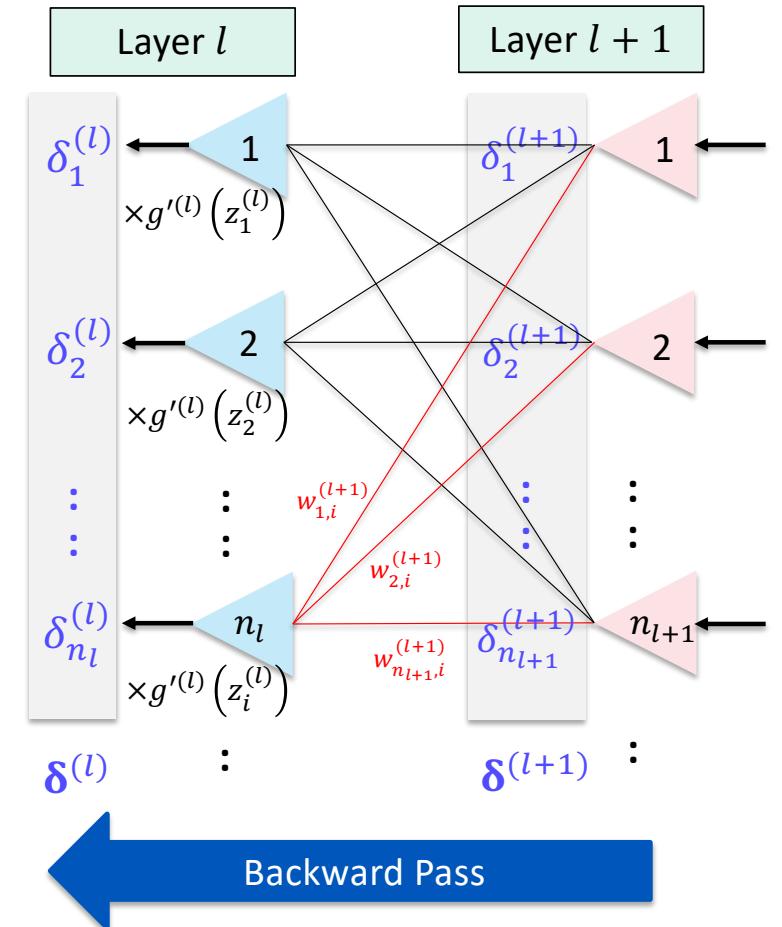
- $\delta^{(L)} = g'^{(L)}(\mathbf{z}^{(L)}) \odot \nabla \mathcal{L}(\hat{y})$

2. Compute $\delta^{(l)}$ based on $\delta^{(l+1)}$

- $\delta^{(L-1)} = g'^{(L-1)}(\mathbf{z}^{(L-1)}) \odot (\mathbf{W}^{(L)})^T \delta^{(L)}$
 \vdots

- $\delta^{(l)} = g'^{(l)}(\mathbf{z}^{(l)}) \odot (\mathbf{W}^{(l+1)})^T \delta^{(l+1)}$
 \vdots

- $\delta^{(1)} = g'^{(1)}(\mathbf{z}^{(1)}) \odot (\mathbf{W}^{(2)})^T \delta^{(2)}$



Synthesizing the Gradient

$$\frac{\partial \mathcal{L}}{\partial w_{i,j}^{(l)}} = \delta_i^{(l)} \cdot a_j^{(l-1)}$$

Backward Pass Term (δ)

Calculated from the error signal flowing back.

Forward Pass Term (a)

Calculated activation from the input flow.

The final gradient is simply the product of the local error and the incoming activation.

Forward Pass: Compute Activations

- $$\frac{\partial \mathcal{L}}{\partial w_{i,j}^{(l)}} = \delta_i^{(l)} \cdot a_j^{(l-1)}$$

$$\frac{\partial z_i^{(l)}}{\partial w_{i,j}^{(l)}} = a_j^{(l-1)} \quad \text{for } l = 1, a_j^{(0)} = x_j$$

Forward Pass

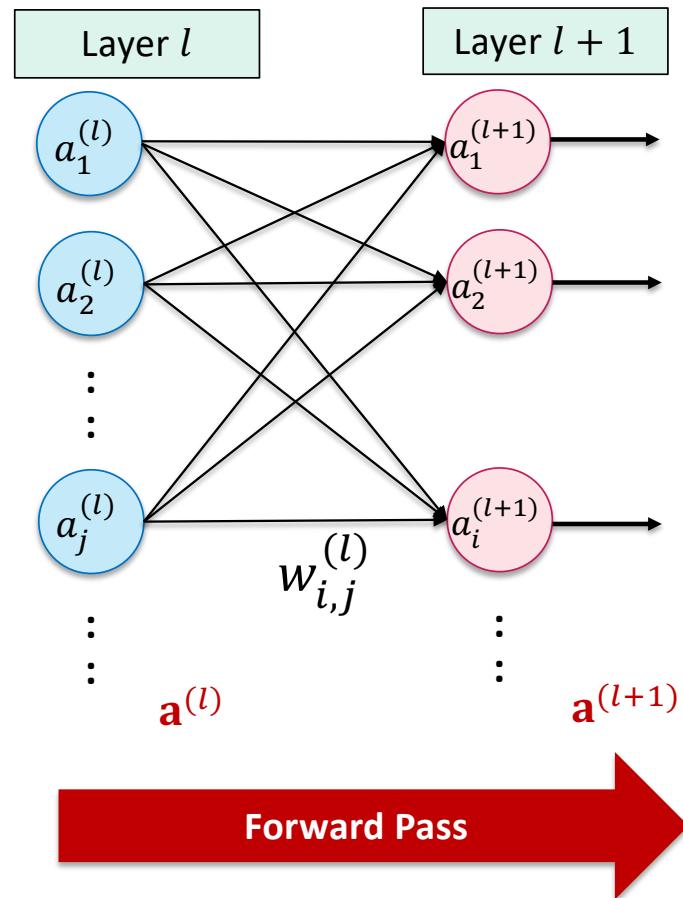
$$\mathbf{a}^{(0)} = \mathbf{x}$$

$$\mathbf{a}^{(1)} = g^{(1)}(\mathbf{W}^{(1)} \mathbf{a}^{(0)} + \mathbf{b}^{(1)})$$

$$\vdots$$

$$\mathbf{a}^{(l)} = g^{(l)}(\mathbf{W}^{(l)} \mathbf{a}^{(l-1)} + \mathbf{b}^{(l)})$$

$$\vdots$$

$$\mathbf{a}^{(L)} = g^{(L)}(\mathbf{W}^{(L)} \mathbf{a}^{(L-1)} + \mathbf{b}^{(L)})$$


Backward Pass: Compute Delta

- $\frac{\partial \mathcal{L}}{\partial w_{i,j}^{(l)}} = \frac{\partial \mathcal{L}_.}{\partial z_i^{(l)}} \cdot \frac{\partial z_i^{(l)}}{\partial w_{i,j}^{(l)}}$

$$\frac{\partial \mathcal{L}}{\partial z_i^{(l)}} = \delta_i^{(l)}$$

Backward Pass

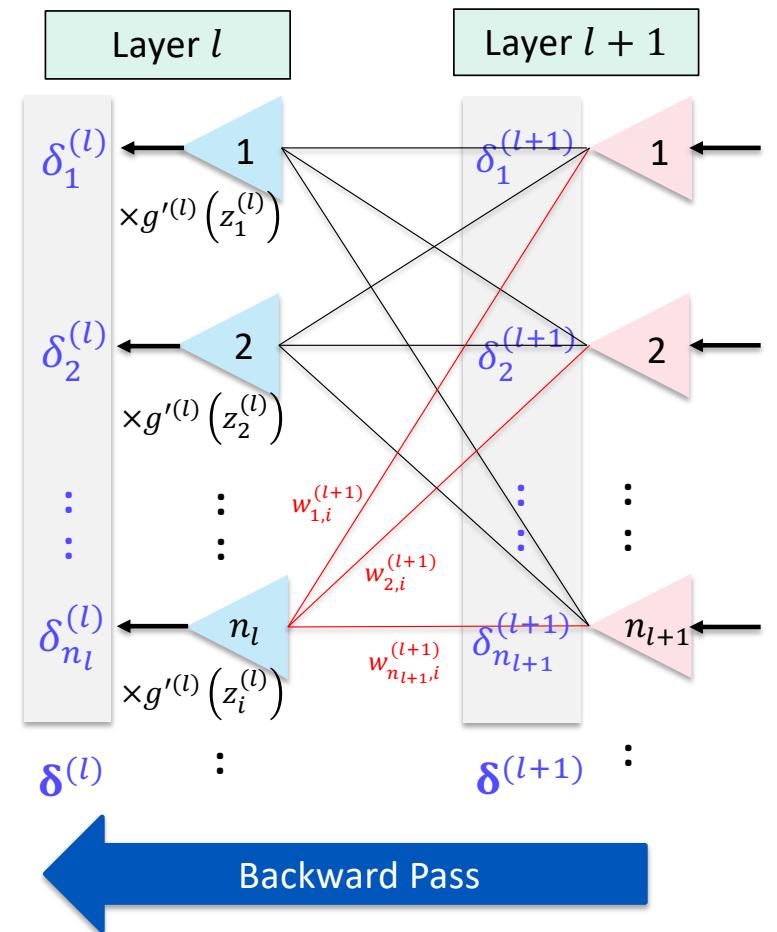
$$\boldsymbol{\delta}^{(L)} = g'^{(L)}(\mathbf{z}^{(L)}) \odot \nabla \mathcal{L}(\hat{\mathbf{y}})$$

$$\vdots$$

$$\boldsymbol{\delta}^{(l)} = g'^{(l)}(\mathbf{z}^{(l)}) \odot (\mathbf{W}^{(l+1)})^T \boldsymbol{\delta}^{(l+1)}$$

$$\vdots$$

$$\boldsymbol{\delta}^{(1)} = g'^{(1)}(\mathbf{z}^{(1)}) \odot (\mathbf{W}^{(2)})^T \boldsymbol{\delta}^{(2)}$$



Synthesizing the Gradient

- $\theta_{new} = \theta_{old} - \eta \cdot \nabla \mathcal{L}(\theta_t)$

- $\nabla \mathcal{L} = \begin{bmatrix} \vdots \\ \frac{\partial \mathcal{L}}{\partial w_{i,j}^{(l)}} \\ \vdots \\ \frac{\partial \mathcal{L}}{\partial b_i^{(l)}} \end{bmatrix}$

Efficiently compute the gradient based on **two pre-computed terms** from forward $\mathbf{a}^{(l)}$ and $\boldsymbol{\delta}^{(l)}$ backward passes.

$$\frac{\partial \mathcal{L}}{\partial w_{i,j}^{(l)}} = \boldsymbol{\delta}_i^{(l)} \cdot \mathbf{a}_j^{(l-1)}$$

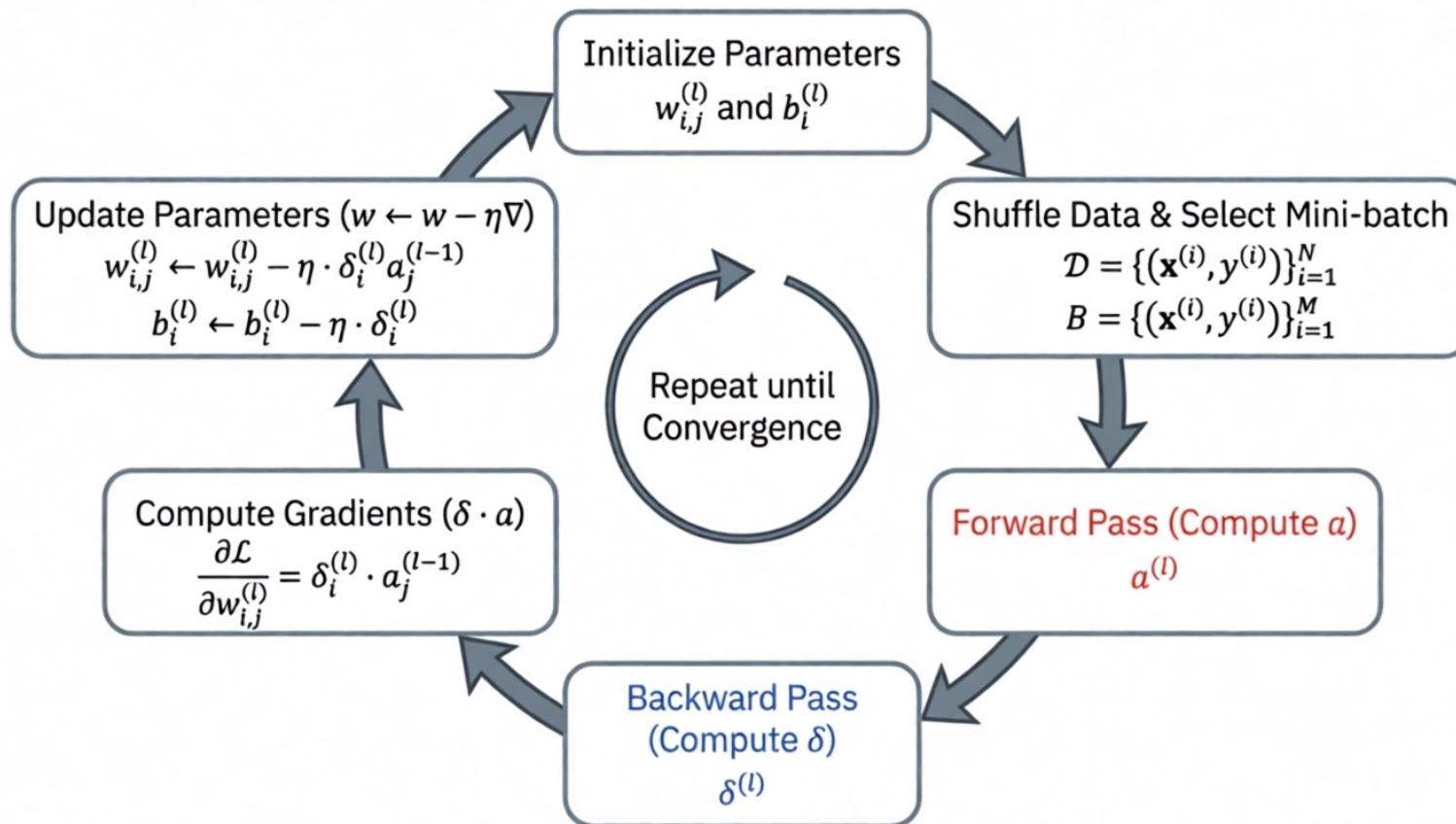
Backward Pass

$$\begin{aligned} \boldsymbol{\delta}^{(L)} &= g'^{(L)}(\mathbf{z}^{(L)}) \odot \nabla \mathcal{L}(\hat{\mathbf{y}}) \\ &\vdots \\ \boldsymbol{\delta}^{(l)} &= g'^{(l)}(\mathbf{z}^{(l)}) \odot (\mathbf{W}^{(l+1)})^T \boldsymbol{\delta}^{(l+1)} \\ &\vdots \\ \boldsymbol{\delta}^{(1)} &= g'^{(1)}(\mathbf{z}^{(1)}) \odot (\mathbf{W}^{(2)})^T \boldsymbol{\delta}^{(2)} \end{aligned}$$

Forward Pass

$$\begin{aligned} \mathbf{a}^{(0)} &= \mathbf{x} \\ \mathbf{a}^{(1)} &= g(\mathbf{W}^{(1)} \mathbf{x} + \mathbf{b}^{(1)}) \\ &\vdots \\ \mathbf{a}^{(l)} &= g(\mathbf{W}^{(l)} \mathbf{a}^{(l-1)} + \mathbf{b}^{(l)}) \\ &\vdots \\ \mathbf{a}^{(L)} &= g(\mathbf{W}^{(L)} \mathbf{a}^{(L-1)} + \mathbf{b}^{(L)}) \end{aligned}$$

The Full Training Loop



Backpropagation Training Algorithm

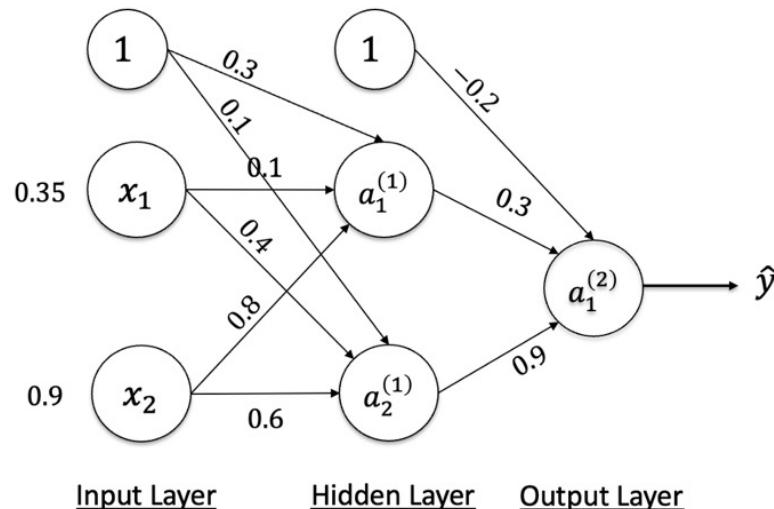
1. Initialize the model parameters $w_{i,j}^{(l)}$ and $b_i^{(l)}$.
2. Shuffle the training data $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^N$.
3. Select a mini-batch from the shuffled data $B = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^M$.
4. Compute the gradients for the mini-batch.
 - Use Forward Pass to compute the activations $\mathbf{a}^{(1)}, \mathbf{a}^{(2)}, \dots, \mathbf{a}^{(L)}$ of these samples
 - Use Backward Pass to compute the $\delta^{(L)}, \delta^{(L-1)}, \dots, \delta^{(2)}, \delta^{(1)}$ of these samples
 - Compute the gradients by $\frac{\partial \mathcal{L}}{\partial w_{i,j}^{(l)}} = \delta_i^{(l)} \cdot a_j^{(l-1)}$ and $\frac{\partial \mathcal{L}}{\partial b_i^{(l)}} = \delta_i^{(l)}$
5. Update the parameters using the computed gradients.
 - $w_{i,j}^{(l)}(\text{new}) = w_{i,j}^{(l)}(\text{old}) - \eta \cdot \delta_i^{(l)} a_j^{(l-1)}$
 - $b_i^{(l)}(\text{new}) = b_i^{(l)}(\text{old}) - \eta \cdot \delta_i^{(l)}$
6. Repeat steps 3-5 for a specified no. of epoch or until a convergence criterion is met.

$$\frac{\partial \mathcal{L}}{\partial w_{i,j}^{(l)}} = \frac{\partial \mathcal{L}}{\partial z_i^{(l)}} \cdot \frac{\partial z_i^{(l)}}{\partial w_{i,j}^{(l)}} = \delta_i^{(l)} \cdot a_j^{(l-1)}$$

$$\frac{\partial \mathcal{L}}{\partial b_i^{(l)}} = \frac{\partial \mathcal{L}}{\partial z_i^{(l)}} \cdot \frac{\partial z_i^{(l)}}{\partial b_i^{(l)}} = \delta_i^{(l)}$$

Backpropagation Exercise 1

- Given a two-layer feedforward neural network using **sigmoid activation** function for the hidden layer and the **identity activation function** for the output layer, determine the output \hat{y} by representing the network in matrix form.
- Assume that actual output of the network y is 0.5, learning rate η is 0.5 and MSE cost function, perform the backpropagation to compute the new weights, new output and RMSE.



Solution Output of the Network

- $\hat{y} = \mathbf{W}^{(2)}\sigma(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}) + \mathbf{b}^{(2)}$
- The net input vector $\mathbf{z}^{(1)}$ of the hidden layer is given by

- $\mathbf{z}^{(1)} = \begin{bmatrix} z_1^{(1)} \\ z_2^{(1)} \end{bmatrix} = \mathbf{W}^{(1)} \mathbf{x} + \mathbf{b}^{(1)} = \begin{bmatrix} w_{1,1}^{(1)} & w_{1,2}^{(1)} \\ w_{2,1}^{(1)} & w_{2,2}^{(1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} b_1^{(1)} \\ b_2^{(1)} \end{bmatrix}$
- $\begin{bmatrix} z_1^{(1)} \\ z_2^{(1)} \end{bmatrix} = \begin{bmatrix} 0.1 & 0.8 \\ 0.4 & 0.6 \end{bmatrix} \begin{bmatrix} 0.35 \\ 0.9 \end{bmatrix} + \begin{bmatrix} 0.3 \\ 0.1 \end{bmatrix} = \begin{bmatrix} 1.0550 \\ 0.7800 \end{bmatrix}$

- The activation vector $\mathbf{a}^{(1)}$ of the hidden layer is given by

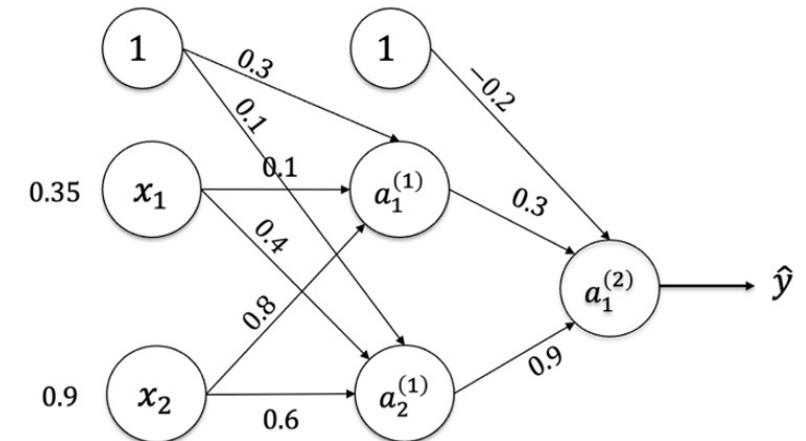
- $\mathbf{a}^{(1)} = \begin{bmatrix} a_1^{(1)} \\ a_2^{(1)} \end{bmatrix} = \sigma(\mathbf{z}^{(1)}) = \sigma\left(\begin{bmatrix} 1.0550 \\ 0.7800 \end{bmatrix}\right) = \begin{bmatrix} 1/(1 + e^{-1.055}) \\ 1/(1 + e^{-0.7800}) \end{bmatrix} = \begin{bmatrix} 0.7417 \\ 0.6857 \end{bmatrix}$

- The net input vector $\mathbf{z}^{(2)}$ of the output layer is given by

- $\mathbf{z}^{(2)} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \end{bmatrix} = \begin{bmatrix} w_{1,1}^{(2)} & w_{1,2}^{(2)} \end{bmatrix} \begin{bmatrix} a_1^{(1)} \\ a_2^{(1)} \end{bmatrix} + \begin{bmatrix} b_1^{(2)} \\ b_2^{(2)} \end{bmatrix} = [0.3 \quad 0.9] \begin{bmatrix} 0.7417 \\ 0.6857 \end{bmatrix} + [-0.2] = [0.6396]$

- The activation vector $\mathbf{a}^{(2)}$ of the output layer (output of the network \hat{y}) is given by

- $\hat{y} = \mathbf{a}^{(2)} = \begin{bmatrix} a_1^{(2)} \\ a_2^{(2)} \end{bmatrix} = g(\mathbf{z}^{(2)}) = \mathbf{z}^{(2)} = [0.6396]$



Output layer uses the identify function $g(z) = z$

Solution of the Backpropagation

- Assume that actual output y is 0.5, learning rate η is 1 and MSE cost function perform the backpropagation to find the updated weights.

- $\mathcal{L}(\hat{y}) = \text{MSE} = \frac{1}{N} \sum_{i=1}^N \frac{1}{2} \left\| \mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)} \right\|_2^2 = \frac{1}{2} (y - \hat{y})^2$
- $\nabla \mathcal{L}(\hat{y}) = \frac{\partial \text{MSE}}{\partial \hat{y}} = (\hat{y} - y) = (0.6396 - 0.5) = [0.1396]$

- Backward Pass: compute $\delta^{(2)}$

Backward Pass

$$\begin{aligned}\delta^{(2)} &= g'(\mathbf{z}^{(2)}) \odot \nabla \mathcal{L}(\hat{y}) \\ \delta^{(1)} &= \sigma'(\mathbf{z}^{(1)}) \odot (\mathbf{w}^{(2)})^T \delta^{(2)}\end{aligned}$$

Identify Activation Function

$$\begin{aligned}g(z) &= z \\ g'(z) &= 1\end{aligned}$$

$$\delta^{(2)} = g'(\mathbf{z}^{(2)}) \odot \nabla \mathcal{L}(\hat{y}) = 1 \odot \nabla \mathcal{L}(\hat{y}) = (\hat{y} - y) = [0.1396]$$

Solution of the Backpropagation

- Backward Pass: compute $\delta^{(1)}$

$$\begin{aligned}
 \delta^{(1)} &= \begin{bmatrix} \delta_1^{(1)} \\ \delta_2^{(1)} \end{bmatrix} = \sigma'(\mathbf{z}^{(1)}) \odot (\mathbf{W}^{(2)})^T \delta^{(2)} \\
 &= \sigma(\mathbf{z}_1^{(1)}) \left(1 - \sigma(\mathbf{z}_1^{(1)}) \right) \odot (\mathbf{W}^{(2)})^T \delta^{(2)} \\
 &= \sigma\left(\begin{bmatrix} z_1^{(1)} \\ z_2^{(1)} \end{bmatrix}\right) \left(1 - \sigma\left(\begin{bmatrix} z_1^{(1)} \\ z_2^{(1)} \end{bmatrix}\right) \right) \odot [w_{1,1}^{(2)} \quad w_{1,2}^{(2)}]^T \begin{bmatrix} \delta_1^{(2)} \\ \delta_2^{(2)} \end{bmatrix} \\
 &= \begin{bmatrix} a_1^{(1)} \\ a_2^{(1)} \end{bmatrix} \left(1 - \begin{bmatrix} a_1^{(1)} \\ a_2^{(1)} \end{bmatrix} \right) \odot [w_{1,1}^{(2)} \quad w_{1,2}^{(2)}]^T \begin{bmatrix} \delta_1^{(2)} \\ \delta_2^{(2)} \end{bmatrix} \\
 &= \begin{bmatrix} 0.7417 \\ 0.6857 \end{bmatrix} \left(1 - \begin{bmatrix} 0.7417 \\ 0.6857 \end{bmatrix} \right) \odot \begin{bmatrix} 0.3 \\ 0.9 \end{bmatrix} \begin{bmatrix} 0.1396 \\ 0.0080 \end{bmatrix} = \begin{bmatrix} 0.0080 \\ 0.0271 \end{bmatrix}
 \end{aligned}$$

Backward Pass

$$\begin{aligned}
 \delta^{(2)} &= g'(\mathbf{z}^{(2)}) \odot \nabla J(\hat{\mathbf{y}}) \\
 \delta^{(1)} &= \sigma'(\mathbf{z}^{(1)}) \odot (\mathbf{W}^{(2)})^T \delta^{(2)}
 \end{aligned}$$

Sigmoid Activation Function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\sigma'(z) = \sigma(z)(1 - \sigma(z))$$

Update the Parameters

$$w_{i,j}^{(l)}(\text{new}) = w_{i,j}^{(l)}(\text{old}) - \eta \cdot \delta_i^{(l)} a_j^{(l-1)} \quad \text{and} \quad \eta = 0.5$$

- $w_{1,1}^{(1)}(\text{new}) = w_{1,1}^{(1)}(\text{old}) - 0.5 \cdot \delta_1^{(1)} x_1 = 0.0986$
- $w_{1,2}^{(1)}(\text{new}) = w_{1,2}^{(1)}(\text{old}) - 0.5 \cdot \delta_1^{(1)} x_2 = 0.7964$
- $w_{2,1}^{(1)}(\text{new}) = w_{2,1}^{(1)}(\text{old}) - 0.5 \cdot \delta_2^{(1)} x_1 = 0.3953$
- $w_{2,2}^{(1)}(\text{new}) = w_{2,2}^{(1)}(\text{old}) - 0.5 \cdot \delta_2^{(1)} x_2 = 0.5878$
- $b_1^{(1)}(\text{new}) = b_1^{(1)}(\text{old}) - 0.5 \cdot \delta_1^{(1)} = 0.2920$
- $b_2^{(1)}(\text{new}) = b_2^{(1)}(\text{old}) - 0.5 \cdot \delta_2^{(1)} = 0.0865$
- $w_{1,1}^{(2)}(\text{new}) = w_{1,1}^{(2)}(\text{old}) - 0.5 \cdot \delta_1^{(2)} a_1^{(2)} = 0.2482$
- $w_{1,2}^{(2)}(\text{new}) = w_{1,2}^{(2)}(\text{old}) - 0.5 \cdot \delta_1^{(2)} a_2^{(2)} = 0.8521$
- $b_1^{(2)}(\text{new}) = b_1^{(2)}(\text{old}) - 0.5 \cdot \delta_2^{(2)} = -0.2698$

Forward Pass to Compute the New Output

- Compute the new output for $\mathbf{a}^{(1)}$ and $\mathbf{a}^{(2)}$ (\hat{y}) using the updated weights

$$\mathbf{a}^{(1)} = \begin{bmatrix} a_1^{(1)} \\ a_2^{(1)} \end{bmatrix} = \sigma \left(\begin{bmatrix} 0.0986 & 0.7964 \\ 0.3953 & 0.5878 \end{bmatrix} \begin{bmatrix} 0.35 \\ 0.9 \end{bmatrix} + \begin{bmatrix} 0.2920 \\ 0.0865 \end{bmatrix} \right) = \begin{bmatrix} 0.7402 \\ 0.6800 \end{bmatrix}$$

$$\hat{y}(\text{new}) = \mathbf{a}^{(2)} = \begin{bmatrix} a_1^{(2)} \end{bmatrix} = \begin{bmatrix} z_1^{(2)} \end{bmatrix} = [0.2482 \quad 0.8521] \begin{bmatrix} 0.7402 \\ 0.6800 \end{bmatrix} - [0.2698] = 0.4934$$

- The new error
 - error = $y - \hat{y} = (0.5 - 0.4934) = -0.0066$
- RMSE (Root Mean Square Error):
 - RMSE = $\sqrt{(0.5 - 0.4934)^2} = 0.0066$

PyTorch Automatic Differentiation (Optional)

<https://medium.com/@lmpo/pytorch-automatic-differentiation-autograd-772fba79e6ef>

Modern Implementation: Automatic Differentiation

Manual Math

$$\frac{\partial L}{\partial W} - \frac{\partial L}{\partial W} = \frac{\partial L}{\partial m} \frac{\partial L}{\partial x_i}$$

$$\frac{\partial L}{\partial b} = \frac{1}{\partial b} \frac{\partial L}{\partial W} \left(\frac{1}{\partial b} + \frac{11}{\partial w} \right)$$

forward pass = $y - Iy$

backward pass = h^T

$$\frac{\partial L}{\partial W} = \left(\frac{\partial L}{\partial x} \right) \left(\frac{\partial x}{\partial r} \right) \text{ (forward-ward pass)}$$

$$\frac{\partial L}{\partial W} = - \left(\frac{\partial L}{\partial W} \right) + \frac{\partial L}{\partial b} + \frac{\partial L}{\partial yv} \text{ (backward pass)}$$

$$\frac{\partial L}{\partial W} = - \left(\frac{\partial L}{\partial W} \right) + \frac{1}{\partial gw - \partial b} \left(\frac{\partial L}{\partial hc} \right)$$

Abstracted Away

Modern Code

```
loss = criterion(y_pred, _target)  
loss. backward()  
optimizer.step()
```

AutoGrad: Modern frameworks like **PyTorch** automatically construct the computational graph and compute gradients, allowing researchers to focus on architecture rather than calculus

Colab: PyTorch Autograd Example

- https://colab.research.google.com/drive/1MvtZnvrS-1Npk8s_Fq8RCEoOATUT5jNq?usp=sharing

```
import torch
from torch.autograd import grad
import torch.nn.functional as F

# Create tensors
x = torch.tensor(3.)
w = torch.tensor(2., requires_grad=True)
b = torch.tensor(1., requires_grad=True)

# Build a computational graph
z = w * x + b    # z = 2 * x + 1
y = F.relu(z)    # y = ReLU(2 * x + 1)

print(z)
print(y)

tensor(7., grad_fn=<AddBackward0>)
tensor(7., grad_fn=<ReluBackward0>)
```

Let's calculate the derivative of y with respect to w in the equation $y = w * x + b$. This will give us the gradient of y based on changes in w .

```
grad(y, w, retain_graph=True)
```

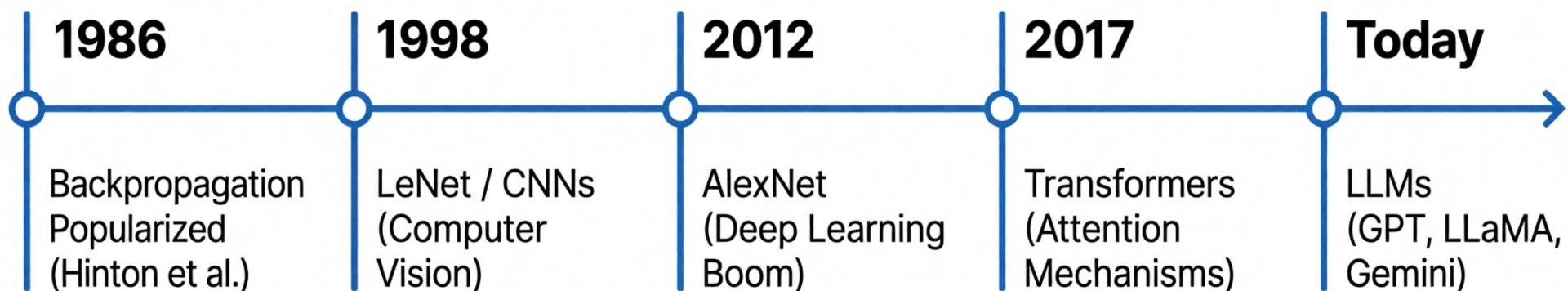
$$(\text{tensor}(3.,), \frac{\partial y}{\partial w} = \frac{\partial y}{\partial z} \frac{\partial z}{\partial u} \frac{\partial u}{\partial w} = 3 \times 1 \times 1 = 3)$$

```
grad(y, b, retain_graph=True)
```

$$(\text{tensor}(1.,), \frac{\partial y}{\partial b} = \frac{\partial y}{\partial z} \frac{\partial z}{\partial b} = 1)$$

The Impact: From Perceptrons to Transformers

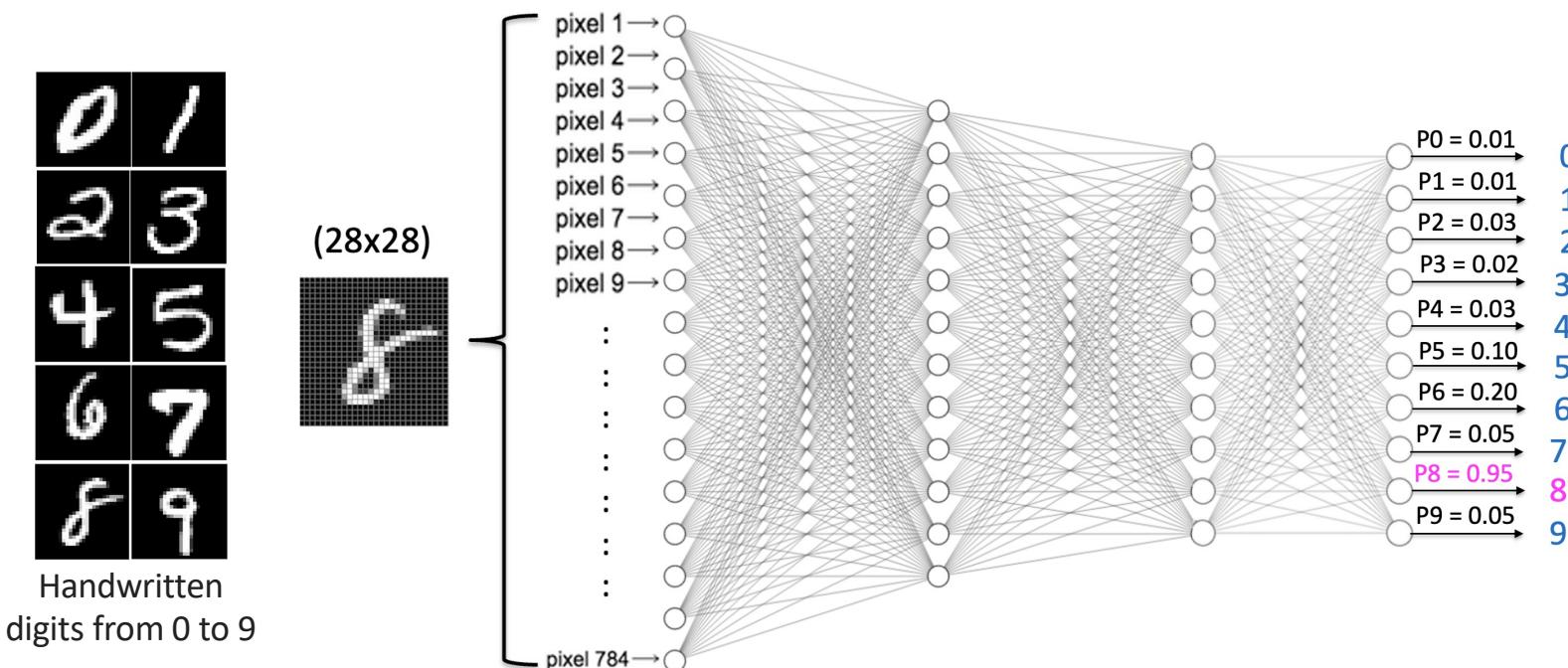
- Backpropagation remains the standard optimization engine for the massive models of today.



PyTorch Example for Image Classifications

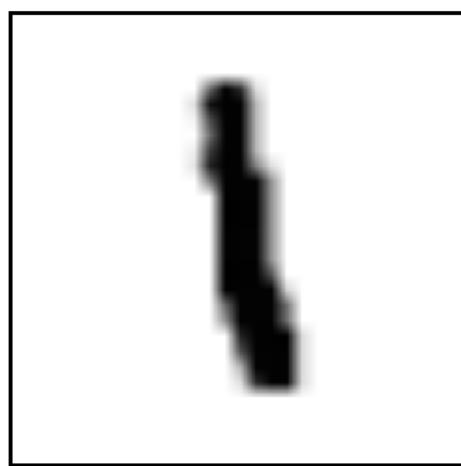
Colab: MLP using NMIST Dataset

- In this example, we will use the PyTorch deep learning framework to create a MLP model that can recognize handwritten digits. We will train this model using a dataset called MNIST, which has 70,000 images of handwritten digits from 0 to 9.
- https://colab.research.google.com/drive/1roufrBO8BZfJA1HDgoi5uyZpgS_FCuu1?usp=sharing

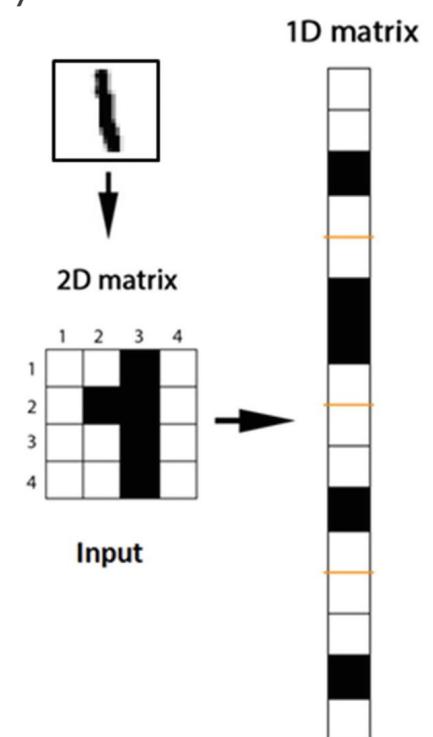


MNIST Image Format

- Each MNIST image is 28 pixels by 28 pixels. We can interpret this as a big array of numbers:



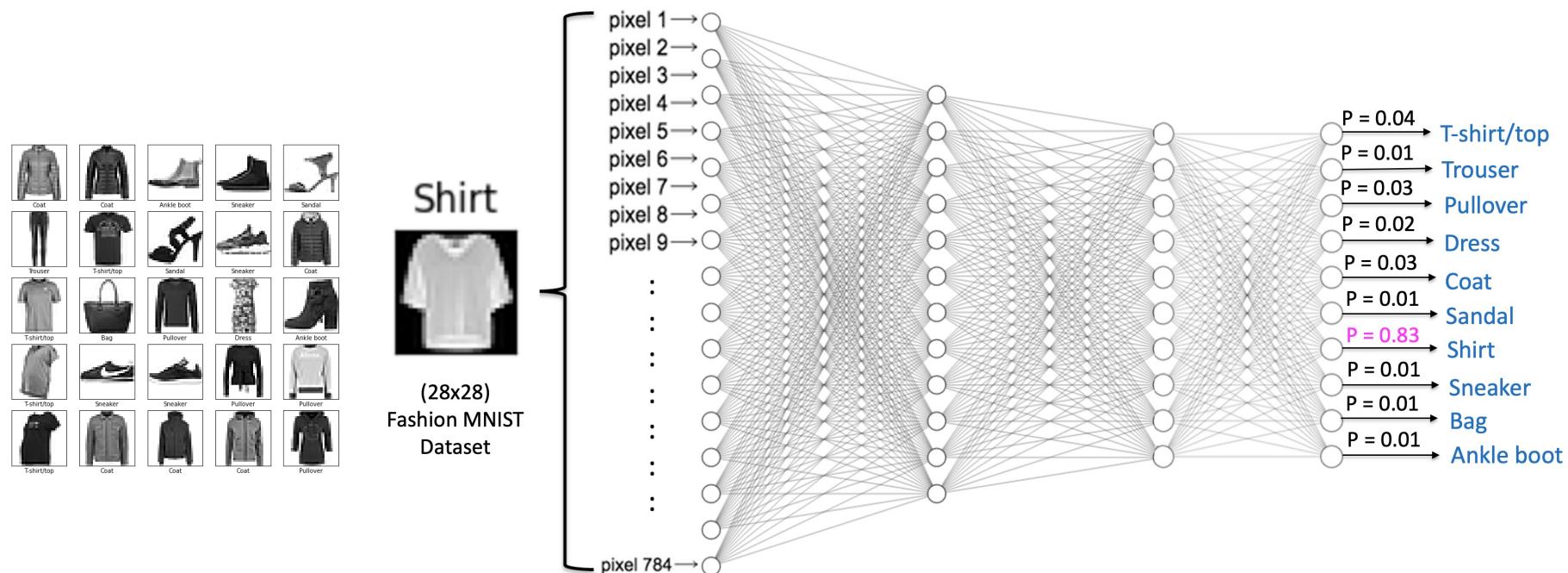
2



- Thus, after flattening the image into vectors of $28 \times 28 = 784$, we obtain as `mnist.train.images` a tensor (an n-dimensional array) with a shape of [55000, 784].

Colab: MLP using Fashion NMIST Dataset

- We will train an MLP to classify images from the Fashion MNIST dataset, which consists of 70,000 grayscale fashion product images. Each image is 28x28 pixels in size.



<https://colab.research.google.com/drive/15S3-F0wCA4o3Scs6rchqLR96zxkNDoHA?usp=sharing>

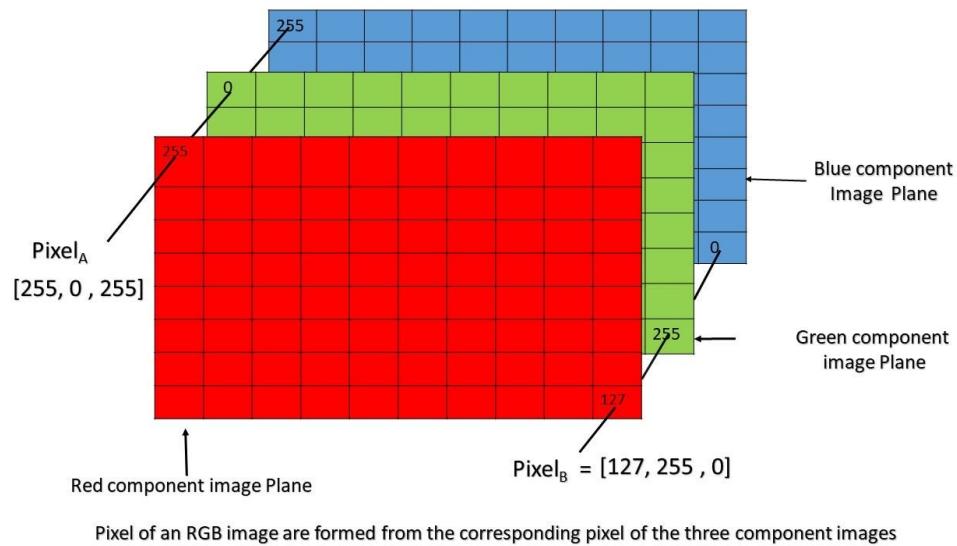
CIFAR-10 Color Image Dataset

- The CIFAR-10 dataset is a widely used collection of **color images** that is commonly used to train machine learning and computer vision algorithms
 - It consists of 60,000 32x32 color images in 10 different classes
 - Each class contains 6,000 images, with 5,000 images for training and 1,000 images for testing
 - The 10 different classes in the CIFAR-10 dataset represent airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks



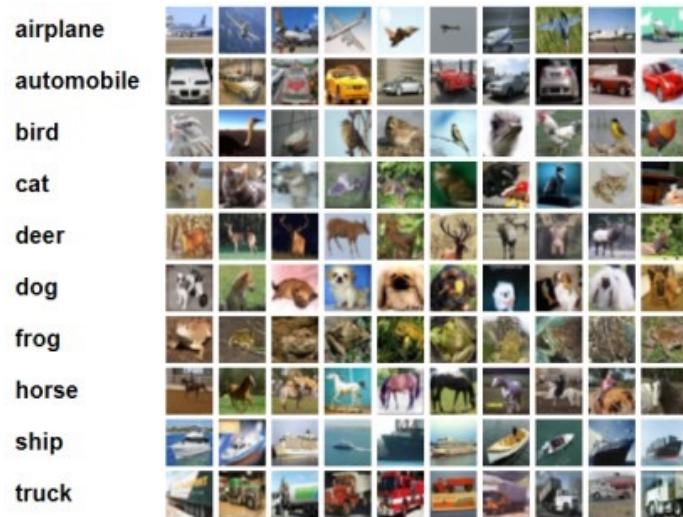
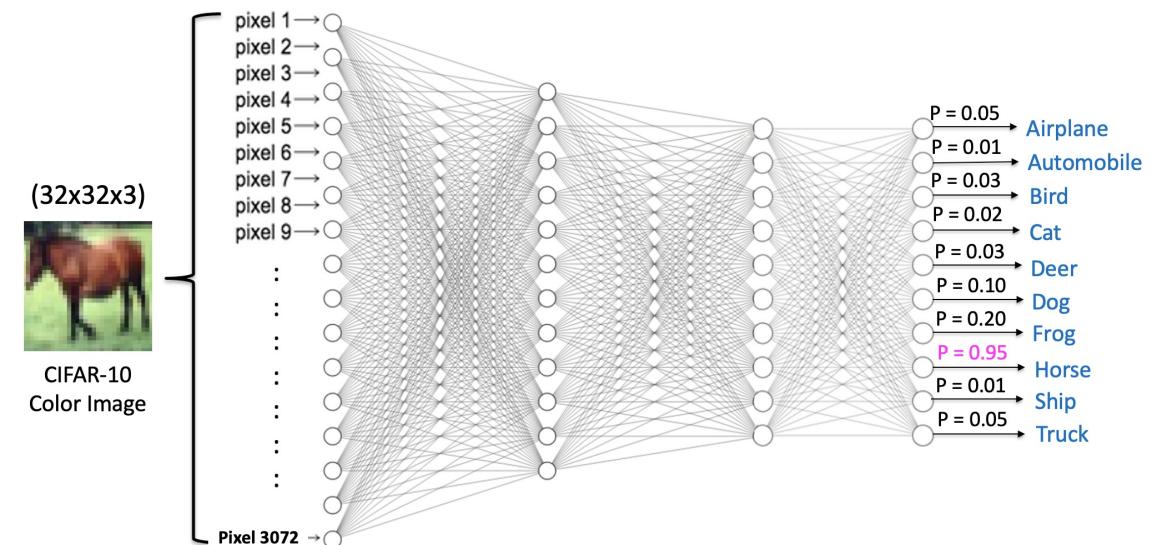
CIFAR-10 Image Format

- The images in CIFAR-10 dataset are of (32×32) resolution and color images, which means they are in RGB format.
- Every image is of a shape $(32, 32, 3)$ where 3 represent its number of channels-RGB, **RED**, **GREEN** and **BLUE**.
- Every image in this dataset is a mixture of these **3 color images**.
- All these images are in form of pixels, like in this particular data 32×32 , means a matrix of 32×32 pixel values for 3 different channels.



Colab: MLP using CIFAR-10 Dataset

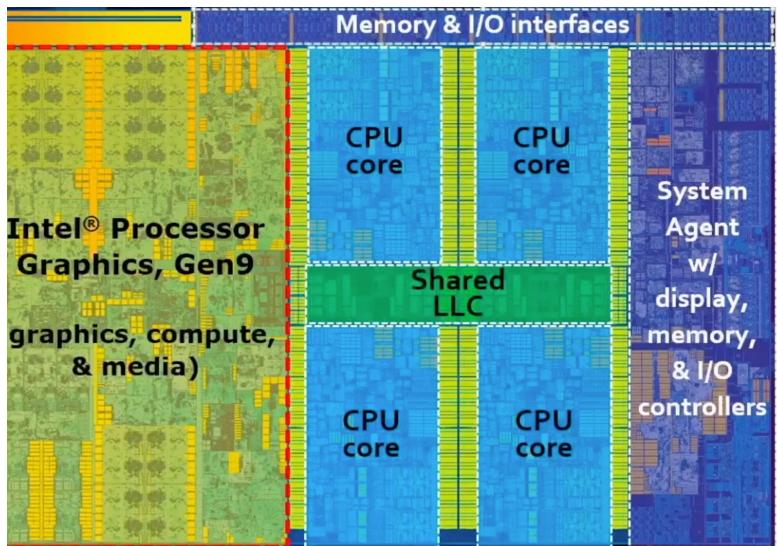
- In this example, we demonstrate how to train a MLP model (or feedforward neural network) to classify images from the CIFAR-10 dataset. The images are be flattened into a **3072**-dimensional vector before being fed into the network.



https://colab.research.google.com/drive/1vbFi4_6gZ_-bPhBFEdkoS0c3syjshoXP?usp=sharing

CPU vs GPU

- CPU: Small number of large cores
- GPU: Large number of small cores



Model & Data

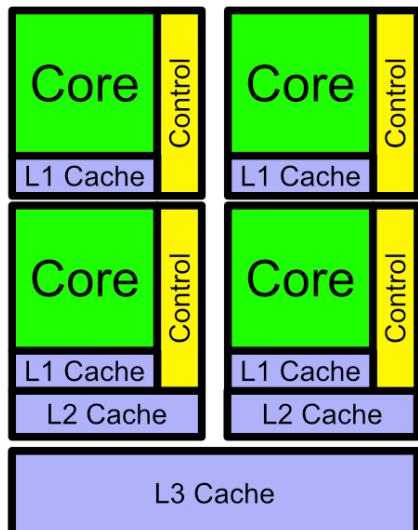

```
# Load model and data to GPU if cuda is available
if (device.type == 'cuda'):
    model.to(device)
    val_images, val_labels = val_images.cuda(), val_labels.cuda()
```

<https://towardsdatascience.com/why-deep-learning-models-run-faster-on-gpus-a-brief-introduction-to-cuda-programming-035272906d66>

CPU vs GPU

- There are many similarities between the CPU and GPU, but the focus on individual operation speed vs parallelism has major implications in terms of performance.

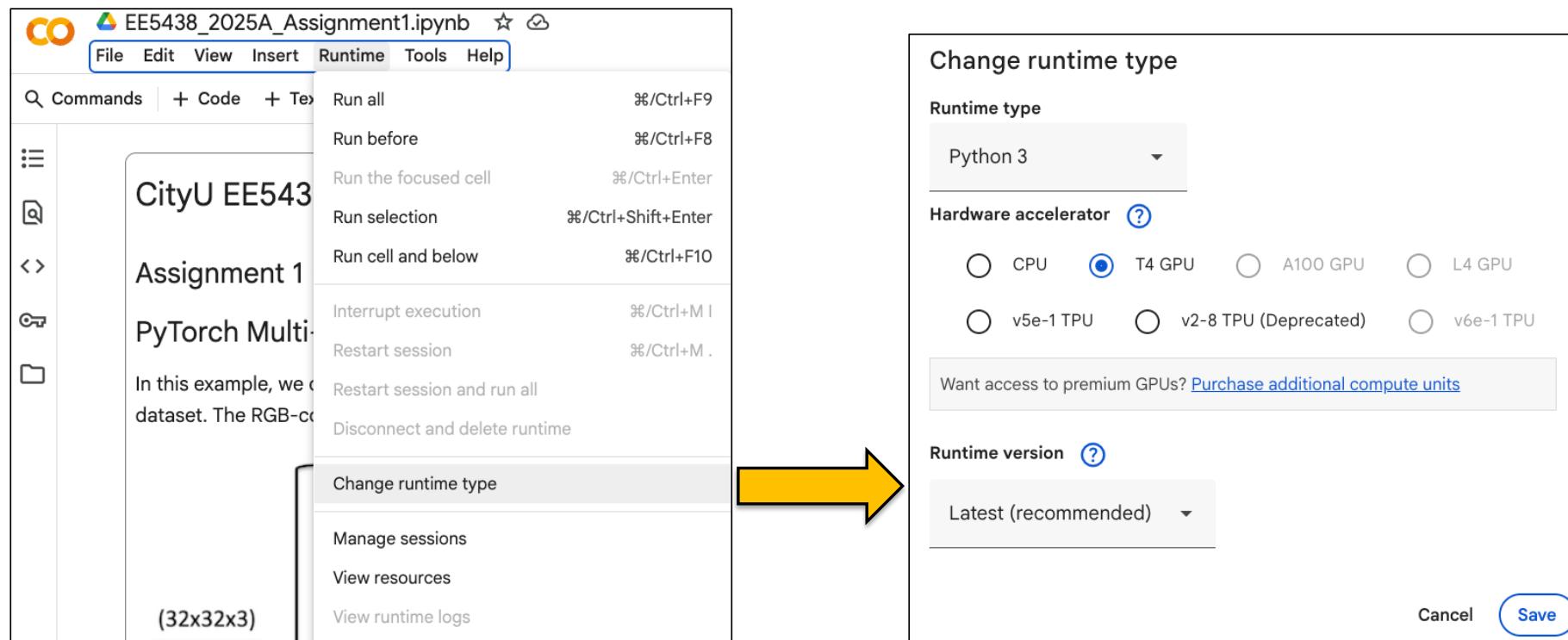
CPU



GPU


```
# Load model and data to GPU if cuda is available
if (device.type == 'cuda'):
    model.to(device)
    val_images, val_labels = val_images.cuda(), val_labels.cuda()
```

Colab: GPUs: T4, A100, L4, ...



Classification Metrics

	Actual Positive	Actual Negative
Predicted Positive	True Positive (TP)	False Positive (FP)
Predicted Negative	False Negative (FN)	True Negative (TN)

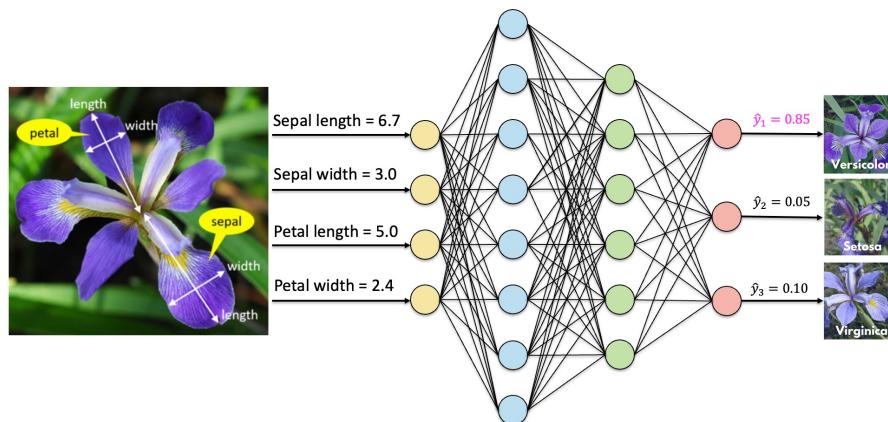
Legend:

- Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$
- Precision = $\frac{TP}{TP+FP}$
- Recall = $\frac{TP}{TP+FN}$
- Specificity = $\frac{TN}{TN+FP}$

<https://medium.com/@lmpo/mastering-classification-metrics-a-deep-dive-into-accuracy-precision-recall-f1-score-and-f8caaf669bf0>

Classification Metrics

- Classification is the problem of identifying to which of a set of categories, a new observation belongs to, based on a training set of data containing observations and whose categories membership is known.



- How to measure the performance of the trained classifier?

Terminologies of Classification Metrics

After a deep learning model is trained to detect a COVID-19 disease on patients. The output can either be positive (+ve) or negative (-ve)

There are only 4 cases any patient X could end up with:

1. **True positive (TP)**: Prediction is +ve and X is **infected**.
2. **True negative (TN)**: Prediction is -ve and X is healthy
3. **False positive (FP)**: Prediction is +ve and X is healthy.
4. **False negative (FN)**: Prediction is -ve and X is **infected**.

Detecting COVID-19 Disease



<https://towardsdatascience.com/identifying-the-right-classification-metric-for-your-task-21727fa218a2>

Confusion Matrix

- A **confusion matrix** specific table layout that allows visualization of the performance of supervised classification algorithm
- Typically row of the matrix represents the instances in a **predicted class**, while column represents the instances in an **actual class**.
- Its name stems from the fact that it makes it easy to see whether the **system is confusing two classes**.

Confusion Matrix

	Actual Positive	Actual Negative
Predicted Positive	True Positive (TP)	False Positive (FP)
Predicted Negative	False Negative (FN)	True Negative (TN)

<https://towardsdatascience.com/identifying-the-right-classification-metric-for-your-task-21727fa218a2>

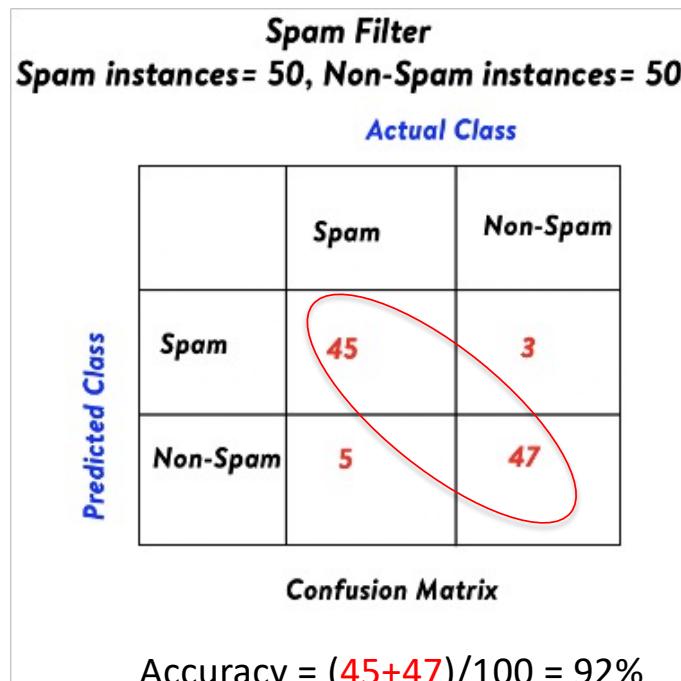
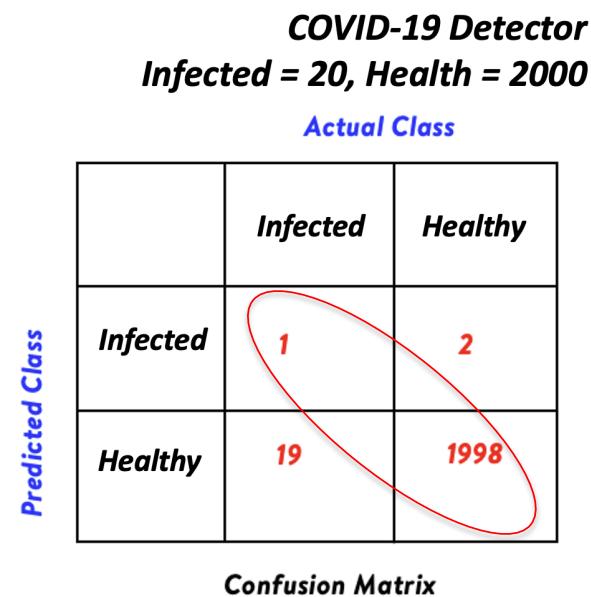
Classification Metric: Accuracy

- Accuracy is the ratio of the correctly labeled instances to the whole pool of instances.
- Accuracy is the most intuitive Classification metric.
- Accuracy answers the question that :
 - How many people were correctly labelled out of all the people?
- $$\text{Accuracy} = \frac{TP+TN}{TP+FP+FN+TN}$$
- Numerator: All correctly labeled people (TP+TN)
- Denominator: All people (TP+FP+FN+TN)

	Actual Positive	Actual Negative
Predicted Positive	True Positive (TP)	False Positive (FP)
Predicted Negative	False Negative (FN)	True Negative (TN)

Weakness of Accuracy Metric

- Accuracy is a good metric only in the following cases.
 - The classes or categories have **evenly distributed instances** i.e. **It is a balanced dataset.**
 - The cost of false positives is the same as the cost of false negatives.



Classification Metric: Precision

- Precision is the ratio of the correctly positive labeled instances by the model to all positive labeled instances.
- Precision answers the question: How many of those who we labeled as positive are actually positive?
- $$\text{Precision} = \frac{TP}{TP+FP}$$
- Choose precision if you want to be more confident of your True positive.

Spam Filter
Spam instances = 50, Non-Spam instances = 50

		Actual Class	
		Spam	Non-Spam
Predicted Class	Spam	45	3
	Non-Spam	5	47

Confusion Matrix

$$\text{Precision} = 45/(45+3) = 93.75\%$$

COVID-19 Detector
Infected = 20, Health = 2000

		Actual Class	
		Infected	Healthy
Predicted Class	Infected	1	2
	Healthy	19	1998

Confusion Matrix

$$\text{Precision} = 1/(1+2) = 33.33\%$$

Classification Metric: Recall/Sensitivity

- **Recall/Sensitivity** is the **True Positive Rate (TPR)**
- Recall is **the ratio of the correctly positive labeled instances** by a model to all who are positive.
- Recall answers the question: Of all the instances who are positive, how many of these are correctly detected.
- **Recall** =
$$\frac{TP}{TP+FN}$$
- Precision is how sure we are of True Positives, while **Recall** is how sure we are that we are not missing any positives

		Actual Class	
		Spam	Non-Spam
		Spam	45
Predicted Class	Non-Spam	5	47

Confusion Matrix

$$\text{Recall} = 45/(45+5) = 90\%$$

		Actual Class	
		Infected	Healthy
		1	2
Predicted Class	Healthy	19	1998

Confusion Matrix

$$\text{Recall} = 1/(1+19) = 5\%$$

Classification Metric: Specificity

- **Specificity** is the **True Negative Rate (TNR)**
- Specificity is **the ratio of the correctly negative labeled instances** by a model to all who are **actually negative**.
- Recall answers the question: Of all the instances who are positive, how many of these are correctly detected.
- **Specificity** =
$$\frac{TN}{TN+FP}$$
- **Specificity is preferred** when we want to **cover all the negatives**, meaning we don't want any false alarms, we don't want any false positives.

Spam Filter
Spam instances = 50, Non-Spam instances = 50

		Actual Class	
		Spam	Non-Spam
Predicted Class	Spam	45	3
	Non-Spam	5	47

Confusion Matrix

$$\text{Specificity} = 47/(3+47) = 94\%$$

COVID-19 Detector
Infected = 20, Health = 2000

		Actual Class	
		Infected	Healthy
Predicted Class	Infected	1	2
	Healthy	19	1998

Confusion Matrix

$$\text{Specificity} = 1998/(2+1998) = 99.9\%$$

Classification Metric: F1-Score

- **F1-Score** considers both Precision and Recall
- F1-Score is the harmonic mean of the Precision and Recall.
- F1 Score is the preferred metric in case of an imbalanced dataset.
- $$\text{F1-Score} = \frac{1}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}} = 2 \frac{(\text{Precision} \times \text{Recall})}{(\text{Precision} + \text{Recall})}$$

Spam Filter
Spam instances = 50, Non-Spam instances = 50

		Actual Class	
		Spam	Non-Spam
Predicted Class	Spam	45	3
	Non-Spam	5	47

Confusion Matrix

Precision = 45/48 = 93.75% Recall = 45/50 = 90%

F1-Score = 91.84%

COVID-19 Detector
Infected = 20, Health = 2000

		Actual Class	
		Infected	Healthy
Predicted Class	Infected	1	2
	Healthy	19	1998

Confusion Matrix

Precision = 1/3 = 33.33% Recall = 1/20 = 5%

F1-Score = 8.68%

Classification Metric: $F\beta$ -Score

- The **F1-Score** measure is obtained by taking **the harmonic mean of Precision and Recall**, namely the reciprocal of the average of the reciprocal of recall:

$$F1\text{-Score} = \frac{1}{\frac{1}{2} \frac{1}{\text{Precision}} + \frac{1}{2} \frac{1}{\text{Recall}}} = 2 \frac{(\text{Precision} \times \text{Recall})}{(\text{Precision} + \text{Recall})}$$

- Instead of giving precision and Recall equal weights that sums up to 1, we can instead assign that still sum to 1 but **weight on recall** is β times as large as the weight on precision.

$$F\beta\text{-Score} = \frac{1}{\frac{1}{\beta+1} \frac{1}{\text{Precision}} + \frac{\beta}{\beta+1} \frac{1}{\text{Recall}}} = (1 + \beta) \frac{(\text{Precision} \times \text{Recall})}{(\beta \cdot \text{Precision} + \text{Recall})}$$

- Commonly used β values are:
 - $\beta = 0.5$, weighs Recall lower than Precision.
 - $\beta = 1$, weights Recall equal to Precision.
 - $\beta = 2$, weights Recall higher than Precision.