
Mastering Deep Neural Network Training
Structured Blueprint for Optimization and Generalization

AI with Deep Learning
EE4016

Prof. Lai-Man Po
Department of Electrical Engineering

City University of Hong Kong

A Three-Step Framework for Model Training
Navigating the Deep Learning Workflow

Training can be viewed as a structured search for optimal parameters 𝜃∗ that minimize a
cost/loss function ℒ(𝜃):

1. Define what you want: Specify the objective function that quantifies error on training data.
2. Explore the choices: Define the hypothesis space by selecting a model architecture (e.g., MLP,

CNN, RNN, Transformer).
3. Pick the best: Optimize parameters within this space, typically using gradient-based methods.

2

Step1: Define Objective
Loss Function & Data Prep

Step1: Define Objective
• For a given application with a dataset 𝒟:= 𝐱 " , 𝐲 "

"#$
%

, specify Loss/Cost Function
ℒ 𝜃 to quantify error
§ Regression

• MSE Loss: ℒ!"# =
$
%
∑&'$% $

(
$𝐲 & − 𝐲 &

(
(
= $

%
∑&'$% ∑)'$* 𝑦)

& − $𝑦)
& (

• MAE Loss: ℒ!+# =
$
%
∑&'$% ∑)'$* 𝑦)

(&) − $𝑦)
(&)

§ Classification

• Binary Cross Entropy (BCE): ℒ./0 = −∑&'$% 𝑦(&) log $𝑦1
& + 1 − 𝑦(&) log 1 − $𝑦1

&

• Categorical Cross Entropy (CCE): ℒ//0 = ∑&'$% ∑1'$2 −𝑦1
& log $𝑦1

&

4

Data is the Foundation
The Pipeline and The Golden Rule of Splitting

• Ingestion & Preprocessing: Normalization, Cropping, Filtering.
• Strict Separation: Validation is for tuning; Test is for unbiased evaluation.
• WARNING: Data leakage into the test set invalidates the entire blueprint.

5

Normalized
(Mean =0, Var=1)

Before
Normalization)

Data Splitting

6

The Two-Front War
• Deep learning optimization is not a

simple descent into a valley. It is
navigation through a high-
dimensional, non-convex landscape
dominated by saddle points and
plateaus.

• We face a two-front war: minimizing
Empirical Risk (the training error)
while simultaneously minimizing
True Risk (the generalization error).

Minimizing the training error does not
guarantee that we find the best set of

parameters to minimize the
generalization error.

7

Underfit vs Overfit
• Underfitting (High Bias):

§ Model is too simple. Fails to capture structure.
§ Symptom: Poor Training & Validation

Performance.

• Overfitting (High Variance):
§ Model memorizes noise.
§ Symptom: Low Training Loss, Degrading

Validation.

• The Goal:
§ Minimize Total Error (Bias + Variance).

Key Insight: Most training techniques are attempts to shift the balance of Bias and Variance in a
controlled manner at one of these three stages.

8

Diagnosing Failure
The Bias-Variance Tradeoff

The Sweet Spot: Minimizing Total Error (Bias + Variance)

9

Diagnosing the Villain

10

Step 2: Defining the Hypothesis Space
Architecture Design to match the Data Types

Step 2: Architecture & Inductive Bias
Selecting the right hypothesis space for the data

Data Types and Neural Network Architectures
• Tabular Data: Initially, the focus was on utilizing Multilayer Perceptrons (MLPs) to

process tabular data. This approach evolved into deep learning, increasing the
model's capacity to capture complex patterns by adding more layers.

• Image Data: Convolutional Neural Networks (CNNs) emerged to interpret and
analyze visual information in grid formats, outperforming MLPs.

• Sequential Data: Sequences with meaningful order (e.g., textual or time-series data)
require specialized models, which led to the development of Recurrent Neural Networks
(RNNs), which can model and learn from sequential patterns.

• Seq2Seq Data: Specialized architectures were created to handle sequence-to-sequence
data, such as machine translation tasks, due to the complexities involved in aligning
variable-length input and output sequences.

MLPs for Simple Regression and Classification

• Boston Housing Dataset
§ 13 features and 506 records
§ A 3-Layer MLP (13-8-6-1)
§ Cost Function: MSE
§ Performance: RMSE = 3.97

Regression

• Iris Flower Dataset
§ 4 features and 150 records
§ A 3-Layer MLP (4-8-6-3)
§ Cost Function: CCE
§ Performance: 98% Accuracy

Classification

14

CNN for CIFAR-10 Image Classification

• CIFAR-10 Color Image Dataset
§ 60,000 32x32x3 RGB-Color Images
§ 5-Layer CNN (3x3-32, 3x3-64, 128-10)
§ Cost Function: CCE

§ Performance: 78% Accuracy

A simple Convolutional Neural Network
(CNN) can achieve 70-80% accuracy.

State-of-the-art is above 97%.

15

Micro-Architecture: Activation Function
The Engine of Non-Linearity
• Activation functions decide whether a neuron 'fires". They introduce non-linearity,

preventing the network from collapsing into a simple linear regression.

𝑢 𝑧 = $1, for 𝑧 ≥ 0
0, otherwise

𝑔 𝑧 = 𝑧

16

The Differentiable Era
Smoothing the Curve (1980s – 1990s)

These smooth curves enabled the first generation of functional Multi-Layer Perceptrons via Backpropagation

17

Derivative of the Sigmoid Function 𝜎′ 𝑧
𝜎$ 𝑧 =

𝑑
𝑑𝑧 𝜎 𝑧 =

𝑑
𝑑𝑧

1
1 + 𝑒%&

=
𝑑
𝑑𝑧 1 + 𝑒%& %' = − 1+ 𝑒%& %(−𝑒%&

=
𝑒%&

1 + 𝑒%& (=
1

1 + 𝑒%& .
𝑒%&

1 + 𝑒%&

=
1

1 + 𝑒%& .
1 + 𝑒%& − 1
1 + 𝑒%&

=
1

1 + 𝑒%& .
1 + 𝑒%&

1 + 𝑒%& −
1

1 + 𝑒%&

=
1

1 + 𝑒%& . 1 −
1

1 + 𝑒%& = 𝜎 𝑧 . 1 − 𝜎 𝑧

Vanishing Gradients
At extreme input values, the curve flattens. The derivative approaches zero. As these tiny gradients
muItiply backward through layers, the signal disappears, and the network stops learning.

18

𝜎! 𝑧

𝜎 𝑧

The Saturation Crisis of tanh
The Vanishing Gradient Problem THE MECHANISM

• When inputs are large/small, the
curve flattens.

• The slope (gradient) becomes
near-zero.

• Result: Error signals "vanish”
during backpropagation. Deep
Network stop to learn.

Tanh is just a scaled Sigmoid. It still suffers from saturation
and vanishing gradients in deep networks.

19

The ReLU Revolution (2010s)
Abandoning the curve to solve the depth problem

The Hockey Stick Shape

ReLU(z) = max(0, z)

Wins

1. Non-saturating: Positive inputs never
cause vanishing gradients. Allowed
AlexNet (2012) to train deep models.

2. Sparsity: Zeros out negative inputs,
making the network computationally
efficient.

3. Speed: Computational Cheap

20

The New Flaw: DYING ReLU
Dying ReLU: If inputs are
negative, the gradient is 0.
• A neuron can get stuck in

this 'off' state and never
learn again.

21

Fixing the “Dying ReLU”
Leaking Information on Purpose

Neurons stuck in the negative range
have a gradient of 0 and never update
again.

22

GELU (Gaussian Error Linear Unit, 2016)
The Transformer Standard

The Probabilistic Switch

GELU 𝑧 = 𝑧 ' Φ 𝑧

where Φ 𝑧 is the cumulative distribution function
(CDF) of the standard normal distribution N(0,1).

• GELU can be viewed as a smoother
version of ReLU that also incorporates
stochastic regularization

"Gaussian Error Linear Units (GELUs)" by Dan Hendrycks and Kevin Gimpel.

Used in BERT & GPT. Shifts from binary thresholding to
weighting inputs by their magnitude relative to a Gaussian

distribution.

23

https://arxiv.org/pdf/1606.08415.pdf

Swish and SiLU (2017)
The Power of Non-Monotonicity

24
"Swish: a Self-Gated Activation Function" by researchers Prajit Ramachandran, Barret Zoph, and Quoc V. Le.

• Discovered by Google Brain is automated search. The function is "self-
gated," allowing the input to determine its own passage magnitude.

• Essential for complex feature capture.

Swish 𝑧 = 𝑧 ' 𝜎 𝛽 ' 𝑧

• SiLU is Swish where 𝛽=1

The Self-Gating Dip

z

https://arxiv.org/pdf/1710.05941v1.pdf?source=post_page

State of the Art: SwiGLU (2020)
• Combines the smoothness of Swish with learnable flexibility of Gated

Linear Unit
§ Powering Giants: PaLM, LLaMA-2

25

Micro-Architecture: Activation Function
The Engine of Non-Linearity
ReLU (Rectified Linear Unit) : ReLU(x) = max(0,x)
• Pros: Efficient computation.
• Cons: "Dying ReLU" problem where gradient is

0 for negative inputs.
GELU (Gaussian Error Linear Unit) : gelu(x) =хФ(x)
• Pros: Smooth approximation, prevents dead

neurons. Standard for Transformers.
Swish : swish(x) =x• o(Bx)
• Pros: Self-gated adaptive non-linearity.

Outperforms ReLU in deep networks.

Diagnostic Tip: If gradients vanish, check for
saturating functions (Sigmoid/Tanh) and switch to
non-saturating alternatives.

26

Depth, Width, and Scaling
• Model capacity grows with depth (more

layers) and width (more neurons per layer).
• Depth enables hierarchical feature composition

but can cause vanishing gradients.
• Width offers parallel representational paths, often

yielding flatter minima and better generalization.

• Scaling Laws: Performance improves
predictably with model size, data, and
compute.
• Chinchilla scaling: For fixed compute, optimal

model size N and dataset size D follow N∝D0.5.
This graph illustrates scaling laws, plotting

model performance (Test Loss) against
parameters or Compute

27

Residual (or Skip) Connections
Solving the Depth Problem with Residuals

• Residual connections address
degradation in deep networks by adding
identity shortcuts:
§ Formula: y = F(x) + x
§ Mechanism: The 'Identity Shortcut'

creates a direct super-highway for
gradient flow during backpropagation.

§ Result: Enables training of networks with
1000+layers (ResNets).

Why it works: The identity shortcut creates a direct path for gradient flow, enabling the training of networks with 100+ layers.

28

Batch Normalization (BN, 2015)
The Mechanism That Enabled Deep Architectures

• Batch Normalization (BN): The 2015 breakthrough that allowed 100+ layer
networks.

Mechanism
1. Normalization: Forces layer inputs to mean 0 and variance 1.
2. Re-calibration: Introduces learnable parameters to shift and scale data back if required.

Affine Transform
(Wx + b)

Activation
(ReLU)

Batch Norm
(BN)

Note: A batch is a small set of samples of the dataset.

29

The Mechanics: How BN Works
• Calculate Batch Statistics for the net input z at layer 𝑙 :

• Normalize with 𝜇! & 𝜎! :

• De-normalize (Scale & Shift):

The Learnable Parameters

• 𝛾" (scale) and 𝛽" (shift) are learned during training.

• They allow the network to 'undo' the normalization if
optimal.

• This preserves the network's capacity to represent
complex functions (expressivity).

𝜇" =
1
𝑀
)
#$%

&

𝑧"
(#) 𝜎" =

1
𝑀
)
#$%

&

𝑧"
(#) − 𝜇"

)
+ 𝜖

𝑧)
3(&) =

𝑧)
(&) − 𝜇)
𝜎)

𝑧̂)
(&) = 𝛾) 3 𝑧)

3(&) + 𝛽)

𝐙 = 𝐳(%) 𝐳()) ⋯ 𝐳(&) =

𝑧%
(%) 𝑧%

()) ⋯ 𝑧%
(&)

𝑧)
(%) 𝑧)

()) ⋯ 𝑧)
(&)

⋮ ⋮ ⋱ ⋮
𝑧*2
(%) 𝑧*2

()) ⋯ 𝑧*2
(&)

A mini batch with M net input 𝐳(#)

30

Batch Norm: Smoothing the Landscape
• Batch Normalization:

§ Constrains layer outputs to a standard
distribution (Mean=0, Var=1).

§ Prevents 'Internal Covariate Shift’.

• Benefit: Makes the loss landscape
symmetric and smoother, allowing
higher learning rates and faster
optimization.

31

The 'Jekyll & Hyde' Problem: Training vs. Inference

32

How to use BatchNorm in Practice and During Inference

https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb

33

https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb

BatchNorm Variants

Pre-Activation
compute net inputs

↓

BatchNorm
↓

apply activation function

↓

compute next-layer net inputs

compute net inputs

↓

apply activation function

↓

BatchNorm
↓

compute next-layer net inputs

Post-Activation

34

How to
use BN

35

The Limitations of Batch Norm
• Weakness 1: Small Batch Sizes

BN relies on batch stats to estimate
the population. If Batch Size < 8,
statistics are noisy and error rates
spike.

• Weakness 2: RNNs & Sequences
Variable sequence lengths make
tracking statistics computationally
messy.

36

The Challenger: Layer Normalization (2016)
• Instead of normalizing across the batch, Layer Norm normalizes across the

features of a single sample.

𝑧)
3(&) =

𝑧)
(&) − 𝜇)
𝜎)

𝜇" =
1
𝑛+
)
"$%

*2

𝑧"
(#)

𝜎) =
1
𝑛*
0
)+'

,!

𝑧)
(.) − 𝜇)

(
+ 𝜖

𝐳(#) =

𝑧%
(#)

𝑧)
(#)

⋮
𝑧*2
(#)

An individual net input sample 𝐳(#)

𝑧̂)
(&) = 𝛾) 3 𝑧)

3(&) + 𝛽)

37

Visualization: Slicing the Data Cube

38

Transformers & The Dominance of Layer Norm

• Modern NLP (BERT, GPT, T5)
relies almost exclusively on
Layer Norm. In NLP, batch
dimensions are arbitrary, but
the relationships between
features (embeddings)
within a token are critical.

39

Head-to-Head: Choosing Your Norm

Feature Batch Normalization Layer Normalization
Best For MLPs and

CNNs (Computer Vision)
Transformers / RNNs

Batch Dependency High (needs large batches) None
(Works with Batch =1)

Training/Inference Different modes required Same mode
Regularization Adds noise (beneficial) Deterministic (little noise)
Structure Use Use spatial structure Isotropic

(treats feature same)

40

Step 3: Optimization Strategies
Navigating the Loss Landscape

Step 3: Optimization Strategies
• Goal: Minimize cost function ℒ 𝜃 across a set of model parameters 𝜃 ≔ 𝑥 # , 𝑦 #

#$%
,

𝜃∗ = argmin
"
ℒ 𝜃

• Gradient Descent: Simple equation, complex implementation:

𝜃"#$ = 𝜃%&' − 𝜂 ' ∇ℒ(𝜃)

• The invisible engine powering modern AI systems

Follow negative gradient → reach global minimum

Cauchy's Steepest Descent (1840)

42

Recap: Gradient Descent Algorithm
1. Initialize: Randomly set weights 𝜃
2. Compute Cost: Measure

performance ℒ 𝜃 .
3. Find Gradient: Calculate ∇ℒ(𝜃)

(direction of steepest ascent).
4. Update: Step down the hill.

𝜃#$% = 𝜃&'(− 𝜂 / ∇ℒ(𝜃)

𝜂 = Learning Rate (e.g. 0.001)

• Repeat steps 2 to 4, unit the cost is low
enough or convergence.

43

Gradient
∇ℒ(𝜃)

The Challenge of Local Minima
Deep learning optimization is hindered not by local minima but by saddle points and
flat plateaus where gradients vanish, causing standard methods to stall or falsely
appear converged.

44

Saddle point — simultaneously a local
minimum and a local maximum.

Historical Timeline (1840-2025)
Evolution of Gradient Descent

• 1840s: Cauchy's Steepest Descent (Theoretical
Foundation)

• 1950s: Batch Gradient Descent (First
Implementation)

• 1951: Stochastic Gradient Descent (Efficiency
Revolution)

• 1964: Momentum (Adding Memory)

• 1990s: Mini-batch Gradient Descent (Balance
& Parallelization)

• 2011: AdaGrad (Adaptive Learning Rates)

• 2012: RMSprop (Solving Vanishing LR)

• 2014: Adam (The Crown Jewel)

• 2017: AdamW (Regularization Fix)

• 2023: Lion & Sophia (Modern

Breakthroughs)

• 2024-2025: Continuous Innovation

45

Evolution of the Optimizer

Practitioner's Note:
Selection Guide:
• Use AdamW for Transformers & CNNs.
• Use SGD+Momentum for simple streaming tasks.

46

Basic Gradient Descent Algorithms
• Batch Gradient Descent (BGD, 1950s)

§ Uses the full dataset per update; stable but computationally expensive.

§ 𝜃23$ = 𝜃2 − 𝜂 .
$
%
∑"#$% ∇4ℓ 𝜃2; 𝐱("), 𝐲(")

• Stochastic Gradient Descent (SGD, 1951)
§ Uses a single sample; fast but noisy.
§ 𝜃23$ = 𝜃2 − 𝜂 . ∇4ℓ 𝜃2; 𝐱, 𝐲

• Mini-batch Gradient Descent (MBGD, 1990s)
§ Uses small batches (𝑀 ≪ 𝑁); balances efficiency and stability and is the industry

standard.

§ 𝜃23$ = 𝜃2 − 𝜂 .
$
7
∑"#$7 ∇4ℓ 𝜃2; 𝐱("), 𝐲(")

47

BGD vs MBGD vs SGD

SGD + Momentum (1964)
• Like a ball rolling downhill - builds momentum in consistent directions

𝑚: = 𝛽𝑚:;< + (1 − 𝛽)∇ℒ(𝜃:)

𝜃:=< = 𝜃: − 𝜂 . 𝑚:

Polyak (1964) “Some methods of speeding up the convergence of iteration methods”

Momentum = exponential average of the gradients

• The momentum rate 𝛽 is usually chosen between
0.9 and 0.999.
• You can think of it a “dampening” parameter
• On the other hand, you can also consider it as an

exponential moving average parameter.

49

https://www.sciencedirect.com/science/article/abs/pii/0041555364901375

SGD vs. Momentum GD

Momentum
GD

50

Momentum
(dampening oscillations)

Learning Rate Issues
• The learning rate is a crucial hyperparameter that controls the step size in Gradient

Descent optimizers.

• Too low: training becomes painfully slow. Too high: the optimizer becomes unstable

51

Adaptive Learning Rate Optimizers
• The idea behind adaptive learning rates is to address the issue where

sparse but important features can have small gradients, leading to
slow learning in those directions.

• To remedy this, we can assign different learning rates to each feature,
giving higher rates to sparse features.

• This approach involves adjusting the learning rate based on the
gradient’s behavior:
§ Decreasing the rate when the gradient changes rapidly (indicating large

gradients)
§ Increasing the rate when the gradient remains consistent (indicating small

gradients).
52

AdaGrad: Adaptive Gradient (2011)
AdaGrad uses a cumulative sum of squared of historical gradients 𝐺𝑡 =
∑𝑘=1
𝑡 ∇ℒ(𝜃𝑘) 2 to adapt the learning rate 𝜂𝑡 for each parameter.
§ Parameters with large gradients have their learning rates reduced
§ Parameters with small gradients have their learning rates increased

Duchi et. Al (2011) “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.

𝐺: = ∑AB<: ∇ℒ(𝜃A) C

𝜃:=< = 𝜃: −
𝜂

𝐺: + 𝜀
. ∇ℒ(𝜃:) Small 𝜀 term to avoid

division by zero

53

AdaGrad eliminates the need to manually tune the learning rate with default rate
of 𝜂 = 0.01 and a common default value for 𝜀 is 1e-8 (10⁻⁸).

https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

RMSProp (2012)
• RMSProp solved AdaGrad's limitation through exponentially decaying

averages => RMS (Root-Mean-Squared) gradient

• Strengths: RMSprop provides more stable learning rates and faster convergence compared to
Adagrad.

• Limitations: RMSprop can still suffer from some of the limitations of Adagrad, such as the
need for careful tuning of the decay rate.

Teleman & Hinton (2012) “Neural Networks for Machine Learning”, Lecture 6, Coursera.

𝑣) = 𝛽𝑣)*+ + 1 − 𝛽 ∇ℒ(𝜃,) -

𝜃).+ = 𝜃) −
𝜂

𝑣) + 𝜀
' ∇ℒ(𝜃))

0 ≤ 𝛽 ≤ 1 The decay parameter
𝛽 (typically 0.9 - 0.95)
prevents indefinite
accumulation.

54

RMSProp

RMSProp

55

Adam: Adaptive Moment Estimation (2014)
• Adam combines the strengths of AdaGrad and RMSProp.

§ AdaGrad is good for sparse gradients, while RMSprop is good for online and
changing situations.

§ Adam adapts learning rates per parameter by tracking two exponential moving
averages:

𝑚) = 𝛽+𝑚)*+ + 1 − 𝛽+ ∇ℒ(𝜃)),

𝑣) = 𝛽-𝑣)*+ + 1 − 𝛽- ∇ℒ(𝜃,) -,

Kingma & Ba (2014) “Adam: A Method for Stochastic Optimization”: https://arxiv.org/pdf/1412.6980.pdf

56

4𝑚: =
𝑚:

1 − 𝛽<:

5𝑣: =
𝑣:

1 − 𝛽C:

Bias-
corrected

Momentum:

RMSProp:

https://arxiv.org/pdf/1412.6980.pdf

Adam ≈ Momentum + RMSProp

𝜃).+ = 𝜃) − 𝜂
?𝑚)

@𝑣) + 𝜀
• Important practical point: 𝛽< typically 0.9 while 𝛽C typically much closer to 1, e.g.

0.999

Momentum
(dampening oscillations)

RMSProp
(Adaptive learning rate)

• The moving average is initialized to 0, causing the moment estimate bias to be
around 0, especially during the initial time step. This initialization bias can be
easily offset, yielding bias-corrected estimates

4𝑚: =
𝑚:

1 − 𝛽<:
5𝑣: =

𝑣:
1 − 𝛽C:

57

When 𝑡 → ∞, 𝛽 → 0

Adam Optimizer
• Adam is a widely used optimization algorithm for

gradient descent.
• It is efficient in terms of computational resources and

does not require much memory.
• Adam works well for problems that involve a large

amount of data or parameters.
• It is also suitable for problems with noisy or sparse

gradients.
• Most popular libraries, like PyTorch, use the default

hyperparameters from the original paper for Adam:
§ Learning rate 𝜂 = 0.001, 𝛽$ = 0.9, 𝛽(= 0.999, 𝜀 =1e-08,

weight decay = 0.0.

58

Issue of Adam with Weight Decay
• In the standard Adam optimizer, weight decay is typically implemented

by adding an L2 regularization term to the loss function:

ℒ 𝜃 = ℒ%/0 𝜃 + 𝜆
1
2 𝜃 -

• However, incorporating this term directly into the loss affects the
adaptive learning rates computed by Adam, which can interfere with
optimal convergence and degrade performance.

59

AdamW: The Regularization Fix (2017)
• AdamW (Adam with Weight decay) addressed a subtle but critical issue

with Adam's weight decay implementation:

where λ is the weight decay coefficient.

• By decoupling weight decay from gradient-based optimization, AdamW
achieves improved generalization, especially in transformer
architectures.

Loshchilov, I., & Hutter, F. (2017). Decoupled weight decay regularization.
60

𝜃).+ = 𝜃) − 𝜂
?𝑚)

@𝑣) + 𝜀
+ 𝜆𝜃)

https://arxiv.org/pdf/1711.05101.pdf

Adam vs AdamW
The Standard (Adam) and the Refinement (AdamW)

Adam (2014)
Momentum + RMSprop

• ℒ 𝜃 = ℒ456 𝜃 + 𝜆 $
(
𝜃 (

§ 𝑚- = 𝛽%𝑚-.% + 1 − 𝛽% ∇ℒ 𝜃-

§ 𝑣- = 𝛽)𝑣-.% + 1 − 𝛽) ∇ℒ(𝜃-))

• Updated: 𝜃78$ = 𝜃7 − 𝜂
9:0
;<08=

L2 Regularization is entangled with the
gradient adaptation

AdamW (2017)
The Moden Corw Jewl

• ℒ 𝜃 = ℒ456 𝜃

§ 𝑚- = 𝛽%𝑚-.% + 1−𝛽% ∇ℒ 𝜃-

§ 𝑣- = 𝛽)𝑣-.% + 1−𝛽) ∇ℒ(𝜃-))

• Updated: 𝜃78$ = 𝜃7 − 𝜂
9:0
;<08=

+ 𝜆𝜃7

Weight decay is applied diretly to the
parameters, decopled from the gradient
update. This yields significantly better
generation.

61

The Evolution of Optimizers
From Momentum to AdamW

Practical Implementation: From Theory to Code

SGD with Momentum (1964)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=0)

SGD with NAG (1983)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, nesterov=True, weight_decay=0)

Adagrad (2011)
optimizer = torch.optim.Adagrad(model.parameters(), lr=0.01, eps=1e-10, weight_decay=0)

RMSprop (2012)
optimizer = torch.optim.RMSprop(model.parameters(), lr=0.01, alpha=0.99, eps=1e-08, weight_decay=0, momentum=0)

Adam (2014)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)

AdamW (2017)
optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.01)

• Usage is the as for vanilla SGD, which we used before, you can find an overview at:
https://pytorch.org/docs/stable/optim.html

63

https://pytorch.org/docs/stable/optim.html

Learning Rate Scheduling
Dynamic Control of the Optimization Speed Limit

The 'Goldilocks' Zone: We need high LR for exploration and low LR for refinement.

64

Other Learning Rate Schedulers

https://medium.com/@theom/a-very-short-visual-introduction-to-learning-rate-schedulers-with-code-189eddffdb00

• Step Decay

§ 𝜂- = 𝜂/ K 𝛾 -/1

• Exponential Decay
§ 𝜂- = 𝜂/ K 𝛾-

• Inverse Time Decay

§ 𝜂- =
23
%344

• Cosine Annealing

§ 𝜂1 = 𝜂2., +
'
(
𝜂234 − 𝜂2., 1 + cos 5"#$

5%&'
𝜋

65

https://medium.com/@theom/a-very-short-visual-introduction-to-learning-rate-schedulers-with-code-189eddffdb00

Generalization: Data Augmentation
Free data to reduced variance
• Objective: Enforce invariance and simulate real-world diversity.

• Standard Techniques:
§ Geometric (Flip, Rotate,

Crop) & Photometric
(Noise, Color).

66

PyTorch Image Data Augmentation

https://towardsdatascience.com/a-comprehensive-guide-to-image-augmentation-using-pytorch-fb162f2444be
67

https://towardsdatascience.com/a-comprehensive-guide-to-image-augmentation-using-pytorch-fb162f2444be

Advanced Data Augmentation Techniques
1. Mixup: Creates new examples by

interpolating between pairs of examples
and labels, enhancing generalization.

2. Cutout: Randomly masks out square
regions of input images, promoting focus
on remaining areas.

3. AutoAugment: Uses reinforcement
learning to automatically discover the best
augmentation policies, yielding improved
performance on various datasets.

Mixp, Cutout and Cutmix Data Augmentations. (Source)

68

https://www.analyticsvidhya.com/blog/2024/01/amplifying-deep-learning-a-dive-into-data-augmentation-strategies/

Generalization II: Dropout
Implicit Ensembling. Forces redundancy.

• Dropout: Randomly masks neurons (e.g. p = 0.5) during training to prevent feature co-
adaptation. The network cannot rely on any single feature.
§ RESULT: Training Loss UP (Harder), Validation Loss DOWN (Generalization).
§ WARNING: Only use for Overfitting.

69

Without vs With Dropout

Drop-out effect on the loss function during training in parallel. The model with
drop-out exhibits a validation loss history with lower values than the
corresponding train curve.

Without Dropout 10% Dropout

70

Generalization III: Regularized Objectives
L1/L2 Regularizations

Constraining complexity via the Cost Function:
ℒ2=2>? = ℒ@>2> + 𝜆𝑅 𝜃

• L1 (Lasso): Adds ∑ 𝜃

§ ℒ2=2>? = ℒ@>2> + 𝜆∑ 𝜃
§ Effect: Promotes sparsity (drives weights to exactly 0).

• L2 (Ridge): Adds ∑𝜃*

§ ℒ2=2>? = ℒ@>2> + 𝜆∑𝜃(

§ Effect: Promotes Smoothness (prevents large weights).

71

L2 Regularization vs Weight Decay in PyTorch

• L2 regularization and Weight decay are often used interchangeably in
PyTorch.
§ Adam with L2 regularization, in which weight decay is added a penalty term

proportional to the square of the L2 norm to the loss function.
optimizer = optim.Adam(model.parameters(), lr=0.01, weight_decay=0.001)

§ AdamW is a specific implementation of weight decay regularization in PyTorch, in
which weight decay is only applied during parameter update.

optimizer = optim.AdamW(model.parameters(), lr=0.01, weight_decay=0.001)

72

Early Stopping: Convergence Strategies
The "Free Lunch". Stop when generalization degrades.

73

• The simplest, most effective
regularizer.

• Stop when validation loss
stops improving, even if
training loss is still falling.

Starting Right: Weight Initialization

Good weight initialization can prevent vanishing/exploding gradients at Step 0.
• Xavier (Glort) Init: Best for symmetric activations (Sigmoid Tanh)

§ 𝑤&)
(>) ~𝒰 − ?

@AB678@AB890
, ?

@AB678@AB890
OR 𝑤&)

(>) ~𝒩 0, (
@AB678@AB890

• Kaiming (He) Init: Best for ReLU family. Acconts for ReLU zeroing half the input

§ 𝑤&)
(>) ~𝒰 − ?

@AB67
, ?

@AB67
OR 𝑤&)

(>) ~𝒩 0, (
@AB67

74

Transfer Learning
Don't start from scratch.

• Strategy A: Feature Extraction (Freeze Backbone, train Head).
• Strategy B: Fine-Tuning (Unfreeze layers with Discriminative Learning Rates).

Transfer Learning: The Shortcut

• Why: 5-10x faster convergence. Mitigates poor initialization.

• Strategy: Use pre-trained backbones for small or data-scarce domains.

76

The Practitioner's Mental Model

Deep Learning is a structured search for the sweet spot between optimization and generalization.
77

Assignment 1 Section B to Practice these Skills
Image Classification with Multi-Layer Perceptron
• The assignment 1 is now available in the schedule webpage for download. The

deadline for the assignment 1 is Saturday of Week 5 (Feb 21, 2026).
§ https://www.ee.cityu.edu.hk/~lmpo/ee4016/pdf/2026_EE4016_Ass01.pdf

§ Colab: https://colab.research.google.com/drive/1zSe-32cpojFYT2oxySvrAdSbMLr4vY9I#scrollTo=hjkFuokaRv3G

• The answers of the section A must be handwritten and then scan the answer sheets into a
single pdf file.

• Submit the answer sheets and Colab notebook of the Assignment 1 as a zip file to this
CANVAS assignment 1:
• Filename format : Assignment01_StudentName_StudentID.zip
• Filename example: Assignment01_Chen_Hoi_501234567.zip

https://www.ee.cityu.edu.hk/~lmpo/ee4016/pdf/2026_EE4016_Ass01.pdf
https://colab.research.google.com/drive/1zSe-32cpojFYT2oxySvrAdSbMLr4vY9I

