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A Three-Step Framework for Model Training
Navigating the Deep Learning Workflow

\|J
STEP 1: STEP 2: STEP 3:
DEFINE LOSS FUNCTION SPACE OPTIMIZATION

The Goal The Model The Search

Training can be viewed as a structured search for optimal parameters 8* that minimize a
cost/loss function L(0):

1. Define what you want: Specify the objective function that quantifies error on training data.

2. Explore the choices: Define the hypothesis space by selecting a model architecture (e.g., MLP,
CNN, RNN, Transformer).

3. Pick the best: Optimize parameters within this space, typically using gradient-based methods.



Step1: Define Objective

Loss Function & Data Prep



Step1: Define Objective

. . N
* For agiven application with a dataset D: = {(x(‘),y(‘))}i=1, specify Loss/Cost Function
L(0) to quantify error
= Regression

. NN 2
* MSE Loss: Lysg =71V25V= Hlg® -y = {vl( (v -5) )

* MAE Loss: Lyjag =— N ( ? 1 |y](l) y (l) )
= Classification

* Binary Cross Entropy (BCE): Lgcg = — Yy [y(” log ()7;?)) + (1 - }’(i)) 108( 3’18))]

« Categorical Cross Entropy (CCE): Lecp = X, YK - Igi) log (ylgl))



Data is the Foundation
The Pipeline and The Golden Rule of Splitting

Ingestion

Preprocessing
(Normalization)

|

x" = (x-u)/o

Splitting

. 15% = 15% —

70%

Fit parameters. 60-80%.

Hyperparameter Unbiased evaluation.
NEVER touched
during training.

tuning. Monitor

overfitting.

* Ingestion & Preprocessing: Normalization, Cropping, Filtering.
e Strict Separation: Validation is for tuning; Test is for unbiased evaluation.
*  WARNING: Data leakage into the test set invalidates the entire blueprint.
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# Define data transformations for the training and test sets
train_transform = transforms.Compose( [
transforms.ToTensor(), # Convert images to tensors
transforms.Normalize((0.5,), (0.5,))]) # Normalize the image data

—

test_transform = transforms.Compose( [ Before
transforms.ToTensor(), # Convert images to tensors Normalization) Normalized
transforms.Normalize((0.5,), (0.5,))]) # Normalize the image data (Mean =0, Var=1)

—

# Create the Fashion MNIST dataset for the training set with 60,000 images
train_set = torchvision.datasets.FashionMNIST(root='./data', train=True, download=True, transform=train_transform)

# Create the Fashion MNIST dataset for the test set with 10,000 images
test_dataset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, transform=test_transform)

# Split the original test set into a validation set with 5,000 samples and a test set with 5,000 samples

val_set, test_set = torch.utils.data.random_split(test_dataset, [5000, 5000]) Data Splitting

# Define the data loaders for the training, validation, and test sets

train_loader = torch.utils.data.DatalLoader(train_set, batch_size=256, shuffle=True, num_workers=2)
val_loader = torch.utils.data.DatalLoader(val_set, batch_size=256, shuffle=False, num_workers=2)
test_loader = torch.utils.data.Dataloader(test_set, batch_size=256, shuffle=False, num_workers=2)

# Define the classes for the Fashion MNIST dataset
classes = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']




The Two-Front War

Deep learning optimization is not a
simple descent into a valley. It is
navigation through a high-
dimensional, non-convex landscape
dominated by saddle points and
plateaus.

We face a two-front war: minimizing
Empirical Risk (the training error)
while simultaneously minimizing
True Risk (the generalization error).

Error Risk

n
True Risk @ /
(Generalization Error) N&,
/7
V4

Empirical Risk
(Training Error)

1 1 | B 7

Model Complexity / Iterations

Minimizing the training error does not
guarantee that we find the best set of
parameters to minimize the
generalization error.
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Underfit vs Overfit

Underfit Optimal Overfit
* Underfitting (High Bias): ) . . .
2 o et 2 T, 2 o502
= Model is too simple. Fails to capture structure. £| ®ee®"*0 E| %o%° % E Vv
[ e e Zf %ec of | e &
= Symptom: Poor Training & Validation gl e g % gl
. )y b
Performance. ’ .
Predictor variable Predictor variable Predictor variable

e Overfitting (High Variance):
= Model memorizes noise.

= Symptom: Low Training Loss, Degrading
Validation.

e The Goal:

Under-fitting Appropirate-fitting Over-fitting
e . . . . impl forcefitting--
= Minimize Total Error (Bias + Variance). explein the variance) Good to betrue)

Key Insight: Most training techniques are attempts to shift the balance of Bias and Variance in a

controlled manner at one of these three stages.




Diagnosing Failure

The Bias-Variance Tradeoff

Underfitting (High Bias)

e Symptom: Poor
performance on Train
AND Validation.

» Diagnosis: Model
too simple.
* Remedy: Increase

capacity, improve
optimizer.

Overfitting (High Variance)

e Symptom: Low
Train loss, High
Validation loss.

» Diagnosis:
Memorizing noise.
 Remedy:

Regularization,
more data.

The Sweet Spot: Minimizing Total Error (Bias + Variance)



Diagnosing the Villain

CASE A: OPTIMIZATION FAILURE

1.0
== Training Loss
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CASE B: GENERALIZATION FAILURE
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Step 2: Defining the Hypothesis Space

Architecture Design to match the Data Types



Step 2: Architecture & Inductive Bias
Selecting the right hypothesis space for the data

MLP (Multi-Layer Perceptron)

Inductive Bias:
Independence

Use Case:
Tabular Data

CNN (Convolutional Network)

Inductive Bias:
Spatial Locality & Invariance

Use Case:
Image Data

RNN

—

[LSTM

O-O-0-

N

—

1 4]

—>

=

Inductive Bias:
Sequentiality

Use Case:
Time-series, Sequence Data

Inductive Bias:
Global Context (Self-Attention)

Use Case:
NLP, Seq2Seq, Vision




Data Types and Neural Network Architectures

 Tabular Data: Initially, the focus was on utilizing Multilayer Perceptrons (MLPs) to
process tabular data. This approach evolved into deep learning, increasing the
model's capacity to capture complex patterns by adding more layers.

* Image Data: Convolutional Neural Networks (CNNs) emerged to interpret and
analyze visual information in grid formats, outperforming MLPs.

e Sequential Data: Sequences with meaningful order (e.g., textual or time-series data)
require specialized models, which led to the development of Recurrent Neural Networks
(RNNs), which can model and learn from sequential patterns.

* Seg2Seq Data: Specialized architectures were created to handle sequence-to-sequence
data, such as machine translation tasks, due to the complexities involved in aligning
variable-length input and output sequences.



MLPs for Simple Regression and Classification

Regression

CRIM = 0.00632
IN=18.0 Wﬂ\
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21.7186

NOX =0.538

RM =6.575

AGE =65.2

LSTAT = 49.8

Boston Housing Dataset
= 13 features and 506 records
= A 3-Layer MLP (13-8-6-1)
= Cost Function: MSE
= Performance: RMSE = 3.97

Classification
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* Iris Flower Dataset

4 features and 150 records
A 3-Layer MLP (4-8-6-3)
Cost Function: CCE
Performance: 98% Accuracy
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CNN for CIFAR-10 Image Classification
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(3x32x32)

 CIFAR-10 Color Image Dataset

= 60,000 32x32x3 RGB-Color Images
= 5-Layer CNN (3x3-32, 3x3-64, 128-10)

Airplane
Automobile

. 0‘;;0'\ 0,;& H

Ship
Truck

32 channels 32 channels 64 channels 64 channels T w
(32 x16 x 16) (64 x 16 x 16) (64x8x8) 4"*‘ ,
128x 10
4096 x 128

A simple Convolutional Neural Network

(CNN) can achieve 70-80% accuracy.

= Cost Function: CCE

= Performance: 78% Accuracy

State-of-the-art is above 97%.
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Micro-Architecture: Activation Function

The Engine of Non-Linearity

e Activation functions decide whether a neuron 'fires". They introduce non-linearity,

preventing the network from collapsing into a simple linear regression.

Unit Step Sigmoid
1 1

(2) = 1, for z=0
ulz) = 0, otherwise
0.5 1
o(z) = 1+e2
R — 1 2 3 3 2 1 1 3 3
Legacy / Not Differentiable
Linear RelLU
9(2) =2z
17 1
0.54 8.5 max(0,z)
A 05 05 1 0.1
-0.5¢ :
1 0.5 0.5 1

14
Identity Function

Tanh

1
9-5'/ tanh(z)

Leaky RelLU
1+

0.5¢1

-0.5+4

= pe
Prevents Dead Neurons

0.5 1
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The Differentiable Era
Smoothing the Curve (1980s — 1990s)

Sigmoid Hyperbolic Tangent (Tanh)

11

1 -
ez — e~ Z
tanh(z) =
1 o PG
0.5 glz) = = ; . . "
/ l+e -10 s 5 10

-10 -5 0 5 10
\ -1 J
e Not Zero-Centered. e Zero-Centered. A
e Outputs represent probabilities (0, 1).
The Upgrade

Outputs center around 0, leading to stronger
gradients and faster convergence in early layers.

These smooth curves enabled the first generation of functional Multi-Layer Perceptrons via Backpropagation

17



Derivative of the Sigmoid Function ¢'(z)

1+ez r — —— \
d | o(z) o |Saturation
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dz i
e 1 e’ ’
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1+e 1+e &' (2) |
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—1+e_z-(1—1+e_z)—a(z)-(l—a(z)) 2 4

Vanishing Gradients
At extreme input values, the curve flattens. The derivative approaches zero. As these tiny gradients
multiply backward through layers, the signal disappears, and the network stops learning.
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The Saturation Crisis of tanh
The Vanishing Gradient Problem

1.0

0.5

’
derivative,’

4

Saturation
Region

(Gradient =~ 0)

0O |—————————— = F e
0.5 Saturation
g Region
(Gradient = 0)

-1.0

THE MECHANISM

* When inputs are large/small, the
curve flattens.

* The slope (gradient) becomes
near-zero.

e Result: Error signals "vanish”
during backpropagation. Deep
Network stop to learn.

)

N AN

X% ‘:Z(‘\A\‘Z
RS s QRN -

N\

Output

Tanh is just a scaled Sigmoid. It still suffers from saturation
and vanishing gradients in deep networks.

Layer L-1

Layer L-2

Layer L-1

Strong
Gradient
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The ReLU Revolution (2010s)

Abandoning the curve to solve the depth problem

Gradient =1
(Non-Saturating)

Gradient=0
(Sparsity)

The Hockey Stick Shape
RelLU(z) = max(0, z)

Wins

1. Non-saturating: Positive inputs never
cause vanishing gradients. Allowed
AlexNet (2012) to train deep models.

2. Sparsity: Zeros out negative inputs,
making the network computationally
efficient.

3. Speed: Computational Cheap

20



The New Flaw: DYING RelLU

Dying RelU: If inputs are
negative, the gradient is 0.

* A neuron can get stuck in
this 'off' state and never
learn again.

LINEAR (2)

DDDDDDD

-4 -2 0 2 4
ReLU(z) = max(0, z)



Fixing the "Dying ReLU" Neurons stuck in the negative range

have a gradient of 0 and never update

Leaking Information on Purpose  again.

The Solutions (Evolution)
ReLU %

Leaky ReLU 4V

-+

— X — X X
4 4
_2 +
_4 <+ _4
Flat at 0 for negative. Slight negative slope for negative Smooth curve for negative values.
values.
Fixed Gradient (0.01) Smooth Exponential Curve
z ifz20 ” _Jz ifz=>0
LealgyReLUs);= {az otherwise (oresi0.01) el = {a(ez —1) otherwise (@20)
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GELU (Gaussian Error Linear Unit, 2016)

The Transformer Standard

The Probabilistic Switch

GELU(z) =z - ®(2)

where ®(z) is the cumulative distribution function
(CDF) of the standard normal distribution N(0O,1).

* GELU can be viewed as a smoother
version of ReLU that also incorporates

stochastic regularization

™~

Probabilistic Curvature

Used in BERT & GPT. Shifts from binary thresholding to
weighting inputs by their magnitude relative to a Gaussian
distribution.

"Gaussian Error Linear Units (GELUs)" by Dan Hendrycks and Kevin Gimpel.

23


https://arxiv.org/pdf/1606.08415.pdf

Swish and SiLU (2017)

The Power of Non-Monotonicity

* Discovered by Google Brain is automated search. The function is "self-

gated," allowing the input to determine its own passage magnitude.

* Essential for complex feature capture.

6
y
|
Swish(z) =z-0(f - z) i
al
* SiLU is Swish where =1 55 e ~] ,
R ) W /‘; R S !

"Swish: a Self-Gated Activation Function" by researchers Prajit Ramachandran, Barret Zoph, and Quoc V. Le.

24


https://arxiv.org/pdf/1710.05941v1.pdf?source=post_page

State of the Art: SwiGLU (2020)

 Combines the smoothness of Swish with learnable flexibility of Gated

Linear Unit

= Powering Giants: PaLM, LLaMA-2

Input ——

Swish Activation
Swishg(zW +b)

Linear Transformation
(2V +¢)

Output:
SwiGLU(z, W, V, b, ¢)

25



Micro-Architecture: Activation Function

The Engine of Non-Linearity

ReLU (Rectified Linear Unit) : ReLU(x) = max(0,x)
* Pros: Efficient computation.

e Cons: "Dying ReLU" problem where gradient is
0 for negative inputs.

GELU (Gaussian Error Linear Unit) : gelu(x) =x®(x)

* Pros: Smooth approximation, prevents dead
neurons. Standard for Transformers.

Swish : swish(x) =xe o(Bx)

* Pros: Self-gated adaptive non-linearity.
Outperforms ReLU in deep networks.

Diagnostic Tip: If gradients vanish, check for
saturating functions (Sigmoid/Tanh) and switch to
non-saturating alternatives.

Activation function value

N
1

I

w
N 1

—_—
L 1

o

RelLU
(Efficient, CNN standard)

GELU
GELU (Smooth,
Transformer standard)

%

Swish
(Deep networks)

X value

26
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Depth, Width, and Scaling

* Model capacity grows with depth (more
layers) and width (more neurons per layer).
* Depth enables hierarchical feature composition
but can cause vanishing gradients.

* Width offers parallel representational paths, often
yielding flatter minima and better generalization.

* Scaling Laws: Performance improves

predictably with model size, data, and ¥ o TN NN T | iR e L T N
102 10" 102 103
com p ute. Compute/Parameters

* Chinchilla scaling: For fixed compute, optimal This graph illustrates scaling laws, plotting

model size N and dataset size D follow NecDO->, model performance (Test Loss) against
parameters or Compute

The Scaling Law

102?

N oc DO
101?

Test Loss
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Residual (or Skip) Connections
Solving the Depth Problem with Residuals

* Residual connections address
degradation in deep networks by adding
identity shortcuts:

" Formula:y = F(x) + x
= Mechanism: The 'Identity Shortcut'

creates a direct super-highway for
gradient flow during backpropagation.

= Result: Enables training of networks with
1000+layers (ResNets).

Residual Block

Input x

Weight Layer

v

ReLU

v

Weight Layer

RelLU

v

y=F(X) +Xx

Why it works: The identity shortcut creates a direct path for gradient flow, enabling the training of networks with 100+ layers.
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Batch Normalization (BN, 2015)

The Mechanism That Enabled Deep Architectures

 Batch Normalization (BN): The 2015 breakthrough that allowed 100+ layer
networks.

4 )

Affine Transform Batch Norm Activation
(Wx + b) ) (ReLU)

Note: A batch is a small set of samples of the dataset.

Mechanism

1. Normalization: Forces layer inputs to mean 0 and variance 1.
2. Re-calibration: Introduces learnable parameters to shift and scale data back if required.

29



The Mechanics: How BN Works

* Calculate Batch Statistics for the net input z at layer [ :

20 @ L 00
1 < 1 (l) Z=[,0 @ o) = |z 7 7
1 = = 2
i = MZ Zj(l) o; = z i) +e€ [z Z z(M)] = P
i=1 i=1 (1) 2 (M)
nl ny ‘I‘Ll
. . o - (i)
° Normahze Wlth /'l] & 0-] : A mini batch with M net input z
@ _ . The Learnable Parameters
w45 TR
Zi = 0j * v (scale) and B; (shift) are learned during training.

° De_normalize (Scale & Shlft) * They allow the network to 'undo' the normalization if

optimal.

"(‘) =y '(‘) + ﬁ] e This preserves the network's capacity to represent
complex functions (expressivity).
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Batch Norm: Smoothing the Landscape

e Batch Normalization: v Before Norm 1Y After Bafcch Norm
= Constrains layer outputs to a standard
distribution (Mean=0, Var=1). Normalization
= Prevents 'Internal Covariate Shift’. m‘ﬂ'> X
0 50 100 X 2
Uneven Scaling & Stretched Landscape Uniform Scaling & Symmetric Landscape
* Benefit: Makes the loss landscape
symmetric and smoother, allowing
higher learning rates and faster
optimization. imprenes
Continuity
Without BN: Jagged Terrain With BN: Smooth Terrain
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The 'Jekyll & Hyde' Problem: Training vs. Inference

Training Mode Inference Mode
&
Uses Mini-Batch Statistics (g, Og). Uses Running Average Statistics

(Mglobal> Oglobal)-
Behavior: Stochastic / Noisy. ’ ’

Behavior: Deterministic.
Dependency: Dependent on other samples

in the batch. Dependency: Independent processing.

Common Pitfall: Forgetting to switch to ‘model.eval()’ during validation leads to catastrophic failure.
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How to use BatchNorm in Practice and During Inference

class MultilayerPerceptron(torch.nn.Module):

def __init__ (self, num_features, num_classes, drop_proba,
num_hidden_1, num_hidden_2):
super().__init__ ()

self.my_network = torch.nn.Sequential(
# 1st hidden layer
torch.nn.Flatten(),
torch.nn.Linear(num_features, num_hidden_1, bias=False)
torch.nn.BatchNormld (num_hidden_1),
torch.nn.RelLU(),
# 2nd hidden layer
torch.nn.Linear(num_hidden_1, num_hidden_2, bias=False)
torch.nn.BatchNormld (num_hidden_2),
torch.nn.RelLU(),
# output layer
torch.nn.Linear(num_hidden_2, num_classes)

)

def forward(self, x):
logits = self.my_network(x)
return logits

https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb

33


https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb

BatchNorm Variants

Pre-Activation

compute net inputs
N
BatchNorm
N

apply activation function

N

compute next-layer net inputs

Post-Activation

compute net inputs

N

apply activation function

NE
BatchNorm
NE

compute next-layer net inputs
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How to
use BN

before activation, no bias

self.my_network = torch.nn.Sequential(

# 1st hidden layer

torch.nn.Flatten(),

torch.nn.Linear(num_features, num_hidden_1, bias=False),
torch.nn.BatchNormld(num_hidden_1),

torch.nn.ReLU(),

# 2nd hidden layer

torch.nn.Linear(num_hidden_1, num_hidden_2, bias=False),
torch.nn.BatchNormld (num_hidden_2),

torch.nn.ReLU(),

# output layer

torch.nn.Linear(num_hidden_2, num_classes)

after activation, with bias
self.my_network = torch.nn.Sequential(

# 1st hidden layer

torch.nn.Flatten(),

torch.nn.Linear(num_features, num_hidden_1, bias=True),
torch.nn.RelLU(),

torch.nn.BatchNormld(num_hidden_1),

# 2nd hidden layer

torch.nn.Linear(num_hidden_1, num_hidden_2, bias=True),
torch.nn.ReLU(),

torch.nn.BatchNormld(num_hidden_2),

# output layer

torch.nn.Linear(num_hidden_2, num_classes)

before activation + dropout
self.my_network = torch.nn.Sequential(

# 1st hidden layer

torch.nn.Flatten(),

torch.nn.Linear(num_features, num_hidden_1, bias=False),
torch.nn.BatchNormld(num_hidden_1),

torch.nn.ReLU(),

torch.nn.Dropout(drop_proba),

# 2nd hidden layer

torch.nn.Linear(num_hidden_1, num_hidden_2, bias=False),
torch.nn.BatchNormld(num_hidden_2),

torch.nn.RelLU(),

torch.nn.Dropout(drop_proba),

# output layer

torch.nn.Linear(num_hidden_2, num_classes)

before activation, with bias

self.my_network = torch.nn.Sequential(

# 1st hidden layer

torch.nn.Flatten(),
torch.nn.Linear(num_features, num_hidden_1),
torch.nn.BatchNormld(num_hidden_1),
torch.nn.RelLU(),

# 2nd hidden layer
torch.nn.Linear(num_hidden_1, num_hidden_2),
torch.nn.BatchNormld(num_hidden_2),
torch.nn.ReLU(),

# output layer

torch.nn.Linear(num_hidden_2, num_classes)

after activation + dropout

self.my_network = torch.nn.Sequential(
# 1st hidden layer
torch.nn.Flatten(),
torch.nn.Linear(num_features, num_hidden_1, bias=True),
torch.nn.ReLU(),
torch.nn.BatchNormld(num_hidden_1),
torch.nn.Dropout(drop_proba),
# 2nd hidden layer
torch.nn.Linear(num_hidden_1, num_hidden_2, bias=True),
torch.nn.ReLU(),
torch.nn.BatchNormld(num_hidden_2),
torch.nn.Dropout(drop_proba),
# output layer
torch.nn.Linear(num_hidden_2, num_classes)
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The Limitations of Batch Norm

e Weakness 1: Small Batch Sizes

BN relies on batch stats to estimate
the population. If Batch Size < 8,
statistics are noisy and error rates
spike.

 Weakness 2: RNNs & Sequences

Variable sequence lengths make
tracking statistics computationally
messy.

Model Accuracy

Estimation /

Noise Failure

32

16

8
Batch Size
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The Challenger: Layer Normalization (2016)

* Instead of normalizing across the batch, Layer Norm normalizes across the
features of a single sample.

An individual net input sample z®

1 o 1 &
, = — (l) — = (l) J 2 - (D)7
Hj n; % n te€ \ Z1.
J=1 Jj= . (l)

Z(l) =

S

(1) (l)

S04 T H A(o =y, r(o 3 | Zn, |

! 9j
P ® @ Batch Independent: Deterministic: —)0 Sequence Friendly:
@ : @® Works perfectly with ' ' |dentical behavior in |deal for RNNs and

Batch Size = 1. Training and Inference. Transformers.
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Visualization: Slicing the Data Cube

N (Batch)
N (Batch)

H,W (Spatial) Y

e
H,W (Spatial) <

Batch Norm: Global stats from the crowd. Layer Norm: Individual stats from the self.
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Transformers & The Dominance of Layer Norm

e Modern NLP (BERT, GPT, T5) Output

relies almost exclusively on

Add & Norm
Layer Norm. In NLP, batch
dimensions are arbitrary, but Feed Forward
the relationships between
features (embeddings) ALIIES N O
within a token are critical. N S TPORTIT T

A

]
Input




Head-to-Head: Choosing Your Norm
Feature | Batch Normalization ____|Layer Normalization ___

Best For
Batch Dependency

Training/Inference
Regularization
Structure Use

MLPs and
CNNs (Computer Vision)

High (needs large batches)

Different modes required
Adds noise (beneficial)

Use spatial structure

Transformers / RNNs

None
(Works with Batch =1)

Same mode
Deterministic (little noise)

Isotropic
(treats feature same)
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Step 3: Optimization Strategies

Navigating the Loss Landscape



1

N
i=

Strateg
ize cost function L£(0) across a set of model parameters 9 := {(x®,y®)}.

[=34

6
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arg min L(0)
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Recap: Gradient Descent Algorithm

Initialize: Randomly set weights 6

Compute Cost: Measure
performance L(6).

Find Gradient: Calculate VL(0)
(direction of steepest ascent).

Update: Step down the hill.

Onew = Oo1qa — 1 - VL(O)

1 = Learning Rate (e.g. 0.001)

Repeat steps 2 to 4, unit the cost is low
enough or convergence.

Cost L(6)

A

Initial Weight

Incremental Step .:’

‘0
“
.

Minimum Cost 0*:

0
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The Challenge of Local Minima

Deep learning optimization is hindered not by local minima but by saddle points and
flat plateaus where gradients vanish, causing standard methods to stall or falsely
appear converged.

Saddle point — simultaneously a local
minimum and a local maximum.

Saddle Point

Small Gradient (Zero Gradient)

Local Global
Minimum Minimum
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Historical Timeline (1840-2025)

Evolution of Gradient Descent

e 1840s: Cauchy's Steepest Descent (Theoretical 2011: AdaGrad (Adaptive Learning Rates)

Foundation)

* 1950s: Batch Gradient Descent (First
Implementation) e 2014: Adam (The Crown Jewel)

e 2012: RMSprop (Solving Vanishing LR)

* 1951: Stochastic Gradient Descent (Efficiency « 2017: AdamW (Regularization Fix)

Revolution)
_ e 2023: Lion & Sophia (Modern

* 1964: Momentum (Adding Memory)
e 1990s: Mini-batch Gradient Descent (Balance

& Parallelization) e 2024-2025: Continuous Innovation

Breakthroughs)
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Evolution of the Optimizer

4. AdamW >
The Modern Standard.
Decoupled Weight Decay.
3. RMSProp/Adam |
Adaptive Rates. o
Individual learning rates Oi41=0; — ( = + A(%)
2. Momentum || per parameter. Vot €
Adds VG'OCity (B E* 09) In AdamW update I’UTE, use the wei:ht
Powers thl’OUgh flat regions. comronartion rs; vs. A/ term components
the decoupled weight decay.
1. SGD [l he d led weight d

Basic Descent f>

N I S .

: Practitioner's Note: l
| Selection Guide: I
* Use AdamW for Transformers & CNNs. |
* Use SGD+Momentum for simple streaming tasks. l

——————— — — — — — — — — — — — — — — — — — —— — — — — — — — — — — o]



Basic Gradient Descent Algorithms

* Batch Gradient Descent (BGD, 1950s)
= Uses the full dataset per update; stable but computationally expensive.
1 . .
" 9t+1 — Ht _ T’ ) NZ{V:]. vef(gt; X(l)’ y(l)) SGD - Fast, Noisy
« Stochastic Gradient Descent (SGD, 1951) ﬁ z N

)
. . " ' Batlch‘- Sjtalble, E‘xpelnsive
= Uses a single sample; fast but noisy.

WSS
" 0ipq1 =0 —1:Vgf(0:X,Y) \&i‘\\;////

 Mini-batch Gradient Descent (MBGD, 1990s)

= Uses small batches (M <« N); balances efficiency and stability and is the industry
standard.

1 . .
" Ot41 =07 '742%1 Vot (0 x®,yW)

Mini-Batch -
The Industry Standard
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BGD vs MBGD vs SGD

Batch Gradient Descent Stochastic Gradient Descent (SGD) Mini-batch GD

Stable but computationally Noisy and chaotic The Industry Standard. Balances
expensive (Full Dataset). (Single Sample). stability and efficiency.



SGD + Momentum (1964)

* Like a ball rolling downhill - builds momentum in consistent directions

me=pme_qy+ (1 —B)VL(O,) Momentum = exponential average of the gradients

\\ Gradient is zero here, but Inertia
S / carries the ball forward.
—_— —>

e The momentum rate 5 is usually chosen between | \\“

0.9 and 0.999.
* You can think of it a “dampening” parameter
* On the other hand, you can also consider it as an
exponential moving average parameter.

Orp1 =0 —1-my

Polyak (1964) “Some methods of speeding up the convergence of iteration methods” 49



https://www.sciencedirect.com/science/article/abs/pii/0041555364901375

SGD vs. Momentum GD

sgd

Momentum —— momentum |]
(dampening oscillations) o — nag \E
7 adagrad > Momentum
Gradient descent —1p 7, adadelta t GD

Sl J,'/ rmsprop \_

| |

-4

-5 |
-2 -1 (o} =]

Gradient descent with momentum 100
80 |- il
60 - N
40 | N
20 N
0 1 1 1 1 1
0 20 40 60 80 100 120
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Learning Rate Issues

* The learning rate is a crucial hyperparameter that controls the step size in Gradient

Descent optimizers.

* Too low: training becomes painfully slow. Too high: the optimizer becomes unstable

Too low

10)| |

— A

\

1(6)

Just right

1(0)

Too high

)
/
|
|
|
|
| |
\ |

A small learning rate
requires many updates
before reaching the
minimum point

\ /
LY

The optimal learning
rate swiftly reaches the
minimum point

NS ~

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors
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Adaptive Learning Rate Optimizers

 The idea behind adaptive learning rates is to address the issue where

sparse but important features can have small gradients, leading to
slow learning in those directions.

* To remedy this, we can assign different learning rates to each feature,
giving higher rates to sparse features.

* This approach involves adjusting the learning rate based on the
gradient’s behavior:

= Decreasing the rate when the gradient changes rapidly (indicating large
gradients)

= |Increasing the rate when the gradient remains consistent (indicating small
gradients).
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AdaGrad: Adaptive Gradient (2011)

AdaGrad uses a cumulative sum of squared of historical gradients G, =

>t _1[VL(6,)]* to adapt the learning rate 1); for each parameter.
= Parameters with large gradients have their learning rates reduced
= Parameters with small gradients have their learning rates increased

Gy = thc=1[VL(9k)]2

i -VL(6,) Small € term to avoid

./ Gt + ¢ division by zero

AdaGrad eliminates the need to manually tune the learning rate with default rate
of n =0.01 and a common default value for € is 1e-8 (1073).

Orr1 = 0r —

Duchi et. Al (2011) “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.
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https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

RMSProp (2012)

* RMSProp solved AdaGrad's limitation through exponentially decaying
averages => RMS (Root-Mean-Squared) gradient

ve = Bre—g + (1 = PVL(OK)]? O=<p=1) }h(iy";ZZ.V.y" 09 0.9%)

prevents indefinite

9t+1 = Qt — v:’-l— = . VL(Qt) accumulation.

* Strengths: RMSprop provides more stable learning rates and faster convergence compared to
Adagrad.

* Limitations: RMSprop can still suffer from some of the limitations of Adagrad, such as the
need for careful tuning of the decay rate.

Teleman & Hinton (2012) “Neural Networks for Machine Learning”, Lecture 6, Coursera.
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e — sgd
—  momentum ||
ol — nag E
-— adagrad &
—1F adadelta N
\
rmsprop < =
-2 kK N
\
—3 - n"v
,“,f
—4 | l
-5 3 I
= ==y 5
100 T T T T T
80 | -
60 |- -
40 2
20 | -
O 1 1 1 1 1
0] 20 40 60 80 100 120

RMSProp
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Adam: Adaptive Moment Estimation (2014)

 Adam combines the strengths of AdaGrad and RMSProp.

= AdaGrad is good for sparse gradients, while RMSprop is good for online and
changing situations.

= Adam adapts learning rates per parameter by tracking two exponential moving

daverages:
R m
Momentum: My = Byme—q + (1 — B1)VL(6y), - e =7 _tﬁlt)
Bias-
corrected R v,
RMSProp: v, = Bov,_1 + (1 — B,)[VL(6,)]?, eI

Kingma & Ba (2014) “Adam: A Method for Stochastic Optimization”: https://arxiv.org/pdf/1412.6980.pdf
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https://arxiv.org/pdf/1412.6980.pdf

Adam =~ Momentum + RMSProp

* The moving average is initialized to O, causing the moment estimate bias to be
around 0, especially during the initial time step. This initialization bias can be
easily offset, yielding bias-corrected estimates

m il D Ve Wh g -0
me = Ve = ent > 00, =
(1-pf (1-pS
Momentum RMSProp
(dampening oscillations) (Adaptive learning rate)
my

Oty1 =0t —1
VUt €

* Important practical point: 5 typically 0.9 while [, typically much closer to 1, e.g.
0.999
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Adam Optimizer

 Adam is a widely used optimization algorithm for
gradient descent.

* Itis efficient in terms of computational resources and
does not require much memory.

 Adam works well for problems that involve a large
amount of data or parameters.

e Itis also suitable for problems with noisy or sparse
gradients.

* Most popular libraries, like PyTorch, use the default
hyperparameters from the original paper for Adam:

= Learning raten =0.001, f; =0.9, 5, =0.999, € =1e-08,
weight decay = 0.0.

training cost

MNIST Multilayer Neural Network

+ dropout

\
\ :
"\

\ :

AdaGrad
RMSProp
SGDNesterov
AdaDelta
Adam

I !
50 100
iterations over entire dataset

150 200
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Issue of Adam with Weight Decay

* In the standard Adam optimizer, weight decay is typically implemented
by adding an L2 regularization term to the loss function:

1
L) = Lorg(g) + A_Z ”9”2

* However, incorporating this term directly into the loss affects the
adaptive learning rates computed by Adam, which can interfere with
optimal convergence and degrade performance.
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AdamW: The Regularization Fix (2017)

« AdamW (Adam with Weight decay) addressed a subtle but critical issue
with Adam's weight decay implementation:

my
Orp1 =0 —n|—= + A60;

Ve + €

where A is the weight decay coefficient.

e By decoupling weight decay from gradient-based optimization, AdamW
achieves improved generalization, especially in transformer
architectures.

Loshchilov, I., & Hutter, F. (2017). Decoupled weight decay regularization.
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https://arxiv.org/pdf/1711.05101.pdf

Adam vs AdamW

The Standard (Adam) and the Refinement (AdamW)

Adam (2014)

Momentum + RMSprop
1
- L(O) = Lorg 0) + /1_2 161/

= my=pimeg + (11— .31)(VL(9t))

= v = Boveg + (1= B2)(VL(O,) )?

A~

me

N ﬁt+£

e Updated: 6;,,, =0, — 1

L2 Regularization is entangled with the
gradient adaptation

AdamW (2017)
The Moden Corw Jewl
- L(9) = Lorg(e)
= my = Pime_q + (1= BIVL(O,L)
= v = Bovpog + (1 = B)(VL(OL) )?

A~

* Updated: 6,,, = 6, — 1 (J;"t_:g + /wt)

Weight decay is applied diretly to the
parameters, decopled from the gradient
update. This yields significantly better
generation.
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The Evolution of Optimizers
From Momentum to AdamW

\

‘ 1. SGD + Momentum Gradient (VL) \e"o‘:ity (v)
Adds velocity to dampen oscillations. et

| 2. RMSprop
Adaptive learning rates. Normalizes by recent gradient magnitude.
3. Adam (Adaptive Moment Estimation)
Momentum + RMSprop. The default starting point.

4. AdamW (The Standard)
Decoupled Weight Decay. Fixes regularization in Adam.
Adam AdamW
L(8) = Lorg(8) + A5 1612 Orer = 0 —1(...) — 126,
(L2 Mixed in gradient) (Decay separate)




Practical Implementation: From Theory to Code

* Usage is the as for vanilla SGD, which we used before, you can find an overview at:
https://pytorch.org/docs/stable/optim.html

# SGD with Momentum (1964)
optimizer = torch.optim.SGD(model.parameters(), Ir=0.01, momentum=0.9, weight_decay=0)

# SGD with NAG (1983)
optimizer = torch.optim.SGD(model.parameters(), Ir=0.01, momentum=0.9, nesterov=True, weight_decay=0)

# Adagrad (2011)
optimizer = torch.optim.Adagrad(model.parameters(), Ir=0.01, eps=1e-10, weight_decay=0)

# RMSprop (2012)
optimizer = torch.optim.RMSprop(model.parameters(), Ir=0.01, alpha=0.99, eps=1e-08, weight_decay=0, momentum=0)

# Adam (2014)
optimizer = torch.optim.Adam(model.parameters(), Ir=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)

# AdamW (2017)
optimizer = torch.optim.AdamW(model.parameters(), Ir=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.01)


https://pytorch.org/docs/stable/optim.html

Learning Rate Scheduling

Dynamic Control of the Optimization Speed Limit

Warmup + Decay Step Decay Cyclical / Cosine
1.01 1.01 1.01
<081 c08 <081
[ @ @
& 06 208 S 086
2 2 2
€04 €04 € 0.4
[} o o
Q (U] Q
= 0.2; - 0.2 _\_\_ =02
0.0+ . . v . . 0.0+— . . y - . 0.0+— . v . r
0 20 40 80 80 100 0 20 40 80 80 100 0 25 40 80 75 100
Epochs Epochs Epochs
Warmup stabilizes early training Step Decay settles into local

Cyclical schedules help escape

(crucial for Transformers). minima systematically. saddle points.

The 'Goldilocks' Zone: We need high LR for exploration and low LR for refinement.
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Other Learning Rate Schedulers

Learning Rate Schedules

—— Step Decay
b R —— Exponential Decay ® Step Decay
\ —— Cosine Annealing
= —— Polynomial Decay lt/TJ
—— Natural Exp. Decay = nt = no . y

—— Staircase Exp. Decay

0.8 q

e Exponential Decay

— t
"M ="MooV
@ * Inverse Time Decay
§0_4_ Mo
L =
Me 1+yt

e Cosine Annealing

0.2

1
" Mt =Nmin T 3 (nmax - nmin) (1 + cos (

0.0

Epoch

https://medium.com/@theom/a-very-short-visual-introduction-to-learning-rate-schedulers-with-code-189eddffdb00

Teur 7'[))
Tmax

65


https://medium.com/@theom/a-very-short-visual-introduction-to-learning-rate-schedulers-with-code-189eddffdb00

Generalization: Data Augmentation
Free data to reduced variance

* Objective: Enforce invariance and simulate real-world diversity.

¢ Sta n d a rd TEC h n iq u ES : Horizontal Vertically +45 Rotation -45 Rotation Blur

1 ";'.’._
L N
’I
L‘

Noise added Darker Grayscale Crop

= Geometric (Flip, Rotate,

Original Image

Crop) & Photometric

(Noise, Color).

Brighter

A
Y

Augmented Images
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PyTorch Image Data Augmentation

from torchvision import datasets,transforms

transform_train = transforms.Compose ([
transforms.RandomHorizontalFlip(p=0.5), # Randomly flip the image horizontally
transforms.RandomCrop (28, padding=2, padding mode='edge'), # Randomly crop the image with padding
transforms.ColorJitter (brightness=0.1, contrast=0.1, saturation=0.1), # color jitter
transforms.RandomRotation(5),
transforms.RandomAffine(degrees=3, translate=(0.1, 0.1)),
transforms.RandomPerspective(),
transforms.RandomVerticalFlip(p=0.5),
transforms.ToTensor(), # Convert the image to a PyTorch tensor
transforms.Normalize((0.5,),(0.5,)) # Normalize the image with mean and std

1)

transform test = transforms.Compose( [
transforms.ToTensor(), # Convert the image to a PyTorch tensor
transforms.Normalize((0.5,),(0.5,)) # Normalize the image with mean and std

1)

# Download the Fashion MNIST dataset and apply transformations
train_dataset=datasets.FashionMNIST('FMNIST/',
train=True,
download=True,
transform=transform train)

test_dataset=datasets.FashionMNIST('FMNIST/',
train=False,
download=True,
transform=transform test)

https://towardsdatascience.com/a-comprehensive-guide-to-image-augmentation-using-pytorch-fb162f2444be
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https://towardsdatascience.com/a-comprehensive-guide-to-image-augmentation-using-pytorch-fb162f2444be

Advanced Data Augmentation Techniques

1. Mixup: Creates new examples by

interpolating between pairs of examples

and labels, enhancing generalization. %F
2. Cutout: Randomly masks out square !

regions of input images, promoting focus
'%(é‘\{ % {

AL
augmentation policies, yielding improved Mixup Cutout Cutmix
performance on various datasets.

on remaining areas.

3. AutoAugment: Uses reinforcement

learning to automatically discover the best

Mixp, Cutout and Cutmix Data Augmentations. (Source)
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https://www.analyticsvidhya.com/blog/2024/01/amplifying-deep-learning-a-dive-into-data-augmentation-strategies/

Generalization Il: Dropout
Implicit Ensembling. Forces redundancy.

Standard Network —> After Dropout (p=0.5)

* Dropout: Randomly masks neurons (e.g. p = 0.5) during training to prevent feature co-
adaptation. The network cannot rely on any single feature.

= RESULT: Training Loss UP (Harder), Validation Loss DOWN (Generalization).
= WARNING: Only use for Overfitting.
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Without vs With Dropout

. \ — tro'.r ¥ —frCin
— yQlidation w— validation
11 4
30 4
Q 107
S
- 9 25 4
—
9 8
ey 20 4
b R
15
5
0 100 200 300 400 500 600 700 800 o 250 500 750 1000 1250 1500
epochs-100 epochs-100
. 0,
Without Dropout 10% Dropout

Drop-out effect on the loss function during training in parallel. The model with
drop-out exhibits a validation loss history with lower values than the
corresponding train curve.

class Net(nn.Module):
def __init__(self, input_shape=(3,32,32)):
super(Net, self).__init__()

self.convl = nn.Conv2d(3, 32, 3)
self.conv2 = nn.Conv2d(32, 64, 3)
self.conv3 = nn.Conv2d(64, 128, 3)
self.pool = nn.MaxPool2d(2,2)

n_size = self._get_conv_output(input_shape)

self.fcl = nn.Linear(n_size, 512)
self.fc2 = nn.Linear(512, 10)

# Define proportion or neurons to dropout

self.dropout = nn.Dropout(@.25)

def forward(self, x):
x = self._forward_features(x)

x = x.view(x.size(0), -1)

= self.dropout(x)|
F.relu(self.fc1(x))
# Apply dropout
self.dropout(x)|

x = self.fc2(x)

return x

x
|

x
1]

x
1
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Generalization lll: Regularized Objectives
L1/L2 Regularizations

S
Constraining complexity via the Cost Function:

Liotar = Laata + /R (9) E

>

* L1 (Lasso): Adds Y|6| Promotes
Sparsity
* Liotat = Laata + 12101 L1 Penalty
= Effect: Promotes sparsity (drives weights to exactly 0). W 4
L2 (Ridge): Adds ) 672 (

i

* Liotar = Laata + 12067 /
= Effect: Promotes Smoothness (prevents large weights). \/ w
ooths

Model

L2 Penalty
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L2 Regularization vs Weight Decay in PyTorch

* L2 regularization and Weight decay are often used interchangeably in
PyTorch.

= Adam with L2 regularization, in which weight decay is added a penalty term
proportional to the square of the L2 norm to the loss function.

optimizer = optim.Adam(model.parameters (), 1lr=0.01, weight decay=0.001)

= AdamW is a specific implementation of weight decay regularization in PyTorch, in
which weight decay is only applied during parameter update.
optimizer = optim.AdamW (model.parameters(), 1lr=0.01, weight decay=0.001)
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Early Stopping: Convergence Strategies

The "Free Lunch". Stop when generalization degrades.

* The simplest, most effective

regularizer.

Stop when validation loss
stops improving, even if
training loss is still falling.

Loss

Early Stopping

= Training Loss
- \/alidation Loss

\ Stop Training Here

Time (Epochs)
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Starting Right: Weight Initialization

Good weight initialization can prevent vanishing/exploding gradients at Step O.

e Xavier (Glort) Init: Best for symmetric activations (Sigmoid Tanh)

l 6 6 l 2
= wi ~u (- , or w®~n (o, |
7] fan;,+fangy; " Al fanjp+fangy: tj \] fan;,+fangy¢

* Kaiming (He) Init: Best for ReLU family. Acconts for ReLU zeroing half the input

N O NPTy 6 0 _ ’ 2
Wij 'U( \/fanin'\[fanin) OR Wij N(O’ fanin)
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Transfer Learning
Don't start from scratch.

i Pre-trained Model (e.g., ImageNet, BERT)

w,.w - .9
ko’{"‘kd{"‘}\af{ \\’/'.‘\\

N0 % a4 O\ Q%:v‘;' ":/
oK/ \KK/ 7\ KY %, & XA
XK R X XK

Q

NN WV, :
: 5 3 0 -y \ ¢
N layers trainable/fine—tuneJ

Target Task

AL

\ \ 4

e Strategy A: Feature Extraction (Freeze Backbone, train Head).
e Strategy B: Fine-Tuning (Unfreeze layers with Discriminative Learning Rates).



Transfer Learning: The Shortcut

S JetBrains Nono ————— >

VIO T4 ZLLLLLL YL LA

Lar‘(g: (;Soulrl‘nca% e?@t'sset / I:> Pre-Trained Model

Jstrains Mono

9
% T e
EFeature Extraction:
g Sy ' (Frozen Backbone)
2 ad ew Tas e L PP PR
; Pre-Trained Model T (e.g., "Small Dataset") [j\
3 Fine-Tuning

(Unfrozen Layers)

Why: 5-10x faster convergence. Mitigates poor initialization.

Strategy: Use pre-trained backbones for small or data-scarce domains.
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The Practitioner's Mental Model

Foundation
Data Split,
Normalization

[ | Does Architecture
-> | Match Data?

[4 | Is Data Split
—> i Correct?

Architecture . __.- 1terative

piagnostic . Generalization :
I Inductive Bias Match 3 RROGESS

B Augmentation, Dropout

I

\4

V] Validation Loss Rising?
-> - Add Regularization.

> = Tune Optimizer.

[“f Training Loss High? |

/ Optimization .
R Loss Landscape, AdamW e

Deep Learning is a structured search for the sweet spot between optimization and generalization.
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Assignment 1 Section B to Practice these Skills

Image Classification with Multi-Layer Perceptron

 The assignment 1 is now available in the schedule webpage for download. The
deadline for the assignment 1 is Saturday of Week 5 (Feb 21, 2026).
= https://www.ee.cityu.edu.hk/~Impo/ee4016/pdf/2026 EE4016 Ass01.pdf

= Colab: https://colab.research.google.com/drive/1zSe-32cpojFYT2oxySvrAdSbMLr4vY9l#scrollTo=hjkFuokaRv3G

* The answers of the section A must be handwritten and then scan the answer sheets into a
single pdf file.

e Submit the answer sheets and Colab notebook of the Assignment 1 as a zip file to this
CANVAS assignment 1:

* Filename format : Assignment01_StudentName_StudentlD.zip

* Filename example: Assignment01_Chen_Hoi_501234567.zip


https://www.ee.cityu.edu.hk/~lmpo/ee4016/pdf/2026_EE4016_Ass01.pdf
https://colab.research.google.com/drive/1zSe-32cpojFYT2oxySvrAdSbMLr4vY9I

