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Minimax Partial Distortion Competitive
Learning for Optimal Codebook Design

Ce Zhu and Lai-Man PoMember, IEEE

Abstract—The design of the optimal codebook for a given is an input random vector. For an unknown distribution input
codebook size and input source is a challenging puzzle that re- sequence{x; € Rk|L = 1,2,---,M}, the MSE is always

mains to be solved. The key problem in optimal codebook design approximated by the time-averaged square error distortion
is how to construct a set of codevectors efficiently to minimize . - ) M 9 .

the average distortion. A minimax criterion of minimizing the ~ 91Ven by MSE = (1/kM) ¥z, [lo; — Q(z:)[|°. In this
maximum partial distortion is introduced in this paper. Based Paper we also use the MSE as the distortion measurement.

on the partial distortion theorem, it is shown that minimizing For a given codebook size and input source, the optimal vector
the maximum partial distortion and minimizing the average quantizerQ is the one which minimizes the MSE.
distortion will asymptotically have the same optimal solution The design of a vector quantiz€ involves two aspects

corresponding to equal and minimal partial distortion. Motivated . .
by the result, we incorporate the alternative minimax criterion of the encoder and the decoder design. For a given decoder

into the on-line learning mechanism, and develop a new algorithm (i-€., the codebook is fixed), the best encoder should satisfy
called minimax partial distortion competitive learnindMMPDCL)  the nearest neighbor (NN) condition for partitioning the input
for optimal codebook design. A computation acceleration scheme space, while for a given encoder (i.e., the partition is fixed), the
for the MMPDCL algorithm is implemented using the partial  cantroig condition is found to be both necessary and sufficient
distance search technique, thus significantly increasing its compu-]c timizing th debook in th f minimizing th
tational efficiency. Extensive experiments have demonstrated that or op |_m|2|r_19 e_co ebook In the _sense 0 mln_lmlzmg e
compared with some well-known codebook design algorithms, the MSE distortion. With the nearest neighbor encoding rule, the
MMPDCL algorithm consistently produces the best codebooks performance of the quantiz€p in terms of MSE distortion
with the smallest average distortions. As the codebook size in- js dependent on its codebook. Hence, the design of optimal
creases, the performance gain becomes more significant Usmgcodebook is of prime importance in VQ. The generalized
the MMPDCL algorithm. The robustness and computational Liovd algorith GLA) [5 d | d f debook
efficiency of this new algorithm further highlight its advantages. OY ag(_)rl m ( ) [5] was deve _ope_ or_ codeboo
design which employs a batch processing iteration procedure
VECtor hased on the two necessary conditions of optimality. An
open question regarding the GLA algorithm is the initializa-
tion of codevectors. The performance of the GLA algorithm
|. INTRODUCTION strongly depends on the initial codebook. With improper

ECTOR quantization (VQ) has been widely applied tfpitial locations of the codevectors, the GLA may lead to
signal compression for reducing the bit rate required local optimality corresponding to a low quality codebook.

to represent signals for transmission or archiving [1], [2]. [£° ©btain & high-quality codebook, some optimizing tech-

has been shown that VQ is very effective at low to mediufjdues have been devgloped, such.as stochasFic relaxatior! [6].

compression ratio while maintaining an acceptable fideliffoWever, these techniques are typically very time consuming

[3], [4]. A vector quantizer can be defined as a mappin?‘d substantially increase the complexity, especially when the
e

Q of k-dimensional Euclidean spad* into a finite subset designed codebook size is very large. ,
Y of R, ie., Q: R* — Y, whereY = {y, € RVi = Recently, neural network based competitive learning (CL)

1,2,---,NVis called a codebooky; is a codevector andV algorithms have been developed for codebook design that

is the codebook size. From the definition, we can see tHfif characterized by an on-line learning mechanism [7]-[16].
VQ is a lossy compression method, and accordingly sorH: contrast to _the batch-processmg_GLA algorlt_hm, the CL
distortion measurements have been introduced with resp@gorithms design the codebook on-line by updating the code-

to different applications. The most commonly used distortioffctors for each presentation of an input vector. The update

measure is the simple mean squared error (MSE) per samptie for @ typical CL algorithm is
yi(t+ 1) =9,(t) + Si(zt)a () [=(t) —y: ()] (1)

defined byMSE = (1/k) E[||z — Q(x)||?] wherex € R¥
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even leading to the underutilization of some codevectors, in D; =E[||lz — Q(x)||*|x € Ri]P(x € R;) (3)
the case of improper initialization. Kohonen’s self-organizing Q(z) =y, VzeR; ()
map (SOM) [17] employs the neighborhood effect as leaky

learning for the topology preserving map, which alleviates the i , .
problem of some codevectors being underused. Desieno ere N is the qodebo_ok sizef; der_10tes the partition
proposed a heuristic CL algorithm based on the history-relatEgpion corresponding to its representative codevegfoand

“conscience” mechanism to overcome the underutilization'® € #%) is the probability thatr is located inR;. The

problem. Moreover, the frequency-sensitive competitive learff'™m D is called the partial distortion in the regioR; for

ing (FSCL) algorithm [9], [10] is a straightforward and simpléhe codeve.ctoyi. . . .
implementation of the “conscience” scheme, in which eaChWe_cor_15|der the important case of hlgh resolution rt_a_gular
competing codevector assumes an approximately uniform wJH2ntization, whereN is very large, the input probability
rate to thoroughly eliminate the underuse problem. Some oSty function (pdf) is reasonably smooth, and the MSE
improved CL algorithms utilize the soft competition schem@'Stortion is much less than input variance, so that the mathe-
[11], [12] or the fuzzy mechanism [13], [14] to adjust a”matlcal derivation of the performance results is tractable [18],

the codevectors with different adaptation weights for ea&ﬁg]' AF:cording to.[19], a signal-to-noise ratio_(SNR) Vall_Je of
presentation of an input vector. However, determining t dB is a borderline case between low and high resolution for

weights requires additional time-consuming computations suﬁﬂalabr ?uannza:]lon. There::or:_e,hmost lap_phcatlons_ of _quanh;a-
as power operations. tion belong to the range of high resolution quantization. This

Nevertheless, these competitive learning algorithms whi@pProach to performance analysis, known as the asymptotic
aim at “fairly” utilizing each codevector cannot genera”)guantlzatmn approach [1_9], yields useful approxn_’nate re_sults
produce the optimal codebook corresponding to the m"{gferred to as “asymptotic” results that become increasingly

: H _ oR
mum MSE. Naturally, the question is raised, how can tHiFcurate as the resolutiod, or codebook sizeN = 2%,

codevectors be utilized most efficiently for minimizing thdcreases.

MSE function? Concerning optimal quantization, a valuable

contribution due to Gersho [18], which has come to be knowxn Optimal Output Point Density
as thepartial distortion theorem[19], presents a theoretical

In [18], theoutput point densityf a vector quantizer at an
guide to achieving the asymptotically optimal partition of aEg [18] Putp P d y

intin the input space is defined as the number of codevectors

input space for codebook design. Inspired by this theore r unit volume at that point, which is approximated as a

some preliminary prototypes of partial distortion sensitive C ontinuous density function for sufficiently largé. We aim
algorithms for VQ were proposed by Zkbal. [14]-{16]. Fur- at achieving theoptimal output point densityn the form

thering the early work thoroughly, we propose in this paper H optimal codebook corresponding to the minimum average
effectiveminimaxcriterion of minimizing the maximum partialﬁ)

di ion f imal codebook desi ith a qi deb istortion. It is shown in [18] that for largeV, the output
!stortlon or optimal code 0Ok design with a given codeboggyin density of the optimal codevectors is proportional to the
size, where the codevector indices are not entropy coded.

: . i ) ‘ 9(/@ + 2))th power of the input probability density under
corresponding on-line competitive learning algorithm call e MSE distortion measure. This result demonstrates that the
minimax partial distortion competitive learningMMPDCL)

ith | X | X h is further devel optimal distribution of reproduction codevectors is not the
with its computatlon acceleration sc eme 1S l.m. er developelime as the probability distribution of the input vectors for
The effectiveness of the proposed algorithm is investigated

i ith h debook desi laorith fiflite dimensiont. Only as k& approaches infinity does the
comparison .W't some other CcOOEDOOK design algorthms.  tima| point density tend to become proportional to the input
The remainder of this paper is organized as follows. In t

i . ) : ? o obability density, and in such case the optimal codebook will
following section, high-resolution optimal quantization and th

; . . . .~ dsymptotically result in uniform utilization of each codevector.
asymptotic result, the partial distortion theorem, are brief erefore, in the general case of finite dimension, the optimal

formulated as the fundamentals for designing the optim debook does not correspond to the equal utilization of each

codebook. The proposed minimax partial distortion Critec'odevector except in some special cases, e.g., the uniform
rion and the new MMPDCL algorithm with its computationingut distribution ' ’

acceleration scheme are presented in Section Ill. Extensiv
experiments on the Gauss—Markov process, speech and images . .
are reported and discussed using different codebook des@nPartial Distortion Theorem

algorithms for comparison in Section 1V. Concluding remarks Another valuable asymptotic result is thaach partition

are given in Section V. region makes an equal contribution to the distortion for an
optimal quantizer with sufficiently larg&y [18], that is, the
Il. HIGH-RESOLUTION OPTIMAL QUANTIZATION partial distortions D; in each quantization regioiz; are the

. . ame as a constant independentofThis conclusion has
The average (mean squared error) distortion of a vector S !
uantizerQ can be given by recently become known as the partial distortion theorem [19,
q p. 187]. It has been used as a criterion for subcodebook size

N optimization in the classified VQ [20]. In fact, this asymptotic
D= Z D; (2) result of uniform partial distortion can be regarded as an
i=1

additional rule for designing the optimal codebook of large size
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in addition to the well-known nearest neighbor and centromhism for constructing the optimal codebook with minimum
conditions. average distortion.

Il. MINIMAX PARTIAL DISTORTION COMPETITIVE LEARNING B. On-Line Estimates of Partial Distortions

o ) ] ) o In competitive learning, we estimate on-line partial distor-
A. Minimax Partial Distortion Criterion tions using the presented samples under the usual ergodicity
From the partial distortion theorem, we know that an asympssumption. At timeZ’, the partial distortionD; can be
totically necessary condition for optimality of minimizingestimated on-line as

MSE in VQ is to have equal partial distortion. This condition .

is obviously not sufﬂagnt. One _has to fI.n(.j t_he solution vy|th Dy(T) = 7 Z Si(x(t)||2(t) — v, (6)
equal and minimal partial distortion to minimize MSE at high =
rates. Considering theninimax criterion of minimizing the ) )
maximum partial distortion using the estimates

D= max (D)) 5)  Ellz - Q@)Plz € R

ic(1,2,---,N} T T
where D; is the partial distortion shown in (3), we have the ~ Z Si(zi(t)) [lz(t) — yi||2/z Si(zi(t))
following result which can be regarded as a corollary of the t=1 t=1
partial distortion theorem. and
Corollary 1: For sufficiently largeN, the optimal solution

to minimizing the maximum partial distortio®’ will have the 1
equal partial distortion property and will be the same as the Plz € Ri) ~ T Z Si(x(t))

optimal solution to minimizing the average MSE distortibn =t

Proof: It is obvious that of all solutions having thein which the selector functiof;(z(t)) is defined as aforemen-
same average distortion, the one with minimi¥his always tioned. For computational convenience, we use an equivalent

(i.e., not necessarily asymptotically) that with uniform partiaerm pd;(t) to represent the on-line partial distortion estimate
distortion provided such a solution of uniform partial distortiogt time ¢

exists. Furthermore, of all solutions having different average
distortions, the one with minimum average distortion and equal ey A, _ ‘ 2
partial distortion (if such solution exists) is that corresponding Ai(T) =T x Di(T) = Z Sil@)ll=(®) = il

to minimum D’. According to the partial distortion theorem,

for sufficiently large/V, the solution with minimum MSE dis- Hence,pd,(t) can be simply adapted by

tortion has the property of equal partial distortion. Therefore, )

for sufficiently largeN, the solution with minimumD’ must pdi(t) = pdi(t — 1) + Si(x(t))l=(t) — y;l°- (7)

be the one with equal partial distortion and minimum MSE . . .
) . . . We know that in the on-line learning process the codevec-
distortion. The converse is also true. Hence, the two differ-

T . : . t?rs change over time. To save computation as well as to
ent minimizations asymptotically result in the same optimal

: . Mmaintain the on-line characteristic of no storage requirement

solution. This completes the proof. L

The corollary reveals the relationship between the th8r the training set, we qlways use the most recently updated

> ; . . . ézodevectors for calculation.

problems of minimizing the maximum partial distortion an
minimizing the overall MSE distortion. It can be seen that ) ) o
the proposedninimax partial distortiorrule is asymptotically C- On-Line Implementation of Minimax
necessary as well as asymptotically sufficient for minimizing@rtial Distortion Criterion
the average distortion. Recall that a similar minimax criterion With the minimax partial distortion criterion in the on-line
is also used in filter design [21]. In nonrecursive filter desigiiearning, we aim to realize the minimization of the maximum
we apply the minimax criterion to minimize the largest ripplepartial distortion for each presentation of an input vector.
for a given frequency specification and filter order, whicBpecifically, we will determine the selector functiéi(x(¢))
results in the Chebyshev solution of equiripple. In vectdor each presentation(¢) to achieve the minimax result.
quantization, we employ the minimax scheme to minimize If the codevectoy;. is chosen as the winner for the current
the maximum partial distortion for a given training set anthput =(t), i.e., S;-(x(t)) = 1, its corresponding partial
codebook size which aims at obtaining the optimal codebodistortion estimate is updated ag;-(t) = pd;-(t — 1) +
corresponding to uniform and minimal partial distortion. Acljz(t) — v;.||?, while the partial distortions for the nonwinner
cording to the corollary, the optimal codebook minimizing theodevectors remain unchanged, (¢) = pd;(t—1),j # i*. So
maximum partial distortion is a good approximation to thahe updatecd,- (¢) may be maximal compared with the other
minimizing the average MSE distortion, especially for largpartial distortionspd;(t), j # ¢*. To ensure the minimization
codebook sizeV. of the maximum partial distortion for each input, we should

Motivated by the result, we incorporate theénimax partial choose the codevectay, as the winner, which yields the
distortioncriterion into the on-line competitive learning mechminimum of updated partial distortion compared with choosing

t=1
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any other codevector as the winner. Accordingly, the selectorStep 2 (Distortion Measuring)Apply an input vectorz(t)
function becomes and calculate the distortion for each codevector

. _ N —-m/T g (4 2
L if pdi(t — 1) + [[a() — g2 < pd,(t - 1) dilt) =pdi(t = 1) > 7 +2(®) (= D]
Si(x(t)) = + [lz(t) — y;||* foranyj #i i=1,2,--- N (10)

0, otherwise. . )
’ wherem denotes the sweep index. (A sweep is one full cycle

through the training set.)
Step 3 (Winner Selection)Select the winner index* =
To obtain codebook optimality, the nearest neighbor partirgmin d;(t), and thenS;. (z(t)) = 1 S;(z(t)) =0, forj #
tion rule and the corresponding centroid rule should be strictlly @
satisfied by the final code. For this reason, various competitive, R .
learning algorithms gradually turn into the basic CL algorithm Step 4 (Adaptation):Adjust the codevectors according to
with time for the nearest neighbor partition. The soft compe- y,(t) = v,(t — 1) + i (0)S; (w(t))[x(t) —y;(t — 1)] (A1)
tition algorithm gradually evolves into the basic CL learning
as the temperature decreases with time [11], and the fuzzy @here «;(t) is the learning rate of codevectq; at time
algorithms change into the basic CL algorithm with decreasidge = 1,2,---, V.
fuzziness [13], [14]. The optimization techniques such as theUpdate the value of partial distortignd;(i = 1,2,---, N)
stochastic relaxation with decreasing perturbation [6], [19] wi#iS
also eventually evolve into the basic learning scheme based
on the nearesi/neighbor partition and the cer?troid conditions., 7% () = pdi(t = 1) + Si(w(®)ll=(t) - vl (12)
Therefore, we also adopt a similar mechanism in the learnifig fact, only the winnery,. and its corresponding partial
process. In the early stage of codebook training process, W8tortion pd;- have been changed.
apply the rule of minimizing the maximum partial distortion step 5 (lteration): Set¢+1 — ¢, and repeat Step 2) through
for partition to produce good locations of the codevectoksiep 4) for all the training vectors, until a terminating condition
corresponding to the approximately uniform partial distortiongs satisfied, e.g., the change of the quantization distortion
It could be argued that this early training process led to thtween two sweeps is less than a small valuer the total
production of a superior initial codebook. As the trainingyymper of sweeps reaches a predetermined value.
progresses, the partition should become gradually dominatedg meet the centroid condition for the final code, the
by the nearest neighbor rule for fine tuning to obtain the finfdaring rate iso;(t) = 1/u;(t), wherew;(t) is the number
optimal codevectors. Based on this expectation, we emplgy times that the codevectay, has won until timet. (The

(8)

the selector function detailed analysis for the learning rate can be found in [11].)
We also employ the reinitialization technique [11] for the
Si(z(t) = learning rate except for a slight modification. When the
1, if pdi(t— 1) x e /T 4 ||z(t) — ;|2 < pd;(t — 1) current sweep index equals a perfegt square, the counters
x et 4 ||2(t) _yj||2 u;(t) are reset to a gradually increasing number (e_2g+,
for anyj # i _(int)(Sweep Numb_m_/l(_)) as employed in our expenment)_
0, otherwise instead of being reinitialized to unity as adopted in [11]. This

(9) modified reinitialization scheme keeps the learning rate from
being too small and so speeds up convergence. Also, it main-
i ) _ ) tains the good codevector distribution gradually formed in the
in which we introduce an attenuation fac?mt/T for pdi(t = training process by avoiding large changes in the codevector
1). T (>0) is a constant to be determined experimentally,cations due to decreasing the reinitialized learning rate.

In the early stage of training, the attenuation factot/? is From the above procedure, we can see that compared with
close to one for smati, thus the partition is performed as in (8)e pasic CL algorithm or GLA, for each presentation of a
for minimizing the maximum partial distortion. ASncreases, {raining vector,N more multiplications and additions in (10)
¢~*/T approaches zero, and then the nearest neighbor partitigg required while one more Euclidean distance calculation and

rule is asymptotically satisfied. an addition are attached in (12) by the MMPDCL algorithm.
The calculation of the exponentiat "/ is performed once

D. Minimax Partial Distortion Competitive for each sweep, and within one sweep the attenuation factor is

Learning Algorithm unchanged. These additional computations are inexpensive in

omparison to théV Euclidean distance computations in (10)

From the partition rule in (9), the corresponding algorith . o
b ) P g alg or each presentation of a training vector.

called minimax partial distortion competitive learningVM-
PDCL) algorithm may be developed. The detailed steps of the . ,
proposed MMPDCL algorithm are as follows. E. A Computation Acceleration Scheme

Step 1 (Initialization): Generate an initial codebook = for the MMPDCL Algorithm
{9,(0),4=1,---, N} of size N randomly, and set each partial The most computationally intensive part of the MMPDCL
distortion pd;(t) = 0 at timet = 0. algorithm is the distortion calculation between an input vector
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and each codevector in Step 2) for finding the minimufil], and the FSCL algorithm, in terms of performance and
distortion. The proposed distortion metric employed in (10) isomputational complexity.
just an additive combination of the weighted partial distortion The following three of the commonly used sources, the first-
pdi(t—1) x e=™/T and the Euclidean distandie(t) —y;(t — order Gauss—Markov source, digitized speech waveforms and
1)||?. The Euclidean distance is also an additive combinatiatigital images, were applied in codebook design. The first-
of each component distance corresponding to each dimensiwder Gauss—Markov or Gauss autoregressive sdurge has
of the vectors, i.e., the formz,, = az, 1 + w,, where the regression coefficient
« has magnitude less than one, afd,} is a zero mean,
p i 9 unit variance, i.i.d. Gaussian source. The valuesafan our
le(t) — (¢ = DII* = Z (/1) — 9 (£ = 1) experiments were 0, 0.5, and 0.9. Codebooks were designed
=t for this source using a training sequence of 25600 samples
wherek is the dimensionality of vectors. For such an additiveith different dimensions and different sizes by the different
combination in which each positive component contains atgorithms. As a first source of practical importance, we used a
least one multiplication operation, the partial distance searggining sequence of 320000 16-b samples of ordinary speech
(PDS) technique [22] is a simple and effective method to fifiom two male speakers sampled at 11.025 kHz for designing
the winner fast. The PDS method can remove many undesidé@ codebooks. Eight 256-grey-level images of the size 256
codevectors with fewer multiplications without sacrificing?56 (Lenna, lady, woman, house, camera, Walter, pattern, tree)
performance. were decomposed into 4 4 nonoverlapped blocks to form a
The efficiency of the PDS method depends on seveggt of 32768 16-dimensional vectors for designing codebooks
factors, such as the vector dimension, the order in whié different sizes using the different algorithms.
components are computed, and how early a codevector with
a small enough distortion is found. In general, the higher
the dimension of input vectors the more efficient the PD& SNR (PSNR) Performance
technique. The earlier the nearest neighbor codevector (or &he SNR results of the proposed MMPDCL algorithm
codevector with small distortion) is found, the greater thand the reference algorithms are summarized in Tables | and
reduction in the number of multiplication operations the PD% for the first-order Gauss—Markov sources and the speech
method may achieve. Since there is a statistical correlatisaurce, respectively. SNR= 10 log;,(o2/MSE) where o2
between adjacent input vectors, the codevector winner for tise the variance of the scalar source sample Table IlI
last input vector is considered to be a good initial choigeresents the PSNR results on image coding, where PSNR
of the winner for the current input vector because this in0 log;,(255*/MSE), MSE being the average mean-squared
creases the chance of finding a small distortion early guantization error per pixel for the eight images. It should
the winner searching process. Pertaining to the computibg noted that for all the algorithms, we do not specifically
order of each component in the additive combination, it @eal with any possible empty cells because we mean to test
obviously beneficial to start the PDS process from the largebe capability of the algorithms to circumvent the “empty
component in order to identify the undesired codevectors mesill” problem automatically. This also contributes to a more
quickly. Then the computation time for finding the winningcomprehensive and fairer comparison purely for the distinc-
codevector can be significantly reduced. In the weighted partisle learning schemes employed by the different algorithms.
distortion pd;(t — 1) x ¢ ™/T pd;(t — 1) is progressively Actually, there should generally be no empty cells for the
increased with the cumulation of many Euclidean distancakjorithms if the initial codebooks are selected directly from
shown in (12). When the attenuation facter”/” is not the training set, as was made in our experiments. Especially for
very small, e.g., in the early or intermediate stages of thiee FSCL and the proposed MMPDCL algorithms, empty cells
training process, this weighted partial distortion is larger thamill not emerge even with very poor initial codebooks (e.g.,
the single Euclidean distandle(¢) —y,(t—1)||?, and of course many duplications of codevectors in the initial codebook),
much larger than each component of the Euclidean distarimecause the two algorithms aim to achieve uniform codevector
(7 (t)—yl(t—1))%,j = 1,2,---, k. Therefore, to achieve high usage and uniform partial distortion, respectively.
computational efficiency, the PDS process is started from theFor the GLA algorithm, we used several different initial
weighted partial distortion that is the largest component in tlke@debooks randomly selected from the training vectors. (In
additive combination of the proposed distortion measuremeotr experiments, ten different initial codebooks were used for
By incorporating these considerations, the PDS technique ¢ae Gauss—Markov source, and five different initial codebooks
be applied to the MMPDCL algorithm in a highly efficientfor the speech and image sources.) The highest SNR (or
manner. PSNR) achieved was chosen as the final result of the GLA
in comparison with a single run of the other algorithms
using only one initial codebook. For the soft competition
algorithm, it requires time-consuming trial and error to find
the appropriate parameters for different sources, e.g., obtaining
Experiments on VQ codebook design have been carried dla¢ precise temperature schedules and specifically treating
to investigate the proposed MMPDCL algorithm by comparinthe cells containing a small number of input vectors, with
it with the GLA, splitting GLA, soft competition algorithm a view to achieving the excellent results presented in [11].

k

IV. EXPERIMENTAL RESULTS AND COMPARISONS
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TABLE |
SNR GOMPARISON OF THE DIFFERENT ALGORITHMS FOR GAUSS-MARKOV SOURCES
SNR (dB)
o Vector | Codebook GLA Splitting Soft FSCL | MMPDCL
Dim. Size GLA Comp.
8 256 5.984 5.943 6.159 6.026 6.188
4 256 10.902 10911 10.984 10.825 11.053
0 2 64 15.485 15.484 15.388 15.275 15.499
2 128 18.405 18.416 18.377 18.156 18.519
2 256 21.064 21.573 21.115 20.952 21.729
2 512 23.648 24.856 23.777 23.611 25.164
8 256 7.009 7.033 7.180 7.047 7.223
4 256 11.789 11.790 11.862 11.770 11.966
0.5 2 64 16.068 16.092 15.952 15.818 16.092
2 128 18.957 19.083 18.889 18.711 19.138
2 256 21.680 22.257 21.744 21.458 22.408
2 512 24.448 25.520 24.494 24.303 25.785
8 256 12.048 12.137 12.251 12.087 12.314
4 256 16.267 16.300 16.305 16.240 16.472
0.9 2 64 19.045 19.136 19.019 18.884 19.152
2 128 21.884 22.130 21.812 21.526 22232
2 256 24.732 25.262 24.479 24.264 25.369
2 512 27.447 28.568 27.409 27.176 28.763
TABLE 1l
SNR GOMPARISON OF THE DIFFERENT ALGORITHMS FOR SPEECH
SNR (dB)
Vector | Codebook GLA Splitting Soft FSCL MMPDCL
Dim. Size GLA Comp.
256 13.066 13.851 13.384 12.876 13.914
8 512 13.862 15.476 14.411 13.727 15.739
1024 14.638 17.358 15.302 14.388 17.781
256 17.095 17.867 16.863 17.043 17.979
4 512 18.210 20.021 18.158 18.254 20.157
1024 18.944 22.156 19.286 18.763 22.504
64 19.102 19.103 17.954 18.769 19.103
128 22.035 22.033 20.213 21.656 22.427
2 256 24.308 25.003 21.950 23.981 25.729
512 25.451 28.141 22.877 25461 28.781
1024 26.435 31.506 25.359 26.227 31.867
In our experiments, we adopted the temperature schedite Tables I-lIl, it can be clearly seen that the proposed

T(m) = Toy~™ wherey = 1.05 and m was the sweep MMPDCL algorithm achieves the best results over a wide
number, without specifically treating the empty cell probrange of sources, vector dimensions and codebook sizes.
lem just as mentioned in the last paragraph. Each initiak the designed codebook size increases, the improvements
codebook for the soft competition algorithm was randomlyecome more significant.

selected from each training set with no identical codevec-Fig. 1 depicts the distributions of the partial distortions (in
tors in each initial codebook. In the FSCL algorithm, w@escending order) obtained from the different algorithms for
adopted f(w;) = u™ ™" and T = M/2 as recom- the Gauss—Markov source with= 0, vector dimension 2, and
mended in [9], whereM was the specified total numbercodebook size 512. The MMPDCL algorithm renders the most
of iterations (in sweep) for training (in our experimentsgyen partial distortion distribution with the least maximum
M is 400). In the proposed MMPDCL algorithm, the onlyyatial distortion. From the figure and the corresponding SNR
undetermined parametéf in the attenuation factor™™/*" e its it can also be seen that the more even the partial
was chosen ag’ = M/L, where L = 10 for all the istqrtion distribution is, the higher SNR value the codebook
sources in our experiments. The FSCL and the MMPDClieves. The gains of the MMPDCL algorithm over the GLA,

algorithms used the same initial codebooks selected randorEQCL and soft competition algorithms are more than 1.5 dB

from each training set without any restriction. From the resu'\t%ile the gain over the spliting GLA is more than 0.3 dB

1we would like to stress that better results for the soft competition algorithﬁllg' 2 demonStrates '.[he corresponding convergence curves of
may be obtained using other schedules (parameters). the algorithms for this case, where the best result from ten
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TABLE I
PSNR ®MPARISON OF THE DIFFERENT ALGORITHMS FOR IMAGE
PSNR (dB)
Codebook GLA Splitting Soft FSCL MMPDCL
Size GLA Comp.
64 27.149 27.134 27.135 27.039 27.190
128 28.235 28.244 28.284 28.034 28.305
256 29.206 29.266 29.345 29.008 29.446
512 30.058 30.355 30.376 29.795 30.542
1024 30.867 31.494 31.389 30.695 31.821
2048 31.768 32.939 32.477 31.622 33.483
2E-4 T T T T T T T T T T T T T T T T
S 77 FSCL i
——————— GLA
o Soft Competition 1
é 2E-4 E. """""" Splitting GLA i
S 5 MMPDCL
2 |
_. 1E-4 'l,‘. 1
= |
g N 1
s i
8E-5 |} 4
. \“
"4\:_\
S\
E:
4E-5 [
0EO .
0 50 100 150 200 250 300 350 400 450 500

Codevector Index

Fig. 1. Distributions of the partial distortions (sorted in descending order) obtained from the different algorithms, for the Gauss i.i.d..sQurce (i
in the Gauss—Markov source) with vector dimension 2 and codebook size 512.

initial conditions is plotted for the GLA. The convergencaround 10-20. Comparing Table IV with the relevant results
curve for the splitting GLA is plotted after a good initialin Table I, we can see the MMPDCL algorithm outperforms
codebook has been obtained, so we can see the splitting Gib& other algorithms even fot = 0 or L = 200. For
finds the final codebook very fast using the preprocessed initial= 0 corresponding to the attenuation factor”™/?T = 0,
codebook. The MMPDCL algorithm obtains a good result &he learning process is performed with (8). Asapproaches
the beginning and surpasses the splitting GLA algorithm tfinity corresponding te—"*/7" approaching zero, the learning
around 60 sweeps of iteration. algorithm tends to become the basic CL algorithm. In our
experiment, the basic CL algorithm produces the SNR value
of 23.890 for this source, which is more than 1 dB smaller
than the SNR values obtained by the MMPDCL fbrin the

In the MMPDCL algorithm, there is only one undeterminetiange of [0, 200].
parameter?’, defined as” = M/L. To test the effect of Performance evaluation was also made on the sensitiv-
the parametefl’ on performance, we equivalently consideity to initial codebooks for these algorithms. We used the
the parametet. for a fixed M (= 400 in our experiment). Gauss—Markov source witkk = 0.5, vector dimension 2,
Table IV presents the SNR values using the different valuesd codebook size 512 for the test. Table V shows the MSE
of L for the Gauss—Markov source with = 0, vector results for the algorithms using ten different initial codebooks
dimension 2, and codebook size 512. It can be seen thandomly selected from the training set. As can be seen in
the performance of the MMPDCL algorithm is robust withTable V, the MMPDCL algorithm achieves stable results with
respect to variation of the parametdr in the range of similar SNR values for all initial codebooks. Therefore, we
zero to 200. The corresponding mean SNR value is 25.06a2n expect that the MMPDCL algorithm is a robust method
with the variance 0.00967. The performance is best For for codebook design.

B. Robustness Performance



ZHU AND PO: OPTIMAL CODEBOOK DESIGN 1407

25.20

24.05 F

SNR (dB)
N
8

21.75

Iteration (Sweep) number

Fig. 2. Convergence of the GLA, splitting GLA, soft competition, FSCL, and MMPDCL algorithms for the Gauss i.i.d. source with vector dimension
2 and codebook size 512.

TABLE IV
SNR ResuLTS UsSING DIFFERENT L FOR THE GAUSS-MARKOV SOURCE WITH a@ = (), CORRESPONDING TO AN
SNR MEAN oF 25.052AND VARIANCE OF 0.009 67. \ECcTOR DIMENSION Is 2, AND CoODEBOOK SiZE |s 512

L 0 1 5 10 15 20 30 50 100 150 200
SNR 24.880 | 24.959 | 25.112 | 25.164 [ 25.158 | 25.142 | 25.136 | 25.111 | 25.000 | 24.965 | 24.943

TABLE V
MSE ResuLTs OBTAINED FROM THE GLA, SorT ComPETITION, FSCL,AND MMPDCL ALGORITHMS USING TEN DIFFERENT
INITIAL CODEBOOKS FOR THEGAUSS—-MARKOV SOURCE WITH o = 0.5. THE SUPERSCRIPTS *” AND “#” DENOTE THE LARGEST
AND SMALLEST MSE VALUES FOR EACH ALGORITHM, RESPECTIVELY. VECTOR DIMENSION IS 2, AND CODEBOOK SizE Is 512

Initial Codebook MSE (x107)
Index GLA Soft Comp. FSCL MMPDCL
1 4727 * 4.677 4.900 3475
2 4,954 4621 " 4.822 3485
3 5102 4.850 5.146 3471
4 4758 4.878 4672 "7 3477
5 4.796 4.683 4.926 3.464
6 4.986 5025 5.128 3.482
7 4.972 4.744 4.789 3.464
8 5.055 4.755 4.979 3.458 "
9 4.974 4.798 5.068 3.467
10 5.033 4.826 4.887 3.474
Average (x107) 4.9357 4.7857 49317 34717
Variance (x10™) 15.165 12.386 20.815 0.066
C. Computational Efficiency and each codevector are required for the winning probabil-

To make a fair comparison, we also applied the sanf¥ calculation [11], so the PDS method is not applicable
partial distance search (PDS) scheme to the GLA and thethis case. Furthermore, the exponential operation for the
splitting GLA for winner searching. For the FSCL algorithnProbability calculation is time consuming. For the MMPDCL
[9] employing the distortion metricf(u;)|jy; — =(t)||?, the algorithm, we used the PDS computation acceleration scheme
PDS method can be performed faémin/f(w), wheredmin described in Section IlI-E. All the simulations were written in
denotes the current minimum distance. For the soft competitite C programming language and were run on a Sun Ultra
algorithm, all the Euclidean distances between a training vectborModel 140 workstation with the “gcc” compilation flags
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TABLE VI
AVERAGE COMPUTATION TIME PER SWEEP OF ITERATION FOR THE DIFFERENT ALGORITHMS
ACCELERATED BY THE PDS TECHNIQUE (FOR THE IMAGE CODEBOOK GENERATION)

Codebook Average computation time per sweep of iteration (Seconds)

Size GLA Splitting GLA | Soft Comp. FSCL MMPDCL
64 0.952 2.533 16.136 1.945 1.052
128 1.665 6.212 33.356 3.038 1.700
256 3.508 14.499 69.664 5.446 3.245
512 7.601 32.495 152.290 9.686 5.794

1024 15.767 74.038 285.212 17.955 11.529

2048 32.587 135.294 630.79 35432 24.035

TABLE VI

AVERAGE PERCENTAGE SAVINGS IN TERMS OF THE 16-DIMENSIONAL EUCLIDEAN DISTANCE COMPUTATIONS IN THE WINNER-FINDING PROCESS(FOR THE
IMAGE CODEBOOK GENERATION), BY THE ACCELERATED FSCL AND ACCELERATED MMPDCL ALGORITHMS, RESPECTIVELY

Average percentage savings of the Euclidean distance computations (%)

Codebook Size 64 128 256 512 1024 2048
FSCL 71.55 73.14 74.41 75.48 76.28 76.97
MMPDCL 83.12 85.70 87.73 89.56 90.47 91.19

“-O5 -msupersparc.” The average computation time per swesgvings of the 16-dimensional Euclidean distance computa-
of iteration by each algorithm is shown in Table VI for thdions by the accelerated FSCL and accelerated MMPDCL
image codebook generation. The average computation time pkgorithms, respectively (for the image codebook generation).
sweep means the ratio of the total time to the total number\dfe can see that the accelerated MMPDCL algorithm can
sweeps used for each algorithm. The splitting GLA progressaghieve a larger reduction in the number of Euclidean distance
level by level to obtain a good initial codebook of the designegPmputations, which accounts for its faster running.
size, which requires much time for the preprocessing. The
average computation time per sweep for the splitting GLA is
the ratio of the total time including the preprocessing to the
number of sweeps required for the last level codebook of the”A novel minimax criterion with respect to partial distortion
designed size to converge. has been introduced which is asymptotically necessary as
From Table VI, we can see that the MMPDCL algorithrr‘{"e" as asymptotically sufficient for minimizing the average
has the least computation time per sweep when the Codebg_gﬁgortion. By incorporating this alternative criterion into on-

size is larger than 128, up to 26 times faster than that of tH@e, pompetitiye learning, the minimax par_tial distortion com-
soft competition algorithm. In our experiments, one run detitive learning (MMPDCL) algorithm with a computation

the GLA generally took about 30-70 sweeps of iteration ﬁclc;elergt|on tsclhemelthahs beer|1 delvelc;]ped. that th d
converge, while the three competitive learning algorithms xperimental results have clearly shown that tné propose

. MPDCL algorithm consistently produces the best codebooks
the soft competition, FSCL and MMPDCL used 400 sweeps With the minimum MSE. As the codebook size increases, the

iteration for training. Hence, one run of the GLA requires the . .
least amount of time, and the time needed for the splitting G grformance improvements of the MMPDCL algorithm over
. ' g the other algorithms become more significant. Furthermore, the
IS th(_e next shortest. Among the three competmve Iearnlri\WMPDCL algorithm has demonstrated its robustness owing to
algorithms, the MMPDCL uses the least total time, only aboHtS insensitivity to the value taken by the sole paraméteand
60% of't'hat for the FSCL and 5% or less (_)f that for the Sofﬁe choice of initial codebook. It has also been shown that the
competition algorithm. Moreover, we found in the experimentg. .o jerated MMPDCL algorithm is the most computationally
that the MMPDCL algorithm achieved better results than glkicient among the three competitive learning algorithms.
the other algorithms in fewer than 100 sweeps of iteration f%erefore, it can be argued that the on-line MMPDCL al-
large codebook size§V > 512), and obtained the near peakgorithm is a most promising and practical method for the
values around 100-200 sweeps. In this sense, the MMPDghtimal codebook design, especially for the design of large
algorithm obtains better results than the splitting GLA witkjze codebooks.
less time. Recently, we found that two different algorithms were also
The most computationally intensive part in the trainingeveloped for vector quantization based on Gersho’s asymp-
process for the algorithms is the Euclidean distance coftic result of equal subdistortion [18] (without being referred
putations in the winner-finding process for each presentaties as the name of partial distortion theorem that is firstly
of an input. With the PDS computation acceleration schenstated in [19]). One is called theompetitive and selective
the MMPDCL algorithm can be accelerated substantially byl@arning (CSL) algorithm developed by Ueda and Nakano
large reduction in the Euclidean distance computations in S3] for designing optimal vector quantizers, which employs
2) of the algorithm. Table VII presents the average percentailpe basic CL algorithm with a heuristic selection mechanism

V. CONCLUDING REMARKS
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added that adjusts the number of representative codevectors prediction,” [IEEE Trans. Neural Networks/ol. 4, pp. 558-569, July
in regions according to their subdistortions. The other is ﬂf?s] 1993.

F. L. Chung and T. Lee, “Fuzzy competitive learning algorithm with

thimal k-means algorithm with dynamic adeStm_em of Iear_n- decreasing fuzzinessElectron. Lett, vol. 29, pp. 1206-1208, 1993.
ing rate developed by Chinrungrueng and Sequin [24], whid¢i¥#] C. Zhy, L. Li, T. Wang, and Z. He, "Partial-distortion-weighted fuzzy

attempts to minimize the within-region variation weighted

competitive learning algorithm for vector quantizatio&fectron. Lett,
vol. 30, pp. 505-506, Mar. 1994.

MSE. However, in terms of optimization criterion/scheme ands] c. zhu, J. Wang, L. Li, and Z. He, “A new neural network-based
implementation, the proposed MMPDCL algorithm, which is  algorithm for vector quantization,” iRroc. Int. Conf. Signal Processing

based on the novel minimax partial distortion criterion, iﬁa

Applications and Technologpanta Clara, CA, 1993, pp. 1072-1076.
] C. Zhu, L. Li, Z. He, and J. Wang, “A new competitive learning

very different to these two algorithms. A thorough comparison "~ aigorithm for vector quantization,” iRroc. Int. Conf. Acoustics, Speech,
of our MMPDCL algorithm with the two algorithms will be and Signal Processing (ICASSP’9#Adelaide, Australia, Apr. 1994, pp.

557-560.

investiggted in the next step. _ _ [17] T.Kohonen Self-Organization and Associate MemoPyd ed.  Berlin,
As a final remark, we would like to point out that there seem = Germany: Springer-Verlag, 1988.

to be some interesting connections between filter design mel! A- Gersho, “Asympoically optimal block quantizationEEE Trans.

Inform. Theory vol. 25, pp. 373-380, July 1979.

ods and codebook design techniques. Some of the algorithi§ A. Gersho and R. M. Grayector Quantization and Signal Compression.
in filter design may be introduced to codebook design. For Boston, MA: Kluwer, 1992.

example, theRemez exchange algorithf2l] may be adapte

d [20] B. Ramamurthi and A. Gersho, “Classified vector quantization of
images,”IEEE Trans. Communvol. COMM-34, pp. 1105-1115, Nov.

to codebook design by finding codevectors corresponding to 1986,
(approximately) uniform and minimal partial distortion. [21] A. Antoniou, Digital Filters: Analysis, Design, and Application2nd

ed. New York: McGraw-Hil, 1993.
[22] C. D. Beiand R. M. Gray, “An improvement of the minimum distortion
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