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Message 1: Submission of Project Proposal
• Just a friendly reminder: The deadline to submit your group project proposal is Feb 14, 

2026, at 11pm. Please submit a PDF file with the project title, list of group members, and 
other necessary details to the CANVAS group project proposal assignment.

• Only one proposal per group is required, and it should be submitted by the project's team 
leader.

• You can find more information about the group project on the course website:
§ https://www.ee.cityu.edu.hk/~lmpo/ee4016/projects.html 

• Remember, each group should assign a project leader who will be responsible for 
submitting the proposal on CANVAS.

• The file name should follow this format:
§ Filename format : Proposal_GroupNumber_ProjectName.pdf
§ Filename example: Proposal_Group01_Audio_Classification.pdf

https://www.ee.cityu.edu.hk/~lmpo/ee4016/projects.html


Message 2: Assignment 1
Image Classification with Multi-Layer Perceptron
• The assignment 1 is now available in the schedule webpage for download. The 

deadline for the assignment 1 is Saturday of Week 5 (Feb 21, 2026). 
§ https://www.ee.cityu.edu.hk/~lmpo/ee4016/pdf/2026_EE4016_Ass01.pdf 

§ Colab: https://colab.research.google.com/drive/1zSe-32cpojFYT2oxySvrAdSbMLr4vY9I#scrollTo=hjkFuokaRv3G 

• The answers of the section A must be handwritten and then scan the answer sheets into a 
single pdf file.

• Submit the answer sheets and Colab notebook of the Assignment 1 as a zip file to this 
CANVAS assignment 1:
• Filename format : Assignment01_StudentName_StudentID.zip
• Filename example: Assignment01_Chen_Hoi_501234567.zip

https://www.ee.cityu.edu.hk/~lmpo/ee4016/pdf/2026_EE4016_Ass01.pdf
https://colab.research.google.com/drive/1zSe-32cpojFYT2oxySvrAdSbMLr4vY9I


Anatomy of the MLP Architecture
Context: An MLP consists of an 
input layer, one or more hidden
layers, and an output layer. Nodes 
are connected via weighted 
connections. 
Notation:

§ 𝑙	: Layer index
§ 𝐖(")	: Weight matrix for layer l
§ 𝐛(")	: Bias vector for layer l
§ 𝑔(")	: Activation function

𝐚(") = 𝑔(") 𝐖(")𝐚("$%) + 𝐛(")

!𝐲 = 𝑓! 𝐱 = Softmax 𝐖(#)ReLU 𝐖(%)ReLU 𝐖(&)𝐱 + 𝐛(&) +𝐛(%) +𝐛(#)



MLP based Model Design
• Based on the problems to define the Hyperparameters of the MLP architecture:

§ Input dimension (𝑑) 
§ Network Depth (𝐿)
§ Number of neurons of each layer (	𝑛": 𝑙 = 1,2, … , 𝐿)
§ Output dimension (𝐾 = 𝑛&)
§ Activation functions (𝜎, tanh, ReLU, softmax)
§ Cost function ℒ 𝜃

• The MLP model can be represented by a set of  weights and biases parameters 𝜃 as
§ 𝜃: = 𝐖 ! , 𝐛 !

!"#
$

§ '𝐲 = 𝑓% 𝐱 = 𝑔 𝐖($)⋯𝑔 𝐖(()𝑔 𝐖(#)𝐱 + 𝐛(#) + 𝐛(() ⋯+ 𝐛($)

• For a given dataset 𝒟, use Gradient Descent with backpropagation to find the optimal 
model parameter set 𝜃∗ that minimizes a cost function ℒ 𝜃
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The Training Objective: Minimizing Cost
For a given dataset 𝒟:= 𝐱(0), 𝐲(0) 023

4
, 

the goal of training is to find the optimal 
set of parameters 𝜃 (weights and biases) 
that minimizes the cost function ℒ 𝜃  
between predictions )𝐲(0)	 and targets 𝐲(0).

𝜃∗ = arg	min
	 ,

ℒ 𝜃

ℒ 𝜃 =
1
𝑁
/
023
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𝑙𝑜𝑠𝑠 𝐲(0), )𝐲(0)



The Strategy: Gradient Descent
1. Initialize: Randomly set weights 𝜃
2. Compute Cost: Measure 

performance ℒ 𝜃 .
3. Find Gradient: Calculate ∇ℒ(𝜃) 

(direction of steepest ascent).
4. Update: Step down the hill.

𝜃@AB = 𝜃CDE − 𝜂 ) ∇ℒ(𝜃)

   𝜂 = Learning Rate (step size)

• Repeat steps 2 to 4, unit the cost is low 
enough or convergence.

Gradient
∇ℒ(𝜃) 



The Computational Bottleneck
Why Backpropagation?

Gradient Descent Formula:

𝜃789 = 𝜃:;< − 𝜂 5 ∇ℒ(𝜃)

Naive Approach (Finite Differences):
• Perturb each parameter individually.
• Requires O(N) forward passes for N parameters.
• Infeasible for large models (e.g., 1M params → 1M 

forward passes per update!).

The Challenge:
• Modern networks have millions of parameters. 

Calculating the gradient this way has Exponential 
Complexity.

∇ℒ 𝜃' =

⋮
𝜕ℒ 𝜃'
𝜕𝑤(,*

(")

⋮
𝜕ℒ 𝜃'
𝜕𝑏(

(")

To efficiently compute the gradient when 
dealing with a large number of parameters, 

we employ a technique known as 
backpropagation.

This is what we need to calculate 
efficiently



Backpropagation
!ℒ
!#!,#

(%) = 𝛿$
(&) # 𝑎(

&)*  



The Engine: The Chain Rule
• Backpropagation leverages the Chain Rule to compute gradients for ALL 

parameters simultaneously in one backward sweep.

Reduces complexity from exponential to linear, making Deep Learning feasible.



Overview of Backpropagation Algorithm
• The backpropagation algorithm uses the Chain Rule to efficiently compute gradients 

4ℒ
46),+

(,) in gradient descent–based network training.
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Forward Pass

Backward Pass

Propagate Error: 𝛿!
(#)

𝜕ℒ

𝜕𝑤(,*
(") =

𝜕ℒ

𝜕𝑧(
(") 0

𝜕𝑧(
"

𝜕𝑤(,*
" = 𝛿(

(") 0 𝑎*
"$%

• Forward Pass: 𝑎*
"

Computer activation layer by layer. Save these 
values.

• Backward Pass:

𝛿-
(!) = 𝑔.(!) 𝑧-

(!) ?
/

𝑤/,-
(!0#) A 𝛿/

(!0#)

Compute error signals (𝛿) in revers order. 
Reuse cached values.

Compute Activations: 𝑎%
#&'  

Cost
Function
ℒ

𝜕ℒ

𝜕𝑤!,!
(!)



Step: The Forward Pass
• Generating Predictions and Caching Activations

𝑧(
(") = 3

*-%

.'()

𝑤(,*
(")𝑎*

("$%) + 𝑏(
(")Net Input:

𝑎(
(") = 𝑔(") 𝑧(

(")Activation:

The Key Identity (Cached Value):
𝜕𝑧(

"

𝜕𝑤(,*
" = 𝑎*

"$%

The activation from the previous layer IS the
partial derivative we need later. We store it.



𝜕𝑧0
(;)

𝜕𝑤0,B
(;) 	and

𝜕𝑧0
(;)

𝜕𝑏0
(;) 𝑙 = 1,2, … , 𝑛;

where 𝑧0
(;) is the net input and 

𝑔(;)(5)  is the activation function 

𝑧0
(;) = /

B23

7/01

𝑤0,B
(;)𝑎B

(;C3) + 𝑏0
(;)

!"7
(9)

!#7,<
(9) = 𝑎$

(&'()	and    
!"7

(9)

!*7
(9) = 1 
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𝑎&
(*+&)

𝑎%
(*+&)

𝑎,
(*+&)

:
:

:

𝑎-
(!)

:

𝑤-,,
(*)

Layer 𝑙 − 1 Layer 𝑙

𝑏-
(*)1

𝑤-,%
(*)

𝑤-,&
(*) 𝑎0

(;) = 𝑔(;) 𝑧0
(;) 	

𝑎0
(;) = 𝑔 ; /

B23

7/01

𝑤0,B
(;)𝑎B

(;C3) + 𝑏0
(;)



𝜕ℒ	

𝜕𝑧0
(;) = 𝛿0

(;) : the propagated gradient corresponding to the 𝑙-th layer and 𝑖-th neuron

𝛿(
(") =

𝜕ℒ

𝜕𝑧(
(") =3

2

𝜕ℒ	

𝜕𝑧2
("3%) 0

𝜕𝑧2
("3%)

𝜕𝑎(
(") 0

𝜕𝑎(
(")

𝜕𝑧(
(")

𝑧2
("3%) = ∑*𝑤2,*

("3%)𝑎*
(") + 𝑏2

("3%)	 ⇒ 56/
('0))

571
(') = 𝑤2,*

("3%)
𝛿(
(") = 𝑔8(") 𝑧(

(") 3
2

	𝛿2
("3%)𝑤2,(

("3%)

𝜕𝑎-
(!)

𝜕𝑧-
(!) = 𝑔.(!) 𝑧-

(!)

𝛿/
(!0#)

Gradient of the 
Activation function

14

=
𝜕𝑎(

(")

𝜕𝑧(
(")3

2

𝜕ℒ	

𝜕𝑧2
("3%) 0

𝜕𝑧2
("3%)

𝜕𝑎(
(") 𝛿(

(") 

𝛿%
("3%)

𝛿9
("3%)

⋮
𝛿2
("3%)

⋮

×𝑔.(!) 𝑧1
(!)

Multiply a constant

𝑤#,-
(!0#)

𝑤/,-
(!0#)

𝑤(,-
(!0#)

i

Layer 𝑙 Layer 𝑙 + 1



Jℒ K

JL:
(/) = 	𝛿0

(;) is just a scaled weighted sum of 𝛿M
(;N3)of the upper layer (Backpropagation)

=
𝛿(
(") 

𝛿(
(") = 𝑔8(") 𝑧(

(") 3
2

𝑤2,(
("3%)𝛿2

("3%)

𝛿%
("3%)

𝛿9
("3%)

⋮
𝛿2
("3%)

⋮

×𝑔.(!) 𝑧1
(!)

Multiply a constant

Input 
from 
upper 
layer

output

𝑤#,-
(!0#)

𝑤/,-
(!0#)

𝑤(,-
(!0#)

i

The backpropagation process begins by calculating 
the delta terms 𝛿/

($)	for the output layer L. It then 
systematically computes the delta terms 𝛿/

(!)	for 
each preceding layer l, using the delta terms 
𝛿/
(!0#)	from the layer immediately above it.

:
:

Layer 𝑙 Layer 𝑙 + 1

1

2

×𝑔+(#) 𝑧'
(#)

×𝑔+(#) 𝑧,
(#)

×𝑔+(#) 𝑧!
(#)

𝛅(") 𝛅("3%): :

1

2

𝛿%
(") 

𝛿9
(") 

𝛿.'
(") 

:
:

:
:

𝛿(
(!0#) 

𝛿#
(!0#) 

𝑤%!"#,&
('())

𝑤*,&
('())

𝛿2-./
(!0#) 

1

2

𝑛*

𝑤),&
('()) :

:
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Backward Pass

𝑛*3&



Step 2: Backward Pass (Output Layer)
• Calculating the Initial Error Signal

𝛿+
(,) =

𝜕ℒ
𝜕 (𝑦+

*
𝜕 (𝑦+
𝜕𝑧+

, =
𝜕ℒ
𝜕 (𝑦+

* 𝑔-(,) 𝑧+
(,)

Gradient of Cost
(How wrong was the prediction?)

Derivative of Activation
(How sensitive is the neuron?)

𝜎 𝑧 1 − 𝜎 𝑧

For Sigmoid Activation 
𝑔+(0) 𝑧 = 𝜎+ 𝑧 = 𝜎 𝑧 1 − 𝜎 𝑧



Step 3: Backward Pass (Hidden Layers)
Propagating the Error Recursively

The error for the current layer is the weighted
sum of errors from the layer ahead. 

𝛿+
(&) = 𝑔-(&) 𝑧+

(&) -
.

𝑤.,+
(&0()𝛿.

(&0()



We begin at the end (last Layer L).
1. Initialization: compute 𝛅(A) based on ∇ℒ *𝐲
• 𝛅(A) = 𝑔B(A) 𝐳(A) ⨀∇ℒ *𝐲

2. Compute 𝛅(C)	based on 𝛅(CDE)

• 𝛅(&$%) = 𝑔8(&$%) 𝐳(&$%) ⨀ 𝐖(&) B𝛅(&)
⋮

• 𝛅(") = 𝑔8(") 𝐳(") ⨀ 𝐖("3%) B
𝛅("3%)

⋮

• 𝛅(%) = 𝑔8(%) 𝐳(%) ⨀ 𝐖(9) B
𝛅(9)

Error term in the output layer 𝐿 is just the loss 
between the prediction and target value

Overall Backward Pass
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:
:

Layer 𝑙 Layer 𝑙 + 1

1

2

×𝑔+(#) 𝑧'
(#)

×𝑔+(#) 𝑧,
(#)

×𝑔+(#) 𝑧!
(#)

𝛅(") 𝛅("3%): :

1

2

𝛿%
(") 

𝛿9
(") 

𝛿.'
(") 

:
:

:
:

𝛿(
(!0#) 

𝛿#
(!0#) 

𝑤%!"#,&
('())

𝑤*,&
('())

𝛿2-./
(!0#) 

1

2

𝑛*

𝑤),&
('()) :

:

Backward Pass

𝑛*3&



Synthesizing the Gradient

!ℒ

!#E,F
(G) = 𝛿$

(&) # 𝑎(
&)*  

Backward Pass Term (𝛿)
Calculated from the error signal flowing back.

Forward Pass Term (𝑎)
Calculated activation from the input flow.

The final gradient is dimply the product of the local error and the incoming activation.



Forward Pass: Compute Activations

𝑎#
(!)

𝑎(
(!)

𝑎1
(!)

:
:

:
:

𝑎&
(*3&)

𝑎%
(*3&)

𝑎-
(*3&)

:
:

:
:

𝑤0,B
(;)

Layer 𝑙 Layer 𝑙 + 1

𝐚(") 𝐚("3%)

𝜕𝑧-
(!)

𝜕𝑤-,1
(!) = 𝑎1

(!3#)	 for	𝑙 = 1, 𝑎1
(4) = 𝑥1

Forward Pass

𝐚(C) = 𝐱
𝐚(%) = 𝑔(%) 𝐖(%)𝐚(C) + 𝐛(%)

⋮
𝐚(") = 𝑔(") 𝐖(")𝐚("$%) + 𝐛(")

⋮
𝐚(&) = 𝑔(&) 𝐖(&)𝐚(&$%) + 𝐛(&)

• !ℒ
!#7,<

(9) = 𝛿+
(&) * 𝑎$

(&'()

20

Forward Pass



Backward Pass: Compute Delta

𝜕ℒ	

𝜕𝑧0
(;) = 𝛿0

(;)

Backward Pass

𝛅(&) = 𝑔8(&) 𝐳(&) ⨀∇ℒ ;𝐲
⋮

𝛅(") = 𝑔8(") 𝐳(") ⨀ 𝐖("3%) B
𝛅("3%)

⋮
𝛅(%) = 𝑔8(%) 𝐳(%) ⨀ 𝐖(9) B

𝛅(9)

• !ℒ	
!#7,<

(9) =
!ℒ.	
!"7

(9) *
!"7

(9)

!#7,<
(9)
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:
:

Layer 𝑙 Layer 𝑙 + 1

1

2

×𝑔+(#) 𝑧'
(#)

×𝑔+(#) 𝑧,
(#)

×𝑔+(#) 𝑧!
(#)

𝛅(") 𝛅("3%): :

1

2

𝛿%
(") 

𝛿9
(") 

𝛿.'
(") 

:
:

:
:

𝛿(
(!0#) 

𝛿#
(!0#) 

𝑤%!"#,&
('())

𝑤*,&
('())

𝛿2-./
(!0#) 

1

2

𝑛*

𝑤),&
('()) :

:

Backward Pass

𝑛*3&



Synthesizing the Gradient
• 𝜃789 = 𝜃:;< − 𝜂 5 ∇ℒ 𝜃U

• ∇ℒ =

⋮
5ℒ

5E4,1
(')

⋮
5ℒ

5F4
(')

Backward Pass

𝛅($) = 𝑔.($) 𝐳($) ⨀∇ℒ '𝐲
⋮

𝛅(!) = 𝑔.(!) 𝐳(!) ⨀ 𝐖(!0#) 5
𝛅(!0#)

⋮
𝛅(#) = 𝑔.(#) 𝐳(#) ⨀ 𝐖(() 5

𝛅(()

Forward Pass
	 𝐚(4)= 𝐱

	 𝐚(#)= 𝑔 𝐖(#)𝐱 + 𝐛(#)

⋮
	 𝐚(!) = 𝑔 𝐖(!)𝐚(!3#) + 𝐛(!)

⋮
𝐚($) = 𝑔 𝐖($)𝐚($3#) + 𝐛($)

Efficiently compute the gradient 
based on two pre-computed terms 

from forward 𝐚(")	and 
𝛅(")	backward passes.

𝜕ℒ

𝜕𝑤H,I
(J) = 𝛿H

(J) . 𝑎I
(JKL)

⋮
⋮

⋮

⋮



The Full Training Loop



Backpropagation Training Algorithm
1. Initialize the model parameters 𝑤(,*

"  and 𝑏(
" .

2. Shuffle the training data 𝒟 = 𝐱 ( , 𝑦 (
(-%
G

.

3. Select a mini-batch from the shuffled data 𝐵 = 𝐱 ( , 𝑦 (
(-%
H

.

4. Compute the gradients for the mini-batch.
§ Use Forward Pass to compute the activations	𝐚(%), 𝐚(9), … , 𝐚(&) of these samples
§ Use Backward Pass to compute the 𝛅(&), 𝛅(&$%), … , 𝛅 9 , 𝛅(%) of these samples

§ Compute the gradients by 6ℒ	
691,3

(-) = 𝛿-
(!) A 𝑎1

(!3#) and 6ℒ
6:1

(-) = 𝛿-
(!)

5. Update the parameters using the computed gradients.

§ 𝑤-,1
! new = 𝑤-,1

! old − 𝜂 A 𝛿-
(!)𝑎1

(!3#)

§ 𝑏-
! new = 𝑏-

! old − 𝜂 A 𝛿-
(!)

6. Repeat steps 3-5 for a specified no. of epoch or until a convergence criterion is met.

𝜕ℒ
𝜕𝑤-,,

(*) =
𝜕ℒ
𝜕𝑧-

(*) I
𝜕𝑧-

*

𝜕𝑤-,,
* = 𝛿-

* I 𝑎,
*+&

𝜕ℒ
𝜕𝑏-

(*) =
𝜕ℒ
𝜕𝑧-

(*) I
𝜕𝑧-

(*)

𝜕𝑏-
(*) = 𝛿-

(*)
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Backpropagation Exercise 1
• Given a two-layer feedforward neural network using sigmoid activation function for the hidden layer 

and the identify activation function for the output layer, determine the output ;𝑦 by representing the 
network in matrix form. 

• Assume that actual output of the network 𝑦 is 0.5, learning rate 𝜂 is 0.5 and MSE cost function, 
perform the backpropagation to compute the new weights, new output and RMSE.
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Solution Output of the Network
• !𝑦 = 𝐖 % 𝜎 𝐖 & 𝐱 + 𝐛(&) +𝐛(%)
• The net input vector 𝐳(&) of the hidden layer is given by

§ 𝐳(&) =
𝑧&
(&)

𝑧%
(&) =𝐖(&) 𝐱 + 𝐛(&) =

𝑤&,&
(&) 𝑤&,%

(&)

𝑤%,&
(&) 𝑤%,%

(&)
𝑥&
𝑥% +

𝑏&
(&)

𝑏%
(&)

§
𝑧&
(&)

𝑧%
(&) = 0.1 0.8

0.4 0.6
0.35
0.9 + 0.3

0.1 = 1.0550
0.7800

• The activation vector 𝐚(&) of the hidden layer is given by

§ 𝐚(&) =
𝑎&
(&)

𝑎%
(&) = 𝜎 𝒛(&) = 𝜎 1.0550

0.7800 = 1/(1 + 𝑒&'.566)
1/(1 + 𝑒&5.7855)

= 0.7417
0.6857

• The net input vector 𝐳(%) of the output layer is given by

§ 𝐳(%) = 𝑧&
(%) = 𝑤&,&

(%) 𝑤&,%
(%) 𝑎&

(&)

𝑎%
(&) + 𝑏&

(%) = 0.3 0.9 0.7417
0.6857 + −0.2 = 0.6396

• The activation vector 𝐚(%) of the output layer (output of the network !𝑦)  is given by

§ !𝑦 = 𝐚(%) = 𝑎&
(%) = 𝑔 𝒛(%) = 𝒛(%) = 0.6396

26
Output layer uses the identify function 𝑔 𝑧 = 𝑧



Solution of the Backpropagation
• Assume that actual output 𝑦 is 0.5, learning rate 𝜂 is 1 and MSE cost function perform the 

backpropagation to find the updated weights.

§ ℒ *𝑦 	= MS𝐸 = E
R∑STE

R E
U 𝐲 S − *𝐲(S) U

U = E
U 𝑦 − *𝑦 U

§ ∇ℒ *𝑦 = 4VWX
4 !Y

= *𝑦 − 𝑦 = 0.6396 − 0.5 = 0.1396

• Backward Pass: compute 𝛅(j)

27

Backward Pass

𝛅(() = 𝑔. 𝐳(() ⨀∇ℒ '𝐲

𝛅(#) = 𝜎. 𝐳(#) ⨀ 𝐖(() ;
𝛅(()

𝛅(j) = 𝑔k 𝐳(j) ⨀∇ℒ )𝐲 = 1⨀∇ℒ ̂𝑦 = ̂𝑦 − 𝑦 = 0.1396

𝑔 𝑧 = 𝑧
𝑔′ 𝑧 = 1

Identify Activation Function



Solution of the Backpropagation
• Backward Pass: compute 𝛅(()

28

Backward Pass

𝛅(() = 𝑔. 𝐳(() ⨀∇𝐽 '𝐲

𝛅(#) = 𝜎. 𝐳(#) ⨀ 𝐖(() ;
𝛅(()

𝛅(#) =
𝛿#
(#)

𝛿(
(#) = 𝜎. 𝐳(#) ⨀ 𝐖(() 5

𝛅(()

         = 𝜎 𝐳#
# 1 − 𝜎 𝐳#

# ⨀ 𝐖(() 5
𝛅(()

         = 𝜎
𝑧#
(#)

𝑧(
(#) 1 − 𝜎

𝑧#
(#)

𝑧(
(#) ⨀ 𝑤#,#

( 𝑤#,(
( 5

𝛿#
(

         =
𝑎#
(#)

𝑎(
(#) 1 −

𝑎#
(#)

𝑎(
(#) ⨀ 𝑤#,#

( 𝑤#,(
( 5

𝛿#
(()

 = 0.7417
0.6857 1 − 0.7417

0.6857 ⨀ 0.3
0.9 0.1396 = 0.0080

0.0271

𝜎 𝑧 =
1

1 + 𝑒3<

𝜎. 𝑧 = 𝜎 𝑧 1 − 𝜎 𝑧

Sigmoid Activation Function



Update the Parameters
𝑤0,B

; new = 𝑤0,B
; old − 𝜂 5 𝛿0

(;)𝑎B
(;C3)   and  𝜂 = 0.5   
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• 	𝑤#,#
# new = 	𝑤#,#

# old − 0.5 A 𝛿#
# 𝑥# = 0.0986

• 	𝑤#,(
# new = 	𝑤#,(

# old − 0.5 A 𝛿#
# 𝑥( = 0.7964

• 	𝑤(,#
# new = 	𝑤(,#

# old − 0.5 A 𝛿(
# 𝑥# = 0.3953

• 	𝑤(,(
# new = 	𝑤(,(

# old − 0.5 A 𝛿(
# 𝑥( = 0.5878

• 	𝑏#
# new = 	𝑏#

# old − 0.5 A 𝛿#
# = 0.2920

• 	𝑏(
# new = 	𝑏(,

# old − 0.5 A 𝛿(
# =0.0865

• 	𝑤#,#
( new = 	𝑤#,#

( old − 0.5 A 𝛿#
( 𝑎#

( = 0.2482

• 	𝑤#,(
( new = 	𝑤#,(

( old − 0.5 A 𝛿#
( 𝑎(

( = 0.8521

• 	𝑏#
( new = 	𝑏#

( old − 0.5 A 𝛿(
( = −0.2698	



Forward Pass to Compute the New Output
• Compute the new output for 𝐚(%) and 𝐚(9) ( ;𝑦) using the updated weights

𝐚(%) =
𝑎%
(%)

𝑎9
(%) = 𝜎 0.0986 0.7964

0.3953 0.5878
0.35
0.9 + 0.2920

0.0865 = 0.7402
0.6800

;𝑦(new) = 𝐚(9) = 𝑎%
(9) = 𝑧%

(9) = 0.2482 0.8521 0.7402
0.6800 − 0.2698 = 0.4934

• The new error

§ error = 𝑦 − ;𝑦 = 0.5 − 0.4934 = −0.0066
• RMSE (Root Mead Square Error):

§ RMSE = 0.5 − 0.4934 9 = 0.0066
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PyTorch
Automatic Differentiation

(Optional)
https://medium.com/@lmpo/pytorch-automatic-differentiation-autograd-772fba79e6ef 

https://medium.com/@lmpo/pytorch-automatic-differentiation-autograd-772fba79e6ef


Modern Implementation: Automatic Differentiation

Manual Math Modern Code
loss = criterion(y_pred, _target)

loss. backward()

optimizer.step()

AutoGrad: Modern frameworks like PyTorch 
automatically construct the computational 
graph and compute gradients, allowing 
researchers to focus on architecture rather 
than calculus



Colab: PyTorch Autogard Example
• https://colab.research.google.com/drive/1MvtZnvrS-1Npk8s_Fq8RCEoOATUT5jNq?usp=sharing 

Let's calculate the derivative of y with respect 
to w in the equation y = w * x + b. This will give 
us the gradient of y based on changes in w.

𝜕𝑦
𝜕𝑤

=
𝜕𝑦
𝜕𝑧

𝜕𝑧
𝜕𝑢

𝜕𝑢
𝜕𝑤

= 3×1×1 = 3

𝜕𝑦
𝜕𝑏

=
𝜕𝑦
𝜕𝑧

𝜕𝑧
𝜕𝑏

= 1

https://medium.com/@thevnotebook/introduction-to-pytorch-4-7-a4fdcd6a497b 
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https://colab.research.google.com/drive/1MvtZnvrS-1Npk8s_Fq8RCEoOATUT5jNq?usp=sharing
https://medium.com/@thevnotebook/introduction-to-pytorch-4-7-a4fdcd6a497b


The Impact: From Perceptrons to Transformers

• Backpropagation remains the standard optimization engine for the 
massive models of today.



PyTorch Example for Image Classifications



Colab: MLP using NMIST Dataset
• In this example, we will use the PyTorch deep learning framework to create a MLP model that can 

recognize handwritten digits. We will train this model using a dataset called MNIST, which has 70,000 
images of handwritten digits from 0 to 9.

• https://colab.research.google.com/drive/1roufrBO8BZfJA1HDgoi5uyZpgS_FCuu1?usp=sharing 

Handwritten 
digits from 0 to 9
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https://colab.research.google.com/drive/1roufrBO8BZfJA1HDgoi5uyZpgS_FCuu1?usp=sharing


MNIST Image Format
• Each MNIST image is 28 pixels by 28 pixels. We can interpret this as a big array 

of numbers:

• Thus, after flattening the image into vectors of 28*28=784, we obtain 
as mnist.train.images a tensor (an n-dimensional array) with a shape of [55000, 
784].
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Colab: MLP using Fashion NMIST Dataset

https://colab.research.google.com/drive/15S3-F0wCA4o3Scs6rchqLR96zxkNDoHA?usp=sharing 

• We will train an MLP to classify images from the Fashion MNIST dataset, which consists 
of 70,000 grayscale fashion product images. Each image is 28x28 pixels in size.
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https://colab.research.google.com/drive/15S3-F0wCA4o3Scs6rchqLR96zxkNDoHA?usp=sharing


CIFAR-10 Color Image Dataset
• The CIFAR-10 dataset is a widely used collection 

of color images that is commonly used to train 
machine learning and computer vision 
algorithms
§ It consists of 60,000 32x32 color images in 

10 different classes
§ Each class contains 6,000 images, with 5,000 

images for training and 1,000 images for 
testing

§ The 10 different classes in the CIFAR-10 
dataset represent airplanes, cars, birds, cats, 
deer, dogs, frogs, horses, ships, and trucks
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CIFAR-10 Image Format
• The images in CIFAR-10 dataset are of 

(32 x 32) resolution and color images, 
which means they are in RGB format. 

• Every image is of a shape (32,32,3) 
where 3 represent its number of 
channels-RGB, RED, GREEN and BLUE. 

• Every image in this dataset is a mixture 
of these 3 color images. 

• All these images are in form of pixels, 
like in this particular data 32 x 32, 
means a matrix of 32 x 32 pixel values 
for 3 different channels.
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Colab: MLP using CIFAR-10 Dataset
• In this example, we demonstrate how to train a MLP model (or feedforward neural network)  to 

classify images from the CIFAR-10 dataset. The images are be flattened into a 3072-dimensional 
vector before being fed into the network.

https://colab.research.google.com/drive/1vbFi4_6gZ_-bPhBFEdkoSOc3syjshoXP?usp=sharing 
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https://colab.research.google.com/drive/1vbFi4_6gZ_-bPhBFEdkoSOc3syjshoXP?usp=sharing


CPU vs GPU
• CPU: Small number of large cores • GPU: Large number of small cores

Model 
& Data

42
https://towardsdatascience.com/why-deep-learning-models-run-faster-on-gpus-a-brief-introduction-to-cuda-programming-035272906d66 

https://towardsdatascience.com/why-deep-learning-models-run-faster-on-gpus-a-brief-introduction-to-cuda-programming-035272906d66


CPU vs GPU
• There are many similarities between the CPU and GPU, but the focus on individual 

operation speed vs parallelism has major implications in terms of performance.



Colab: GPUs: T4, A100, L4, …



Classification Metrics

Actual 
Positive

Actual 
Negative

Predicted
Positive

True Positive
(TP)

False Positive
(FP)

Predicted
Negative

False Negative
(FN)

True Negative
(TN)

Accuracy = 5=05>
5=05>0?=0?>

Precision = 5=
5=0?=

Recall = 5=
5=0?>

Specificity = 5>
5>0?=

https://medium.com/@lmpo/mastering-classification-metrics-a-deep-dive-into-accuracy-precision-recall-f1-score-and-f8caaf669bf0 

https://medium.com/@lmpo/mastering-classification-metrics-a-deep-dive-into-accuracy-precision-recall-f1-score-and-f8caaf669bf0


Classification Metrics
• Classification is the problem of identifying to which of a set of categories, a 

new observation belongs to, based on a training set of data containing 
observations and whose categories membership is known.

• How to measure the performance of the trained classifier?
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Terminologies of Classification Metrics

Detecting COVID-19 Disease

After a deep learning model is trained to detect a COVID-19 disease on 
patents. The output can either be positive (+ve) or negative (-ve)

There are only 4 cases any patient X could end up with:
1. True positive (TP): Prediction is +ve and X is infected.

2. True negative (TN): Prediction is –ve and X is healthy

3. False positive (FP): Prediction is +ve and X is healthy.

4. False negative (FN): Prediction is –ve and X is infected.

https://towardsdatascience.com/identifying-the-right-classification-metric-for-your-task-21727fa218a2 
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https://towardsdatascience.com/identifying-the-right-classification-metric-for-your-task-21727fa218a2


Confusion Matrix
• A confusion matrix  specific table layout that 

allows visualization of the performance of 
supervised classification algorithm

• Typically row of the matrix represents the 
instances in a predicted class, while column 
represents the instances in an actual class.

• Its name stems from the fact that it makes it 
easy to see whether the system is confusing 
two classes.

https://towardsdatascience.com/identifying-the-right-classification-metric-for-your-task-21727fa218a2 
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Actual 
Positive

Actual 
Negative

Predicted
Positive

True Positive
(TP)

False Positive
(FP)

Predicted
Negative

False Negative
(FN)

True Negative
(TN)

Confusion Matrix

https://towardsdatascience.com/identifying-the-right-classification-metric-for-your-task-21727fa218a2


Classification Metric: Accuracy
• Accuracy is the ratio of the correctly labeled instances 

to the whole pool of instances.
• Accuracy is the most intuitive Classification metric.
• Accuracy answers the question that : 

§ How many people were correctly labelled out of all the 
people?

• Accuracy = stNs4
stNutNu4Ns4

• Numerator: All correctly labeled people (TP+TN)
• Denominator: Al people (TP+FP+FN+TN)
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Weakness of Accuracy Metric
• Accuracy is a good metric only in the following cases.

§ The classes or categories have evenly distributed instances i.e. It is a balanced dataset.
§ The cost of false positives is the same as the cost of false negatives.

The model can 
only identify 1 

out of 20 
obscene cases

Accuracy = (45+47)/100 = 92% Accuracy = (1998+1)/2020 = 99%
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Classification Metric: Precision
• Precision is the ratio of the correctly positive labeled instances by the model to all 

positive labeled instances.
• Precision answers the question: How many of those who we labeled as positive are 

actually positive?

• Precision = JK
JKLMK

 

• Choose precision if you 
want to be more 
confident of your True 
positive.

Precision = 45/(45+3) = 93.75% Precision = 1/(1+2) = 33.33%
51



Classification Metric: Recall/Sensitivity 
• Recall/Sensitivity is the True Positive Rate (TPR)

• Recall is the ratio of the correctly positive labeled instances by a model to all who are 
positive.

• Recall answers the question: Of all the instances who are positive, how many of these 
are correctly detected.

• Recall = st
stNu4 

• Precision is how sure we 
are of True Positives, 
while Recall is how sure 
we are that we are not 
missing any positives

Recall = 45/(45+5) = 90% Recall = 1/(1+19) = 5%
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Classification Metric: Specificity
• Specificity is the True Negative Rate (TNR)

• Specificity is the ratio of the correctly negative labeled instances by a model to all who 
are actually negative.

• Recall answers the question: Of all the instances who are positive, how many of these 
are correctly detected.

• Specificity = v4
vwNxy 

• Specificity is preferred when 
we want to cover all the 
negatives, meaning we don’t 
want any false alarms, we 
don’t want any false 
positives. Specificity = 47/(3+47) = 94% Specificity = 1998/(2+1998) = 99.9%
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Classification Metric: F1-Score
• F1-Score considers both Precision and Recall

• F1-Score is the harmonic mean of the Precision and 
Recall.

• F1 Score is the preferred metric in case of an 
imbalanced dataset.

• F1-Score = 3
1
IA

1
JKLMNONPQN

1
IA

1
RMSTT

= 2 yz{|}~}�	×	�{|���
yz{|}~}�	N	�{|���

Precision = 45/48 = 93.75%    Recall = 45/50 = 90%
F1-Score = 91.84%

Precision = 1/3 = 33.33%    Recall = 1/20 = 5%
F1-Score = 8.68%
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Classification Metric: F𝛽-Score
• The F1-Score measure is obtained by taking the harmonic mean of Precision and Recall, namely 

the reciprocal of the average of the reciprocal of recall:

F1-Score = %
)
5U

)
6789:;:<=3

)
5U

)
>9?@@

= 2 VWXYZ[Z\]	×^XY_``
VWXYZ[Z\]3^XY_``

• Instead of giving precision and Recall equal weights that sums up to 1, we can instead assign that 
still sum to 1 but weight on recall is 𝛽 times as large as the weight on precision.

F𝛽-Score = %
)

A0)U
)

6789:;:<=3
A

A0)U
)

>9?@@

= 1 + 𝛽 VWXYZ[Z\]	×	^XY_``
aUVWXYZ[Z\]	3	^XY_``

• Commonly used 𝛽 values are:

§ 𝛽 = 0.5, weighs Recall lower than Precision.

§ 𝛽 = 1, weights Recall equal to Precision.

§ 𝛽 = 2, weights Recall higher than Precision.
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