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Message 1: Submission of Project Proposal
• Just a friendly reminder: The deadline to submit your group project proposal 

is Feb 14, 2026, at 11pm. Please submit a PDF file with the project title, list of group 
members, and other necessary details to the CANVAS group project proposal 
assignment.

• You can find more information about the group project on the course website:
§ https://www.ee.cityu.edu.hk/~lmpo/ee4016/projects.html

• Remember, each group should assign a team leader who will be responsible for 
submitting the proposal on CANVAS.

• The file name should follow this format:
§ Filename format : Proposal_GroupNumber_ProjectName.pdf
§ Filename example: Proposal_Group01_Audio_Classification.pdf

https://www.ee.cityu.edu.hk/~lmpo/ee4016/projects.html


Message 2 : Canvas Quiz on Week 6
The Canvas quiz consisting of 30 to 40 multiple choice questions will be released on Feb 23,
2026, at 1:45 PM and the quiz will be end at 2:45PM
• Students are required to take the quiz in the LI-2614: Attendance will be recorded using student IDs.
• The quiz will cover course content from Weeks 1 to 4

• Math, Perceptron, ADALINE, MLPs, Gradient Descent, Backpropagation, Mastering Deep Neural 
Network Trainings

• This quiz is Semi-Open Book:
• The first 45 minutes will be closed book. Students are not allowed to use any materials.
• The last 15 minutes will be open book. You are permitted to use your devices to access the PPT 

lecture notes of the class. 
• You may also view all course handouts during this time in hardcopy or on your devices.
• However, you are not allowed to communicate with others and use of ChatGPT or any other 

LLM services during the quiz.
• Investigators will conduct periodic checks to ensure that students comply with these 

regulations during the quiz.



Content
• Introduc)on of Convolu)onal Neural Network (CNN)

§ CNN vs MLP for Image ClassificaHon ApplicaHons
§ IntuiHon of CNN
§ ConvoluHon OperaHon
§ Basic Architecture of CNNs

• Evolu)on of CNN Architectures
§ Variants of ConvoluHon
§ LeNet, AlexNet, VGGNet, GoogleNet, ResNet, DenseNet, MobileNet, etc
§ Transfer Learning: Pre-training vs Fine-tuning
§ ApplicaHons of CNNs: Object DetecHon, Image SegmentaHon, etc.



MLPs for Simple Regression and Classification 

• Boston Housing Dataset
§ 13 features and 506 records
§ A 3-Layer MLP (13-8-6-1)
§ No. of Parameters: 173

• 13*8+8*6+6*1+8+6+1

§ Performance: RMSE = 3.97

Regression

• Iris Flower Dataset
§ 4 features and 150 records
§ A 3-Layer MLP (4-8-6-3)
§ No. of Parameters: 187

• 13*8+8*6+6*3+8+6+3

§ Performance: 98% Accuracy  

Classification

5



MLPs for Grayscale Image Classifications

• MNIST Dataset
§ 70,000 28x28 Grayscale Images
§ 3-Layer MLP (784-128-64-10)
§ No. of Parameters: 109.386K

• 784*128+128*64+64*10+128+64+10
§ Performance: 98.36% Accuracy 

Handwritten Digits Recognition

• Fashion MNIST Dataset
§ 70,000 28x28 Grayscale Images
§ 3-Layer MLP (784-128-64-10)
§ No. of Parameters: 109.386K

• 784*128+128*64+64*10+128+64+10
§ Performance: 84.18% Accuracy

Fashion Image Classification
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The Shortcomings of MLPs for Image Data

The number of weights
= 784x128 + 128x64 + 64x10
= 109184
The number of biases
= 128 + 64 + 10 = 202

Total number of parameter
= 109184 + 202
= 109,386 (about 109K)

• 2D grayscale or 3D color images need to be flattened into one-dimensional vectors 
as input to the MLP model, which removes spatial image data structure

• The flatten image input vector dimension is huge, which results in a large number 
of model parameters (weights and biases). This leads to longer training and 
inference times.

128
784

1064



MLPs for CIFAR-10 Color Image Classification

• CIFAR-10 Color Image Dataset
§ 60,000 32x32x3 RGB Color Images
§ 5-Layer MLP (3072-1536-768-384-128-10)
§ No. of Parameters: 6,246,410 (6.2M)
§ Performance: 55% Accuracy  

An MLP with 3-5 hidden layers and 500+ units 
per layer should achieve 65%+ accuracy on 

CIFAR-10 with proper tuning and 
regularization.
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Convolutional Neural Network for CIFAR-10 Image Classification

• CIFAR-10 Color Image Dataset
§ 60,000 32x32x3 RGB-Color Images
§ 4-Layer CNN (3x3-32, 3x3-64, 4096-128-10)
§ No. of Parameters: 545,098
§ Performance: 78% Accuracy

A simple Convolu.onal Neural Network 
(CNN) can achieve 70-80% accuracy. 

State-of-the-art is above 97%.

https://colab.research.google.com/drive/1W-CpyU3mwWr_ueSm_86C-do6pm361VMe?usp=sharing
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Comparing MLP and CNN for Image Classification

• MLPs are simple models that can work reasonably well only on simple 
image classification problems such as MNIST dataset. 

• In practice, Convolutional Neural Networks (CNNs) tend to work better than 
MLPs for complex image classification tasks:
• Local connectivity - Captures spatial structure
• Weight sharing - Reduces parameters and provides translation invariance
• Hierarchical feature learning - Learns from low-level to high-level
• Translation invariance - Robust to feature location
• Efficient computation - Fewer overall parameters, GPU parallel processing
• Inductive bias - Architecture suited for images
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Recap: Network Architecture & Inductive Bias
Selecting the right hypothesis space for the data



Data Types and Neural Network Architectures

• Tabular Data:  Initially, the focus was on utilizing Multilayer Perceptrons (MLPs) to 
process tabular data. This approach evolved into deep learning, increasing the 
model's capacity to capture complex patterns by adding more layers.

• Image Data: Convolutional Neural Networks (CNNs) emerged to interpret and 
analyze visual information in grid formats, outperforming MLPs.

• Sequential Data: Sequences with meaningful order (e.g., textual or time-series data) 
require specialized models, which led to the development of Recurrent Neural Networks 
(RNNs), which can model and learn from sequential patterns.

• Seq2Seq Data: Specialized architectures were created to handle sequence-to-sequence 
data, such as machine translation tasks, due to the complexities involved in aligning 
variable-length input and output sequences.



Intuition of
Convolutional Neural Networks



Hubel and Wiesel’s Experiments (1950s)
Discovery: Simple Cells (orientation) and Complex Cells (motion).

h1ps://www.youtube.com/watch?v=QsikPDDxy4g
14

Hubel and Wiesel’s experiments was focused 
on studying the responses of neurons in the 
visual cortex to various visual s;muli, such as 
lines, edges, and mo;on.

• They discovered that the brain does not 
process images all at once. 

• Instead, individual neurons fire only for 
specific paAerns — lines, edges, and 
corners—located in a specific part of the 
visual field.
• Simple Cells (orientaTon)
• Complex Cells (moTon)

The Nobel-winning physiologists David Hubel and Torsten Wiesel and the depiction of their 
classical experiment revealing the structure of the visual cortex. Portraits: Ihor Gorsky. (Source)

https://www.youtube.com/watch?v=QsikPDDxy4g
https://towardsdatascience.com/towards-geometric-deep-learning-iii-first-geometric-architectures-d1578f4ade1f


Hubel and Wiesel Cat Experiment
https://www.youtube.com/watch?v=IOHayh06LJ4

The cat experiment showed that cells are sensitive to orientation of edges.
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https://www.youtube.com/watch?v=IOHayh06LJ4


The First Blueprint: The Neocognitron (1980)

• Context: Developed by Kunihiko Fukushima, this was the first neural network directly inspired by Hubel and 
Wiesel's findings.

• The Architecture:
§ S-Cells (Simple): Performed feature extraction (template matching).
§ C-Cells (Complex): Provided invariant pattern recognition (recognizing a shape even if it shifted slightly).

• Legacy: While limited by the hardware of 1980, the Neocognitron demonstrated that hierarchical feature 
extraction could be simulated mathematically.

Kunihiko Fukushima's alternadng S-Cell/C-Cell structure. (Source)

https://towardsdatascience.com/towards-geometric-deep-learning-iii-first-geometric-architectures-d1578f4ade1f


The Hierarchy of Sight

• Vision is a bottom-up process. 

• We build complex 
understanding from simple



Introduction of CNNs (1989)
• In 1989, Yann LeCun's team introduced CNNs, revolutionizing image processing by 

preserving images' 2D nature and processing information spatially. 
• CNNs used spatial filtering to extract spatial patterns, allowing them to learn 

hierarchical representations of features. 

LeCun's paper demonstrated how to train nonlinear CNNs from scratch using backpropagation, paving the way 
for efficient image classification tasks. (Source)

https://towardsdatascience.com/towards-geometric-deep-learning-iii-first-geometric-architectures-d1578f4ade1f


LeNet-5 (1998)
• In 1998, Yan LeCun and his team made a significant contribution to the field 

of deep learning with the publication of the LeNet-5 model, a pioneering 
CNN architecture that consisted of multiple convolutional and pooling 
layers.

LeCun, Bo1ou, Bengio, Haffner: Gradient-based learning applied to document recogniKon. Proceedings of the IEEE, 1998.

http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf


The Convergence: Igniting the Golden Era (2010s)
• The Catalyst: The 2010s marked a resurgence 

sparked by three converging factors:
1. Big Data: The release of ImageNet (2009) and the 

ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) challenge provided 14 million 
hand-annotated images needed for deep learning.

2. Hardware: The arrival of powerful GPUs capable 
of parallel matrix operations made training 
feasible.

3. Algorithms: Deeper architectures and better 
activation functions (ReLU) solved the vanishing 
gradient problem.

The 2010s marked the "Golden Era" of CNNs, 
sparked by the release of the large-scale ImageNet 

dataset (2009) and the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) from 2010 to 2017. 

GPUs



The Game Changer: AlexNet (2012)

Legacy: AlexNet (Krizhevsky et al.) didn't just win ILSVRC 2012; it decimated the compe^^on, nearly halving the
error rate. It introduced Rec^fied Linear Units (ReLU) and Dropout, launching the modern Deep Learning revolu^on.

16.4%
Top-5 Error Rate (Winner)

26.2%
Runner-up Error Rate

8 Layer
CNN Depth



The Explosion of Depth
Winners of ILSVR Challenge (2010 - 2017) 

Following AlexNet, models became exponentially deeper to capture more complex features.  
By 2015, ResNet (152 layers) surpassed human-level performance.

First CNN-based winner



AlexNet Sparks the Third Golden Age of Neural Networks

The current golden age (2012 - present) is marked by the convergence of deep learning, big data, and powerful 
compu^ng pladorms. This era has seen remarkable breakthroughs in image recogni^on, natural language 
processing, and robo^cs. Ongoing research con^nues to push the boundaries of AI capabili^es.



Convolution Operations



Foundations in Signal Processing
The Roots: LTI Systems
In discrete Linear-Time Invariant (LTI) systems, 
the output sequence 𝑦[𝑛] is determined by the 
convolution of input 𝑥[𝑛] and unit impulse 
response ℎ[𝑛].

The Crucial Difference: Flipping
In traditional mathematics, the kernel is "flipped” 
(mirrored) to preserve commutative properties.

In Deep Learning, we do NOT flip the kernel.
Why? Images lack temporal causality (no "past" or 
"future"). Since weights are learned end-to-end, the 
network learns the kernel in whichever orientation 
is required.

𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ[𝑛] = )
!"#$

$

𝑥[𝑛 − 𝑘]ℎ[𝑘]



The 2D Convolution Operation
The Sliding Window Mechanism

The filter slides over the input image (local receptive field), performing an element-
wise multiplication and sum at every position to generate the feature map.

where b = 0 (bias)

𝑚 𝑛



2D Filter Convolution
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2D Filter Convolution
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Weights of the 
3x3 Filter (or Kernel)



2-D Kernels (Filters)
• In case of 2D data (grayscale images), the convolution operation between 

an input 5x5 image  and a 3x3 kernel (or fitter):

29



The Role of Filters: Feature Detection

30



Filters Define the Features
• Changing the weights inside the kernel changes what the network sees.
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Convolution with 3D Kernel
• In the 2D case, we slide a two-dimensional filter over a two-dimensional input 

(grayscale image)
• What would happen in the 3D case where the input images are in color (RGB)?
• We need to use 3D Filter Convolution

• Steps:
§ Compute the dot product for 

each channel (same as 2D)
§ Sum over each channel

• Note: The depth of the filter is always the 
same as the depth of the input image

⚠W1 and W2 are dis$nct 4 x 4 x 3 filters

32

https://emojipedia.org/warning/


Activation Layer: ReLU
• After the convolution operation, bias and  an activation function, often Rectified 

Linear Unit (ReLU), is applied element-wise to introduce non-linearity into the 
model. 

§ ReLU helps the network learn complex relaHonships 
and makes the model more expressive. 

§ It completely depends upon your use case which 
acHvaHon you will use, in most cases researchers use 
ReLU, there some acHvaHons which can also be used, 
for example: Leaky ReLU, ELU.

𝑂 𝑖, 𝑗 = ReLU )
%"&

'#(

)
)"&

'#(

)
*"&

+#(

𝐼 𝑖 + 𝑚, 𝑗 + 𝑛, 𝑐 8 𝐹 𝑚, 𝑛, 𝑐 + 𝑏



Convolutional Layers

https://www.youtube.com/watch?v=N15mjfAEPqw

Feature Map
222 x 222 x 1

RGB-Color Input Image
224 x 224 x 3

Ac$va$on
Func$on

ReLU 𝐖 ∗ 𝐗+ 𝑏

https://www.youtube.com/watch?v=N15mjfAEPqw


Multiple Filters: Stacking the Feature Maps
• For example, if we had six 5x5x3 filters, we would get 6 separate feature 

maps:

6 filters

6
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A layer doesn't produce one map; it produces a volume. If you apply 6 filters, you get a stack of 6 feature maps. Each 
channel in this volume represents a different learned feature (e.g., Channel 1: Ver^cal Edges, Channel 2: Color 
Gradients).



Example 3-D Convolution for RGB Image

Input
RGB image 6x6x3

Convolutional Layer with 
2 Filters of size 3x3x3 ReLU

Output
Feature map 4x4x2



Convolution Operation Animation
• In practice, a convolution 

layer can consist of multiple 
filters that operate on 
multiple channels of input 
data. For example, as 
depicted below with an input 
of size 7x7x3, two filters can 
be applied, each extracting 
distinct feature maps by 
convolving across the three 
input channels.



Convolution Operation Animation

Convolution Operation (Source)

https://animatedai.github.io/


Convolution: Hyperparameters
• Input dimension: Width (𝑊) x Height (𝐻) x Depth (𝐶)
• Spatial extent (𝐾) of each filter’s kernel (the depth of 

each kernel is same as the channels of input)
§ Kernel dimension = 𝐾×𝐾×𝐶

• Output dimensions is 𝑊#$%×𝐻#$%×𝐶#$%
• Stride (𝑆)
• Number of Filers 𝐹 = 𝐶#$%
• Padding (𝑃)

𝐶

𝐾

𝐾

𝐻

𝑊

𝐶

𝐶!"#
𝑊!"#

𝐻!"#
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𝐻,-. =
𝐻 − 𝐾 + 2𝑃

𝑆
+ 1

𝑊,-. =
𝑊 − 𝐾 + 2𝑃

𝑆 + 1

𝐶,-. = 𝐹



Preserving Geometry with Padding (P)

Zero Padding (P = 1)



Valid Padding Example
• No padding is applied, resulMng in a smaller output feature map.

§ Example: Convolu]on of a filter over a 2D image without padding

5x5

3x3



Same Padding Example
• Padding is added so that the output feature map has the same spatial 

dimensions as the input.
§ The convolution of a filter over a 2D image with 1-pixel padding

5x5
5x5



Padding Examples
• Convolving an image with a filter results in a block with a smaller height 

and width — what if we want the height and width as before?

Input size: 5x5 
Padding with 2 pixels

43

Input size: 4x4

Output size: 2x2
smaller

Input size: 5x5
Padding with 1 pixel

Output size: 5x5 Output size: 7x7
larger



Padding: Preserving Spatial Information

• Pad inputs with appropriate number of inputs so 
you can now apply kernel at corners

• Let us use pad 𝑃 = 1 with a 3x3 kernel
§ This means we will add one row and one 

column of 0 inputs at the top, bottom, left and 
right.

• The 𝐻#$% , 𝑊#$% formula can be modified as 

• Convolving an image with a filter results in a block with a smaller height 
and width — what if we want the height and width as before?

𝐻,-. = 𝐻 − 𝐾 + 2𝑃 + 1

𝑊,-. = 𝑊 − 𝐾 + 2𝑃 + 1
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Padding Animations

No Padding (aka Valid) Same Padding

hjps://animatedai.github.io/

https://animatedai.github.io/


Stride (𝑆): Controlling Output Size

• The number of pixels to slide the kernel by (both horizontally and 
verMcally):
§ A stride of 1 will shi_ the filter every pixel
§ A stride of 2 will shi_ the filter every 2 pixels

𝐻,-. =
𝐻 − 𝐾 + 2𝑃

𝑆 + 1

𝑊,-. =
𝑊 − 𝐾 + 2𝑃

𝑆
+ 1
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Stride Animations

Same Padding with Stride of 1 Same Padding with Stride of 2

hjps://animatedai.github.io/

https://animatedai.github.io/


Depth of the Output
• Finally, coming to depth of output

• Each filter gives us one 2D output

• 𝐹 filters will give us 𝐹 such 2D outputs

• We can think of resulMng outputs as 
𝐾×𝑊!"#×𝐻!"# volume

• Thus, 𝐶!"# = 𝐹

𝐶

𝐾

𝐾

𝐻

𝑊

𝐶

𝐶!"#
𝑊!"#

𝐻!"#
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𝐻,-. =
𝐻 − 𝐾 + 2𝑃

𝑆
+ 1

𝑊,-. =
𝑊 − 𝐾 + 2𝑃

𝑆 + 1

𝐶,-. = 𝐹



Example
• Work out output dimensions for the following setting:

11 𝐻!"# = 55

11
3

3

227

227

Kernel

96 filters
Stride = 4
Padding = 0

𝐻!"# =
𝐻 − 𝐾 + 2𝑃

𝑆 + 1

𝑊!"# =
𝑊 −𝐾 + 2𝑃

𝑆
+ 1

𝑊!"# =
227 − 11

4 + 1
= 55𝐶!"# = 96
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Pooling Layer: Downsampling for Efficiency

• Pooling is a parameter-free down sampling operation

§ Max Pooling and Average Pooling

• Reduces output size
§ Extract local informaHon
§ Neighboring features may be similar

50

Average
Pooling



CNN Pooling => Translation Invariant? 
• Note that CNNs are not inherently invariant to scale, rotation, translation, 

and other transformations. 
• However, pooling layers within CNN architectures can only enhance their 

resilience to these operations.

The activations are 
still dependent on 
the location, etc.



Pooling Layer 
Feature Map
224 x 224 x 1

Max
Pooling

Downsized feature 
map from Max 

Pooling operation

This becomes the 
input for the next 
convolu<onal Layer

Max Pooling

ReLU(𝐖 ∗ 𝐗 + 𝑏)



Convolution => ReLU => Pooling
• ReLU removes linearity of Convolution
• Pooling reduces complexity and achieve SpaGal Invariance 

(TranslaGon Robustness)



Summary: How Convolutional Layers Work
• Filter OperaXon: A filter (e.g., a 3×3 matrix) slides over the input image, compu]ng 

the dot product between its weights and the corresponding region of the input. This 
produces a feature map that emphasizes specific features, such as horizontal edges 
or corners.

• Weight Sharing: Unlike fully connected layers, filters reuse the same weights across 
all spa]al loca]ons, reducing the number of parameters and enabling efficient 
computa]on.

• MulXple Filters: Each convolu]onal layer applies mul]ple filters (e.g., 32 or 64), 
each producing a unique feature map. These maps collec]vely capture diverse 
paeerns, from low-level features (e.g., edges) in early layers to high-level features 
(e.g., objects) in deeper layers.



The MLP Head: From Features to Decisions
• ConvoluHonal layers extract features. Fully Connected (FC) layers classify them. 
• The 'Fla_en' operaHon bridges these two worlds, unrolling the 3D volume into a 1D vector 

for the final decision.

Flatten



Implementation of CNNs
• Convolutional Layer (CONV)

§ A way to avoid needing millions of parameters with image data
§ Each layer is “local” and “shared weights” to generate output feature map
§ Each layer produces “feature maps” with (roughly) the same width & height of input but output 

channel number is equal to number of kernels (filers)

• Pooling Layer (POOL)
§ If we ever want to get down to a single output, we must reduce resolution as we go
§ Max pooling: downsample the “feature maps” at each layer, taking the max in each region
§ This makes it robust to small translation changes

• MLP Head: Flatten it up and Full-Connected Layer (FC)
§ At the end, we get something small enough that we can “flatten” it (turn it into a vector), and feed 

into a standard fully connected layers for classification or regression application

• Overall Architecture: CONV-POOL-CONV-POOL-FC-FC-FC

56
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Case Study: The LeNet-5 Architecture
Yann LeCun et al. (1998)
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Simplified LeNet-5 for 28×28 MNIST Dataset
Many modern implementations skip padding to 32×32 and apply LeNet-5 directly to 28×28 
inputs.
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Number of parameters for conv layers = (1x5x5+1)x6 + (6x5x5+1)x16 = 2572
Number of parameters for fully connected layers = (256+1)x120 + (120+1)x84 + (84+1)x10 = 41,854
Total Number of parameters = 2572 + 41,854 = 44,426
This simplified LeNet-5 for MNIST can achieve more 99.36% accuracy with only 44,426K parameters.



LeNet-5 for Fashion MNIST Dataset
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CNN for CIFAR-10 Color Image Classification
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Number of parameters for fully connected layers = (4096+1)x(128) + (128+1)x(10) = 525,706
Total Number of parameters = 19,392 + 525,706 = 545,098

A simple Convolutional Neural Network (CNN) can achieve 78% accuracy. 
State-of-the-art is above 97%.

https://colab.research.google.com/drive/1W-CpyU3mwWr_ueSm_86C-do6pm361VMe?usp=sharing
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CNN for CIFAR-10 Color Image Classification
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(64 x 8 x 8)
32 channels
(32 x 32 x 32)

32 channels
(32 x 16 x 16)

64 channels
(64 x 16 x 16)

Flattened

Conv_1
ConvoluLon

(3x3x3) Kernel
32 filters

Conv_2
Convolution

(32x3x3) Kernel
64 filters

Max-
Pooling

(2x2)

Max-
Pooling

(2x2)

INPUT
(3 x 32 x 32)

64 channels

4096

Number of parameters for conv layers = (3x3x3+1)x32 + (32x3x3+1)x64 = 19,392
Number of parameters for fully connected layers = (4096+1)x(128) + (128+1)x(10) = 525,706
Total Number of parameters = 19,392 + 525,706 = 545,098

https://colab.research.google.com/drive/1W-CpyU3mwWr_ueSm_86C-do6pm361VMe?usp=sharing
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CNN Exercise
Consider a Convolu^onal Neural Network (CNN) that takes a 6×6 grayscale image as input. The network applies a single 
3×3 convolu^onal filter with bias to produce one feature map, which is then passed through a ReLU ac^va^on func^on. A 
max pooling opera^on is subsequently applied to reduce the spa^al dimensions of the feature map. The pooled output is 
flajened and fed into a fully connected layer (also with bias), and a Soomax func^on is used to produce a single-class 
probability predic^on.



Question (a)
(a) How many learnable parameters (weights and biases) are there in this CNN?

Convolutional layer: 3×3 + 1 ×1 = 10
Max-Pool layer: 0
FC layer: 4 + 1 ×3 = 15

Total: 10 + 15 = 𝟐𝟓



Question (b)
(b) Given the 6×6 input image and the 3×3 convolutional filter kernel with bias b = -5 shown below, 
compute the complete feature map produced by the convolution layer (using valid padding), and then 
determine the resulting output after applying a 2×2 max-pooling operation with stride 2. Show all 
intermediate values clearly. 



Solution (b)

Input image:

0 5 5
0 5 5
0 5 0

5 5 0
5 5 0
5 5 0

0 5 0
0 5 0
0 5 0

5 5 0
5 5 0
5 5 0

Image filter:
1 0 −1
1 0 −1
1 0 −1

The convoluRon output without bias :

−10 0 −5 15
−5 0 −10 15
0 0 −15 15
0 0 −15 15

The convolution output with bias b=-5 :

−10 − 5 0 − 5 −5− 5 15 − 5
−5 − 5 0 − 5 −10 − 5 15 − 5
0 − 5 0 − 5 −15 − 5 15 − 5
0 − 5 0 − 5 −15 − 5 15 − 5

=
−15 −5 −10 10
−10 −5 −15 10
−5 −5 −20 10
−5 −5 −20 10

Output of ReLU operation (Output of convolution layer):

ReLU
−15 −5 −10 10
−10 −5 −15 10
−5 −5 −20 10
−5 −5 −20 10

=

0 0 0 10
0 0 0 10
0 0 0 10
0 0 0 10

Output of Max-pooling layer
0 10
0 10



Question (c)
(c) Using the feature map obtained from part (b), flatten it and pass it through the fully connected
layer with weight matrix 𝐖 with bias 𝐛. Compute the final output vector L𝑦( L𝑦D L𝑦E F , apply the
Softmax function, and determine the predicted class label for the given 6×6 input image.

𝐖 =
0.8 −0.2 0.1 −0.2
0.2 −0.6 0.5 −0.3
0.5 0.3 −0.8 0.9

and  𝐛 =
0.1
−0.3
0.6



Solution (c)
After flatten process:

𝐱&'(#")' = 0 10 0 10 *

Output of Fully-connected layer 1:

4𝐲 = 4𝑦+ 4𝑦, 4𝑦, * = So[max 𝐖𝐱&'(#")' +𝐛

= Softmax
0.8 −0.2 0.1 −0.2
0.2 −0.6 0.5 −0.3
0.5 0.3 −0.8 0.9

0
10
0
10

+
0.1
−0.3
0.6

= So<max
−4.0
−9.0
12.0

+
0.1
−0.3
0.6

= So<max
−3.9
−9.3
12.6

=

𝑒!".$

𝑒!".$ + 𝑒!$." + 𝑒%&.'
𝑒!$."

𝑒!".$ + 𝑒!$." + 𝑒%&.'
𝑒%&.'

𝑒!".$ + 𝑒!$." + 𝑒%&.'

=
6.8256×10!(
3.0828×10!%)

0.9999

The predicted class is the index with the highest probability.

§ Class 1: 6.8256×10$%

§ Class 2: 3.0828×10$&'

§ Class 3: 0.9999← highest

§ Predicted class label = 3

0

0
10

10



Why CNN Architecture Work

Local Connectivity
Filters focus on small, local
regions, mimicking the
biological eye's receptive
fields.

Parameter Sharing
Features are useful
everywhere. Reusing weights
makes the model efficient
and transladon invariant.

Parameter Sharing
Simple patterns (edges)
combine to form complex
objects (faces) as the
network deepens.

Complex understanding arises from the layering of simple operations.



How to Train CNNs?



Backpropagation in CNNs
• Backpropagation trains CNNs by adjusting weights to minimize a cost function.
• During the forward pass, inputs are processed through convolutional, activation, pooling, 

and fully connected layers.
• In the backward pass, gradients of the loss with respect to the weights are computed using 

the chain rule. Key steps include:
1. Convolutional Layers : Gradients for filter weights are calculated via convolutions of the 

error signal with input feature maps.
2. Pooling Layers : Gradients are passed based on max-pooling or average-pooling rules.
3. Weight Updates : Optimizers like SGD or Adam update weights using computed 

gradients.
• This process efficiently trains CNNs to learn spatial hierarchies, making them ideal for tasks 

like image recognition.



Quantifying Error: The Loss Function
Loss Landscape

The Objective
• Find weights e that minimize the 

cost function ℒ 𝜃 .
The Trigger
• Training begins by measuring 

how 'wrong' the prediction is.

Common Functions
• Binary Cross-Entropy: For 2-class 

tasks (e.g., Healthy vs. Sick).
• Softmax Loss: For multi-class 

tasks (e.g., CIFAR-10)



Propagating Error: The Chain Rule

𝜕ℒ
𝜕𝑤 =

𝜕ℒ
𝜕𝑦 ×

𝜕𝑦
𝜕𝑧 ×

𝜕𝑧
𝜕𝑤

How much the
Loss changes as
Output changes.

Derivative of
Activation

(e.g., ReLU).

Input from 
previous 

layer.

This recursive mechanism allows the network to assign "blame" to specific weights 
for the total error, cascading from the final layer back to the first.



Gradients in Convolutional Layers
Handling Shared Parameters (Weights)

• The Challenge: In a CNN, a single kernel 
weight is used at every spatial position 
(i, j) of the image.

• The Solution: We cannot update the 
weight based on just one pixel's error. 
We must SUM the gradients from every 
position where that weight was applied.

• Implication: This enforces Translation 
Invariance-the filter learns features that 
are useful anywhere in the image.



Routing Gradients: Non-Linearities
Pooling and ReLU have no weights, but they guide the flow.



Backpropagation Pooling Layers
• There are no weights to learn, only have to propagate gradients through
• In Max-Pooling, backpropagated gradient is assigned only to the winning pixel i.e., 

the one which had maximum value in the pooling block; this can be kept track of in 
the forward pass

• In Average Pooling, the backpropagated gradient is divided by the area of the 
pooling block (𝐾8×𝐾9) and equally assigned to all pixels in the block.

https://leonardoaraujosantos.gitbook.io/artificial-inteligence/machine_learning/deep_learning/pooling_layer
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The Weight Update
Gradient Descent

• Op.mizers like Adam or AdamW dynamically adjust the learning rate (𝜂) 
during training to speed up convergence and avoid geUng stuck in local 
minima.

𝜃!"# = 𝜃$%& − 𝜂 % ∇ℒ(𝜃)

The Weight
(Kernel Parameter)

Learning Rate (Step Size)
Controls speed of 

convergence.

Subtracting the gradient
(Moving downhill)

The Calculated Gradient
(Direction of steepest ascent)



Stabilizing the Gradient
Batch NormalizaMon & Dropout



Tricks for improving CNN Trainings
• BeLer weight iniGalizaGon:

§ Glorot/He ini]aliza]on: Empirically shown to give good results

§ Hand-designed weight iniXalizaXon: Using domain knowledge, come up with 
features like edges (with certain orienta]ons), shapes etc.

• RegularizaGon methods:
§ L2-weight decay, L1-weight decay
§ BatchNorm, Input/Gradient Noise

§ Dropout (Not commonly used today)

§ Data augmenta]on
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From Randomness to Recognition

• Through millions of iterations of the Forward → Backward → Update loop, the network 
automatically organizes itself. Random noise evolves into structured feature detectors capable 
of perceiving edges, shapes, and objects.



Interesting Property of CNNs
• CNN layers learn features in a hierarchical manner.

• Initial layers learn simple and generic features like 
edges and color blobs, which are consistent across 
different models trained on various datasets.

• Later layers capture more abstract and specialized 
features that are specific to the dataset being 
trained.

• Exploit the hierarchical nature of CNN features 
for tasks such as transfer learning, where lower 
layers can be reused for different tasks or datasets.
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