Backpropagation

Applied Deep Learning
EE5438

Prof. Lai-Man Po

Department of Electrical Engineering
City University of Hong Kong

Message 1: Submission of Project Proposal

e Just a friendly reminder: The deadline to submit your group project proposal is Feb 14,
2026, at 11pm. Please submit a PDF file with the project title, list of group members, and
other necessary details to the CANVAS group project proposal assignment.

* Only one proposal per group is required, and it should be submitted by the project's team
leader.

* You can find more information about the group project on the course website:
= https://www.ee.cityu.edu.hk/~Impo/ee4016/projects.html

 Remember, each group should assign a project leader who will be responsible for
submitting the proposal on CANVAS.
* The file name should follow this format:
= Filename format : Proposal_GroupNumber_ ProjectName.pdf
= Filename example: Proposal _Group01_Audio_Classification.pdf

https://www.ee.cityu.edu.hk/~lmpo/ee4016/projects.html

Message 2: Assignment 1

Image Classification with Multi-Layer Perceptron

 The assignment 1 is now available in the schedule webpage for download. The

deadline for the assignment 1 is Saturday of Week 5 (Feb 21, 2026).
= https://www.ee.cityu.edu.hk/~Impo/ee4016/pdf/2026 EE4016 Ass01.pdf

= Colab: https://colab.research.google.com/drive/1zSe-32cpojFYT2oxySvrAdSbMLravY9l#scrollTo=hjkFuokaRv3G

* The answers of the section A must be handwritten and then scan the answer sheets into a
single pdf file.
e Submit the answer sheets and Colab notebook of the Assignment 1 as a zip file to this
CANVAS assignment 1:
* Filename format : Assignment01_StudentName_StudentlD.zip

* Filename example: Assignment01_Chen_Hoi_501234567.zip

https://www.ee.cityu.edu.hk/~lmpo/ee4016/pdf/2026_EE4016_Ass01.pdf
https://colab.research.google.com/drive/1zSe-32cpojFYT2oxySvrAdSbMLr4vY9I

Anatomy of the MLP Architecture

Context: An MLP consists of an
input layer, one or more hidden
layers, and an output layer. Nodes
are connected via weighted
connections.
Notation:

= [:layerindex

= WO : Weight matrix for layer |

= b® . Bjas vector for layer |

= g : Activation function

a(l) — g(l) (W(l)a(l_l) + b(l))

Layer 2

Layer 1 Output

bW

W® p®@

W® p®

Ny
X%‘”K\\»@ W

KA a DX/ X \\/ i
RS ;;\:“ RE—
AVZAN(g
//‘\\\fcy/,*@@ 2

¥ = fo(x) = Softmax(W®ReLU(WP ReLU(W®x + b®) + b)) + b))

MLP based Model Design

Based on the problems to define the Hyperparameters of the MLP architecture:
= Input dimension (d)
= Network Depth (L)
= Number of neurons of each layer (n;: 1 = 1,2, ..., L)
= Qutput dimension (K = n;)
= Activation functions (o, tanh, ReLU, softmax)
= Cost function L(0)

The MLP model can be represented by a set of weights and biases parameters 6 as

L
= Q= {(w(l)’b(l))}l=1
= 9= fa(x) = g(w(L) g(w(Z)g(w(l)x + b(l)) + b(Z)) v b(L))

For a given dataset D, use Gradient Descent with backpropagation to find the optimal
model parameter set 8* that minimizes a cost function L(0)

The Training Objective: Minimizing Cost

For a given dataset D: = {(X(i)» Y(i))}?,:y

the goal of training is to find the optimal
set of parameters 6 (weights and biases)

Cost Landscape

oa"I;’, “
el e e
S eSS Ll PT AR Z < X XK

"' O “:’ QIR SSLZZAZZSIRID
L R SRR RIZIZIZZZ 5 EZRRR
.. . LA R SRR 7752RRIRKRS
. 3R IRERSRNONSIIX R KK AR 2277 7R
that minimizes the cost function L(6) ,zo:gzzzzgsisx\\‘s‘\:&.b’v‘?",‘:%%gg%m;z,.
—_ (1) (i) SRR S
between predictions y(and targets y*/. q =SS

Cost

WX X5 ///
\ \"%'\‘[7.{
\‘\\.‘3‘}{\'»'0‘;' Iy

v

N
\

0* = arg min L(0)
6

N
1 o
£(6) =37) loss(y®,9) Penge
i=1 s g

The Strategy: Gradient Descent

1. Initialize: Randomly set weights 6 A

2. Compute Cost: Measure
performance L(6). Initial Weight
3. Find Gradient: Calculate VL(8)
(direction of steepest ascent). =
4. Update: Step down the hl” t{ Incremental Step ..»
S (74N
Onew = Oo1a — 1 - VL(O) _
Gradient
1 = Learning Rate (step size) VL(O)
* Repeat steps 2 to 4, unit the cost is low Minimum Cost 6" -

enough or convergence. 9

The Computational Bottleneck

Why Backpropagation?

Gradient Descent Formula:

Onew = Oo1a — 1 - VL(O)

Naive Approach (Finite Differences):

e Perturb each parameter individually.

* Requires O(N) forward passes for N parameters.

* Infeasible for large models (e.g., 1M params - 1M
forward passes per update!).

The Challenge:

 Modern networks have millions of parameters.
Calculating the gradient this way has Exponential
Complexity.

ow § ?

ZZCAE] I B
i B 2
| ab,"” |

This is what we need to calculate
efficiently

To efficiently compute the gradient when
dealing with a large number of parameters,
we employ a technique known as

backpropagation.

Backpropagation

oL 0, 0D
(l) 5]
Wij

The Engine: The Chain Rule

* Backpropagation leverages the Chain Rule to compute gradients for ALL
parameters simultaneously in one backward sweep.

dy dy dz
dr dz dzx

dz dy
[lnpUt X] ﬂ dx @ dz \ @

% J
Y
I—> Total sensitivity of y to x: Z—Z 4—'

Reduces complexity from exponential to linear, making Deep Learning feasible.

Overview of Backpropagation Algorithm

* The backpropagation algorithm uses the Chain Rule to efficiently compute gradients

oL
@ in gradient descent—based network training.
Lj
l
0L 0L aZl() _ < a(l_l)

O L0 5.0 % Y%
awi’j azi Owl.’j

e Forward Pass: aj(”

Computer activation layer by layer. Save these
values.

e Backward Pass:

(OT¢! O] (I+1) o(1+1)
6 =49 ()(Zi)Z(Wk,i $ O)
K
Compute error signals (&) in revers order.

Reuse cached values. Backward Pass

Propagate Error: é'i(l)

11

Step: The Forward Pass

* Generating Predictions and Caching Activations
Layer (-1 Layer [

ni_q

Net Input: () — z wal™ 4 p®
j=1

Ll

vatinn: o0 — D
Activation: a;’ = g® (zi)

The Key Identity (Cached Value):

)
0Z. (l—l)

l
=a
(D]
an., j

The activation from the previous layer IS the
partial derivative we need later. We store it.

Layer [— 1

Layer [

ng)

l (l) a4V 4 p®

g® (Zi(l)) where z() is the net input and
g () is the activation function

ny—1
O (OB GSY (D
z; " = z Wi a; + b;
j=1
azY 4 azV
= a'"™" and —5 =1
ow;; J ob;

13

0L

= 5i(l) : the propagated gradient corresponding to the [-th layer and i-th neuron

l
az?)
i
1+1) 0 Layer [Layer [+ 1
NONS 0L :2 0L .azk .aai WD e
oz oz 94 97" Wi 1
[k k [[5(l+1)
r(l Q) 2
(z+1) Xg()(zj) :
(1+1)
) (l+1) (l) 5i(l) , i 5y
)) (+1) :
' —_ Multiply a constant fol
; NCES
k
)
Gradient of the da, _g,(z)(())
Activation function az(l) l
} L 5O _ ,(z) z® 2 5D <z+1>)
(l+1) L
(1+1) _ (1+1) (l) (1+1) o (1+1)
Z —Z]Wk] + b, =2 . (0 =w K

14

0L(6) D._ . _ li1 |
2,0 (Si() is just a scaled weighted sum of 6,E)of the upper layer (Backpropagation)
i —
Layer [Layer [+ 1 Wl(,liﬂ) 51(l+1)
(1+1) Input
6(1) -— 1 O(I+1) 1 52 o
1 1 Xg'(l) (|
xg'® (Z(l)) output : upper
1 I — 5}5”1) layer
l
O] 4+ :
% < ° g L] Multiply a constant -
xg'® (zél)) p—
O — o (,0 (1+1) o (1+1)
51’ _g()(Zi)Z(Wk,i 61{)
2,1 k
57(111) — w+1) 51(1'1:) Ny e The backpropagation process begins by calculating
xg'® (Zi(l)) o the delta terms 6,&” for the output layer L. It then
s INGEVE systematically computes the delta terms 6,8) for

each preceding layer /, using the delta terms

Backward Pass 6,5”1) from the layer immediately above it.
15

Step 2: Backward Pass (Output Layer)

* Calculating the Initial Error Signal

oL 8y, oL
5(L) — . L - g (L) (Z(L))

' ayl aZi(L) ayl l a(2)(1 - 0(2))

20

VA

Gradient of Cost Derivative of Activation For Sigmoid Activation
(How wrong was the prediction?) (How sensitive is the neuron?) g P @) =0"(2) =0(2)(1-0(2))

Step 3: Backward Pass (Hidden Layers)

Propagating the Error Recursively Layer [Layer [+1
O 0 (141) o (1+1)
5" =g'¥ (Zi)z (Wk,i O)
K

The error for the current layer is the weighted
sum of errors from the layer ahead.

Overall Backward Pass

Layer [Layer [+ 1
We begin at the end (last Layer L). 5O — 1 SO]
1 1
1. Initialization: compute) based on VL(¥) xg'® (20
. S(L) — g’(L)(Z(L))QVL(y)
62(1) —) (+1 2 —

2. Compute) based on §(*1 <5/ ()

. §L-D — gr<L—1)(Z<L—1))@(W<L))T5(L>

(1+1)
2,1

. 50 = g'O(z0) (WD) §1+D 8y =5
. xg®(47)

s : ING2Y

Backward Pass

(1+1)
iebetats)

Nni41

. 5O = gr(1>(z<1>)@(w<2))T5<z>

18

Synthesizing the Gradient

oL _ 5O, g0t=D)

ow (l)]
;] ‘
4
Backward Pass Term () Forward Pass Term (a)
Calculated from the error signal flowing back. Calculated activation from the input flow.

The final gradient is dimply the product of the local error and the incoming activation.

Forward Pass: Compute Activations

o i — 6(1) . agl_l) Layer [Layer [+ 1
awi(lj) [J

az.(l) _
ﬁ = a}l D forl =1, a]@) = X;
ow.

i,j

l

Forward Pass

a(o) =X
a(l) — g(l) (W(l)a(o) + b(l))

: L : 1+1
a®) = gO(WWal-D 4 pO) al al+1

20

Backward Pass: Compute Delta

0L

aw(l) - az.(l) . aw(l)
l

i,j

0L

o 920

/ Lj

NG

azi(l) o \

Backward Pass

8§ = g'@) (Z(L))G)Vﬁ(y)

5§10 = gra)(za))@(w<z+1>)7"5<l+1)

51 = gr(l)(z<1))@(w<z>)7"5<z>

Layer [Layer [+ 1
) (I+1)
51 «— 1 | 1 «—
xg'® (Zil))
)
52 —_2

xg'® (24"

NO) : §1+1)

Backward Pass

21

Synthesizing the Gradient

Onew = Oo1a — 1 - VL(O,)

)
awi'j

- VL=,
o

Efficiently compute the gradient
based on two pre-computed terms

from forward a®® and
8® backward passes.

0L

= 51'(1) . agl—l)

SRR (D)
oL / an,]

J

Backward Pass
L) = g’(L)(z(L))G)VL(j‘I)

O gr(l)(za))@(w(Hn)Tsaﬂ)

51 — g OzM)eW®) @

Forward Pass

a®=x

aW= g(WDx + b®)

a® = g(WDal=D 4 pO®)

a® = g(WHal-1 4 p®)

The Full Training Loop

Initialize Parameters
wf'j) and bf’)

W(ll) (_W(l) 6(1) (1 1

b(l) - b(l) 77 6(‘)

D = {(x,y O,

Update Parameters (w « w —nV)
B= {(x“) yO)HL,

[Shuffle Data & Select Mini-batch

Repeat until

Convergence

Compute Gradlents (6-a) Forward Pass (Compute a)
oL 50 (1-1)

a®
Backward Pass
(Compute 8)
s

(l)
aw,,,

Backpropagation Training Algorithm

= Use Forward Pass to compute the activations at”,a® ...,

= Use Backward Pass to compute the 81, §(L~1) .

(D)

@
i j b,

Initialize the model parameters w;"” and

Shuffle the training data D = {(X(i)» y(i))}i:1

Select a mini-batch from the shuffled data B = {(X(i),y(i))}l.w
=1

Compute the gradients for the mini-batch.

= Compute the gradients by (D 6(” o™V and-%£ p (l)

]
l]

Update the parameters using the computed gradients.

(l)(new) (l)(old) n - 5(1) (l 1)

bi(l) (new) = bi()(old) — K 6i(l)

= 50

oL

oL az

O]
adw w;

oL

" 0,0 ow®

l

oL azi(l)

@ 9,0 5p® " i
L L l

_ 5. 40D

J

_ 6-(1)

a™ of these samples
., 8@ 81 of these samples

Repeat steps 3-5 for a specified no. of epoch or until a convergence criterion is met.

24

Backpropagation Exercise 1

Given a two-layer feedforward neural network using sigmoid activation function for the hidden layer

and the identify activation function for the output layer, determine the output y by representing the
network in matrix form.

Assume that actual output of the network y is 0.5, learning rate 1 is 0.5 and MSE cost function,
perform the backpropagation to compute the new weights, new output and RMSE.

Input Layer Hidden Layer = Output Layer

25

Solution Output of the Network

« J= W(Z)U(W(l)x + b(l)) +p®@
* The net input vector z(V) of the hidden layer is given by

(D (1) (1D €))

. 1) — Z —w 1) — Wit Wiz | b1
z | =W x+b W 0|l T m
%2 Wa1 Wapz 2

1
e 1 08[035) 03] _ 10550
Zél) 04 061109 0.1 0.7800
The activation vector a®D of the hidden layer is given by 0.9

= a) = agl) _0_(2(1)) _O_([l.OSSO]) _ [1/(1+e_1'055) _ 10.7417
e ~ " \0.78001/ ~ l1/(1 + e~07820)] ~ l0.6857

* The net input vector z(? of the output layer is given by
®
1
®
2

0.7417

+ [bf)] =[03 09] [0_6857

s 72 = [Zf)] — [Wl(? Wl{?] [Z] +[—0.2] = [0.6396]

* The activation vector a®® of the output layer (output of the network ¥) is given by

= y=a® = [a?)] = g(z¥) =2z®* =[0.6396] Output layer uses the identify function g(z) = z

26

Solution of the Backpropagation

* Assume that actual output y is 0.5, learning rate 17 is 1 and MSE cost function perform the

backpropagation to find the updated weights. Backward Pass
A 1 111D _ a2 _ 1 A @ = ¢'(z@ ¢
L) =MSE =33y [[y0 —yO, =5 0 = 9)? 5% =g P)evm
80 = o' (z)o(W®) @
~y _ OMSE _ .
= VL) = 09 = (@ —y) = (0.6396 — 0.5) = [0.1396] Identify Activation Function
g(z) =z
g'(z) =1

« Backward Pass: compute 8%

82 = g'(zP)EVL®E) = 16VLH) = (¥ —y) = [0.1396]

27

Solution of the Backpropagation

* Backward Pass: compute s

s

, T

sV =
5

=0 (z{") (1 —o(z (”)) OW®) 5@
e e

Y v @ @17 [«@
l (1) (1_[(1)])9[“’ W12 [51]

- 0720 S ol e - 58

Backward Pass

§2) = g'(z(z))G)V](y)
5D = Ur(z(l))@(w(Z))Ts(Z)

Sigmoid Activation Function

1
o(z) = 1+e7?

o'(z) = 0(2)(1 — a(z))

28

Update the Parameters

Hmew) = w2 (old) — - 5al™ and n = 0.5

« wYnew) = wi (old) = 0.5 5%, =0.0986 + wP(new) = w? (old) — 0.5 - 6Pa® = 0.2482
) _ O

wy 5 (new) = wy; (old) — 0.5 6, "x, = 0.7964 S 2)(new) _ W1(2) (old) — 0.5 - 5(2) (2) — 0.8521
©wy 1)(new) = W (old) 0.5- Sz(l)xl = 0.3953

1) 1) (1)
* w, (new) =w old) — 0.5-4, = 0.5878
22 (new) = wz) (0ld) "2 - b P (mew) = b? (0ld) — 0.5 - 6% = —0.2698

« bPmew) = b (0ld) — 0.5 - 6 = 0.2920

bV (new) = bV (0ld) — 0.5 - 55" =0.0865

29

Forward Pass to Compute the New Output

Compute the new output for a¥ and a® (9) using the updated weights

) — ail)] _ ,([00986 07964 1035) | 1029201y _ [0.7402)

0.3953 0.5878110.9 0.0865 0.6800

0.7402

9(new) = a® = [af)] = [zl(”] = [0.2482 0.8521] [0.6800

—[0.2698] = 0.4934

The new error
= error =y — 9 = (0.5—0.4934) = -0.0066
RMSE (Root Mead Square Error):

= RMSE = /(0.5 — 0.4934)2 = 0.0066

30

PyTorch

Automatic Differentiation
(Optional)

https://medium.com/@Impo/pytorch-automatic-differentiation-autograd-772fba79e6ef

https://medium.com/@lmpo/pytorch-automatic-differentiation-autograd-772fba79e6ef

Modern Implementation: Automatic Differentiation

Manual Math

(l‘)/‘ ()/ 7 (// ()/<

oW oW om 0x;

ol 1~N\oL /[1 [1)

db ob oW k(?/) ow) 'b*

forward pass = = [y

o > D
backward pass = h Qe
oL oL 2\ :
T | : ‘Qfg\s) (forward-ward pass)
(\ O V]
OL oL OL oL

—) + — + —(baeRWared pass

oW ow) ob : Oy At Lty
oL . oL)] (oL)
)" 4 oW dgw — 0b \ Ohc

Modern Code

loss = criterion(y_pred, _target)

loss. backward()

optimizer.step ()

AutoGrad: Modern frameworks like PyTorch
automatically construct the computational
graph and compute gradients, allowing
researchers to focus on architecture rather

than calculus .
O PyTorch
/ - Autograd - ”\

Colab: PyTorch Autogard Example

* https://colab.research.google.com/drive/1MvtZnvrS-1Npk8s FqQ8RCEoOATUT5jNg?usp=sharing

import torch

from torch.autograd import grad

import torch.nn.functional as F

#

X = torch.
w = torch.
b = torch.
Build a

Z =W * X

y = F.relu(z)

print(2z)
print(y)

Create tensors

tensor(3.)
tensor (2.,
tensor(1l.,

requires_grad=True)
requires_grad=True)

computational graph

+ b # z

#y

=2 * x +1
= ReLU(2 * x + 1)

tensor (7., grad_ fn=<AddBackward0>)
tensor (7., grad_ fn=<ReluBackward0>)

Let's calculate the derivative of y with respect
to w in the equation y = w * x + b. This will give
us the gradient of y based on changes in w.

grad(y, w, retain graph=True)

dy 0ydzd
(tensor(3.),) O¥ _O0YOzou . . o _ 1

ow 0z odudw

grad(y, b, retain graph=True)

(tensor(1l.),) @_G_y%_l
ob 9zdb

https://medium.com/@thevnotebook/introduction-to-pytorch-4-7-a4fdcd6a497b

33

https://colab.research.google.com/drive/1MvtZnvrS-1Npk8s_Fq8RCEoOATUT5jNq?usp=sharing
https://medium.com/@thevnotebook/introduction-to-pytorch-4-7-a4fdcd6a497b

The Impact: From Perceptrons to Transformers

* Backpropagation remains the standard optimization engine for the
massive models of today.

1986 1998 2012 2017 Today
O <\ £\ P A\ >
4 \/ \/ AY 2
Backpropagation LeNet / CNNs AlexNet Transformers LLMs
Popularized (Computer (Deep Learning (Attention (GPT, LLaMA,
(Hinton et al.) Vision) Boom) Mechanisms) Gemini)

PyTorch Example for Image Classifications

Colab: MLP using NMIST Dataset

* In this example, we will use the PyTorch deep learning framework to create a MLP model that can
recognize handwritten digits. We will train this model using a dataset called MNIST, which has 70,000

images of handwritten digits from 0 to 9.
e https://colab.research.google.com/drive/1roufrBO8BZfJA1HDgoi5uyZpgS FCuul?usp=sharing

— pixel 1—Q
pixel 2—

ﬂ / pixel3—>O
[pixel 4 — NN)
pixel 5— eI ® ~P0=0.01
. pixel 6— NN T = : "~ P1-001
pixel 7— e . —
3 (28x28) Sl ig—s

Se ~P2-0.03
pixel 9— O~ = el 7 ~ P3=0.02
; . O =i
R
& . de e
? e
. O~
O
O

~P4A=0.03
~ P5=0.10
~ P6=0.20
. P7=0.05
>
P8 =0.95
~P9=0.05

QOO0 000000 1
OCONoUDh W R, O

Handwritten
digits from0to 9

. pixel 784 —

https://colab.research.google.com/drive/1roufrBO8BZfJA1HDgoi5uyZpgS_FCuu1?usp=sharing

MNIST Image Format

« Each MNIST image is 28 pixels by 28 pixels. We can interpret this as a big array
of numbers: 1D matrix

[0 0 0o o o o o 0 o 0o o0 o o o] ‘ 1
00 0 0 0 0 0 0 o 0 o0 0 0 0
0o 0o o0 0 0 0 B o o 0 0 0 o0 .
o o o o o o @ H o 0o 0o o0 0 o0 *
o o o o o o @ H o 0 0 o0 0 o0
o o o o o o B HW M o o o o o0 2D matrix
~ oo o o o o o @ M o o o o o
o oo o o o o o @ M o o o o o 12 2.4
o o o o o o o @ B o o o o o l
o o o o o o o @ W o o o o o 2l —{—
oo o o o o o @ W 1 o o o o ’ 1
0o 0o 0 0 0 0 0 3 @ 1 o o o o 4
00 0 0 0 o0 0 0 o 0o o0 0 0 0 .
[0 0o o0 0 0 0 0 0 o o o o o o] Input
« Thus, after flattening the image into vectors of 28*28=784, we obtain
as mnist.train.images a tensor (an n-dimensional array) with a shape of [55000, E

784].

37

Colab: MLP using Fashion NMIST Dataset

* We will train an MLP to classify images from the Fashion MNIST dataset, which consists

of 70,000 grayscale fashion product images. Each image is 28x28 pixels in size.

— pixel 1— Q
pixel 2—
pixel 3—
pixel 4 —

pixel 8—

[‘ ajf pixel 6—
Shirt pixel 7—

aaaaaaaaaaaaaaaaaa

nnnnnnnnn

‘il i
‘!_,L (28x28)

eeeeee

=D

— pixel 784 —

pixel 5—Q =\ 1~

pixel 9— O

QOO Q000001 1

Q
@)
O
. Oz 6 aann
Fashion MNIST . O it
I Dataset O . =
o) =
O
o,

-P=0.04
(O——— T-shirt/top

Trouser

S LALLLE SN

\ n r
~P=001 o oove
P=0.01

(O)——— Ankle boot

https://colab.research.google.com/drive/1553-FOwCA403Scs6rchqLR96zxkNDoHA?usp=sharing

38

https://colab.research.google.com/drive/15S3-F0wCA4o3Scs6rchqLR96zxkNDoHA?usp=sharing

CIFAR-10 Color Image Dataset

* The CIFAR-10 dataset is a widely used collection

of color images that is commonly used to train akplang =.% ¥ ..a"ﬁ
machine learning and computer vision AECIMONND EB'HH‘
algorithms o Sl NS ¥ EEE
= |t consists of 60,000 32x32 color images in cat Em.-!u
10 different classes deer ﬂ..ﬁﬂ-m

= Each class contains 6,000 images, with 5,000 dog ‘ﬂ&nunz‘.
images for training and 1,000 images for frog H....-..-
testin e RN P M R TR
= The 10 different classes in the CIFAR-10 ship EE.‘HQE‘
dataset represent airplanes, cars, birds, cats, truck ,‘!ﬁ,in

deer, dogs, frogs, horses, ships, and trucks

39

CIFAR-10 Image Format

The images in CIFAR-10 dataset are of
(32 x 32) resolution and color images,
which means they are in RGB format.
Every image is of a shape (32,32,3)
where 3 represent its number of
channels-RGB, RED, GREEN and BLUE.

Every image in this dataset is a mixture
of these 3 color images.

All these images are in form of pixels,
like in this particular data 32 x 32,

means a matrix of 32 x 32 pixel values
for 3 different channels.

Blue component
Image Plane

Pixel,
[255, 0, 255]

295 l— Green component
image Plane

. Pixel, = [127, 255, 0]
Red component image Plane

Pixel of an RGB image are formed from the corresponding pixel of the three component images

40

Colab: MLP using CIFAR-10 Dataset

* In this example, we demonstrate how to train a MLP model (or feedforward neural network) to
classify images from the CIFAR-10 dataset. The images are be flattened into a 3072-dimensional
vector before being fed into the network.

aiplane ot [N O 77 - 6 N I [a2\
automobile E.n.z‘n.n‘ z:i::i:@ - = p b= 0,05
ixel 5— QNN =S O——
o Emall WES ¥ EE i, A=A T
- SEENESSEES MR | < =
o HESAeBAN R ﬁ* &% ot
frog EEESESDANE e o o ;8£ xg%ﬁe
- A O
ruck o R g T s o (] o R .

https://colab.research.google.com/drive/1vbFi4 6gZ -bPhBFEdkoSOc3syjshoXP?usp=sharing

https://colab.research.google.com/drive/1vbFi4_6gZ_-bPhBFEdkoSOc3syjshoXP?usp=sharing

CPU vs GPU

* CPU: Small number of large cores ¢ GPU: Large number of small cores

Memory & |/O interfaces

System
Agent
w/

display,
memory,
&I1/0
controllers

Load model and data to GPU if cuda is available
if (device.type == 'cuda'):
model.to(device)
val_images, val_ labels = val_images.cuda(), val_labels.cuda()

https://towardsdatascience.com/why-deep-learning-models-run-faster-on-gpus-a-brief-introduction-to-cuda-programming-035272906d66

42

https://towardsdatascience.com/why-deep-learning-models-run-faster-on-gpus-a-brief-introduction-to-cuda-programming-035272906d66

CPU vs GPU

* There are many similarities between the CPU and GPU, but the focus on individual
operation speed vs parallelism has major implications in terms of performance.

Control
° o L1 Cache
Core |£| | Core | £
(@] (@]
(@) (@) L1 Cache
L1 Cache L1 Cache Control
———————————————————— L1 Cache
B 6 ore ore ore ore ore ore
o o L1 Cach
Core |£| | Core | £
= S
L1 Cache
L1 Cache L1 Cache
L2 Cache L2 Cache Trcere IR
L3 Cache L2 Cache

Load model and data to GPU if cuda is available
if (device.type == 'cuda'):
model.to(device)

val images, val labels = val images.cuda(), val labels.cuda()

Colab: GPUs: T4, A100, L4, ...

& EE5438_2025A_Assignmentlipynb ¥ &
[File Edit View Insert Runtime Tools Help]

Q Commands + Code + Te> Runall 38/Ctrl+F9

Run before 8/Ctrl+F8

CityU EE543

@ Run selection 3 /Ctrl+Shift+Enter
. Run cell and below 88/Ctrl+F10

< Assignment 1

& PyTorch Multi:

(.

In this example, we ¢
dataset. The RGB-c¢

Change runtime type

Manage sessions

View resources

(32x32x3)

Change runtime type

Runtime type

Python 3 v

Hardware accelerator @

O cru @ T4GPU O a % D) L4GE

O v5e-1TPU O v2-8 TPU (Deprecated) (

i

N\
./

O

Want access to premium GPUs? Purchase additional compute units

Runtime version @

Latest (recommended) ~

Cancel

Classification Metrics

/ Actual Actual
Positive Negative
R M’ o
Predicted | True Positive | False P05|t|vD
Positive L (TP) (FP)
Predicted | False Negative | True Negative
\ Negative \ ~ (FN) J (TN) /
‘\ 7

. Accuracy =

. Precision =
. Recall =

TP+TN

Specificity =

TP+TN+FP+FN

TP
TP+FP

TP
TP+FN

TN+FP

https://medium.com/@Impo/mastering-classification-metrics-a-deep-dive-into-accuracy-precision-recall-f1-score-and-f8caaf669bf0

https://medium.com/@lmpo/mastering-classification-metrics-a-deep-dive-into-accuracy-precision-recall-f1-score-and-f8caaf669bf0

Classification Metrics

» Classification is the problem of identifying to which of a set of categories, a
new observation belongs to, based on a training set of data containing
observations and whose categories membership is known.

§O%
.y

\\.4//;",\

LA
7/

* How to measure the performance of the trained classifier?

46

Terminologies of Classification Metrics

After a deep learning model is trained to detect a COVID-19 disease on
patents. The output can either be positive (+ve) or negative (-ve)

There are only 4 cases any patient X could end up with:
1. True positive (TP): Prediction is +ve and X is infected. ®)
2. True negative (TN): Prediction is —ve and X is healthy

3. False positive (FP): Prediction is +ve and X is healthy.

4. False negative (FN): Prediction is —ve and X is infected. =~ Healthy Infected

https://towardsdatascience.com/identifying-the-right-classification-metric-for-your-task-21727fa218a2

47

https://towardsdatascience.com/identifying-the-right-classification-metric-for-your-task-21727fa218a2

Confusion Matrix

* A confusion matrix specific table layout that
allows visualization of the performance of
supervised classification algorithm

* Typically row of the matrix represents the
instances in a predicted class, while column
represents the instances in an actual class.

* |ts name stems from the fact that it makes it
easy to see whether the system is confusing
two classes.

Confusion Matrix

Actual Actual

Positive Negative
Predicted | True Positive | False Positive
Positive (TP) (FP)
Predicted | False Negative | True Negative
Negative (FN) (TN)

https://towardsdatascience.com/identifying-the-right-classification-metric-for-your-task-21727fa218a2

48

https://towardsdatascience.com/identifying-the-right-classification-metric-for-your-task-21727fa218a2

Classification Metric: Accuracy

e Accuracy is the ratio of the correctly labeled instances

to the whole pool of instances.
e Accuracy is the most intuitive Classification metric.
* Accuracy answers the question that :

= How many people were correctly labelled out of all the
people?
TP+TN
TP+FP+FN+TN
* Numerator: All correctly labeled people (TP+TN)

* Denominator: Al people (TP+FP+FN+TN)

* Accuracy =

Actual Actual

Positive Negative
Predicted | True Positive | False Positive
Positive (TP) (FP)
Predicted | False Negative | True Negative
Negative (FN) (TN)

49

Weakness of Accuracy Metric

e Accuracy is a good metric only in the following cases.
= The classes or categories have evenly distributed instances i.e. It is a balanced dataset.

= The cost of false positives is the same as the cost of false negatives.

Spam Filter COVID-19 Detector
Spam instances= 50, Non-Spam instances= 50 Infected = 20, Health = 2000
Actual Class Actual Class
Spam Non-Spam Infected | Healthy
2 | Spam 45 3 o | Infected 1 2 The model can
G o only identify 1
©
% Non-§, 5 47 g 19 1998 out of 20
- on-apam =
3 £ g | Healthy obscene cases
a a
Confusion Matrix Confusion Matrix

Accuracy = (45+47)/100 = 92% Accuracy = (1998+1)/2020 = 99%

Classification Metric: Precision

* Precision is the ratio of the correctly positive labeled instances by the model to all
positive labeled instances.

* Precision answers the question: How many of those who we labeled as positive are
actually positive?

TP . Spam Filter . COVID-19 Detector
. Precision _ Spam instances= 50, Non-Spam instances= 50 Infected = 20, Health = 2000
TP+FP Actual Class Actual Class
. . . Spam Non-Spam Infected | Healthy
* Choose precision if you
—]
want to be more 2 | Spam "= | s D o | infected C)
. - 5
confident of your True 3 D el o
positive. % Non-Spam| 5 47 S | Healthy | 19 1998
& &
Confusion Matrix Confusion Matrix

Precision = 45/(45+3) = 93.75% Precision = 1/(1+2) = 33.33%

51

Classification Metric: Recall/Sensitivity

* Recall/Sensitivity is the True Positive Rate (TPR)
* Recall is the ratio of the correctly positive labeled instances by a model to all who are
positive.

* Recall answers the question: Of all the instances who are positive, how many of these

are correctly detected. A igaz F"'tse' o s COVID-19 Detector
pam instances= , Non-opam instances=
Infected = 20, Health = 2000
TP Actual Class ctual Class
e Recall = Actwel
TP+FN Noms
Spam on-spam Infected | Healthy
* Precision is how sure we
. 2 | Spam 45 3 2 | Infected
are of True Positives, S g | fnfecte m ’
while Recall is how sure 2 Non-s;mmw a7 £ | Healthy w 1998
we are that we are not h .

m|SS|ng a ny pOSItlveS Confusion Matrix Confusion Matrix
Recall = 45/(45+5) = 90% Recall = 1/(1+19) = 5%

52

Classification Metric: Specificity

Specificity is the True Negative Rate (TNR)
Specificity is the ratio of the correctly negative labeled instances by a model to all who
are actually negative.

Recall answers the question: Of all the instances who are positive, how many of these

are CorreCtly dEteCted) Spam instances= i%az::’-;eram instances= 50 COVID-19 Detector
P =% P - Infected = 20, Health = 2000
SpeCIfICIty _ Actual Class Actual Class
TN+FP
Spam Non-Spam Infected | Healthy
Specificity is preferred when
3 S m “
we want to cover all the g1 “ /3\ § | nfected | /2\
. .) E "g
negatives, meaning we don’t % Non-Spam| 5 e £ | eatny | o8
want any false alarms, we S &

d (0] n’t wa nt d ny fa |Se Confusion Matrix Confusion Matrix

positives. Specificity = 47/(3+47) = 94% Specificity = 1998/(2+1998) = 99.9%
53

Spam Filter
Spam instances= 50, Non-Spam instances= 50

Classification Metric: F1-Score

Spam Non-Spam

Spam 45 3

e F1-Score considers both Precision and Recall

Non-Spam 5 47

Predicted Class

e F1-Scoreis the harmonic mean of the Precision and

Confusion Matrix

Recall.
Precision = 45/48 =93.75% Recall = 45/50 = 90%
* F1 Score is the preferred metric in case of an F1-Score = 91.84%
- COVID-19 Detector
ImbalanCEd dataSEt' Infected = 20, Health = 2000
Actual Class
1 (Precisio x Recall)
e F1-Score = = — Infected | Health
i__1 11 (Precisio + Recall) i e
2 Precision 2 Rcall
ﬁ Infected 1 2
°
% Healthy 19 1998

Confusion Matrix
Precision =1/3 =33.33% Recall=1/20=5%

F1-Score = 8.68%
54

Classification Metric: F3-Score

The F1-Score measure is obtained by taking the harmonic mean of Precision and Recall, namely

the reciprocal of the average of the reciprocal of recall:

1 (Precision xRecall)
F].-SCOFE = 1 1 1 1 =

2 Precision 2 Rcall

Instead of giving precision and Recall equal weights that sums up to 1, we can instead assign that

(Precision+Recall)

still sum to 1 but weight on recall is § times as large as the weight on precision.

FB-Score = — - ! - =1+p

p+1 Precision f+1 Rcall

y (Precision x Recall)
/ (B-Precision + Recall)

Commonly used f values are:
= [= 0.5, weighs Recall lower than Precision.
= [=1, weights Recall equal to Precision.

= [= 2, weights Recall higher than Precision.

55

