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Message 1: Submission of Project Proposal

Just a friendly reminder: The deadline to submit your group project proposal
is Feb 14, 2026, at 11pm. Please submit a PDF file with the project title, list of group
members, and other necessary details to the CANVAS group project proposal
assignment.
You can find more information about the group project on the course website:

= https://www.ee.cityu.edu.hk/~Impo/ee4016/projects.html

Remember, each group should assign a team leader who will be responsible for
submitting the proposal on CANVAS.
The file name should follow this format:

= Filename format : Proposal_GroupNumber_ProjectName.pdf
= Filename example: Proposal_Group01_Audio_Classification.pdf


https://www.ee.cityu.edu.hk/~lmpo/ee4016/projects.html

Message 2 : Canvas Quiz on Week 6

The Canvas quiz consisting of 30 to 40 multiple choice questions will be released on Feb 23,
2026, at 1:45 PM and the quiz will be end at 2:45PM

Students are required to take the quiz in the LI-2614: Attendance will be recorded using student IDs.
e The quiz will cover course content from Weeks 1 to 4

Math, Perceptron, ADALINE, MLPs, Gradient Descent, Backpropagation, Mastering Deep Neural
Network Trainings
* This quiz is Semi-Open Book:

* The first 45 minutes will be closed book. Students are not allowed to use any materials.

* The last 15 minutes will be open book. You are permitted to use your devices to access the PPT
lecture notes of the class.

* You may also view all course handouts during this time in hardcopy or on your devices.

* However, you are not allowed to communicate with others and use of ChatGPT or any other
LLM services during the quiz.

* Investigators will conduct periodic checks to ensure that students comply with these
regulations during the quiz.



Content

* Introduction of Convolutional Neural Network (CNN)
CNN vs MLP for Image Classification Applications
Intuition of CNN
Convolution Operation
Basic Architecture of CNNs

* Evolution of CNN Architectures
Variants of Convolution
LeNet, AlexNet, VGGNet, GoogleNet, ResNet, DenseNet, MobileNet, etc
Transfer Learning: Pre-training vs Fine-tuning

Applications of CNNs: Object Detection, Image Segmentation, etc.



MLPs for Simple Regression and Classification

Regression Classification
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* Boston Housing Dataset * Iris Flower Dataset
= 13 features and 506 records = /4 features and 150 records
= A3-Layer MLP (13-8-6-1) = A 3-Layer MLP (4-8-6-3)
= No. of Parameters: 173 = No. of Parameters: 187
e 13*8+8*6+6*1+8+6+1 e 13*8+8*6+6*3+8+6+3
= Performance: RMSE = 3.97 =

Performance: 98% Accuracy



MLPs for Grayscale Image Classifications

Handwritten Digits Recognition
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digits from 0 to 9

* MNIST Dataset
= 70,000 28x28 Grayscale Images
= 3-Layer MLP (784-128-64-10)
* No. of Parameters: 109.386K
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 Fashion MNIST Dataset

Fashion Image Classification
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70,000 28x28 Grayscale Images
3-Layer MLP (784-128-64-10)
No. of Parameters: 109.386K

o 784%128+128*64+64*10+128+64+10
Performance: 84.18% Accuracy



The Shortcomings of MLPs for Image Data

e 2D grayscale or 3D color images need to be flattened into one-dimensional vectors
as input to the MLP model, which removes spatial image data structure

* The flatten image input vector dimension is huge, which results in a large number
of model parameters (weights and biases). This leads to longer training and
inference times.
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The number of weights

= 784x128 + 128x64 + 64x10
= 109184

The number of biases
=128+ 64 +10=202

Total number of parameter
=109184 + 202

= 109,386 (about 109K)




MLPs for CIFAR-10 Color Image Classification
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 CIFAR-10 Color Image Dataset
= 60,000 32x32x3 RGB Color Images An MLP with 3-5 hidden layers and 500+ units

per layer should achieve 65%+ accuracy on
= 5-Layer MLP (3072-1536-768-384-128-10)

= No. of Parameters: 6,246,410 (6.2M)
= Performance: 55% Accuracy

CIFAR-10 with proper tuning and
regularization.




Convolutional Neural Network for CIFAR-10 Image Classification
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https://colab.research.google.com/drive/1W-CpyU3mwWr ueSm 86C-do6pm361VMe?usp=sharing

* CIFAR-10 Color Image Dataset
= 60,000 32x32x3 RGB-Color Images A simple Convolutional Neural Network

= 4-Layer CNN (3x3-32, 3x3-64, 4096-128-10) UG\ INANETaRETol o (V=W A0 B {0 b2 (ool V[ = [0 VA

= No. of Parameters: 545,098 State-of-the-art is above 97%.
= Performance: 78% Accuracy



https://colab.research.google.com/drive/1W-CpyU3mwWr_ueSm_86C-do6pm361VMe?usp=sharing

Comparing MLP and CNN for Image Classification

* MLPs are simple models that can work reasonably well only on simple
image classification problems such as MNIST dataset.

* |n practice, Convolutional Neural Networks (CNNs) tend to work better than
MLPs for complex image classification tasks:

Local connectivity - Captures spatial structure

Weight sharing - Reduces parameters and provides translation invariance
Hierarchical feature learning - Learns from low-level to high-level
Translation invariance - Robust to feature location

Efficient computation - Fewer overall parameters, GPU parallel processing
Inductive bias - Architecture suited for images

10



Recap: Network Architecture & Inductive Bias
Selecting the right hypothesis space for the data

MLP (Multi-Layer Perceptron)

Inductive Bias:
Independence

Use Case:
Tabular Data

CNN (Convolutional Network)

Inductive Bias:
Spatial Locality & Invariance

Use Case:
Image Data

RNN

—

[LSTM

O-O-0-

N

—

1 4]
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=

Inductive Bias:
Sequentiality

Use Case:
Time-series, Sequence Data

Inductive Bias:
Global Context (Self-Attention)

Use Case:
NLP, Seq2Seq, Vision




Data Types and Neural Network Architectures

 Tabular Data: Initially, the focus was on utilizing Multilayer Perceptrons (MLPs) to
process tabular data. This approach evolved into deep learning, increasing the
model's capacity to capture complex patterns by adding more layers.

* Image Data: Convolutional Neural Networks (CNNs) emerged to interpret and
analyze visual information in grid formats, outperforming MLPs.

e Sequential Data: Sequences with meaningful order (e.g., textual or time-series data)
require specialized models, which led to the development of Recurrent Neural Networks
(RNNs), which can model and learn from sequential patterns.

* Seg2Seq Data: Specialized architectures were created to handle sequence-to-sequence
data, such as machine translation tasks, due to the complexities involved in aligning
variable-length input and output sequences.



Intuition of
Convolutional Neural Networks
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Hubel and Wiesel's Experiments (1950s)

Discovery: Simple Cells (orientation) and Complex Cells (motion).

Hubel and Wiesel’s experiments was focused
on studying the responses of neurons in the
visual cortex to various visual stimuli, such as
lines, edges, and motion.

* They discovered that the brain does not
process images all at once.

* Instead, individual neurons fire only for
specific patterns — lines, edges, and
corners—located in a specific part of the
visual field.

* Simple Cells (orientation)
* Complex Cells (motion)

https://www.youtube.com/watch?v=QsikPDDxy4g

A Experimental setup

Light bar stimulus
projected on screen

Electrical signal
from brain

Recording electrode —»

Visual area
of brain

Recording from visual cortex

B Stimulus Stimulus
orientation presented

NNSEZPENn

D. Hubel T. Wiesel

The Nobel-winning physiologists David Hubel and Torsten Wiesel and the depiction of their
classical experiment revealing the structure of the visual cortex. Portraits: Ihor Gorsky. (Source)


https://www.youtube.com/watch?v=QsikPDDxy4g
https://towardsdatascience.com/towards-geometric-deep-learning-iii-first-geometric-architectures-d1578f4ade1f

Hubel and Wiesel Cat Experiment

https://www.youtube.com/watch?v=I0Hayh06LJ4

The cat experiment showed that cells are sensitive to orientation of edges.
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https://www.youtube.com/watch?v=IOHayh06LJ4

The First Blueprint: The Neocognitron (1980)
Kunihiko Fukushima's alternating S-Cell/C-Cell structure. (Source)
V
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* Context: Developed by Kunihiko Fukushima, this was the first neural network directly inspired by Hubel and
Wiesel's findings.

Complex Cells

Simple Cells %\

\

* The Architecture:
= S-Cells (Simple): Performed feature extraction (template matching).
= C-Cells (Complex): Provided invariant pattern recognition (recognizing a shape even if it shifted slightly).

* Legacy: While limited by the hardware of 1980, the Neocognitron demonstrated that hierarchical feature
extraction could be simulated mathematically.


https://towardsdatascience.com/towards-geometric-deep-learning-iii-first-geometric-architectures-d1578f4ade1f

The Hierarchy of Sight

e Vision is a bottom-up process.

* We build complex

understanding from simple

D 4 Object
Recognition
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Introduction of CNNs (1989)

* In 1989, Yann LeCun's team introduced CNNs, revolutionizing image processing by
preserving images' 2D nature and processing information spatially.

 CNNs used spatial filtering to extract spatial patterns, allowing them to learn
hierarchical representations of features.

10 output units ) s E]

fully connected
» « ~ 300 links
layer H3 Noooooooogy
30 hidden units fully connected
~ 6000 links
layer H2 .
12 x 16=192 R
H2.1 —f ; :
hidden units NS R, ~ 40,000 links
W from 12 kernels
""" 5x5x8
layer H1
12 x 64 = 768
hidden units
H1.1
~20,000 links - g
from 12 kernels S
Ew 5x5
" ;f/ M Y. LeCun
256 input units

LeCun's paper demonstrated how to train nonlinear CNNs from scratch using backpropagation, paving the way
for efficient image classification tasks. (Source)


https://towardsdatascience.com/towards-geometric-deep-learning-iii-first-geometric-architectures-d1578f4ade1f

LeNet-5 (1998)

* In 1998, Yan LeCun and his team made a significant contribution to the field
of deep learning with the publication of the LeNet-5 model, a pioneering
CNN architecture that consisted of multiple convolutional and pooling

layers.

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5 —r PN
i =N =T | [eNel 5 | peseancu

INPUT
30x32 6@28x28

S2: f. maps
6@14x14

|
| Full ooanection Gaussian (

Convolutions Subsampling Convolutions  Subsampling Full connection

LeCun, Bottou, Bengio, Haffner: Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998.



http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf

The Convergence: Igniting the Golden Era (2010s)

* The Catalyst: The 2010s marked a resurgence
sparked by three converging factors:

1. Big Data: The release of ImageNet (2009) and the
ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) challenge provided 14 million

hand-annotated images needed for deep learning. The 2010s marked the "Golden Era" of CNNs,

) . sparked by the release of the large-scale ImageNet
2. Hardware: The arrival of powerful GPUs capable dataset (2009) and the ImageNet Large Scale Visual

of parallel matrix operations made training Recognition Challenge (ILSVRC) from 2010 to 2017.
feasible.

3. Algorithms: Deeper architectures and better
activation functions (ReLU) solved the vanishing
gradient problem.

GPUs



The Game Changer: AlexNet (2012)

224x224
Input Dense Dense

""""""" 192 128 128 % ‘, Dense
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Legacy: AlexNet (Krizhevsky et al.) didn't just win ILSVRC 2012; it decimated the competition, nearly halving the
error rate. It introduced Rectified Linear Units (ReLU) and Dropout, launching the modern Deep Learning revolution.




The Explosion of Depth

Winners of ILSVR Challenge (2010 - 2017)

Classification Error %
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Number of Layers

Following AlexNet, models became exponentially deeper to capture more complex features.
By 2015, ResNet (152 layers) surpassed human-level performance.




AlexNet Sparks the Third Golden Age of Neural Networks

Hubel & Wiesel
o Experiments . i
Artificial Neocognitron | Backpropagation
Neuron Perceptron Light bar l I (1980) (1986) LeNet
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Second
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The current golden age (2012 - present) is marked by the convergence of deep learning, big data, and powerful
computing platforms. This era has seen remarkable breakthroughs in image recognition, natural language
processing, and robotics. Ongoing research continues to push the boundaries of Al capabilities.



Convolution Operations



Foundations in Signal Processing

The Roots: LTI Systems

In discrete Linear-Time Invariant (LTI) systems,

the output sequence y[n] is determined by the
convolution of input x[n] and unit impulse
response h[n].

ylnl = x[n] « h[n] = ) x[n — k]h[k)
k=—co0

x[n] y[n] = x[n] * h[n]

LTI System
(h[n])

The Crucial Difference: Flipping

In traditional mathematics, the kernel is "flipped”
(mirrored) to preserve commutative properties.

In Deep Learning, we do NOT flip the kernel.

Why? Images lack temporal causality (no "past" or
"future"). Since weights are learned end-to-end, the
network learns the kernel in whichever orientation

is required.

T Fip X

1 213 3

Math Convolution

No Flip
I —>

2

3

CNN Convolution (Cross-Correlation)




The 2D Convolution Operation
The Sliding Window Mechanism

Sum of (Input_Patch © Filter) + Bias
(111+02+13+0:4+15+
| 4|5|6|—» 16+17+08+19)+b —»
(1M+0+3+0+5+6+7+0
2o +9)+b=31
Kernel / Filte Output
eeton where b = 0 (bias) i

Input
Oli,jl1= Y > Ili+m, j+n]- F[m,n] +b
m n

The filter slides over the input image (local receptive field), performing an element-
wise multiplication and sum at every position to generate the feature map.



2D Filter Convolution
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2D Filter Convolution

0|10
1101
0|10
33 Filter {or Kernel) Convolved

Image Feature



2-D Kernels (Filters)

* In case of 2D data (grayscale images), the convolution operation between
an input 5x5 image and a 3x3 kernel (or fitter):

Input image

Shape( 1, 5, 5) Stride 1: Filter moves only one from left to right

" Filter
3x3 matrix
[0, 2, 1]
[4,1,0]
[1,0,1]
& ' " ..’ ’] [16 30 ] [163034]
9e0 + 402 + 101 ... 101=16"" [ + + ] [ .. ] [ ]
Dot product [, ] [, L
Output
3x3 matrix

29



The Role of Filters: Feature Detection

Input Image (Vertical Edge)

Vertical Edge Filter

1010 /10| 0 | 0 | 6 —

10 /10|10 0 | 0 | © 1|0 l-1
10/10(20| 0 [0 [0 [, | 1] @ |-1
10 (10 (10| 0 |0 [0 (¢ |1 | g |-1
10|10 (10| 0 | 0 | © T I
10/10(20| 0 | 0 | ©

Represents an image with a sharp

vertical boundary.

Feature Map (Edge Detected)

Why does this work?

The filter responds positively when there
is a contrast transition from left to right.

If we rotated this filter 90 degrees
(Horizontal Edge Detector), the result on
this specific image would be all zeros.

30



Filters Define the Features

* Changing the weights inside the kernel changes what the network sees.

Identity Sharpen Edge Detection
0|10 0 0 |-1] 0 -1 (-1 -1
0| 1] 60 =1 1485 | =1 -1 8 | -1




Convolution with 3D Kernel

* Inthe 2D case, we slide a two-dimensional filter over a two-dimensional input
(grayscale image)

 What would happen in the 3D case where the input images are in color (RGB)?
* We need to use 3D Filter Convolution

* Steps:
= Compute the dot product for
each channel (same as 2D)

= Sum over each channel

* Note: The depth of the filter is always the
same as the depth of the input image

YW, and W, are distinct 4 x 4 x 3 filters

32


https://emojipedia.org/warning/

Activation Layer: RelLU

» After the convolution operation, bias and an activation function, often Rectified
Linear Unit (ReLU), is applied element-wise to introduce non-linearity into the

model. o
Oli ReLU(S‘yy [i+m,j+n,c]- F[mnc]+b>
m=0 n=0 c=0
* RelLU helps the network learn complex relationships ReLU

and makes the model more expressive. 10}

* |t completely depends upon your use case which oo U(~):{:.:>0

. . . . 5 0, otherwise 5|
activation you will use, in most cases researchers use :
RelLU, there some activations which can also be used,

for example: Leaky RelLU, ELU. o 5 % 5 10




Convolutional Layers

RGB-Color Input Image Feature Map
224 x 224 x 3 222 x222x 1

One 3 x 3 x 3 Filter

F,
Activation
_____________________________ L Function
bRt ReLU(W * X + b)
““““““““““““ b b RelU

_______________ z,2>0
---------------------- ReLU(z) :{ -
K, K, K, 0,otherwise s |
-10 -5 0 S 10
Convolution Operation Apply Activation

for a Single Filter Location

https://www.youtube.com/watch?v=N15mjfAEPqw



https://www.youtube.com/watch?v=N15mjfAEPqw

Multiple Filters: Stacking the Feature Maps

* For example, if we had six 5x5x3 filters, we would get 6 separate feature

maps:
yAE
Convolution Layer
A 28

3 —
6
A layer doesn't produce one map; it produces a volume. If you apply 6 filters, you get a stack of 6 feature maps. Each

channel in this volume represents a different learned feature (e.g., Channel 1: Vertical Edges, Channel 2: Color
Gradients).

6 filters 28

35



Example 3-D Convolution for RGB Image

Input Convolutional Layer with Output
RGB image 6x6x3 2 Filters of size 3x3x3 RelLU Feature map 4x4x2

Vertical edge

3x3x3 N —>
Horizontal edge

4 x4

Ax3Ix3
6X6X3



Convolution Operation Animation

* In practice, a convolution
layer can consist of multiple
filters that operate on
multiple channels of input
data. For example, as
depicted below with an input
of size 7x7x3, two filters can
be applied, each extracting
distinct feature maps by
convolving across the three
input channels.

Input Volume (+pad 1) (7x7x3)

Filter WO (3x3x3)
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020020 0 -1§0
ol 23 i A B 0 L1
00 0 0 0 oo
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Convolution Operation Animation

Anim

g

Convolution Operation (Source)

animatedai.github. 10


https://animatedai.github.io/

Convolution: Hyperparameters

* Input dimension: Width (W) x Height (H) x Depth (C)
e Spatial extent (K) of each filter’s kernel (the depth of
each kernel is same as the channels of input)

= Kernel dimension = KXKXC
* Output dimensions is W, ,,: XH,,,: XCoyt
e Stride (S5)
* Number of Filers F = C,¢
* Padding (P)

H—-—K+ 2P
Hyye = S ‘

W — K+ 2P
Wout_ S ‘

Hout

Wout

Cout
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Preserving Geometry with Padding (P)

CRECNEONECE RORNIREONEC

)
)

Zero Padding (P =1)

Without Padding Shrinking Output

Valid Padding: No padding.
Image shrinks with every layer.

Same Padding: Pad to ensure
Output Size = Input Size.



Valid Padding Example

* No padding is applied, resulting in a smaller output feature map.

= Example: Convolution of a filter over a 2D image without padding

7 |2 3 |3 |8
2SS 3 |4 1 (0 |- 6
3z niloN s |4 * |1 |0 |-1 =
3y ke im0 &
5 2 & 5 4 7x1+4x1+3x1+

2x0+5x0+3x0+ 3x3

3x-1+3x-1+2x-1
5X5 = 6



Same Padding Example

* Padding is added so that the output feature map has the same spatial
dimensions as the input.

= The convolution of a filter over a 2D image with 1-pixel padding

£ < e Kernel
139 | 85 0 0 -1 0 !
84 | 128 0 -1 5 -1
0 131 | 99 70 | 129 | 127 0 0 -1 0

0 80 | 57 |115| 69 |[134 (| O

0 |104 |126 | 123 | 95 (130 | O

5x5

5x5



Padding Examples

* Convolving an image with a filter results in a block with a smaller height
and width — what if we want the height and width as before?

Output size: 5x5

Output size: 7x7
larger

Output size: 2x2
smaller

Input size: 4x4 . .
Input size: 5x5 Input size: 5x5  *_.»
Padding with 1 pixel Padding with 2 pixels
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Padding: Preserving Spatial Information

Convolving an image with a filter results in a block with a smaller height
and width — what if we want the height and width as before?

Pad inputs with appropriate number of inputs so
you can now apply kernel at corners

Let us use pad P = 1 with a 3x3 kernel T TTTITTI CREREREE
= This means we will add one row and one T T T Bleleletels
column of 0 inputs at the top, bottom, left and eseswsnnlooooonor
right. " ' cTelelalele

The (H,y¢ Wyye) formula can be modified as

Hyye =H—K +2P + 1

W,o=W—K+2P+1
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Padding Animations

No Padding (aka Valid) Same Padding

=

Anim

-

S

animatedai.github.io animatedai.github.io

https://animatedai.github.io/



https://animatedai.github.io/

Stride (S5): controlling Output Size

* The number of pixels to slide the kernel by (both horizontally and
vertically):

H—-K+ 2P
+1]

= A stride of 1 will shift the filter every pixel Hoyt = 5

= A stride of 2 will shift the filter every 2 pixels

W—-K+ 2P
+1]

Wour = S

Stride 1 Feature Map Stride 2 Feature Map



Stride Animations

Same Padding with Stride of 1 Same Padding with Stride of 2

Anim Anim

X X

animatedai.github.io animatedai.github.io

=

https://animatedai.github.io/



https://animatedai.github.io/

Depth of the Output

* Finally, coming to depth of output
* Each filter gives us one 2D output

* F filters will give us F such 2D outputs Y

* We can think of resulting outputs as
KXW, ,+ XH .+ volume

— H—-K+ 2P
[ ] ThUS, Cout - F Hout — S + 1‘

Wout

Cout

W—-K+ 2P
+1]

Wout = S

Cout = I
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Example

* Work out output dimensions for the following setting:

227

227

Kernel

11
3

11

96 filters
Stride =4
Padding =0

Hoyt = l

Wour = l

=

H—-K+ 2P

W —K+ 2P

+1]
+1]

Cout = 96

Wout = l

227 - 11

4

Hout == 55
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Pooling Layer: Downsampling for Efficiency

* Pooling is a parameter-free down sampling operation

= Max Pooling and Average Pooling

Max pooling

e
3 g 4 |7 s 12| 7
. 0 ' gl S17{5 )3 2x2 pooling
2 |4 |s |o |3 |2 4 | 3| 2 1219517 stride 2 ’ 13| 14
3 |7 [s |o [2 |1 6 | 4 | 5 >
1 |5 |o |7 |3 e Average 13) 2 |10f 3 Average pooling
8 |9 |2 |[s5 [1 s Pooling 9(4(5]|14 9| 5

.

718

* Reduces output size
= Extract local information
= Neighboring features may be similar



CNN Pooling => Translation Invariant?

* Note that CNNs are not inherently invariant to scale, rotation, translation,
and other transformations.

* However, pooling layers within CNN architectures can only enhance their
resilience to these operations.

\

The activations are
still dependent on
the location, etc.

vvvvvv



Pooling Layer

g o Feature Map
R 224 x 224 x 1
One 3 x 3 x 3 Filter M2x12x1
F,
| Activation Max )
_____________ Function Pooling This becomes the
4 ——+ ReLU(W * X + b) input for the next
g convolutional Layer
............. o
____________ 4 d
KKK,
Downsized feature
Single filter (F,) contains three Kernels (K,, K., K;) maP from MGI-X
for a total of 27 weights (3 x 3 x 3 = 27) plus Pooling operation

one bias term = 28 trainable parameters

RGB
L J L J L J

Convolution Operation Apply Activation Max Pooling

Convolutional Layer

Convolutional Block



Convolution => RelLU => Pooling

* RelLU removes linearity of Convolution

* Pooling reduces complexity and achieve Spatial Invariance
(Translation Robustness)

4 1-2|11|86 410|116

=il =5 B187 |8 4
II*

M =825 D9 2)]6 9

00 =g 5. 9% |1

Convolution Output ReLU Activation Max Pooling



Summary: How Convolutional Layers Work

Filter Operation: A filter (e.g., a 3x3 matrix) slides over the input image, computing
the dot product between its weights and the corresponding region of the input. This
produces a feature map that emphasizes specific features, such as horizontal edges
or corners.

Weight Sharing: Unlike fully connected layers, filters reuse the same weights across
all spatial locations, reducing the number of parameters and enabling efficient
computation.

Multiple Filters: Each convolutional layer applies multiple filters (e.g., 32 or 64),
each producing a unique feature map. These maps collectively capture diverse
patterns, from low-level features (e.g., edges) in early layers to high-level features
(e.g., objects) in deeper layers.



The MLP Head: From Features to Decisions

* Convolutional layers extract features. Fully Connected (FC) layers classify them.

* The 'Flatten' operation bridges these two worlds, unrolling the 3D volume into a 1D vector
for the final decision.

Flatten
_—

Final Feature Volume Flatte Classes
(5x5x16) (400 x 1 Vector) (Output)



Implementation of CNNs

Convolutional Layer (CONV)

= A way to avoid needing millions of parameters with image data

Each layer is “local” and “shared weights” to generate output feature map

Each layer produces “feature maps” with (roughly) the same width & height of input but output
channel number is equal to number of kernels (filers)

If we ever want to get down to a single output, we must reduce resolution as we go
Max pooling: downsample the “feature maps” at each layer, taking the max in each region
This makes it robust to small translation changes 9

MLP Head: Flatten it up and Full-Connected Layer (FC)

At the end, we get something small enough that we can “flatten” it (turn it into a vector), and feed
into a standard fully connected layers for classification or regression application

Overall Architecture: CONV- -CONV- -FC-FC-FC
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Case Study: The LeNet-5 Architecture
Yann LeCun et al. (1998)

Pooling: Downsampling (2x2) retains the
strongest signals while reducing computation.

C1: feature maps

|3NZP£ 6@28x28 32: f. maps |
X = 6@14x14 f. C5: layer
L @ ' %%@1%1:1')08 S4:f.maps 120 F6: layer
16@5x5 84 OUTPUT
g I 10
mgill D:; o —> == = — R
. O —O ] Gaussian
i | connections
J\ Subsampling Convolutions  Subsampling
Deployed by Yann LeCun Pooling: Downsampling (2x2) i:.:
on MNIST to recognize retains the strongest signals while 3 5 pA=
handwritten digits. reducing computation. a-




Simplified LeNet-5 for 28x28 MNIST Dataset

Many modern implementations skip padding to 32x32 and apply LeNet-5 directly to 28x28

inputs.
Conv_1 Conv_2 chﬁ3 chﬂ4 chﬁs
Convolution ) Convolution . rully- Fully- ully-
(1x5x5) Kernel Avg-Pooling 6x5x5) Kernel Avg-Pooling Connected Connected Connected
x5x5) Kerne %2 (6x5x5) Kerne (2x2)
(2x2) 16 filters Layer Layer Layer
d d \[ l \

GWmm

N
Bt IA'.‘\V/ 0
rosa_ | . Q.:é\‘\ //‘i"(% . 3
INPUT o - : ///A\X.M 9
(28 x 28) T X )
6 channels 6 channels 16 channels 16 channels l’ ‘.
/
(6 x 24 x24) (6x12x12) (16 x 8 x 8) (16 x4 x 4) 84
225+ 1224 1%]=12 |=] +1=38 5=4 120

Number of parameters for conv layers = (1x5x5+1)x6 + (6x5x5+1)x16 = 2572
Number of parameters for fully connected layers = (256+1)x120 + (120+1)x84 + (84+1)x10 = 41,854

Total Number of parameters = 2572 + 41,854 = 44,426
This simplified LeNet-5 for MNIST can achieve more 99.36% accuracy with only 44,426K parameters.




LeNet-5 for Fashion MNIST Dataset

fc_3 fc_4 fc_5
Conv_1 Conv_2 Fully- Fully- Fully-
Convolution . Convolution ; C d C ted C ted
S Ave-Poolin =QIVORTION  Avg-Pooling onnecte onnecte onnecte
(1x5x5) Kernel _g(ZTg (6x5x5) Kernel (2x2) Layer Layer Layer
6 fillters ‘ 16 ﬁllters ' A ¥ A y A ,
I\

T-shirt/top

Trouser

A
INPUT o i O/ Ankle boot
(1x 28 x 28) ‘/”‘*\.W
6 channels 6 channels 16 channels 16 channels
(6 x 24 x 24) (6x12x12) (16 X 8 x 8) (16 x 4 x 4) 84
120
28-5 _ 24| _ 12-5 _ 8| _
[1]+1_24 [2 12 ITJ+1‘8 HEx

Similarly, a 5-layer CNN can significantly perform better than MLP model for image classification
which can easily achieve accuracy higher than 91% accuracy.



CNN for CIFAR-10 Color Image Classification

fc_3 fc_a
Conv_1 Conv_2 Eully- Eully-
Convolution Max- Convolution Max- Connected Connected
(3x3x3) Kernel Pooling (32x3x3) Kernel Pooling Layer Layer
32 filters (2x2) 64 filters (2x2) ' 1 \ A l

INPUT
(3x32x32)

32 channels 64 channels 64 channels
(32 x 16 x 16) (64 x 16 x 16) (64 x 8 x8)

32 channels
(32 x32x32)

Number of parameters for conv layers = (3x3x3+1)x32 + (32x3x3+1)x64 = 19,392
Number of parameters for fully connected layers = (4096+1)x(128) + (128+1)x(10) = 525,706
Total Number of parameters = 19,392 + 525,706 = 545,098

A simple Convolutional Neural Network (CNN) can achieve 78% accuracy.
State-of-the-art is above 97%.

https://colab.research.google.com/drive/1W-CpyU3mwWr _ueSm 86C-do6pm361VMe?usp=sharing

60


https://colab.research.google.com/drive/1W-CpyU3mwWr_ueSm_86C-do6pm361VMe?usp=sharing

CNN for CIFAR-10 Color Image Classification

fc_3 fc_a
Conv_1 Conv_2 Eully- Eully-
Convolution Max- Convolution Max- Connected Connected
(3x3x3) Kernel Pooling (32x3x3) Kernel Pooling Laver Layer
32 filters (2x2) 64 filters (2x2) ' 1 \ A ‘

INPUT
(3x32x32)

32 channels 64 channels 64 channels
(32 x 16 x 16) (64 x 16 x 16) (64 x 8 x8)

32 channels
(32 x32x32)

Number of parameters for conv layers = (3x3x3+1)x32 + (32x3x3+1)x64 = 19,392
Number of parameters for fully connected layers = (4096+1)x(128) + (128+1)x(10) = 525,706
Total Number of parameters = 19,392 + 525,706 = 545,098

https://colab.research.google.com/drive/1W-CpyU3mwWr _ueSm 86C-do6pm361VMe?usp=sharing
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CNN Exercise

Consider a Convolutional Neural Network (CNN) that takes a 6x6 grayscale image as input. The network applies a single
3x3 convolutional filter with bias to produce one feature map, which is then passed through a ReLU activation function. A
max pooling operation is subsequently applied to reduce the spatial dimensions of the feature map. The pooled output is
flattened and fed into a fully connected layer (also with bias), and a Softmax function is used to produce a single-class
probability prediction.

Convolution Max-Pooling
Layer Layer Eully-
1 (3x3) Filters (2x2) Flatten  Connected
Stride 1 Stride 2 Layer Layer
A L L A

1 channels 2 channels
(1x4x4) (1x2x2) Softmax




Question (a)

(a) How many learnable parameters (weights and biases) are there in this CNN?

Convolutional layer: (3x3 + 1)x1 = 10

Convolution Max-Pooling

. Layer Layer Eully-
MaX—P001 layer. O 1 (3x3) Filters (2x2) Flatten Connected
Stride 1 Stride 2 Layer Layer
FC layer: (4 + 1)x3 =15 , : . 1 R S T,
Total: 10 + 15 = 25 =1 annas, e [ =
N ISR - =9 — ¥,
— J3
INPUT 1 channels 2 channels

(6x6) (1x4x4) (1x2x2) Softmax



Question (b)

(b) Given the 6x6 input image and the 3x3 convolutional filter kernel with bias b = -5 shown below,
compute the complete feature map produced by the convolution layer (using valid padding), and then
determine the resulting output after applying a 2x2 max-pooling operation with stride 2. Show all
intermediate values clearly.

o|5|5|5|5]|0
0o|5|5|5|5]|0

o|s5|o0o|5]|5]o0 1101
o|s|o|s5|5]o0 I
o|5|0|5|5]|0 L) O [
olslolsl|s|o 3x3 filter

Input image



Solution (b)

The convolution output with bias b=-5 :

0 5 5 5 5 0

055550 ~10-5 0-5 -5-5 15-5] [-15 -5
Input image: | ) g 0 g g 0 5-5 0-5 —10—-5 15-5 —10 —5

0505 5 o0 0-5 0-5 —-15-5 15-5

0-5 0-5 —-15-5 15-5

0 5 0 5 5 0

1 0 =1 Output of ReLU operation (Output of convolution layer):
Image filter: [1 0 —1]

1 0 -1 -15 -5 —-10 10

ReLU -10 -5 -15 10

The convolution output without bias : -5 =5 =20 10
10 0 -5 15 -5 -5 =20 10

o O O O
O O OO
o O OO

-5 0 —-10 15
0 0 —-15 15 Output of Max-pooling layer
0 0 -15 15 0 10

0 10




Question (c)

(c) Using the feature map obtained from part (b), flatten it and pass it through the fully connected
layer with weight matrix W with bias b. Compute the final output vector [¥; ¥, ¥3]7, apply the
Softmax function, and determine the predicted class label for the given 6x6 input image.

08 —-0.2 01 -0.2 0.1
W = [0.2 —0.6 0.5 —0.3] and b = —0.3]
05 03 -08 0.9 0.6
Convolution Max-Pooling
Laver Layer Eully-
1 (3x3) Filters (2x2) Flatten  Connected
Stride 1 Stride 2 Laver Layer

INPUT 1 channels 2 channels
(6x6) (1x4x4) (1x2x2) Softmax



Solution (c)

After flatten process:

Output of Fully-connected layer 1:

0.8
0.2
0.5

= Softmax

-0.2
—0.6
0.3

Xfeature:[o 10 0 1O]T

5\' = [5)1 372 5;2]T = SOﬂmaX(WXfeature +b)

0.1
0.5
-0.8

-0.2
-0.3
0.9

|

0

10
0

10

+

0.1
-0.3
0.6

e

The predicted class is the index with the highest probability.

= (Class 1: 6.8256x1078

= Class 2:3.0828x10~10
= Class 3: 0.9999 & highest

= Predicted class label =3

—-4.0
-9.0
12.0

+

0.1
-0.3
0.6

o

e

-39
-9.3
12.6

10

10

)-

OO 1
O.* > 92
O — =" ?3
Softmax
e—3.9
e—3.9 + e—9.3 + 612'6
093 [ 6.8256x1078 ]
=13.0828x10710
-39 -9.3 12.6
e+ oy te 0.9999
Lle=39 4 793 4 p12.6]




Why CNN Architecture Work

Local Connectivity

Filters focus on small, local
regions, mimicking the
biological eye's receptive
fields.

wer
Lw

Parameter Sharing

Features are useful
everywhere. Reusing weights
makes the model efficient
and translation invariant.

/N

Parameter Sharing

Simple patterns (edges)
combine to form complex
objects (faces) as the
network deepens.

Complex understanding arises from the layering of simple operations.



How to Train CNNs?



Backpropagation in CNNs

e Backpropagation trains CNNs by adjusting weights to minimize a cost function.
* During the forward pass, inputs are processed through convolutional, activation, pooling,
and fully connected layers.
* Inthe backward pass, gradients of the loss with respect to the weights are computed using
the chain rule. Key steps include:
1. Convolutional Layers : Gradients for filter weights are calculated via convolutions of the
error signal with input feature maps.
2. Pooling Layers : Gradients are passed based on max-pooling or average-pooling rules.
3. Weight Updates : Optimizers like SGD or Adam update weights using computed
gradients.
* This process efficiently trains CNNs to learn spatial hierarchies, making them ideal for tasks
like image recognition.



Quantifying Error: The Loss Function

Loss Landscape
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The Objective

Find weights e that minimize the
cost function L(0).

The Trigger

Current Model State ()

73 N
%, 7 O
;/"0“\
) “
X

a3
N * Training begins by measuring
how 'wrong' the prediction is.

?’;.
Common Functions
Binary Cross-Entropy: For 2-class

tasks (e.g., Healthy vs. Sick).

Softmax Loss: For multi-class
tasks (e.g., CIFAR-10)



Propagating Error: The Chain Rule

dL dL dy 0z
ow dy 0z Jdw

How much the Derivative of  Input from
Loss changes as  Activation previous
Output changes. (e.g., ReLU). layer.

[Weight (w) ]ﬁ Output (y) ]ﬁ Loss (L) ]

This recursive mechanism allows the network to assign "blame" to specific weights
for the total error, cascading from the final layer back to the first.




Gradients in Convolutional Layers
Handling Shared Parameters (Weights)

Gradient Accumulation  The Challenge: In a CNN, a single kernel

s L3123l 8 weight is used at every spatial position
(i, j) of the image.

Top Layer .
(Gradient Map) * The Solution: We cannot update the

weight based on just one pixel's error.
We must SUM the gradients from every
position where that weight was applied.

* Implication: This enforces Translation
Vw = Z Oi.j * Tregion Invariance-the filter Igarns features that
i are useful anywhere in the image.

Middle
(The Kernel) |/ | \




Routing Gradients: Non-Linearities
Pooling and ReLU have no weights, but they guide the flow.

ReLU (The Gate) Max Pooling (The Switch)
A
Forward Cache Backward Gradient
F d Pass: P -
pgrs\;ziire, kﬁlsrfegggse. 1 e gfa &gil?sd)ex 6 @ 6

—
-— . g 2 | © 0|0

Backward Pass:

If input > O, gradient
passes (x1). If input < O,
gradient is killed (x0).

The Switch Mechanism:
Gradient is routed
exclusively to the ‘winner’
pixel. Others receive O.




Backpropagation Pooling Layers

There are no weights to learn, only have to propagate gradients through

In Max-Pooling, backpropagated gradient is assigned only to the winning pixel i.e.,

the one which had maximum value in the pooling block; this can be kept track of in

the forward pass

pooling block (K; XK,) and equally assigned to all pixels in the block.

224x224x64

Backpropagation

In Average Pooling, the backpropagated gradient is divided by the area of the

1] 2 8
T 112
224 downsampling !
112

224 y

https://leonardoaraujosantos.gitbook.io/artificial-inteligence/machine learning/deep learning/pooling layer

112x112x64 Single depth slice
poo! | I 2 | 4
max pool with 2x2 filters
SumeM 7 | 8 and stride 2 6 | 8 6
| 3 | 2 K. 3|4 3 B
4

0(0|0|O

O |dout| O |dout
dout | () 0 0

0|0 (O |dout
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https://leonardoaraujosantos.gitbook.io/artificial-inteligence/machine_learning/deep_learning/pooling_layer

The Weight Update

Gradient Descent

The Weight Learning Rate (Step Size) Subtracting the gradient
(Kernel Parameter) Controls speed of (Moving downhill)

\ convergence.

Onew = Oota — 17 Vﬁ(@)

The Calculated Gradient
(Direction of steepest ascent)

* Optimizers like Adam or AdamW dynamically adjust the learning rate (n)
during training to speed up convergence and avoid getting stuck in local
minima.



Stabilizing the Gradient

Batch Normalization & Dropout

Without Batch Norm A With Batch Norm
a1 ?
S S
> >
Epochs Epochs
1. Batch Normalization 2. Dropout
» Problem: Internal Covariate Shift. Input distributions  Problem: Overfitting (memorization).

change as layers update. e Solution: Randomly “kill" 50% of neurons during
* Solution: Normalize layer inputs to Mean=0, Variance=1. training.

 Result: Allows higher learning rates, prevents vanishing e Result: Forces network to learn robust, redundant
gradients. features.



Tricks for improving CNN Trainings

* Better weight initialization:
= Glorot/He initialization: Empirically shown to give good results
= Hand-designed weight initialization: Using domain knowledge, come up with
features like edges (with certain orientations), shapes etc.
* Regularization methods:
= L2-weight decay, L1-weight decay
= BatchNorm, Input/Gradient Noise
= Dropout (Not commonly used today)

= Data augmentation
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From Randomness to Recognition

Evolution of Filters

Initialization (Random Weights) Early Training Converged Features
Epoch O Epoch 5 Epoch 50

* Through millions of iterations of the Forward - Backward - Update loop, the network
automatically organizes itself. Random noise evolves into structured feature detectors capable
of perceiving edges, shapes, and objects.

C-cells r f- —» Recognition

(Complex)
/Y 7y
[ | 1 ]
S-cells |
(Simple) ' / \




Interesting Property of CNNs

* CNN layers learn features in a hierarchical manner.

* Initial layers learn simple and generic features like
edges and color blobs, which are consistent across
different models trained on various datasets.

. capture more abstract and specialized
features that are specific to the dataset being
trained.

* Exploit the hierarchical nature of CNN features
for tasks such as transfer learning, where lower
layers can be reused for different tasks or datasets.

Low-Level
Feature

:

Mid-Level
Feature

|

H|gh-Level_>

Feature

Trainable
(lassifier
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