Evolution of CNN Architectures

Al with Deep Learning
EE4016

Prof. Lai-Man Po

Department of Electrical Engineering
City University of Hong Kong

Content

* Variants of Convolutional Operation

1x1 Conv, Separable Conv, Transposed Conv, Dilated Conv, 3D Cony,
Grouped Convy, etc.

* Evolution of CNN Architectures

LeNet, AlexNet, VGGNet, InceptionNet, ResNet, ...
* Transfer Learning

Pre-training and fine-tuning

* CNN-based Computer Vision Applications

Variants of
Convolutional Operation

The Baseline: Standard Convolution

a a Mechanics:

I * Input: 3 input channels processed

simultaneously.

* Kernel: Spatial dimensions (3 x 3)
extend through the full depth of the
3x3x3 The channel size of the input volume (3 X 3 X 3)

kernel is equal to the

A A

Niijiber of input * Output: One 2D feature map per filter.

features

p
Engineering Constraint:

Correlates spatial and channel-wise information

in a single step. High computational cost
(NxMxK; xK,xKs)

_

Standard Convolution Animation

Anim

g

Convolution Operation (Source)

animatedai.github. 10

https://animatedai.github.io/

Pointwise Convolution: Controlling Dimensionality

e Also Know As: 1x1 Convolution.

* The Engineering Win: It plays a key role in
reducing dimensionality, allowing for
deeper networks without exploding
parameter counts.

 Real-World application: Widely utilized in
prominent architectures like GooglLeNet.

e Capability: Enables predictions at every
spatial location (x, y) on feature maps,

making it favored for semantic
segmentation and object

Spatial Separable Convolution: Divide and Conquer

THE Concept: Decomposes a standard NxN kernel into two smaller kernels: Nx1 and 1xN.

Regular Convolution

NxN

A

Spatial Separable Convolution

Input Kernel

Intermediate

output

1xN

Kernel

Output

The Result: Significantly reduces
computational complexity and
enhances processing speed.

Example: The Sobel kernel in image
processing is frequently split into 3x1
and 1x3 kernels for efficient
computation

The constraint: This is not universally
applicable; the kernel must have a
Rank-1 matrix to be successfully
separated.

Spatial Separable Convolution in Practice

Simple Convolution

Convolution with 3x3 Kernel (Sobel)

Image

-1 0 1
=2 8.2
-1 0 1
Spatial Separable Convolution
1]
2
1 R Intermediate Sk N Output
Step 1: Vertical (3x1) Image Step 2: Horizontal (1x3) lmage

Both methods yield the identical mathematical result, but the Separable approach
requires fewer floating-point operations.

Depthwise Separable Convolution

\\\\\\\

Phase 2: Pointwise Convolution

\\\\\\\\
\\\\\\\

The Industry Standard for Efficiency (MobileNet, Xception)

3 Channels

Phase 1: Depthwise Convolution

Impact Analysis: Drastic Parameter Reduction

Standard Convolution Depthwise Separable

peg
+

1x1

Standard >> Separable

Channels

T v g N
* —

A

Channels

*
- =
—_——
A —

No. of parameters: No. of parameters:
N x N x Channels x Filters (N x N x Channels) + (1 x 1 x Channels x Filters)

The Trade-off: A marginal potential loss in accuracy for a massive reduction in model size and latency. Ideal for
mobile and edge devices.

10

Transposed Convolution: Learnable Upsampling

Output

______ * The Problem: Standard convolution
------------------------------------ reduces spatial dimensions
(pooling/striding). Traditional
upsampling (Bilinear Interpolation)
uses fixed, non-trainable rules.

* The Solution: Transposed Convolution
(Deconvolution). Enables the network
to learn the optimal way to upsample
data to reconstruct images for
segmentation or super-resolution.

Feature Map

11

How Transposed Convolution Works
It is not a reverse convolution. It is a standard convolution on a modified input

Output feature map (6x6)

Input Kernel Output
0|0 0|1 0|01
o o] 0|0 2|3 012 013 0[4]6 S
= + + + =
> IE s kernel
416 6|9 4112 9

Input feature map (4x4)

Also known as Deconvolution. Unlike fixed interpolation, this operation creates "Learnable Upsampling",
allowing the network to discover the optimal way to expand spatial dimensions for generative tasks.

https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8

12

https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8

Regular vs Transposed Convolutions

* Transpose convolution allows to increase the size of the output feature
map compared to the input feature map

* Regular Convolution: reduce the output size

e & 3 3 3

* Transposed Convolution (stride =2): increase the output size

output @ @
© ® ®

input

13

13

Transposed Convolution by Regular Convolution

* Transposed Convolution (3x3 kernel, stride =2)

output @ @ @ @ Output 5x5

input

Input 2x2

* Transposed Convolution that emulated with regular convolution

Output 5x5

Padded Input 7x7

Putting paddings in the input feature maps to achieve transposed convolution using regular convolution,

14

14

Dilated Convolution
Expanding the Receptive Field

The Innovation: Introduces a "dilation rate" parameter that controls the spacing
between values in a kernel.

The Effect: Expands the receptive field (the area the network "sees") without
increasing the number of parameters.

dilation=1 dilation=2 dilation=3

15

Processing Volumetric Data: 3D Convolution

Application: Video Analysis & Medical Imaging. The kernel slides through Height,
Width, AND Depth, capturing temporal or volumetric relationships.

16

Parallel Pathways: Grouped Convolution

<
.
:
A
.
:
5

The input channels are split into distinct groups processed in parallel. Originally used for multi-
GPU training (AlexNet), now used for efficient, structured architecture deign.

17

Flattened Convolution

The Architecture: A pipeline that separates the task into three distinct stages:
1. Lateral connections (Spatial)
2. Vertical connections (Spatial)
3. Cross-channel connections

The Outcome: Achieves spatial and cross-channel convolution through a sequence of
specialized 1D filters.

Cx1x1 1x¥x1 1x1xX

V. /L =S

R

—m—M—Y

18

Cross-Channel Interaction

* Cross-Channel variants explicitly model correlations between feature

maps.

Input

The Convolutional Cheat Sheet

Standard Conv Feature Extraction

Dimensionality

Pointwise (1x1) Reduction

Depthwise Separable Efficiency (Mobile)

Transposed Conv Upsampling
Dilated Conv Context Aggregation
3D Convolution Volumetric/Video

Sliding window over all channels (Baseline
cost).

Projects channels to lower/higher depth.
Keeps size.

Separates spatial filtering from channel
mixing.

Expands size via learned padding and
convolution.

Uses kernel gaps to widen field of view.

Operates on Height, Width, and Depth/Time.

20

Choosing the Right Tool

Efficiency

Depthwise Separable
(MobileNet, Xception)

Transposed Conv Dilated Conv
(UNet, GANS) (DeepLab)
Resolution Context

Modern Neural Network architecture is the art of balancing these trade-offs. There is no single 'best
convolution-only the right variant for the specific constraint.

21

Evolution of CNN Architectures

Evolution of CNN Architectures

* LeNet-5 - First CNN for handwritten digit recognition (1989 and 1998)
* AlexNet — “ImageNet moment” (2012)

* VGGNet — Stacking 3x3 layers (2014)

* Inceptions (GoogleNet) — Parallel branches (2014)

* ResNet — Identity shortcuts (2015)

* Wide ResNet — Wide instead of depth (2016)

* ResNeXt — Grouped convolution (2016)

* DenseNet — Dense shortcuts (2016)

* SENets — Squeeze-and-excitation block (2017)

* MobileNets — Depthwise conv; inverted residuals (2017/18)
* EfficientNet — Model scaling (2019)

* RegNet — Design spaces (2020)

* ConvNeXt —(2022)

23

23

LeNet-5 (1989 -1998)

e Convolution operations are first introduced into Machine Learning by Yann LeCun
at AT&T Laboratories (Y. LeCun et. al. 1989)

LeCun et al (1989) LeNet-5 Architecture (1998)

Backpropagation first applied to CNN training LeNet-5 achieved state-of-the-art handwritten
10 output units [[B dlglt recognition

fully connected

»« ~ 300 links
layer H3 KECoooooogy C3:f. maps 16@10x10
30 hidden units " fully conpected gé:zfg:tzuaremaps P 168 Xs4:f.maps16@5x5
~ 6000 links 32x32

6@14x14

layer H2

12 x 16=192

hidden units P ~ 40,000 links
from 12 kernels
5x5x8

layer H1

12 x 64 = 768

|
‘ Full oon#eclion ’ Gaussian connections

~20,000 links Convolutions Subsampling Convolutions Subsampling Full connection
from 12 kernels

hidden units
H1

256 input units

24
24

LeNet-5 (1998)

e Conv filters were 5x5, applied at stride 1 and tanh activation function
* Subsampling (Average Pooling) layers were 2x2 applied at stride 2
e Overall Architecture: CONV- -CONV- -FC-FC-FC (Softmax)

= 44.426K Parameters
= Paper: Gradient-based learning applied to document recognition cuss Leets(mn.modute):

def __init__(self):
super().__init_ ()

fc 3 fc 4 fc 5 self.network = nn.Sequential(

Conv_1 Conv_2 Full F i Fﬁ nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0),
Convolution : Convolution : Rully- ully- Lully- nn.Tanh(),
(1x5x5) Kernel Avg-Pooling (6x5%5) Kernel Avg-Pooling Connected Connected Connected nn.AvgPool2d(2, 2), # output: 6 x 14 x 14
6 filters (2x2) 16 filters {22l Layer Layer Layer ' . .
A 1 i i i nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0),
f \ i) \ nn.Tanh(),

nn.MaxPool2d(2, 2), # output: 16 x 5 x 5

O—0 nn.Flatten(),
1 nn.Linear(16x5%5, 120),
] nn.Tanh(),
_"'T‘ 8 nn.Linear (120, 84),
INPUT S nn.Tanh(),
(28 x 28) - 9 nn.Linear(84, 10))

6 channels 6 channels 16 channels 16 channels

(6x 24 x 24) (6x12x12) (16 x8x8) (16x 4 x 4) def forward(self, xb):

24 8 return self.network(xb)
= + 1=24 2-1 |==] +1=8 5] =2 120

Test Accuracy on the 10000 test images: 98.72 %

Colab Demo: https://colab.research.google.com/drive/1HVSreRywEAXOnn7Vwtr-meslca67CoWQ?usp=sharing

25
25

https://colab.research.google.com/drive/1HVSreRywEAx0nn7Vwtr-mesJca67CoWQ?usp=sharing

Key innovations of LeNet-5

* Local Receptive Fields: Each neuron in a feature map was connected to
a small region (e.g., 5x5) of the input image, capturing local patterns.

 Max Pooling: LeNet-5 used max pooling with a 2x2 sliding window for
downsampling, reducing the spatial dimensions of the input while
retaining important information.

* Average Pooling: The final pooling layer used average pooling to further
reduce the spatial dimensions before the fully connected layers.

26

https://yann.lecun.com/exdb/lenet/a35.html

LeNet-5 (1998)

St

%m I LeNet 5 | gesearcn
answer: 0

 Handwritten digit
Recognition

* MNIST Dataset

=]
M

lh

11rves 0

AR
5 ?
<
Dl
(2B L
m — [o—
Al
")
=
-
)
d

-

> > O

\ Input image
\p\\e \p\\e \,’6\\6 P g

27

https://yann.lecun.com/exdb/lenet/a35.html

MLP vs for NMIST Image Dataset

MLP

— pixel 1—)

pixel 2— Conv_1 Conv_2 ::HB Ff:ﬁ4 Ff:ﬁs

pixel 3— Convolution Convolution : uRye Uy Ry

pixel 4 — o Avg-Pooling Avg-Pooling Connected Connected Connected
15— ‘ PO = 0.01 (1x5x5) Kernel (6x5x5) Kernel (2x2)

plxel 6 : = .p1 =0 01’ 0 6 filters (22) 16 filters Layer Layer Layer

pixel 6— . P1=0. 1 A

ixel 7— S o : 1 i 4 l f . Y r h) 4 . I \
(28x28) p ‘ P2-003

pixel 8— o 4 o P3=0 o;

= N - e Orevons >
: e | ‘ : —— 4 ©—0

» T b : : P5=010 ¢ . \V 1
: 2N ' S X P6 = 0.20 =
:) ¢ . > 6 = 8
: 4 RN) > P7 = 0.05 - SR i
. o o > - 7 INPUT e R -3 3eg 9
/e - P8=095 o (28 x 28)
P9=0.05 9 6 channels 6 channels 16 channels 16 channels
(6 x 24 x 24) (6x12x12) (16x8x8) (16 x4 x 4)
120
. pixel 784 — ()

. : Fashion MNIST Dataset
= 70,000 28x28 Grayscale Images
= 5-Layer CNN: 5x5-5x5-120-84-10
= Performance: 98.72% Accuracy
No. of Parameters: 61.706K

* MLP: MNIST Dataset
= 70,000 28x28 Grayscale Images
= 3-Layer MLP (784-128-64-10)
= Performance: 98.3% Accuracy
* No. of Parameters: 109.386K

G\EQ}H
< 0D~

&
=0

28

MLP vs
MLP

— pixel1—Q

for Fashion

’ <
pixel 2—-Q
pixel 3— -
pixel 4— O 8} I
pixel 5— Q) 0 (O———— T-shirt/top
pixel 6— e pooot Trouser
. ixel 7— “P=0.
Shirt e e =003 ¢ pullover
pixel 8— P=0.02
pixel 9— O 2@ (m’ Dress
Q O (———* Coat
-) P=0.01
O =10 (e T Sandal
o - D (——E ~ oo Shirt
(28x28) . O O P:W’ Sneaker
Fashion MNIST e e, P' 0'01 Bag
Dataset d 0] ——— Ankle boot
d d
@)
L pixel 784— (5

e MLP: Fashion MNIST Dataset
= 70,000 28x28 Grayscale Images
= 3-lLayer MLP (784-128-64-10)
= Performance: 84.18% Accuracy
* No. of Parameters: 109.386K

...........

nnnnnnnnnnnnnnnn

NMIST Image Dataset

fc_3 fc_a fc_5
Conv_1 Conv_2 Fully- Fully- Eully-
Convolution Convolution f
—_— i i =ONVOIURION Avg-Pooling Connected Connected Connected
(1x5x5) Kernel M(;?%g (6x5x5) Kernel (2x2) Layer Layer Layer
6 filters 16 fi
A A Illters i {_A_\
r 1 r L A
) T-shirt/top
Trouser
-] 3= Bag
S|) - --- - Ankle boot
(1x 28 x 28)
6 channels 6 channels 16 channels 16 channels
(6x 24 x 24) (6x12x12) (16x8 x8) (16x4ax4) QO
120x 84

. : Fashion MNIST Dataset
= 70,000 28x28 Grayscale Images
= 5-Layer CNN: 5x5-5x5-120-84-10
= Performance: 87.91% Accuracy
* No. of Parameters: 44.426K

29

MLP vs

MLP

— pixel 1—Q

pixel 2— ~
pixel 3—
pixel 4 — " N
pixel 5— Q) (% Airplane
e e
(32x32x3) pixel 8— @ (m’ Bird
pixel 9— O (j————— Cat
- P=0.03
— : O { F————* Deer
- P=0.10
: - ; P=0.20 2
2 ; (T M
CIFAR-10 : O ==t Horse
Color Image O yrmecsend Ship
) P=0.05
d et TUICK
o
J
L Pixel 3072 ()

* MLP: CIFAR-10 Dataset
= 60,000 32x32 RGB Color Images
= 5-Layer MLP (3072-1536-768-384-128-10)
= Performance: 54.9% Accuracy
= No. of Parameters: 6,246.410K (about 6M)

https://colab.research.google.com/drive/1vbFi4 6gZ -bPhBFEdkoSOc3syjshoXP

for CIFAR-10 Color Image Dataset

fc_4 fc_5
Conv_1 Conv_2 Fully- Eully:
Convolution Max- Convolution Connected Connected
(3x3x3) Kernel Pooling (32x3x3) Kernel Layer Laver
32 filters (2x2) 64 filters A \
A A A

INPUT
(3x32x32)

‘\ ﬁ%. Airplane
XK / \\\‘/é

Automobile

Y,
oL :

Ship
Truck

64 channels
(64x8x8)

64 channels
(64 x 16 x 16)

32 channels
(32x16x 16)

32 channels 128x 10

(32x32x32)

4096 x 128

. : Fashion MNIST Dataset
= 70,000 28x28 Grayscale Images
= 5-Layer CNN: 5x5-5x5-120-84-10
= Performance: 64.78% Accuracy
* No. of Parameters: 62.006K

https://colab.research.google.com/drive/10pQIrk6c2GDIP39PUIMMIu3cuznUggsU?usp=sharing#scrollTo=LVd86t5vVUk2

30

https://colab.research.google.com/drive/1vbFi4_6gZ_-bPhBFEdkoSOc3syjshoXP
https://colab.research.google.com/drive/1opQIrK6c2GDJP39PUJMMIu3cuznUggsU?usp=sharing

The Golden Era of CNINs (2010s)

ImageNet Dataset and ILSVRC Challenge

In the early 2000s, deep learning techniques like CNNs were less popular due to
their high computational demands and risk of overfitting to smali datasets

* ImageNet Dataset (2009)

= The introduction of the large-scale ImageNet dataset in 2009

changed this, providing over 14 million annotated images across
1,000 object classes.

" |ts size and variety enabled researchers to train deeper models,
leading to significant advancements in computer vision.

* Large Scale Visual Recognition Challenge (ILSVRC, 2010- 2017)

= The ILSVRC challenge, using a subset of the ImageNet dataset, further accelerated
innovation from 2010 to 2017, with notable models like AlexNet, VGG, and ResNet

achieving state-of-the-art performance in image classification and driving progress in
deep learning and computer vision.

32

The Explosion of Depth

Winners of ILSVR Challenge (2010 - 2017)

Classification Error %

30 282%

25

20

15

10

2010 2011
Linetal Sanchez &
Perronnin

/ First CNN-based winner

5
shallow . shallow "
0

16.4%

2012
Krizhevsky et al

(AlexNet)

152 layers
Human Performance

3.6% 3.0%

- - 2.3%
2013 2014 2014 2015 2016 2017
Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al
Fergus Zisserman (GoogleNet) (ResNet) (SENet)

(VGG)

Number of Layers

Following AlexNet, models became exponentially deeper to capture more complex features.
By 2015, ResNet (152 layers) surpassed human-level performance.

33

AlexNet (2012): The Deep Learning Big Bang

AlexNet won ILSVRC 2012 with an 8-layer (5 Conv, 3 FC) —much deeper than LeNet. Key innovations:
* RelU for faster training (6x speedup),
* Dropout (p=0.5) to reduce overfitting,
* Data augmentation via flips and color shifts,
* Two-GPU training splitting 60M parameters across GTX 580s (1 week).
* |t achieved a 15.3% top-5 error—far ahead of the second-place 26.2%—igniting the deep learning

era in vision.
30% -

20%

4 1
{1]
[£)
.
a
3
Error Rate

3 _ 10% -
ﬁ_ N 5 B o 1000
. [ar -:15_ ... t | e 0 oy /
D! B BN derse | |dense
Au; "Ax; "2 Ma e :; 0% T T T T T T
w Pty Cpr Pehe n R s ® 1k 2k 3k 4k 5k
Implementation of Alex used 2 GPUs Training Iterations

34

AlexNet Architecture

» 8 layers (5 conv layers and 3 fully connected layers)

= CONV1-CONV2-POOL-CONV3-POOL-CONV4-POOL-CONV5-POOL-FC-FC-FC [Softmax
= The ReLU non-linearity is applied to the output of every layers » [[ii iggg
C
= Response normalization layer follow the first and second conv layers fc6 | FC 4096
= Qverlapped 3x3 Max Pooling and Dropout in FC layers | Pool
convs | 256
= 60M Parameters conva [:
* Paper: ImageNet Classification with Deep Convolutional Neural Networks [Pool
convd |
4 | Pool
74 dense dense conv2 |5 x5 conv, 25¢
1 55 ’ ; 13 /1g)g dense convi | 11 x 11 conv, 96
| Input
11£> 5&27 3£>13 37 |13 W3 —
384 384 256 1000 AlexNet
224 256 Max Max 4096 4096

9% Max pooling pooling
/tri s pooling

of 4

w

AlexNet: Reducing Overfitting Techniques

256 . . 224 . a. No augmentatior

Data Augmentation

= |mage Translation

= Horizontal Reflection

= Color lJittering

= Dropoutin FC Layers

36

ZFNet (2013)

Showing reduced filter size and stride in initial layers.

* Similar to AlexNet architecture with 8 layers but:
= CONV1: change from (11x11 stride 4) to (7x7 stride 2) => smaller filter’s kernel
= CONVS3, 4, 5: instead of 384, 384, 256 filters, use 512, 1024, 512 => more filters (Wide AlexNet)
= Visualizing intermediate feature maps helped researchers understand what CNNs learn.

* ImageNet top-5 error: 16.4% => 11.7%

image size 224

110

filter size 7

|
ﬂl?t‘ride 2

3x3 max pool ?6}"\?358‘
stride 2

Input Image

\355A

w96 3x3max

26

,"\2‘56

pool| |contrast
stride 2| [norm.

Layer 2

256
Layer 3 Layer 4

13 13
*13 L384 ‘1'13 \3‘

13
84 256
N

3x3 max

pool 4096
stride 2 units

6 256

Layer 5

-

4096
units

class
softmax

Layer6 Layer7 Output

37

VGGNet (2014): The Philosophy of Depth

Runner-up in ILSVRC-2014

* VGG replaced the complex, variable filter
sizes of AlexNet/ZFNet with a radically

simple philosophy:

e All Convs: 3x3, Stride 1

* All Pools: 2x2

* The Cost: 138 Million Parameters
* The Gain: 7.3% Error Rate

The VGG Block:
3x3 Conv + 2x2 Max Pool

fc8
fc7
fcé

conv5-3
conv5-2
conv5-1

conv4-3
conv4-2
conv4-1

conv3-2
conv3-1

conv2-2
conv2-1

convl-2
convl-1

Softmax
FC 1000
Softmax FC 4096
FC 1000 FC 4096
FC 4096 Pool
FC 4096 3 X 3 conv,512
Pool 3 X 3 conv,512

3 X 3 conv, 512

3 X 3 conv, 512

3 X 3 conv,512

3 X 3 conv,512

3 x 3 conv,512

Pool

Pool

3 X 3 conv,512

3 X 3 conv,512

3 X 3 conv,512

3 x 3 conv,512

3 X 3 conv,512

3 X 3 conv,512

3 X 3 conv,512

Pool

Pool

3 X 3 conv, 256

3 X 3 conv, 256

3 X 3 conv, 256

3 X 3 conv, 256

Pool

Pool

3 X 3 conv,128

3 X 3 conv,128

3 X 3 conv,128

3 X 3 conv,128

Pool Pool
3 X 3 conv, 64 3 X 3 conv, 64
3 X 3 conv, 64 3 X 3 conv, 64
Input Input
VGG16 VGG19

38

The Power of Small Filters
Why stacking 3x3 layers i s better than a single large layer
* Using stacked 3x3 convolutions

reduces parameters while preserving
receptive field:

* Stacked two 3x3 = one 5x5,

\ * Forinput and output with C

channels, three 3x3 layers use 27C?

! = params vs. 49C? for one 7x7—saving
|« > >40% parameters and speeding up
One 5x5 Conv Two Stacked computation.
3x3 Convs * More non-linearity (two RelLU

activations instead of one).

39

GooglLeNet/Inception V1 (2014)

Winner of ILSVRC-2014
"= 6.7% top-5 error

* The Shock: Only 5 Million Parameters.

e Comparison: 12x smaller than AlexNet. 27x smaller
than VGG.

* Design Philosophy: Going Deeper (22 layers) and
Wider

" |Inception Module

Concatenation

Convolution Convolution Convolution Convolution
kernel: 1x1 kernel: 3x3 kernel: 5x5 kernel: 1x1

Convolution Convolution MaxPooling
kernel: 1x1 kernel: 1x1 kernel: 3x3

The Inception Module
A Network Within a Network

Convolution
kernel: 1x1

Bottleneck layers for
dimension reduction.

Concatenation

Convolution
kernel: 3x3

Convolution
kernel: 1x1

Convolution
kernel: 5x5

Convolution
kernel: 1x1

Convolution
kernel: 1x1

MaxPooling
kernel: 3x3

Captures features at
multiple scales
simultaneously.

41

GooglLeNet: Output Auxiliary Classifier

* Auxiliary Classifier

* In this classifier, Global Average Pool
(GAP) is used instead of Flatten, which

can reduce the number of parameters

Va 1x1x1024
» » 2 o AveragePool

e/ * 7x7+1(V)

o bPSSRe ©
T O000 00
(9]

Y 7x7x1024

w=6 | DepthConcat

42

GoogleNet: Auxiliary Classifiers

There are 3 Auxiliary Classifiers

* During Training:
* Inject additional gradient at lower layers.
* Make the optimization easier.

* During Test:

* Disable the auxiliary outputs.

Auxiliary classification outputs to inject

additional gradient at lower layers
(GlobalAvgPool-1x1Conv-FC-FC-Softmaxe)

AveragePoo
L 7x7+1(V)

DepthConcat

AveragePoo
L 7x7+1(V)

DepthConcat

Optimization Innovations in GooglLeNet

The Bottleneck Auxiliary Classifiers Global Avg Pooling

1x1
Conv
1x1+1(s)

1x1 Convs reduce Injects gradients Replaces massive
depth before early to FC layers.
expensive to stop vanishing Saves millions

operations. gradient problem. of parameters.

44

Variants of Inception V1 (2015-2016)

* Inception-BN (V2) (2015): Use Batch Normalization (BatchNorm)
* Inception V3 (2016): Uses modified Inception modules

= Replace 5x5 by multiple 3x3 conv layers

= Replace 5x5 by 1x7 and 7x1 conv layers

= Replace 3x3 by 1x3 and 3x1 conv layers \

= Deeper

* Inception V4 (2016): Use residual connections

45

The Optimization Wall

The Degradation Paradox

 What happens when we continue stacking deeper layers on a “plain” convolutional

neural network for CIFAR-10 Dataset?

training error (%)

A 20-layer

L
5 6

2 3 r
iter. (1e4)

test error (%)

S
T

> 3 n
iter. (1e4)

Not overfitting. The deep network struggles to optimize even the training data.
The signal vanishes in the depth.

46

Enter ResNet (2015): The Power of the Shortcut

° |nnovation: ReSiduaI BIOCk

= Learning the residual (difference) is Input x
easier than learning the mapping. _ Identity Shortcut
. Weight Layer
= |f the layers learn nothing, the I
identity connection (x) ensures the RelU X
signal passes through unchanged. L
e Result: Weight Layer

= 152 Layers.
= 3.57% Error (ILSVRC 2015 Winner).

ReLU y=F(X) +x

47

34-Layer Plain vs 34-Layer Residual

https://towardsdatascience.com/review-resnet-winner-of-ilsvrc-2015-image-classification-localization-detection-e39402bfa5d8

|enpisaJ Jakej-pg uie|d JaAe|-p£

48

https://towardsdatascience.com/review-resnet-winner-of-ilsvrc-2015-image-classification-localization-detection-e39402bfa5d8

Engineering for Depth: The Bottleneck Design

 How to stack 152 layers without exploding computational cost.

Standard Block (ResNet-34) Bottleneck Block (ResNet-50/152)

64-d | 256-d
Y 1x1 Conv, 64
3x3 Conv, 64
Squeeze {, relu
A 4 3x3 Conv, 64
3x3 Conv, 64 v relu
%1 Conv, 256
Expand

Efficiency Metric: ResNet-152 (11.3B FLOPs) is computationally cheaper than VGG-
19 (19.6B FLOPs) despite being ~8x deeper.

49

Total Dominance: ILSVRC & COCO 2015

 The hypothesis was validated. ResNet swept every major category in the

2015 competitions.

ImageNet Classification:
1st Place (3.57% error)

ImageNet Detection:
1st Place (+16% improvement)

ImageNet Localization:
1st Place (+27% improvement)

Error %

Unlike plain nets, the
deeper ResNet outperforms

/ the shallower one.

ResNet-18

ResNet-34

Ilterations

50

The 152-Layer Revolution
ILSVRC 2015 Results

30 282%

152 152 152
Areeenefennann Asresesessnnans A
25 J
R
8 20
"“:" 16.4%
215
(]
b
210
i 5 15; l:;ers Human Performance
8 8 =820, 3.0%
o - B e
0
2010 2011 2012 2013 2014 2015 2016 2017
Lin et al Sanchez & Krizhevskyetal Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al
Perronnin (AlexNet) Fergus Zisserm)an (GoogLeNet) (ResNet) (SENet)
(VGG

Number of Layers

Efficiency Paradox: ResNet-152 (11.3B FLOPS) is deeper but lighter than VGG-19 (19.6B.

51

Refining the Formula: Identity Mappings (2016)

Moving activation functions (ReLU) to the "Pre-activation" position clears the path for signal

propagation, enabling training of 1000+ layer networks.

Original ResNet Pre-activation ResNet
Xl xl
v
o — o
¥
| BN | | ReLU |

v
o BT T | wouing Actaton befor
m | BN] Convolution clears the
v propagation path.

| BN | | ReLU |
¥

adaiion [¥ o
¥

| ReLU | | addition [+
=

Xl+1 xI+1

52

Challenging Depth: Wide ResNets (2016)

* Isdepth the only answer? Increasing the width (channels) proved more
parallelizable and faster to train.

1x1 conv, F

3x3conv,F/4

I

1x1 conv, F

ResNet bottleneck

1x1 conv, F

4

3x3 conv, Width factor k

4

1x1 conv, F

Wide ResNet bottleneck

Result: A 50-layer Wide
ResNet outperforms

a 152-layer standard
ResNet.

53

Increasing Connectivity: ResNeXt (2017)
The 'Split-Transform-Merge' Strategy.

256-d in I
v e
A\ 4

e e e

256, 1x1;4 I 2506%xind I 256500 xi1w4 I
4-8%x3 4 4,3x3,4 cee 4,3x3,4
total 32
paths
4, 1x1, 256 4 dx 1256 I 4, 1x1, 256

&

| 256-d out I

‘ResNeXt bottleneck: High cardinality (C=32) allows for more parallel transformations, enhancing
representational power without significantly increasing parameters.’ (Inter, Deep Navy)

J

Cardinality = 32

Radical Connectivity: DenseNet (2017)

* Connecting every layer to every subsequent layer maximizes feature reuse

and signal flow. 5

Feed-forward
concatenation
of all feature
maps.

55

Smarter Features: Squeeze-and-Excitation (SENet)
e |LSVRC 2017 Winner. A volume knob for feature channels.

X r

i | _ ¥ WxHxC

Global Pooling | (The Squeeze)
v 1x1xC
FC 1x1xC
v

Residual RelLU 11 xC/x

4

FC 1x1xC

v
Sigmoid (The Excite)

WxHxC 0.1 weights '|'
+

WxHxC Scale

~

X

SE-ResNet Module: The SE block explicitly models channel interdependencies to recalibrate feature maps.

SE Block

MobileNet Mechanics: Depthwise Separable Convolutions

* Factorizing the convolution to slash computation costs.

Standard Convolution

-
=
o
—
-3

(@)

'DK'M'N‘DF'DF

Cost: DK

Depthwise Separable

57

8

EfficientNet (2019)

* Conventional wisdom suggests that scaling up CNN architectures would lead
to better accuracy i.e. deeper and wider networks perform better in general

* Explores a principled way to scale up a CNN to obtain better accuracy and
efficiency

—_—
——

- wider -~
=‘n
#channels
A ' wider i
deeper
- ¥ deeper
- layer i -
~ , * higher » higher
: } resolution HxW - - 3 .-+ resolution ’ -* resolution
(a) baseline (b) width (c) depth (d) resolution (e) compound
scaling scaling scaling scaling
1 of different scaling methods. Unlike conventional scaling methods (b)-(d) that arbitrary scale a
| ethod uniformly scales up all dimensions in a

58
58

U-Net (2015): A Different Architecture

U-Net revolutionized biomedical image segmentation with its U-shaped encoder-
decoder architecture: downsampling for context, upsampling for localization, and

skip connections to preserve spatial detail. Heavy da
limited medical datasets, making it the field’s standa

ta augmentation overcame
rd.

3D input

peich 8 l 32 32 #of feature maps

64x64x8

3D output
spatial di mensuon

segmentation

64 64
32x32x4 ‘ I I
\ 128 128
16x16x2 I I I— &
7z
%

256 256 256 ¢

WIIIII

ground truth

‘ Dice coefficient loss

[S i 2TP
' ~ YT 2TP+FP+FN

J feature maps

> 3x3x3 conv RelU BN dropout
W 3x3x3 conv RelU BN

@ 1xix1 conv

¢ up-sampling 2x2x2

59

The Transformer Challenge (2020-2022)

* In 2020, Vision Transformers (ViT) challenged CNN dominance. ViT divided
images into patches, embedded them as tokens, and processed them with
self-attention—modeling relationships between all patches simultaneously.

* With sufficient data and compute, Vision Transformer (ViT)

ViT matched or exceeded CNN ‘;;:318 =

performance, capturing global = ‘H—Vi]

context that convolutions struggled B]

with. - 60D DO D D o)
Fopmr S Lmear PrOJectlon of Flattened Patches
-
... l ;I | ﬁﬁé

m:—»llm
Al i

60

ConvNeXt (2022): The CNN Response

* Rather than concede defeat, ConvNeXt modernized CNNs by adopting
Transformer innovations:

* Larger patches (4x4 convolutions with stride 4) mimicked ViT's patching

Depthwise separable convolutions for efficiency

Large 7x7 kernels approximated self-attention's global context
Inverted bottlenecks from MobileNetV2 ®

CCCCCCCC

GELU activation instead of RelLU © e @ =TT

i
222222

gggggggg

* LayerNorm replacing BatchNorm o

* ConvNeXt demonstrated that convolution-based architecturesmfewﬁen properly
designed, still compete with Transformers. The best approach often depends
on your specific task, data, and computational constraints.

61

ConvNeXTv2 (2023): Pushing Further

 ConvNeXt V2 (2023) advanced CNNs with Global Response Normalization
(GRN)—a new layer that boosts inter-channel diversity by normalizing
features using global spatial statistics, reducing feature collapse.

* It also featured a simplified architecture, stronger

. . . ConvNeXt V1 Block ConvNeXt V2 Block
scaling from tiny to huge models, improved

96-d 96-d
masked image modeling for self-supervised (oo) (oo)
learning, and better transfer performance on tasks [[
like detection and segmentation. [xazes] [1xt.s84]

GELD “aAN

* The result: CNNs that match or surpass (e) (e)
Transformers in accuracy while remaining more B e kS
efficient and interpretable. T T

https://medium.com/the-techlife/convnextv2-overview-tutorial-2023-afebce7315e9

62

https://medium.com/the-techlife/convnextv2-overview-tutorial-2023-afebce7315e9

Hybrid Architectures and the Path Forward (2024)

By 2024, CNNs and Transformers converged into hybrid architectures that
leveraged their complementary strengths.

ConvFormer models used convolutional stems for efficient early processing and attention layers
for long-range modeling, achieving superior accuracy-efficiency trade-offs.

Depthwise attention (e.g., in MaxViT, FasterViT) reduced self-attention’s cost by applying it
locally, matching global performance with far lower complexity.

Dynamic sparse architectures allocated compute adaptively—focusing resources on informative
regions—ideal for high-res images and video.

The field shifted toward task-specific design: medical imaging adopted attention-enhanced U-
Nets, autonomous driving used edge-optimized hybrids, and satellite analysis balanced global
context with detail.

Hardware co-design became essential, with models tailored to tensor cores, NPUs, and custom
chips—not just FLOPs or parameters.

63

Transfer Learning and Fine-Tuning

The High Cost of Training from Scratch

PARAMETER COMPLEXITY TRAINING BENCHMARKS

AlexNet: 60m AlexNet : 5-6 Days
VGG : 138m (2x GTX 580)
Inception v3: 23m VGG: 2-3 Weeks
ResNet 50 25m (4x Titan Black)

Challenges: High Parameter Complexity ® Data Hunger e Extreme Hardware Intensity

65

Standing on the Shoulders of Giants

* The Core Concept: Rather than
initializing with random weights, we
leverage models pre-trained on
massive datasets.

 The Advantage: Bypasses the need ImageNet Target
for colossal data gathering and (Source) Task

reduces computational complexity.

Specific, limited

. . dataset.
* Key Mechanisms: Transfer Learning

or Fine-Tuning Massive, generalized
dataset.

66

Transfer Learning (or Fine-Tuning)

— Fine-Tuning

D;

PRE-TRAINING

A

Train CNN on
Source Dataset
(ImageNet)

4

A

(

ADAPTATION TRAINING TARGET

Replace
Last Layer

67

Implementation Strategy: Adapting VGG16
Case Study: ImageNet to CIFAR-10

FROZEN LAYERS TRAINABLE LAYERS
(Feature Extractor) (Classifier)
A A
‘a 2, 0 3 -

. y y Output:
Input: (ﬁ—)[g—-)[(_—g—) CIFAR-10 Classes

224x224 R6B — fcb fc7 fc8
C C C

convs (1x1x4096) (1x1x4096) (1x1x10)
il (14x14x512)

(28 x 28 x 512)

conv3
PO (56x56x256) Strategy: The convolutional base is frozen

L
/(112)?10?;2)(128) to retain learned feature extraction. Only the
;:;w fully connected top layers are replaced and
(224 x 224 x 64) trained on the new datase

https://colab.research.google.com/drive/1tRI-AEbV33g6VSkoggltb15ug2y5NkHG

68

https://colab.research.google.com/drive/1tRl-AEbV33q6VSkoqgItb15uq2y5NkHG

Case Study: VGG16 on CIFAR-10

Pre-Trained VGG16
The Base (ImageNet Weights)

Roboto Mono: ImageNet Weights in Slate Grey

The Freeze initial weights.
Modification @ Replace classifier.

Roboto Mono: Frozen Layers (Green), New Classifier (Orange)

J
a
£t

y

/

The Train only the last 3 layers on

Training CIFAR-10 Color Image Dataset.

Roboto Mono: Active Training (Orange Layers)

S z =
Result: Transforms k
a general image
recognizer into a

specialized classifier
without weeks of

compute time.
I —

-

69

Quantifying the Advantage

With Transfer

AN\

Higher Asymptotic

‘K\\ Performance
Steeper
Learning Rate

Higher Initial
Performance
(Slope Intercept)

Without Transfer

Model Accuracy

Training Data / Time

70

CNN-based Computer Vision Applications

Beyond Simple Classification
CNN capabilities have evolved from single labels to complex scene parsing

| CLASSIFICATION | [LocALIZATION

e J

 OBJECT DETECTION | [SEGMENTATION

CAT, DOG, DUCK

Object Detection: Finding the ‘'Where' and "What'

PROBLEM SPACE
= Moving beyond single-
label classification.

= Task 1: Identify multiple
classes (Classification).

= Task 2: Localize each
instance with coordinates

(Regression)

73

PRECISION ARCHITECTURES: THE R-CNN FAMILY
Focus: High Accuracy | Cost: Computational Intensity

RPN
(REGION
PROPOSAL
NETWORK)

| BACKBONE i
— CNN

ROI | CLASSIFICATION
POOLING & REGRESSION

INPUT IMAGE BACKBONE CNN FEATURE MAP

FINAL OUTPUT

Region Proposal Networks (RPN) scan the image for potential objects, which are then
normalized and classified. Highly accurate, but computationally expensive.

74

REAL-TIME SPEED: YOLO (You Only Look Once)

Focus: Speed & Real-Time Inference | Cost: Slight Accuracy Trade-off

Boundlng Boxes + Confidence

Final Detection

Input Spllt into SxS Grid

— ""-=-1- ‘!—=!

Class Probability Map

| o e
e s % i ER

Mechanism: Unlike R-CNN, YOLO treats detection as a single regression problem,
predicting tensors directly from the image in one pass.

75

Image Segmentation: Understanding Every Pixel

SEMANTIC SEGMENTATION

= Classifies pixels by category (e.g.,
'Person’, ‘Sea'). No distinction between
individuals.

Land Person

INSTANCE SEGMENTATION

= Distinguishes between individual
objects of the same class (e.g., 'Person
1' vs. 'Person 2').

Person 1,

76

Advanced Tasks: Human Pose Estimation

Topology Mapping:
= Predicting the coordinates of

key joints to model human

movement.

Applications:

= Sports Analytics
= Healthcare/Rehab
= AR/VR Gaming

Skeletal structure overlay showing
predicted joint positions.

77

Practical Deployment: The Modern Workflow

> pip install ultralytics
import yolov8
model = YOLO('yolov8n.pt')

Run Inference
results = model('image.jpg")

Input Source

YOLO12/
n @ _> Ultralytics Library
=

Accessible via Python libraries for rapid prototyping.

Object Detection

Ry
=

L=l

Segmentation

[

Pose Estimation

R

78

Colab: YOLO12 Object Detection Demo

* We will be implementing the

following steps:
1. Install YOLO12 from Ultralytics

2. Running inference on single image.

3.YOLO12 Image Segmentation and
Human Pose Estimation

4. Download sample video and run
YOLO12 inference on it.

5.YOLO12 Webcam demo.

https://colab.research.google.com/drive/1XPgQuos-FwWMh8pvvmftADSv6XcRGOYKI?usp=sharing

79
79

https://colab.research.google.com/drive/1XPgQuos-FwMh8pvvmftADSv6XcRG0YKI?usp=sharing

YOLO CVPR16 Oral Presentation

https://www.youtube.com/watch?v=NM6Ilrxy0Obxs

80
80

https://www.youtube.com/watch?v=NM6lrxy0bxs

The Structural Limits of CNNs

The Receptive Field Problem The Hierarchy Problem

N

&
N

x

1 1
i
<

2 ¥

Fixed Receptive Field: CNNs focus on local Hierarchical Context: Difficulty modeling the
features (edges, textures) but struggle to nested, sequential structure of natural
connect distant dependencies. language or complex logic.

CNNs excel at local features (edges, textures) but struggle to capture long-distance
dependencies essential for complex context or natural language.

81

The Next Horizon: Beyond Convolution

mOoooo
Ommo0o
m] | Jujmim
oOoE0oo
ooomnon
oooomo
Oo0000m

> 8

CNNs RNNs Transformers
Spatial Patterns Sequence & Memory Attention Mechanisms
& Visual Features (Limited) & Global Context

The future lies in architectures that solve the "long-distance dependency”
problem using Attention.

82

