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Minimax Partial Distortion Competitive
Learning for Optimal Codebook Design
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Abstract—The design of the optimal codebook for a given
codebook size and input source is a challenging puzzle that re-
mains to be solved. The key problem in optimal codebook design
is how to construct a set of codevectors efficiently to minimize
the average distortion. A minimax criterion of minimizing the
maximum partial distortion is introduced in this paper. Based
on the partial distortion theorem, it is shown that minimizing
the maximum partial distortion and minimizing the average
distortion will asymptotically have the same optimal solution
corresponding to equal and minimal partial distortion. Motivated
by the result, we incorporate the alternative minimax criterion
into the on-line learning mechanism, and develop a new algorithm
called minimax partial distortion competitive learning(MMPDCL)
for optimal codebook design. A computation acceleration scheme
for the MMPDCL algorithm is implemented using the partial
distance search technique, thus significantly increasing its compu-
tational efficiency. Extensive experiments have demonstrated that
compared with some well-known codebook design algorithms, the
MMPDCL algorithm consistently produces the best codebooks
with the smallest average distortions. As the codebook size in-
creases, the performance gain becomes more significant using
the MMPDCL algorithm. The robustness and computational
efficiency of this new algorithm further highlight its advantages.

Index Terms—Codebook design, competitive learning, vector
quantization.

I. INTRODUCTION

V ECTOR quantization (VQ) has been widely applied to
signal compression for reducing the bit rate required

to represent signals for transmission or archiving [1], [2]. It
has been shown that VQ is very effective at low to medium
compression ratio while maintaining an acceptable fidelity
[3], [4]. A vector quantizer can be defined as a mapping

of -dimensional Euclidean space into a finite subset
of i.e., where

is called a codebook, is a codevector and
is the codebook size. From the definition, we can see that
VQ is a lossy compression method, and accordingly some
distortion measurements have been introduced with respect
to different applications. The most commonly used distortion
measure is the simple mean squared error (MSE) per sample,
defined by where
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is an input random vector. For an unknown distribution input
sequence the MSE is always
approximated by the time-averaged square error distortion
given by In this
paper we also use the MSE as the distortion measurement.
For a given codebook size and input source, the optimal vector
quantizer is the one which minimizes the MSE.

The design of a vector quantizer involves two aspects
of the encoder and the decoder design. For a given decoder
(i.e., the codebook is fixed), the best encoder should satisfy
the nearest neighbor (NN) condition for partitioning the input
space, while for a given encoder (i.e., the partition is fixed), the
centroid condition is found to be both necessary and sufficient
for optimizing the codebook in the sense of minimizing the
MSE distortion. With the nearest neighbor encoding rule, the
performance of the quantizer in terms of MSE distortion
is dependent on its codebook. Hence, the design of optimal
codebook is of prime importance in VQ. The generalized
Lloyd algorithm (GLA) [5] was developed for codebook
design which employs a batch processing iteration procedure
based on the two necessary conditions of optimality. An
open question regarding the GLA algorithm is the initializa-
tion of codevectors. The performance of the GLA algorithm
strongly depends on the initial codebook. With improper
initial locations of the codevectors, the GLA may lead to
a local optimality corresponding to a low quality codebook.
To obtain a high-quality codebook, some optimizing tech-
niques have been developed, such as stochastic relaxation [6].
However, these techniques are typically very time consuming
and substantially increase the complexity, especially when the
designed codebook size is very large.

Recently, neural network based competitive learning (CL)
algorithms have been developed for codebook design that
are characterized by an on-line learning mechanism [7]–[16].
In contrast to the batch-processing GLA algorithm, the CL
algorithms design the codebook on-line by updating the code-
vectors for each presentation of an input vector. The update
rule for a typical CL algorithm is

(1)

where is the current input vector, and is the learning
rate for codevector at time The selector function
has a value of one, if is the winner (e.g., the nearest
neighbor codevector in the basic CL) and zero, otherwise.
The main problem of the basic CL algorithm is that it
may lead to a local minimum with high overall distortion,
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even leading to the underutilization of some codevectors, in
the case of improper initialization. Kohonen’s self-organizing
map (SOM) [17] employs the neighborhood effect as leaky
learning for the topology preserving map, which alleviates the
problem of some codevectors being underused. Desieno [7]
proposed a heuristic CL algorithm based on the history-related
“conscience” mechanism to overcome the underutilization
problem. Moreover, the frequency-sensitive competitive learn-
ing (FSCL) algorithm [9], [10] is a straightforward and simple
implementation of the “conscience” scheme, in which each
competing codevector assumes an approximately uniform win
rate to thoroughly eliminate the underuse problem. Some other
improved CL algorithms utilize the soft competition scheme
[11], [12] or the fuzzy mechanism [13], [14] to adjust all
the codevectors with different adaptation weights for each
presentation of an input vector. However, determining the
weights requires additional time-consuming computations such
as power operations.

Nevertheless, these competitive learning algorithms which
aim at “fairly” utilizing each codevector cannot generally
produce the optimal codebook corresponding to the mini-
mum MSE. Naturally, the question is raised, how can the
codevectors be utilized most efficiently for minimizing the
MSE function? Concerning optimal quantization, a valuable
contribution due to Gersho [18], which has come to be known
as thepartial distortion theorem[19], presents a theoretical
guide to achieving the asymptotically optimal partition of an
input space for codebook design. Inspired by this theorem,
some preliminary prototypes of partial distortion sensitive CL
algorithms for VQ were proposed by Zhuet al. [14]–[16]. Fur-
thering the early work thoroughly, we propose in this paper an
effectiveminimaxcriterion of minimizing the maximum partial
distortion for optimal codebook design with a given codebook
size, where the codevector indices are not entropy coded. The
corresponding on-line competitive learning algorithm called
minimax partial distortion competitive learning(MMPDCL)
with its computation acceleration scheme is further developed.
The effectiveness of the proposed algorithm is investigated in
comparison with some other codebook design algorithms.

The remainder of this paper is organized as follows. In the
following section, high-resolution optimal quantization and the
asymptotic result, the partial distortion theorem, are briefly
formulated as the fundamentals for designing the optimal
codebook. The proposed minimax partial distortion crite-
rion and the new MMPDCL algorithm with its computation
acceleration scheme are presented in Section III. Extensive
experiments on the Gauss–Markov process, speech and images
are reported and discussed using different codebook design
algorithms for comparison in Section IV. Concluding remarks
are given in Section V.

II. HIGH-RESOLUTION OPTIMAL QUANTIZATION

The average (mean squared error) distortion of a vector
quantizer can be given by

(2)

(3)

(4)

where is the codebook size, denotes the partition
region corresponding to its representative codevectorand

is the probability that is located in The
term is called the partial distortion in the region for
the codevector

We consider the important case of high resolution regular
quantization, where is very large, the input probability
density function (pdf) is reasonably smooth, and the MSE
distortion is much less than input variance, so that the mathe-
matical derivation of the performance results is tractable [18],
[19]. According to [19], a signal-to-noise ratio (SNR) value of
10 dB is a borderline case between low and high resolution for
scalar quantization. Therefore, most applications of quantiza-
tion belong to the range of high resolution quantization. This
approach to performance analysis, known as the asymptotic
quantization approach [19], yields useful approximate results
referred to as “asymptotic” results that become increasingly
accurate as the resolution, or codebook size,
increases.

A. Optimal Output Point Density

In [18], theoutput point densityof a vector quantizer at any
point in the input space is defined as the number of codevectors
per unit volume at that point, which is approximated as a
continuous density function for sufficiently large We aim
at achieving theoptimal output point densityin the form
of optimal codebook corresponding to the minimum average
distortion. It is shown in [18] that for large the output
point density of the optimal codevectors is proportional to the

th power of the input probability density under
the MSE distortion measure. This result demonstrates that the
optimal distribution of reproduction codevectors is not the
same as the probability distribution of the input vectors for
finite dimension Only as approaches infinity does the
optimal point density tend to become proportional to the input
probability density, and in such case the optimal codebook will
asymptotically result in uniform utilization of each codevector.
Therefore, in the general case of finite dimension, the optimal
codebook does not correspond to the equal utilization of each
codevector except in some special cases, e.g., the uniform
input distribution.

B. Partial Distortion Theorem

Another valuable asymptotic result is thateach partition
region makes an equal contribution to the distortion for an
optimal quantizer with sufficiently large [18], that is, the
partial distortions in each quantization region are the
same as a constant independent ofThis conclusion has
recently become known as the partial distortion theorem [19,
p. 187]. It has been used as a criterion for subcodebook size
optimization in the classified VQ [20]. In fact, this asymptotic
result of uniform partial distortion can be regarded as an
additional rule for designing the optimal codebook of large size
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in addition to the well-known nearest neighbor and centroid
conditions.

III. M INIMAX PARTIAL DISTORTION COMPETITIVE LEARNING

A. Minimax Partial Distortion Criterion

From the partial distortion theorem, we know that an asymp-
totically necessary condition for optimality of minimizing
MSE in VQ is to have equal partial distortion. This condition
is obviously not sufficient. One has to find the solution with
equal and minimal partial distortion to minimize MSE at high
rates. Considering theminimax criterion of minimizing the
maximum partial distortion

(5)

where is the partial distortion shown in (3), we have the
following result which can be regarded as a corollary of the
partial distortion theorem.

Corollary 1: For sufficiently large the optimal solution
to minimizing the maximum partial distortion will have the
equal partial distortion property and will be the same as the
optimal solution to minimizing the average MSE distortion

Proof: It is obvious that of all solutions having the
same average distortion, the one with minimumis always
(i.e., not necessarily asymptotically) that with uniform partial
distortion provided such a solution of uniform partial distortion
exists. Furthermore, of all solutions having different average
distortions, the one with minimum average distortion and equal
partial distortion (if such solution exists) is that corresponding
to minimum According to the partial distortion theorem,
for sufficiently large the solution with minimum MSE dis-
tortion has the property of equal partial distortion. Therefore,
for sufficiently large the solution with minimum must
be the one with equal partial distortion and minimum MSE
distortion. The converse is also true. Hence, the two differ-
ent minimizations asymptotically result in the same optimal
solution. This completes the proof.

The corollary reveals the relationship between the two
problems of minimizing the maximum partial distortion and
minimizing the overall MSE distortion. It can be seen that
the proposedminimax partial distortionrule is asymptotically
necessary as well as asymptotically sufficient for minimizing
the average distortion. Recall that a similar minimax criterion
is also used in filter design [21]. In nonrecursive filter design,
we apply the minimax criterion to minimize the largest ripples
for a given frequency specification and filter order, which
results in the Chebyshev solution of equiripple. In vector
quantization, we employ the minimax scheme to minimize
the maximum partial distortion for a given training set and
codebook size which aims at obtaining the optimal codebook
corresponding to uniform and minimal partial distortion. Ac-
cording to the corollary, the optimal codebook minimizing the
maximum partial distortion is a good approximation to that
minimizing the average MSE distortion, especially for large
codebook size

Motivated by the result, we incorporate theminimax partial
distortioncriterion into the on-line competitive learning mech-

anism for constructing the optimal codebook with minimum
average distortion.

B. On-Line Estimates of Partial Distortions

In competitive learning, we estimate on-line partial distor-
tions using the presented samples under the usual ergodicity
assumption. At time the partial distortion can be
estimated on-line as

(6)

using the estimates

and

in which the selector function is defined as aforemen-
tioned. For computational convenience, we use an equivalent
term to represent the on-line partial distortion estimate
at time

Hence, can be simply adapted by

(7)

We know that in the on-line learning process the codevec-
tors change over time. To save computation as well as to
maintain the on-line characteristic of no storage requirement
for the training set, we always use the most recently updated
codevectors for calculation.

C. On-Line Implementation of Minimax
Partial Distortion Criterion

With the minimax partial distortion criterion in the on-line
learning, we aim to realize the minimization of the maximum
partial distortion for each presentation of an input vector.
Specifically, we will determine the selector function
for each presentation to achieve the minimax result.

If the codevector is chosen as the winner for the current
input i.e., its corresponding partial
distortion estimate is updated as

while the partial distortions for the nonwinner
codevectors remain unchanged, So
the updated may be maximal compared with the other
partial distortions To ensure the minimization
of the maximum partial distortion for each input, we should
choose the codevector as the winner, which yields the
minimum of updated partial distortion compared with choosing
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any other codevector as the winner. Accordingly, the selector
function becomes

if
for any

otherwise.
(8)

To obtain codebook optimality, the nearest neighbor parti-
tion rule and the corresponding centroid rule should be strictly
satisfied by the final code. For this reason, various competitive
learning algorithms gradually turn into the basic CL algorithm
with time for the nearest neighbor partition. The soft compe-
tition algorithm gradually evolves into the basic CL learning
as the temperature decreases with time [11], and the fuzzy CL
algorithms change into the basic CL algorithm with decreasing
fuzziness [13], [14]. The optimization techniques such as the
stochastic relaxation with decreasing perturbation [6], [19] will
also eventually evolve into the basic learning scheme based
on the nearest neighbor partition and the centroid conditions.
Therefore, we also adopt a similar mechanism in the learning
process. In the early stage of codebook training process, we
apply the rule of minimizing the maximum partial distortion
for partition to produce good locations of the codevectors
corresponding to the approximately uniform partial distortions.
It could be argued that this early training process led to the
production of a superior initial codebook. As the training
progresses, the partition should become gradually dominated
by the nearest neighbor rule for fine tuning to obtain the final
optimal codevectors. Based on this expectation, we employ
the selector function

if

for any
otherwise

(9)

in which we introduce an attenuation factor for
is a constant to be determined experimentally.

In the early stage of training, the attenuation factor is
close to one for small thus the partition is performed as in (8)
for minimizing the maximum partial distortion. Asincreases,

approaches zero, and then the nearest neighbor partition
rule is asymptotically satisfied.

D. Minimax Partial Distortion Competitive
Learning Algorithm

From the partition rule in (9), the corresponding algorithm
called minimax partial distortion competitive learning(MM-
PDCL) algorithm may be developed. The detailed steps of the
proposed MMPDCL algorithm are as follows.

Step 1 (Initialization): Generate an initial codebook
of size randomly, and set each partial

distortion at time

Step 2 (Distortion Measuring):Apply an input vector
and calculate the distortion for each codevector

(10)

where denotes the sweep index. (A sweep is one full cycle
through the training set.)

Step 3 (Winner Selection):Select the winner index
and then for

Step 4 (Adaptation):Adjust the codevectors according to

(11)

where is the learning rate of codevector at time

Update the value of partial distortion
as

(12)

In fact, only the winner and its corresponding partial
distortion have been changed.

Step 5 (Iteration): Set and repeat Step 2) through
Step 4) for all the training vectors, until a terminating condition
is satisfied, e.g., the change of the quantization distortion
between two sweeps is less than a small valueor the total
number of sweeps reaches a predetermined value.

To meet the centroid condition for the final code, the
learning rate is where is the number
of times that the codevector has won until time (The
detailed analysis for the learning rate can be found in [11].)
We also employ the reinitialization technique [11] for the
learning rate except for a slight modification. When the
current sweep index equals a perfect square, the counters

are reset to a gradually increasing number (e.g.,
as employed in our experiment)

instead of being reinitialized to unity as adopted in [11]. This
modified reinitialization scheme keeps the learning rate from
being too small and so speeds up convergence. Also, it main-
tains the good codevector distribution gradually formed in the
training process by avoiding large changes in the codevector
locations due to decreasing the reinitialized learning rate.

From the above procedure, we can see that compared with
the basic CL algorithm or GLA, for each presentation of a
training vector, more multiplications and additions in (10)
are required while one more Euclidean distance calculation and
an addition are attached in (12) by the MMPDCL algorithm.
The calculation of the exponential is performed once
for each sweep, and within one sweep the attenuation factor is
unchanged. These additional computations are inexpensive in
comparison to the Euclidean distance computations in (10)
for each presentation of a training vector.

E. A Computation Acceleration Scheme
for the MMPDCL Algorithm

The most computationally intensive part of the MMPDCL
algorithm is the distortion calculation between an input vector
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and each codevector in Step 2) for finding the minimum
distortion. The proposed distortion metric employed in (10) is
just an additive combination of the weighted partial distortion

and the Euclidean distance
The Euclidean distance is also an additive combination

of each component distance corresponding to each dimension
of the vectors, i.e.,

where is the dimensionality of vectors. For such an additive
combination in which each positive component contains at
least one multiplication operation, the partial distance search
(PDS) technique [22] is a simple and effective method to find
the winner fast. The PDS method can remove many undesired
codevectors with fewer multiplications without sacrificing
performance.

The efficiency of the PDS method depends on several
factors, such as the vector dimension, the order in which
components are computed, and how early a codevector with
a small enough distortion is found. In general, the higher
the dimension of input vectors the more efficient the PDS
technique. The earlier the nearest neighbor codevector (or a
codevector with small distortion) is found, the greater the
reduction in the number of multiplication operations the PDS
method may achieve. Since there is a statistical correlation
between adjacent input vectors, the codevector winner for the
last input vector is considered to be a good initial choice
of the winner for the current input vector because this in-
creases the chance of finding a small distortion early in
the winner searching process. Pertaining to the computing
order of each component in the additive combination, it is
obviously beneficial to start the PDS process from the largest
component in order to identify the undesired codevectors most
quickly. Then the computation time for finding the winning
codevector can be significantly reduced. In the weighted partial
distortion is progressively
increased with the cumulation of many Euclidean distances
shown in (12). When the attenuation factor is not
very small, e.g., in the early or intermediate stages of the
training process, this weighted partial distortion is larger than
the single Euclidean distance and of course
much larger than each component of the Euclidean distance

Therefore, to achieve high
computational efficiency, the PDS process is started from the
weighted partial distortion that is the largest component in the
additive combination of the proposed distortion measurement.
By incorporating these considerations, the PDS technique can
be applied to the MMPDCL algorithm in a highly efficient
manner.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

Experiments on VQ codebook design have been carried out
to investigate the proposed MMPDCL algorithm by comparing
it with the GLA, splitting GLA, soft competition algorithm

[11], and the FSCL algorithm, in terms of performance and
computational complexity.

The following three of the commonly used sources, the first-
order Gauss–Markov source, digitized speech waveforms and
digital images, were applied in codebook design. The first-
order Gauss–Markov or Gauss autoregressive sourcehas
the form where the regression coefficient

has magnitude less than one, and is a zero mean,
unit variance, i.i.d. Gaussian source. The values forin our
experiments were 0, 0.5, and 0.9. Codebooks were designed
for this source using a training sequence of 25 600 samples
with different dimensions and different sizes by the different
algorithms. As a first source of practical importance, we used a
training sequence of 320 000 16-b samples of ordinary speech
from two male speakers sampled at 11.025 kHz for designing
VQ codebooks. Eight 256-grey-level images of the size 256
256 (Lenna, lady, woman, house, camera, Walter, pattern, tree)
were decomposed into 4 4 nonoverlapped blocks to form a
set of 32 768 16-dimensional vectors for designing codebooks
of different sizes using the different algorithms.

A. SNR (PSNR) Performance

The SNR results of the proposed MMPDCL algorithm
and the reference algorithms are summarized in Tables I and
II for the first-order Gauss–Markov sources and the speech
source, respectively. SNR MSE where
is the variance of the scalar source sample Table III
presents the PSNR results on image coding, where PSNR

MSE MSE being the average mean-squared
quantization error per pixel for the eight images. It should
be noted that for all the algorithms, we do not specifically
deal with any possible empty cells because we mean to test
the capability of the algorithms to circumvent the “empty
cell” problem automatically. This also contributes to a more
comprehensive and fairer comparison purely for the distinc-
tive learning schemes employed by the different algorithms.
Actually, there should generally be no empty cells for the
algorithms if the initial codebooks are selected directly from
the training set, as was made in our experiments. Especially for
the FSCL and the proposed MMPDCL algorithms, empty cells
will not emerge even with very poor initial codebooks (e.g.,
many duplications of codevectors in the initial codebook),
because the two algorithms aim to achieve uniform codevector
usage and uniform partial distortion, respectively.

For the GLA algorithm, we used several different initial
codebooks randomly selected from the training vectors. (In
our experiments, ten different initial codebooks were used for
the Gauss–Markov source, and five different initial codebooks
for the speech and image sources.) The highest SNR (or
PSNR) achieved was chosen as the final result of the GLA
in comparison with a single run of the other algorithms
using only one initial codebook. For the soft competition
algorithm, it requires time-consuming trial and error to find
the appropriate parameters for different sources, e.g., obtaining
the precise temperature schedules and specifically treating
the cells containing a small number of input vectors, with
a view to achieving the excellent results presented in [11].
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TABLE I
SNR COMPARISON OF THEDIFFERENT ALGORITHMS FOR GAUSS–MARKOV SOURCES

TABLE II
SNR COMPARISON OF THE DIFFERENT ALGORITHMS FOR SPEECH

In our experiments, we adopted the temperature schedule1

where and was the sweep
number, without specifically treating the empty cell prob-
lem just as mentioned in the last paragraph. Each initial
codebook for the soft competition algorithm was randomly
selected from each training set with no identical codevec-
tors in each initial codebook. In the FSCL algorithm, we
adopted and as recom-
mended in [9], where was the specified total number
of iterations (in sweep) for training (in our experiments,

is 400). In the proposed MMPDCL algorithm, the only
undetermined parameter in the attenuation factor
was chosen as where for all the
sources in our experiments. The FSCL and the MMPDCL
algorithms used the same initial codebooks selected randomly
from each training set without any restriction. From the results

1We would like to stress that better results for the soft competition algorithm
may be obtained using other schedules (parameters).

in Tables I–III, it can be clearly seen that the proposed
MMPDCL algorithm achieves the best results over a wide
range of sources, vector dimensions and codebook sizes.
As the designed codebook size increases, the improvements
become more significant.

Fig. 1 depicts the distributions of the partial distortions (in
descending order) obtained from the different algorithms for
the Gauss–Markov source with vector dimension 2, and
codebook size 512. The MMPDCL algorithm renders the most
even partial distortion distribution with the least maximum
partial distortion. From the figure and the corresponding SNR
results, it can also be seen that the more even the partial
distortion distribution is, the higher SNR value the codebook
achieves. The gains of the MMPDCL algorithm over the GLA,
FSCL and soft competition algorithms are more than 1.5 dB,
while the gain over the splitting GLA is more than 0.3 dB.
Fig. 2 demonstrates the corresponding convergence curves of
the algorithms for this case, where the best result from ten
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TABLE III
PSNR COMPARISON OF THE DIFFERENT ALGORITHMS FOR IMAGE

Fig. 1. Distributions of the partial distortions (sorted in descending order) obtained from the different algorithms, for the Gauss i.i.d. source (i.e.,� = 0

in the Gauss–Markov source) with vector dimension 2 and codebook size 512.

initial conditions is plotted for the GLA. The convergence
curve for the splitting GLA is plotted after a good initial
codebook has been obtained, so we can see the splitting GLA
finds the final codebook very fast using the preprocessed initial
codebook. The MMPDCL algorithm obtains a good result at
the beginning and surpasses the splitting GLA algorithm at
around 60 sweeps of iteration.

B. Robustness Performance

In the MMPDCL algorithm, there is only one undetermined
parameter defined as To test the effect of
the parameter on performance, we equivalently consider
the parameter for a fixed ( in our experiment).
Table IV presents the SNR values using the different values
of for the Gauss–Markov source with vector
dimension 2, and codebook size 512. It can be seen that
the performance of the MMPDCL algorithm is robust with
respect to variation of the parameter in the range of
zero to 200. The corresponding mean SNR value is 25.052
with the variance 0.009 67. The performance is best for

around 10–20. Comparing Table IV with the relevant results
in Table I, we can see the MMPDCL algorithm outperforms
the other algorithms even for or For

corresponding to the attenuation factor
the learning process is performed with (8). Asapproaches
infinity corresponding to approaching zero, the learning
algorithm tends to become the basic CL algorithm. In our
experiment, the basic CL algorithm produces the SNR value
of 23.890 for this source, which is more than 1 dB smaller
than the SNR values obtained by the MMPDCL forin the
range of [0, 200].

Performance evaluation was also made on the sensitiv-
ity to initial codebooks for these algorithms. We used the
Gauss–Markov source with vector dimension 2,
and codebook size 512 for the test. Table V shows the MSE
results for the algorithms using ten different initial codebooks
randomly selected from the training set. As can be seen in
Table V, the MMPDCL algorithm achieves stable results with
similar SNR values for all initial codebooks. Therefore, we
can expect that the MMPDCL algorithm is a robust method
for codebook design.
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Fig. 2. Convergence of the GLA, splitting GLA, soft competition, FSCL, and MMPDCL algorithms for the Gauss i.i.d. source with vector dimension
2 and codebook size 512.

TABLE IV
SNR RESULTS USING DIFFERENT L FOR THE GAUSS–MARKOV SOURCE WITH � = 0; CORRESPONDING TO AN

SNR MEAN OF 25.052AND VARIANCE OF 0.009 67. VECTOR DIMENSION IS 2, AND CODEBOOK SIZE IS 512

TABLE V
MSE RESULTS OBTAINED FROM THE GLA, SOFT COMPETITION, FSCL, AND MMPDCL ALGORITHMS USING TEN DIFFERENT

INITIAL CODEBOOKS FOR THEGAUSS–MARKOV SOURCE WITH � = 0:5: THE SUPERSCRIPTS“�” AND “#” DENOTE THE LARGEST

AND SMALLEST MSE VALUES FOR EACH ALGORITHM, RESPECTIVELY. VECTOR DIMENSION IS 2, AND CODEBOOK SIZE IS 512

C. Computational Efficiency

To make a fair comparison, we also applied the same
partial distance search (PDS) scheme to the GLA and the
splitting GLA for winner searching. For the FSCL algorithm
[9] employing the distortion metric the
PDS method can be performed for where
denotes the current minimum distance. For the soft competition
algorithm, all the Euclidean distances between a training vector

and each codevector are required for the winning probabil-
ity calculation [11], so the PDS method is not applicable
in this case. Furthermore, the exponential operation for the
probability calculation is time consuming. For the MMPDCL
algorithm, we used the PDS computation acceleration scheme
described in Section III-E. All the simulations were written in
the C programming language and were run on a Sun Ultra
1 Model 140 workstation with the “gcc” compilation flags



1408 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 10, OCTOBER 1998

TABLE VI
AVERAGE COMPUTATION TIME PER SWEEP OF ITERATION FOR THE DIFFERENT ALGORITHMS

ACCELERATED BY THE PDS TECHNIQUE (FOR THE IMAGE CODEBOOK GENERATION)

TABLE VII
AVERAGE PERCENTAGE SAVINGS IN TERMS OF THE16-DIMENSIONAL EUCLIDEAN DISTANCE COMPUTATIONS IN THE WINNER-FINDING PROCESS(FOR THE

IMAGE CODEBOOK GENERATION), BY THE ACCELERATED FSCL AND ACCELERATED MMPDCL ALGORITHMS, RESPECTIVELY

“-O5 -msupersparc.” The average computation time per sweep
of iteration by each algorithm is shown in Table VI for the
image codebook generation. The average computation time per
sweep means the ratio of the total time to the total number of
sweeps used for each algorithm. The splitting GLA progresses
level by level to obtain a good initial codebook of the designed
size, which requires much time for the preprocessing. The
average computation time per sweep for the splitting GLA is
the ratio of the total time including the preprocessing to the
number of sweeps required for the last level codebook of the
designed size to converge.

From Table VI, we can see that the MMPDCL algorithm
has the least computation time per sweep when the codebook
size is larger than 128, up to 26 times faster than that of the
soft competition algorithm. In our experiments, one run of
the GLA generally took about 30–70 sweeps of iteration to
converge, while the three competitive learning algorithms of
the soft competition, FSCL and MMPDCL used 400 sweeps of
iteration for training. Hence, one run of the GLA requires the
least amount of time, and the time needed for the splitting GLA
is the next shortest. Among the three competitive learning
algorithms, the MMPDCL uses the least total time, only about
60% of that for the FSCL and 5% or less of that for the soft
competition algorithm. Moreover, we found in the experiments
that the MMPDCL algorithm achieved better results than all
the other algorithms in fewer than 100 sweeps of iteration for
large codebook sizes and obtained the near peak
values around 100–200 sweeps. In this sense, the MMPDCL
algorithm obtains better results than the splitting GLA with
less time.

The most computationally intensive part in the training
process for the algorithms is the Euclidean distance com-
putations in the winner-finding process for each presentation
of an input. With the PDS computation acceleration scheme,
the MMPDCL algorithm can be accelerated substantially by a
large reduction in the Euclidean distance computations in Step
2) of the algorithm. Table VII presents the average percentage

savings of the 16-dimensional Euclidean distance computa-
tions by the accelerated FSCL and accelerated MMPDCL
algorithms, respectively (for the image codebook generation).
We can see that the accelerated MMPDCL algorithm can
achieve a larger reduction in the number of Euclidean distance
computations, which accounts for its faster running.

V. CONCLUDING REMARKS

A novel minimax criterion with respect to partial distortion
has been introduced which is asymptotically necessary as
well as asymptotically sufficient for minimizing the average
distortion. By incorporating this alternative criterion into on-
line competitive learning, the minimax partial distortion com-
petitive learning (MMPDCL) algorithm with a computation
acceleration scheme has been developed.

Experimental results have clearly shown that the proposed
MMPDCL algorithm consistently produces the best codebooks
with the minimum MSE. As the codebook size increases, the
performance improvements of the MMPDCL algorithm over
the other algorithms become more significant. Furthermore, the
MMPDCL algorithm has demonstrated its robustness owing to
its insensitivity to the value taken by the sole parameterand
the choice of initial codebook. It has also been shown that the
accelerated MMPDCL algorithm is the most computationally
efficient among the three competitive learning algorithms.
Therefore, it can be argued that the on-line MMPDCL al-
gorithm is a most promising and practical method for the
optimal codebook design, especially for the design of large
size codebooks.

Recently, we found that two different algorithms were also
developed for vector quantization based on Gersho’s asymp-
totic result of equal subdistortion [18] (without being referred
to as the name of partial distortion theorem that is firstly
stated in [19]). One is called thecompetitive and selective
learning (CSL) algorithm developed by Ueda and Nakano
[23] for designing optimal vector quantizers, which employs
the basic CL algorithm with a heuristic selection mechanism
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added that adjusts the number of representative codevectors
in regions according to their subdistortions. The other is the
optimal -means algorithm with dynamic adjustment of learn-
ing rate developed by Chinrungrueng and Sequin [24], which
attempts to minimize the within-region variation weighted
MSE. However, in terms of optimization criterion/scheme and
implementation, the proposed MMPDCL algorithm, which is
based on the novel minimax partial distortion criterion, is
very different to these two algorithms. A thorough comparison
of our MMPDCL algorithm with the two algorithms will be
investigated in the next step.

As a final remark, we would like to point out that there seem
to be some interesting connections between filter design meth-
ods and codebook design techniques. Some of the algorithms
in filter design may be introduced to codebook design. For
example, theRemez exchange algorithm[21] may be adapted
to codebook design by finding codevectors corresponding to
(approximately) uniform and minimal partial distortion.

ACKNOWLEDGMENT

The authors gratefully acknowledge the constructive com-
ments, valuable suggestions, and meticulous proofreading of
the anonymous reviewers that led to great improvements in
the technical and written presentation of this paper, and an
anonymous reviewer who streamlined and reworded precisely
the presentation of Corollary 1 and its proof (in Subsection
III-A) for our final version. The authors also express sincere
gratitude to Prof. K. Zeger for helpful discussions and sugges-
tions, and to Dr. D. P. Webb and C. Thompson for carefully
proofreading and correcting grammatical and editing aspects
of this work. The first author thanks Dr. L. Li and J. Wang for
discussions and help with the early work in 1992 to 1993.

REFERENCES

[1] R. M. Gray, “Vector quantization,”IEEE Acoust., Speech, Signal Pro-
cessing Mag., vol. 1, pp. 4–29, Apr. 1984.

[2] J. Makhoul, S. Roucos, and H. Gish, “Vector quantization in speech
coding,” Proc. IEEE, vol. 73, pp. 1551–1588, Nov. 1985.

[3] N. M. Nasrabadi and R. A. King, “Image coding using vector quantiza-
tion: A review,” IEEE Trans. Commun., vol. 36, pp. 957–971, 1988.

[4] N. Akrout, R. Prost, and R. Goutte, “Image compression by vector
quantization: a review focused on codebook generation,”Image Vis.
Comput., vol. 12, pp. 627–637, 1994.

[5] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer
design,”IEEE Trans. Commun., vol. COMM-28, pp. 84–95, Jan. 1980.

[6] K. Zeger, J. Vaisey, and A. Gersho, “Globally optimal vector quantizer
design by stochastic relaxation,”IEEE Trans. Signal Processing, vol.
40, pp. 310–322, 1992.

[7] D. Desieno, “Adding a conscience to competitive learning,” inProc.
IEEE Int. Conf. Neural Networks, San Diego, CA, 1988, pp. 117–124.

[8] N. M. Nasrabadi and Y. Feng, “Vector quantization of images based
upon the Kohonen self-organizing feature maps,” inProc. IEEE Int.
Conf. Neural Networks, San Diego, CA, 1988, pp. 101–108.

[9] A. K. Krishnamurthy, S. C. Ahalt, D. E. Melton, and P. Chen, “Neural
networks for vector quantization of speech and images,”IEEE J. Select.
Areas Commun., vol. 8, pp. 1449–1457, Oct. 1990.

[10] S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and D. E. Melton, “Com-
petitive learning algorithms for vector quantization,”Neural Networks,
vol. 3, pp. 277–290, 1990.

[11] E. Yair, K. Zeger, and A. Gersho, “Competitive learning and soft
competition for vector quantizer design,”IEEE Trans. Signal Processing,
vol. 40, pp. 294–309, 1992.

[12] T. M. Martinetz, S. G. Berkovich, and K. J. Schulten, “ ‘Neural-
gas’ network for vector quantization and its application to time-series

prediction,” IEEE Trans. Neural Networks, vol. 4, pp. 558–569, July
1993.

[13] F. L. Chung and T. Lee, “Fuzzy competitive learning algorithm with
decreasing fuzziness,”Electron. Lett., vol. 29, pp. 1206–1208, 1993.

[14] C. Zhu, L. Li, T. Wang, and Z. He, “Partial-distortion-weighted fuzzy
competitive learning algorithm for vector quantization,”Electron. Lett.,
vol. 30, pp. 505–506, Mar. 1994.

[15] C. Zhu, J. Wang, L. Li, and Z. He, “A new neural network-based
algorithm for vector quantization,” inProc. Int. Conf. Signal Processing
Applications and Technology, Santa Clara, CA, 1993, pp. 1072–1076.

[16] C. Zhu, L. Li, Z. He, and J. Wang, “A new competitive learning
algorithm for vector quantization,” inProc. Int. Conf. Acoustics, Speech,
and Signal Processing (ICASSP’94), Adelaide, Australia, Apr. 1994, pp.
557–560.

[17] T. Kohonen,Self-Organization and Associate Memory, 2nd ed. Berlin,
Germany: Springer-Verlag, 1988.

[18] A. Gersho, “Asymptotically optimal block quantization,”IEEE Trans.
Inform. Theory, vol. 25, pp. 373–380, July 1979.

[19] A. Gersho and R. M. Gray,Vector Quantization and Signal Compression.
Boston, MA: Kluwer, 1992.

[20] B. Ramamurthi and A. Gersho, “Classified vector quantization of
images,”IEEE Trans. Commun., vol. COMM-34, pp. 1105–1115, Nov.
1986.

[21] A. Antoniou, Digital Filters: Analysis, Design, and Applications, 2nd
ed. New York: McGraw-Hil, 1993.

[22] C. D. Bei and R. M. Gray, “An improvement of the minimum distortion
encoding algorithm for vector quantization,”IEEE Trans. Commun., vol.
COMM-33, pp. 1132–1133, Oct. 1985.

[23] N. Ueda and R. Nakano, “A new competitive learning approach based
on an equidistortion principle for designing optimal vector quantizers,”
Neural Networks, vol. 7, no. 8, pp. 1211–1227, 1994.

[24] C. Chinrungrueng and C. H. Sequin, “Optimal adaptivek-means algo-
rithm with dynamic adjustment of learning rate,”IEEE Trans. Neural
Networks, vol. 6, pp. 157–169, Jan. 1995.

Ce Zhu was born in Sichuan Province, China, in
1969. He received the B.S. degree from Sichuan
University, Chengdu, China, in 1989, and the M.S.
and Ph.D. degrees from Southeast University, Nan-
jing, China, in 1992 and 1994, respectively, all in
electronic engineering.

In July 1994, he joined Shantou University, Shan-
tou, China. From April to September 1995, he was
a Research Associate at the Chinese University of
Hong Kong. From May 1996 to May 1997, he
was with the Department of Electronic Engineering

at the City University of Hong Kong, first as a Research Associate and
then a Research Fellow. He was with the Department of Electrical and
Electronic Engineering, University of Melbourne, Australia, as a Visiting
Research Fellow from May 1997 to February 1998. He is now with Southwest
China Normal University, Chongqing, China, and will be joining Nanyang
Technological University, Singapore. His research interests include vector
quantization, image processing/coding, and neural networks.

Lai-Man Po (S’88-M’91) received the B.Sc. and
Ph.D. degrees from City University of Hong Kong,
both in electronic engineering, in 1988 and 1991,
respectively.

Since November 1991, he has been with the
Department of Electronic Engineering, City Univer-
sity of Hong Kong, where he is currently Director
of the Image Processing Laboratory and Assistant
Professor of the Electronic Engineering Department.
His research interests are in vector quantization and
image and video compression.

Dr. Po was awarded First Prize (1988) in the Paper Contest for Students and
Noncorporate Members organized by the Institute of Electronics and Radio
Engineers of Hong Kong, and a Postgraduate Fellowship of the Sir Edward
Youde Memorial Council (1988 to 1991).


