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Content
• Variants of Convolutional Operation

§ 1x1 Conv, Separable Conv, Transposed Conv, Dilated Conv, 3D Conv, 
Grouped Conv, etc.

• Evolution of CNN Architectures
§ LeNet, AlexNet, VGGNet, InceptionNet, ResNet, …

• Transfer Learning
§ Pre-training and fine-tuning

• CNN-based Computer Vision Applications
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Variants of 
Convolutional Operation



The Baseline: Standard Convolution
Mechanics:
• Input: 3 input channels processed 

simultaneously.

• Kernel: Spatial dimensions (3 × 3) 
extend through the full depth of the 
input volume (3 × 3 × 3).

• Output: One 2D feature map per filter.

Engineering Constraint:
Correlates spatial and channel-wise information 
in a single step. High computational cost
(N × M x K1 × K2 × K3)

3x3x3
kernel

The channel size of the 
kernel is equal to the 
number of  input 
features

N

M
Feature Map
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Standard Convolution Animation

Convolution Operation (Source)
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Pointwise Convolution: Controlling Dimensionality

• Also Know As: 1x1 Convolution.

• The Engineering Win: It plays a key role in 
reducing dimensionality, allowing for 
deeper networks without exploding 
parameter counts.

• Real-World application: Widely utilized in 
prominent architectures like GoogLeNet.

• Capability: Enables predictions at every 
spatial location (x, y) on feature maps, 
making it favored for semantic 
segmentation and object

1x1

Channels
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Spatial Separable Convolution: Divide and Conquer
THE Concept: Decomposes a standard NxN kernel into two smaller kernels: Nx1 and 1xN.

Spatial Separable Convolution

Regular Convolution

Nx1 

1xN 

NxN

The Result: Significantly reduces 
computational complexity and 
enhances processing speed.

Example: The Sobel kernel in image 
processing is frequently split into 3x1 
and 1x3 kernels for efficient 
computation

The constraint: This is not universally 
applicable; the kernel must have a 
Rank-1 matrix to be successfully 
separated.
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Spatial Separable Convolution in Practice

Both methods yield the identical mathematical result, but the Separable approach
requires fewer floating-point operations.
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Depthwise Separable Convolution
The Industry Standard for Efficiency (MobileNet, Xception)

2-D Conv

Phase 1: Depthwise Convolu4on 

Phase 2: Pointwise Convolution
Input with 
3 Channels

1x1 Conv
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Impact Analysis: Drastic Parameter Reduction

The Trade-off: A marginal potential loss in accuracy for a massive reduction in model size and latency. Ideal for 
mobile and edge devices.

No. of parameters: 
N x N x Channels x Filters

No. of parameters: 
(N x N x Channels) + (1 x 1 x Channels x Filters)

Ch
an

ne
ls
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Transposed Convolution: Learnable Upsampling

• The Problem: Standard convolution 
reduces spatial dimensions 
(pooling/striding). Traditional 
upsampling (Bilinear Interpolation) 
uses fixed, non-trainable rules.

• The Solution: Transposed Convolution 
(Deconvolution). Enables the network 
to learn the optimal way to upsample
data to reconstruct images for 
segmentation or super-resolution.
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How Transposed Convolution Works
It is not a reverse convolution. It is a standard convolution on a modified input

Also known as Deconvolution. Unlike fixed interpolation, this operation creates "Learnable Upsampling", 
allowing the network to discover the optimal way to expand spatial dimensions for generative tasks.

h7ps://medium.com/apache-mxnet/transposed-convolu?ons-explained-with-ms-excel-52d13030c7e8

Input feature map (4x4)

Output feature map (6x6)

3x3
kernel
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Regular vs Transposed Convolutions
• Transpose convolution allows to increase the size of the output feature 

map compared to the input feature map
• Regular Convolution: reduce the output size

• Transposed Convolution (stride =2): increase the output size
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Transposed Convolution by Regular Convolution
• Transposed Convolution (3x3 kernel, stride =2)

• Transposed Convolution that emulated with regular convolution

Putting paddings in the input feature maps to achieve  transposed convolution using regular convolution,

14

Input 2x2

Output 5x5

Padded Input 7x7

Output 5x5
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Dilated Convolution
Expanding the Receptive Field
• The Innovation: Introduces a "dilation rate" parameter that controls the spacing 

between values in a kernel.
• The Effect: Expands the receptive field (the area the network "sees") without 

increasing the number of parameters.
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Processing Volumetric Data: 3D Convolution

Application: Video Analysis & Medical Imaging. The kernel slides through Height, 
Width, AND Depth, capturing temporal or volumetric relationships.
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Parallel Pathways: Grouped Convolution

The input channels are split into distinct groups processed in parallel. Originally used for multi-
GPU training (AlexNet), now used for efficient, structured architecture deign.
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Flattened Convolution
• The Architecture: A pipeline that separates the task into three distinct stages:

1. Lateral connections (Spatial)
2. Vertical connections (Spatial)
3. Cross-channel connections

• The Outcome: Achieves spatial and cross-channel convolution through a sequence of 
specialized 1D filters.
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Cross-Channel Interaction
• Cross-Channel variants explicitly model correlations between feature 

maps.
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The Convolutional Cheat Sheet
OPERATION PRIMARY GOAL KEY MECHANISM

Standard Conv Feature Extraction Sliding window over all channels (Baseline 
cost).

Pointwise (1x1) Dimensionality 
Reduction

Projects channels to lower/higher depth. 
Keeps size.

Depthwise Separable Efficiency (Mobile) Separates spatial filtering from channel 
mixing.

Transposed Conv Upsampling Expands size via learned padding and 
convolution.

Dilated Conv Context Aggregation Uses kernel gaps to widen field of view.
3D Convolution Volumetric/Video Operates on Height, Width, and Depth/Time.
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Choosing the Right Tool

Modern Neural Network architecture is the art of balancing these trade-offs. There is no single 'best 
convolution-only the right variant for the specific constraint.
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Evolution of CNN Architectures



Evolution of CNN Architectures
• LeNet-5 – First CNN for handwri[en digit recogni\on (1989 and 1998)
• AlexNet – “ImageNet moment” (2012)
• VGGNet – Stacking 3x3 layers (2014)
• IncepBons (GoogleNet) – Parallel branches (2014)
• ResNet – Iden\ty shortcuts (2015)
• Wide ResNet – Wide instead of depth (2016)
• ResNeXt – Grouped convolu\on (2016)
• DenseNet – Dense shortcuts (2016)
• SENets – Squeeze-and-excita\on block (2017)
• MobileNets – Depthwise conv; inverted residuals (2017/18)
• EfficientNet – Model scaling (2019)
• RegNet – Design spaces (2020)
• ConvNeXt – (2022)
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LeNet-5 (1989 -1998)

LeCun et al (1989) LeNet-5 Architecture (1998)

• Convolution operations  are first introduced into Machine Learning by Yann  LeCun 
at AT&T Laboratories (Y. LeCun et. al. 1989)

Backpropagation first applied to CNN training LeNet-5 achieved state-of-the-art handwriDen 
digit recogniEon

24
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32x32
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LeNet-5 (1998)
• Conv filters were 5x5, applied at stride 1 and tanh activation function
• Subsampling (Average Pooling) layers were 2x2 applied at stride 2
• Overall Architecture: CONV-POOL-CONV-POOL-FC-FC-FC (Softmax)

§ 44.426K Parameters
§ Paper: Gradient-based learning applied to document recognition

25

Colab Demo: h7ps://colab.research.google.com/drive/1HVSreRywEAx0nn7Vwtr-mesJca67CoWQ?usp=sharing

25

https://colab.research.google.com/drive/1HVSreRywEAx0nn7Vwtr-mesJca67CoWQ?usp=sharing


Key innovations of LeNet-5
• Local Receptive Fields: Each neuron in a feature map was connected to 

a small region (e.g., 5x5) of the input image, capturing local patterns.

• Max Pooling: LeNet-5 used max pooling with a 2x2 sliding window for 
downsampling, reducing the spatial dimensions of the input while 
retaining important information.

• Average Pooling: The final pooling layer used average pooling to further 
reduce the spatial dimensions before the fully connected layers.
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LeNet-5 (1998)
• Handwritten digit 

Recognition

• MNIST Dataset

Layer 1
Layer 3

Layer5 Input image
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https://yann.lecun.com/exdb/lenet/a35.html

https://yann.lecun.com/exdb/lenet/a35.html


MLP vs CNN for NMIST Image Dataset
MLP

• MLP: MNIST Dataset
§ 70,000 28x28 Grayscale Images
§ 3-Layer MLP (784-128-64-10)
§ Performance: 98.3% Accuracy
§ No. of Parameters: 109.386K 

CNN: LeNet-5
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• LeNet-5: Fashion MNIST Dataset
§ 70,000 28x28 Grayscale Images
§ 5-Layer CNN: 5x5-5x5-120-84-10
§ Performance: 98.72% Accuracy
§ No. of Parameters: 61.706K



MLP vs CNN for Fashion NMIST Image Dataset
MLP

• MLP: Fashion MNIST Dataset
§ 70,000 28x28 Grayscale Images
§ 3-Layer MLP (784-128-64-10)
§ Performance: 84.18% Accuracy
§ No. of Parameters: 109.386K  

CNN: LeNet-5
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• LeNet-5: Fashion MNIST Dataset
§ 70,000 28x28 Grayscale Images
§ 5-Layer CNN: 5x5-5x5-120-84-10
§ Performance: 87.91% Accuracy
§ No. of Parameters: 44.426K



MLP vs CNN for CIFAR-10 Color Image Dataset
MLP

• MLP: CIFAR-10 Dataset
§ 60,000 32x32 RGB Color Images
§ 5-Layer MLP (3072-1536-768-384-128-10)
§ Performance: 54.9% Accuracy
§ No. of Parameters: 6,246.410K (about 6M)

CNN: LeNet-5
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• LeNet-5: Fashion MNIST Dataset
§ 70,000 28x28 Grayscale Images
§ 5-Layer CNN: 5x5-5x5-120-84-10
§ Performance: 64.78% Accuracy
§ No. of Parameters: 62.006K 

https://colab.research.google.com/drive/1vbFi4_6gZ_-bPhBFEdkoSOc3syjshoXP h"ps://colab.research.google.com/drive/1opQIrK6c2GDJP39PUJMMIu3cuznUggsU?usp=sharing#scrollTo=LVd86t5vVUk2

https://colab.research.google.com/drive/1vbFi4_6gZ_-bPhBFEdkoSOc3syjshoXP
https://colab.research.google.com/drive/1opQIrK6c2GDJP39PUJMMIu3cuznUggsU?usp=sharing


The Golden Era of CNNs (2010s)



ImageNet Dataset and ILSVRC Challenge
• In the early 2000s, deep learning techniques like CNNs were less popular due to 

their high computational demands and risk of overfitting to small datasets. 

• ImageNet Dataset (2009)
§ The introduction of the large-scale ImageNet dataset in 2009 

changed this, providing over 14 million annotated images across 
1,000 object classes. 

§ Its size and variety enabled researchers to train deeper models, 
leading to significant advancements in computer vision. 

• Large Scale Visual Recognition Challenge (ILSVRC, 2010-2017)
§ The ILSVRC challenge, using a subset of the ImageNet dataset, further accelerated 

innovation from 2010 to 2017, with notable models like AlexNet, VGG, and ResNet 
achieving state-of-the-art performance in image classification and driving progress in 
deep learning and computer vision.
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The Explosion of Depth
Winners of ILSVR Challenge (2010 - 2017) 

Following AlexNet, models became exponenYally deeper to capture more complex features.  
By 2015, ResNet (152 layers) surpassed human-level performance.

First CNN-based winner

33



AlexNet (2012): The Deep Learning Big Bang
AlexNet won ILSVRC 2012 with an 8-layer (5 Conv, 3 FC) —much deeper than LeNet. Key innovations:

• ReLU for faster training (6× speedup),
• Dropout (p=0.5) to reduce overfitting,
• Data augmentation via flips and color shifts,
• Two-GPU training splitting 60M parameters across GTX 580s (1 week).

• It achieved a 15.3% top-5 error—far ahead of the second-place 26.2%—igniting the deep learning 
era in vision.

34
Implementation of Alex used 2 GPUs



AlexNet Architecture
• 8 layers (5 conv layers and 3 fully connected layers)

§ CONV1-CONV2-POOL-CONV3-POOL-CONV4-POOL-CONV5-POOL-FC-FC-FC
§ The ReLU non-linearity is applied to the output of every layers
§ Response normalizaYon layer follow the first and second conv layers
§ Overlapped 3x3 Max Pooling and Dropout in FC layers
§ 60M Parameters

• Paper: ImageNet ClassificaYon with Deep ConvoluYonal Neural Networks
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AlexNet: Reducing Overfitting Techniques
Data Augmentation

§ Image Translation
§ Horizontal Reflection

§ Color Jittering

§ Dropout in FC Layers
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ZFNet (2013)
Showing reduced filter size and stride in initial layers.
Winner of ILSVRC-2013
• Similar to AlexNet architecture with 8 layers but:

§ CONV1: change from (11x11 stride 4) to (7x7 stride 2) => smaller filter’s kernel
§ CONV3, 4, 5: instead of 384, 384, 256 filters, use 512, 1024, 512  => more filters (Wide AlexNet)

§ Visualizing intermediate feature maps helped researchers understand what CNNs learn.
• ImageNet top-5 error: 16.4% => 11.7%
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VGGNet (2014): The Philosophy of Depth
Runner-up in ILSVRC-2014
• VGG replaced the complex, variable filter 

sizes of AlexNet/ZFNet with a radically 
simple philosophy:
• All Convs: 3x3, Stride 1
• All Pools: 2x2
• The Cost: 138 Million Parameters
• The Gain: 7.3% Error Rate

The VGG Block:
3x3 Conv + 2x2 Max Pool

VGG16 VGG19
38



The Power of Small Filters
Why stacking 3x3 layers i s better than a single large layer

• Using stacked 3×3 convolutions 
reduces parameters while preserving 
receptive field:
• Stacked two 3×3 ≈ one 5×5,

• For input and output with C
channels, three 3×3 layers use 27C2

params vs. 49C2 for one 7×7—saving 
>40% parameters and speeding up 
computation.

• More non-linearity (two ReLU
activations instead of one).
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GoogLeNet/Inception V1 (2014)
Winner of ILSVRC-2014

§ 6.7% top-5 error
• The Shock: Only 5 Million Parameters.
• Comparison: 12x smaller than AlexNet. 27x smaller 

than VGG.
• Design Philosophy: Going Deeper (22 layers) and 

Wider
§ Inception Module
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The Inception Module
A Network Within a Network

Bottleneck layers for
dimension reduction.

Captures features at
multiple scales
simultaneously.
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GoogLeNet: Output Auxiliary Classifier 
• Auxiliary Classifier
• In this classifier, Global Average Pool 

(GAP) is used instead of Flatten, which 
can reduce the number of parameters
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GoogLeNet: Auxiliary Classifiers

There are 3 Auxiliary Classifiers
• During Training:
• Inject additional gradient at lower layers.
• Make the optimization easier.

• During Test:
• Disable the auxiliary outputs.
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Optimization Innovations in GoogLeNet

44



Variants of Inception V1 (2015-2016)
• IncepTon-BN (V2) (2015): Use Batch NormalizaTon (BatchNorm)

• IncepTon V3 (2016): Uses modified Incep]on modules
§ Replace 5x5 by muljple 3x3 conv layers

§ Replace 5x5 by 1x7 and 7x1 conv layers

§ Replace 3x3 by 1x3 and 3x1 conv layers

§ Deeper

• IncepTon V4 (2016): Use residual connec]ons
§ This is the winner of ImageNet LSVRC-2016
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The Optimization Wall
The Degradation Paradox

• What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network for CIFAR-10 Dataset?

Not overfitting. The deep network struggles to optimize even the training data. 
The signal vanishes in the depth.
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Enter ResNet (2015): The Power of the Shortcut

• Innovation: 
§ Learning the residual (difference) is 

easier than learning the mapping.
§ If the layers learn nothing, the 

identity connection (x) ensures the 
signal passes through unchanged.

• Result: 
§ 152 Layers. 
§ 3.57% Error (ILSVRC 2015 Winner).

Idenjty Shortcut
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34-Layer Plain vs 34-Layer Residual

https://towardsdatascience.com/review-resnet-winner-of-ilsvrc-2015-image-classification-localization-detection-e39402bfa5d8
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Engineering for Depth: The Bottleneck Design
• How to stack 152 layers without exploding computational cost.

Efficiency Metric: ResNet-152 (11.3B FLOPs) is computationally cheaper than VGG-
19 (19.6B FLOPs) despite being ~8x deeper.
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Total Dominance: ILSVRC & COCO 2015
• The hypothesis was validated. ResNet swept every major category in the 

2015 competitions.

ImageNet Classification:
1st Place (3.57% error)

ImageNet Detection:
1st Place (+16% improvement)

ImageNet Localization:
1st Place (+27% improvement)
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The 152-Layer Revolution
ILSVRC 2015 Results

Efficiency Paradox: ResNet-152 (11.3B FLOPS) is deeper but lighter than VGG-19 (19.6B.
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Refining the Formula: Identity Mappings (2016)
Moving activation functions (ReLU) to the "Pre-activation" position clears the path for signal 

propagation, enabling training of 1000+ layer networks.

Moving Activation before 
Convolution clears the 
propagation path.
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Challenging Depth: Wide ResNets (2016)
• Is depth the only answer? Increasing the width (channels) proved more 

parallelizable and faster to train.

Result: A 50-layer Wide 
ResNet outperforms
a 152-layer standard 
ResNet.
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Increasing Connectivity: ResNeXt (2017)
The 'Split-Transform-Merge' Strategy.
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Radical Connectivity: DenseNet (2017)
• Connecting every layer to every subsequent layer maximizes feature reuse 

and signal flow.

Feed-forward 
concatenation 
of all feature 
maps.
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Smarter Features: Squeeze-and-Excitation (SENet)
• ILSVRC 2017 Winner. A volume knob for feature channels.

SE-ResNet Module: The SE block explicitly models channel interdependencies to recalibrate feature maps.
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MobileNet Mechanics: Depthwise Separable Convolutions
• Factorizing the convolution to slash computation costs.
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EfficientNet (2019)
• Conventional wisdom suggests that scaling up CNN architectures would lead 

to better accuracy i.e. deeper and wider networks perform better in general
• Explores a principled way to scale up a CNN to obtain better accuracy and 

efficiency

58
58



U-Net (2015): A Different Architecture
• U-Net revolutionized biomedical image segmentation with its U-shaped encoder-

decoder architecture: downsampling for context, upsampling for localization, and 
skip connections to preserve spatial detail. Heavy data augmentation overcame 
limited medical datasets, making it the field’s standard.
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The Transformer Challenge (2020-2022)
• In 2020, Vision Transformers (ViT) challenged CNN dominance. ViT divided 

images into patches, embedded them as tokens, and processed them with 
self-attention—modeling relationships between all patches simultaneously. 

• With sufficient data and compute, 
ViT matched or exceeded CNN 
performance, capturing global 
context that convolutions struggled 
with.
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ConvNeXt (2022): The CNN Response
• Rather than concede defeat, ConvNeXt modernized CNNs by adopting 

Transformer innovations:
• Larger patches (4×4 convolutions with stride 4) mimicked ViT's patching
• Depthwise separable convolutions for efficiency
• Large 7×7 kernels approximated self-attention's global context
• Inverted bottlenecks from MobileNetV2
• GELU activation instead of ReLU
• LayerNorm replacing BatchNorm

• ConvNeXt demonstrated that convolution-based architectures, when properly 
designed, still compete with Transformers. The best approach often depends 
on your specific task, data, and computational constraints.
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ConvNeXTv2 (2023): Pushing Further
• ConvNeXt V2 (2023) advanced CNNs with Global Response Normalization 

(GRN)—a new layer that boosts inter-channel diversity by normalizing 
features using global spatial statistics, reducing feature collapse. 

• It also featured a simplified architecture, stronger 
scaling from tiny to huge models, improved 
masked image modeling for self-supervised 
learning, and better transfer performance on tasks 
like detection and segmentation. 

• The result: CNNs that match or surpass 
Transformers in accuracy while remaining more 
efficient and interpretable.

https://medium.com/the-techlife/convnextv2-overview-tutorial-2023-afebce7315e9
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Hybrid Architectures and the Path Forward (2024)
• By 2024, CNNs and Transformers converged into hybrid architectures that 

leveraged their complementary strengths. 
§ ConvFormer models used convolutional stems for efficient early processing and attention layers 

for long-range modeling, achieving superior accuracy-efficiency trade-offs. 

§ Depthwise attention (e.g., in MaxViT, FasterViT) reduced self-attention’s cost by applying it 
locally, matching global performance with far lower complexity. 

§ Dynamic sparse architectures allocated compute adaptively—focusing resources on informative 
regions—ideal for high-res images and video. 

§ The field shifted toward task-specific design: medical imaging adopted attention-enhanced U-
Nets, autonomous driving used edge-optimized hybrids, and satellite analysis balanced global 
context with detail. 

§ Hardware co-design became essential, with models tailored to tensor cores, NPUs, and custom 
chips—not just FLOPs or parameters.
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Transfer Learning and Fine-Tuning



The High Cost of Training from Scratch

Challenges: High Parameter Complexity • Data Hunger • Extreme Hardware Intensity
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Standing on the Shoulders of Giants
• The Core Concept: Rather than 

initializing with random weights, we 
leverage models pre-trained on 
massive datasets.

• The Advantage: Bypasses the need 
for colossal data gathering and 
reduces computational complexity.

• Key Mechanisms: Transfer Learning 
or Fine-Tuning

66



Transfer Learning (or Fine-Tuning)
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Implementation Strategy: Adapting VGG16
Case Study: ImageNet to CIFAR-10

Strategy: The convolutional base is frozen
to retain learned feature extraction. Only the
fully connected top layers are replaced and
trained on the new datase

https://colab.research.google.com/drive/1tRl-AEbV33q6VSkoqgItb15uq2y5NkHG
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Case Study: VGG16 on CIFAR-10
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Quantifying the Advantage
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CNN-based Computer Vision Applications



Beyond Simple Classification
CNN capabilities have evolved from single labels to complex scene parsing
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Object Detection: Finding the ‘Where’ and ‘What’

PROBLEM SPACE
§ Moving beyond single-

label classification.

§ Task 1: Identify multiple 
classes (Classification).

§ Task 2: Localize each 
instance with coordinates 
(Regression)
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PRECISION ARCHITECTURES: THE R-CNN FAMILY
Focus: High Accuracy | Cost: Computational Intensity

Region Proposal Networks (RPN) scan the image for potential objects, which are then 
normalized and classified. Highly accurate, but computationally expensive.
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REAL-TIME SPEED: YOLO (You Only Look Once)
Focus: Speed & Real-Time Inference | Cost: Slight Accuracy Trade-off

Mechanism: Unlike R-CNN, YOLO treats detection as a single regression problem, 
predicting tensors directly from the image in one pass.
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Image Segmentation: Understanding Every Pixel
SEMANTIC SEGMENTATION

§ Classifies pixels by category (e.g., 
'Person’, ‘Sea'). No distinction between 
individuals.

INSTANCE SEGMENTATION
§ Distinguishes between individual 

objects of the same class (e.g., 'Person 
1' vs. 'Person 2').

Person 1, Person 2, Person 3Land Sea Sky Person
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Advanced Tasks: Human Pose Estimation
Topology Mapping:

§ Predicting the coordinates of 
key joints to model human 
movement.

Applications:
§ Sports Analytics

§ Healthcare/Rehab

§ AR/VR Gaming

Skeletal structure overlay showing 
predicted joint positions.
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Practical Deployment: The Modern Workflow
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Colab: YOLO12 Object Detection Demo
• We will be implemen7ng the 

following steps:
1. Install YOLO12 from Ultralyjcs
2. Running inference on single image.

3. YOLO12 Image Segmentajon and 
Human Pose Esjmajon

4. Download sample video and run 
YOLO12 inference on it.

5. YOLO12 Webcam demo.

https://colab.research.google.com/drive/1XPgQuos-FwMh8pvvmftADSv6XcRG0YKI?usp=sharing
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YOLO CVPR16 Oral Presentation

https://www.youtube.com/watch?v=NM6lrxy0bxs
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The Structural Limits of CNNs

CNNs excel at local features (edges, textures) but struggle to capture long-distance 
dependencies essential for complex context or natural language.
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The Next Horizon: Beyond Convolution

The future lies in architectures that solve the "long-distance dependency" 
problem using Attention.
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