SPATIAL COEFFICIENT PARTITIONING FOR LOSSLESS WAVELET IMAGE CODING

Kwok-Wai Cheung, Lai-Man Po

Department of Electronic Engineering,
City University of Hong Kong,
Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
E-Mail: kwcheung@ee.cityu.edu.hk, eelmpo@cityu.edu.hk

ABSTRACT

A novel coefficient partitioning algorithm is introduced for
splitting the coefficients into two sets using spatial orien-
tation tree data structure. By splitting the coefficients, the
overall theoretical entropy is reduced due to the different
probability distribution for the two coefficient sets. In spa-
tial domain, it is equivalent to identifying smooth regions
of the image. A lossless coder based on this spatial coef-
ficient partitioning is described. Experimental results show
that the new algorithm has a better coding performance than
other wavelet based lossless image coder such as S+P and
JPEG-2000.

1. INTRODUCTION

The state-of-the-art lossless image coding algorithms such
as CALIC [1] and JPEG-LS [2] operate in spatial domain.
However, in applications desiring fast preview of losslessly
compressed images for archiving and progressive transmis-
sion, the multiresolution representation property of wavelet
based coding algorithms is more attractive. Most wavelet
based coding algorithms [3, 4] use an image model that nat-
ural images are well characterized as a linear combination of
energy concentrated in both frequency and space, i.e. most
of the energy of typical images is concentrated in low fre-
quency information and the remaining high frequency en-
ergy components are spatially concentrated around edges.
Coefficients are entropy coded using estimated probabili-
ties conditioned on the context in which the coefficients
are observed [5, 6]. The coding performance is compara-
ble to most spatial domain image coders without relying on
sophisticated design of offline parameters. This paper de-
scribes a preprocessing technique, called spatial coefficient
partitioning (SCP), which can improve the coding perfor-
mance of lossless wavelet image coders based on the prop-
erties of the wavelet domain image model. As high energy
coefficients are usually clustered in the same spatial region,
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SCP tries to split the high frequency coefficients into two
sets — one set with mainly low energy coefficients, and an-
other set consisting of the remaining coefficients. Theoret-
ically, by splitting the original coefficient set into two sets
with different energy distribution, the overall entropy can be
reduced. Experimental results show that image coder using
the proposed preprocessing technique gives a better coding
performance than that of the existing lossless wavelet image
coders.

2. SPATIAL PARTITIONING IN WAVELET
DOMAIN

A wavelet image decomposition provides a hierarchical data
structure for representing images with each coefficient cor-
responding to a spatial region in the image. Figure 1 shows
a 3-level wavelet decomposition of an image, together with
a spatial wavelet coefficient tree, which is defined as the set
of coefficients from different bands that represent the same
spatial region in the image. Arrows in Figure 1 identify the
parent-children dependencies in a tree. A spatial orienta-
tion tree is defined as the tree structured set of coefficients
with the tree root started at one of the directional bands (i.e.
LH, HL,and H H) at any level. We call it a full depth spa-
tial orientation tree if the tree root starts at the highest level
directional bands. In general, for n-level decomposition of
ad x d image, the LL band has d/2" x d/2"™ coefficients.
Each coefficient in LL band together with all its descen-
dents forms a spatial wavelet coefficient tree corresponding
to a 2™ x 2" spatial area of the original image. The three
direct descendents of any LL band coefficient are the tree
roots of three full depth spatial orientation trees. These three
trees carry the high frequency information in three different
orientations — horizontal, vertical and diagonal — of the cor-
responding spatial region.

2.1. Magnitude based partitioning

In wavelet representation, except in' LL band, the coeffi-
cients measure the image’s spatial intensity variation at dif-
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Fig. 1. Parent-child relationship in spatial wavelet coeffi-
cient tree of a 3-level wavelet decomposition.

ferent frequency ranges. The spatial activity level or inten-
sity variation for spatial area is characterized by the mag-
nitude or energy of the coefficients in corresponding spatial
orientation trees. It is possible to differentiate between low
and high activity areas by examining the coefficient magni-
tude. Another characteristic of common wavelet coefficient
is that the magnitude distribution concentrates in the near
zero magnitude range. Based on these observations, we de-
fine a binary partitioning function,

More than 90% coefficients in T;
have magnitude less than 2.
1, Otherwise.

P, (Ty) =

M

to determine the activity level (either low or high) of a spa-
tial orientation tree T; with tree root at node ¢ (coefficient
¢;). For a given threshold, 2, a coefficient is said to be signif-
icant if its magnitude is larger than z while it is insignificant
if its magnitude is less than or equal to z. The function P,
classifies the activity level of the spatial area corresponding
to T; based on the population of insignificant coefficients.
A tree T; is said to be significant (respectively insignificant)
if P,(T;) = 1 (respectively P,(T;) = 0). Thus, some trees
with few percentages of large magnitude coefficients can
also be classified as insignificant trees with a small thresh-
old. By considering the whole wavelet representation as
the coding source, splitting the original source into different
subsources with different probability distribution has theo-
retical entropy gain [7]. Applying (1) to all full depth spatial
orientation tree, i.e. {T;} with all node ¢ from LH,, HL,,
and H H,, bands in n-level wavelet decomposition, we can
partition the original source, i.e. all high frequency wavelet
coefficients, into two subsources. The entropy of the sum of
the two subsources can be reduced if their probability distri-

butions are different. Figure 2 shows the two magnitude dis-
tributions for the significant trees and the insignificant trees
partitioned using (1). Obviously, the distributions for the
two coefficients sets are very different. Equivalent in spa-
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Fig. 2. Partitioned coefficient magnitude distributions of the
image “Lenna”.

tial domain, the image is partitioned into non-overlapping
2™ x 2™ pixel blocks. Each image block is classified as ei-
ther low activity block or high activity block. A separate
binary map is required to carry the partition information for
the trees. For a 5-level wavelet decomposition of 512 x 512
image, the number of binary bit required is only 768 bits
or 0.003 bpp. This overhead data size is relatively small
compared with the whole compressed image size.

2.2, Determining the partition threshold 2

The partitioning function P,(T3;) in (1) classifies 7; with
reference to a threshold value z. In this section, we de-
scribe a fast algorithm to find a suitable threshold value 2
for an image. Spatial partitioning classifies the full depth
spatial orientation trees as either significant or insignificant
depending on the percentage of insignificant coefficients in
the trees. The purpose is to have as many insignificant trees
as possible while the partitioning threshold should be as
small as possible so as to minimize the dynamic range of
the insignificant partition. The idea of the algorithm is to
initially choose a high threshold to have an initial partition
of significant and insignificant trees. Each insignificant tree
with respect to the initial threshold is examined to find a
more suitable individual threshold for that tree. Then, a new
global threshold will be determined from these individual
thresholds. The new threshold is used to partition all the
trees again. This process repeats until the global threshold
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found converges. The iterative algorithm for determining
the partition threshold z is given as follows.

Partition Threshold Algorithm

1. Initialization: Set 2(®) « |c/az|/2 Where cppaz is
the coefficient with maximum magnitude; set the it-
eration count k£ « 0.

2. Tree Classification: Determine the partition map mgk)
for each full depth spatial orientation tree by

mgk) = Pz(h) (T,)

3. Update threshold: Find the number of insignificant
tree, g. For each insignificant tree, find the individual

tree threshold, sz), such that 90 % of coefficients in-

side the tree have magnitude less than zgk). Update
the threshold value by

241 = §° AP /q

Tiel
where I is the set of insignificant trees.

4. Convergence check: If |25+ — z(®)| > 2, incre-
ment the iteration count & + (k + 1) and go back
to Step 2 to partition all full depth spatial orientation
trees using the new threshold. Else, z = z(*+1) is the
final global partition threshold.

3. SPATTAL COEFFICIENT PARTITIONING
ALGORITHM

In the proposed SCP algorithm, the magnitude and sign of
each coefficient are encoded separately. The L L band coef-
ficients are also separately entropy coded. The partition map
m; fori € {LH,, HL,, HH,} classifies the full depth
spatial orientation trees as either significant or insignificant
trees. The partitioning threshold is determined as described
in section 2.2. The coefficients are encoded in a low to high
frequency band order so that parent coefficient is encoded
before child coefficient. The magnitudes of the parent and
the four nearest neighbour coefficients are used as condi-
tioning context [6] for encoding coefficient magnitude using
adaptive arithmetic coding [8]. For coefficients in insignif-
icant trees, i.e m; = 0, we use a two-pass coding method
to encode the magnitude. For |c;| < z, we use a one-to-
one mapping to represent the insignificant magnitude as z
is relatively small. A special symbol, SIG, is encoded if the
coefficient in insignificant tree is significant, i.e. |¢;| > z2.
Coding of the exact magnitude for significant coefficients
follows immediately after the coding of SIG symbol. For
coefficients in significant trees, i.e. m; = 1, coefficients are

entropy coded. Coding of the sign follows immediately af-
ter the coding of coefficient magnitude. The exploitation of
the spatial correlation of sign information is achieved via a
set of sign conditioning contexts based on the signs of the
adjacent coefficients, c,, ¢p and ¢, as shown in Figure 3. An
adaptive model numbered

K = 2s[a] + s[b] + s|c] #))
where
w-{b e o

is determined for adaptive arithmetic coding of the sign of
the coefficient under consideration.

s[a} | s[b]

slc] | sfi]

Fig. 3. Signs of adjacent coefficients used by the arithmetic
encoder in coding the signs of the current coefficients, s[i].

The complete SCP algorithm is summarized as follows.

SCP Coding Algorithm

1. Threshold determination: Use the algorithm in sec-
tion 2.2 to find the threshold value z for the wavelet
image representation.

2. Partition Map Coding: Encode the partition map,
m; = Pz (Ti)a
foralli € {LH,,HL,,HH,}.

3. Coefficient Coding: Scan the coefficients, c; in low-
to-high frequency band order.

(a) Ifc; € LLbandorc; € T; withm; = 1: encode
|c;| and then encode the sign of ¢;.

(b) If ¢; € T; with m; = 0: encode |¢;].
i. If encoded symbol is “SIG” (i.e.|c;| > 2),
encode |c;| and then encode the sign of ¢;.

ii. If encoded symbol is not “0” or “SIG”, en-
code the sign of ¢;.
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4. EXPERIMENTAL INVESTIGATION

Experiments are performed on several standard 512 x 512
grey-scale images to test the proposed SCP algorithm. For

comparison, the integer wavelet transform filters used is equiv-

alent to that in S+P algorithm. A 5-level wavelet decompo-
sition with the coarsest lowpass band of dimension 16 x 16
is used. Table 1 shows the experimental results for lossless
coding of four standard images. The coding performance
of other lossless coding schemes, S+P, JPEG-2000, JPEG-
LS and CALIC, are also included for comparison. Both
S+P and JPEG-2000 schemes are wavelet based schemes
providing combined lossless and lossy coder using integer
wavelet. JPEG-LS and CALIC are pure lossless coders op-
erating in spatial domain. They are also included as refer-
ence schemes as they are two of the best performing schemes
in lossless image coding. Table 1 shows that the proposed
SCP algorithm can produce lossless rates competitive to the
two best performing lossless schemes and constantly out-
performs the other two multirate coders by, at most, 3%.
Although SCP is inferior to CALIC in coding efficiency,
SCP produces an embedded output due to the multiresolu-
tion wavelet representation used. Thus, SCP is suitable for
storage and progressive transmission of images at different
resolutions, from lossy to lossless.

The need to find a partition threshold in SCP algorithm
does not impose a serious computational loading. The par-
tition threshold algorithm can quickly converge to the final
threshold value, after about 4 to 5 iterations for our testing
images. For instance, for the image “Lenna”, the interme-
diate thresholds z(*) during the iteration are {25, 16, 12,
9, 7} and the corresponding number of insignificant trees
are {766, 688, 579, 494, 349}. Table 2 gives the parti-
tion threshold 2 determined for four images using the par-
tition threshold algorithm. Although the partition threshold
values determined for the test images are very close, the
corresponding percentages of insignificant coefficients vary
greatly from 25% to 62% (also shown in Table 2). It is due
to the different spatial activities of the images. Operating
in wavelet domain, SCP algorithm can easily identify the
spatial inactive regions.

Scheme || Barbara Couple Goldhill Lenna
SCP 4.67 4.74 4.72 4.15
S+P 4.69 4.76 4.75 4.17
JPEG-2000 || 4.79 - 4.87 432
JPEG-LS 4.86 - 4.71 4.24
CALIC 4.63 - 4.63 4.12

Table 1. Coding performance of SCP algorithm (bpp).

Image | Threshold 2 % Coeff. in insigni. trees
Barbara 8 39%
Couple 9 26%
Goldhill 10 25%
Lenna 7 62%

Table 2. Percentage of coefficients in insignificant trees.

5. CONCLUSIONS

A novel preprocessing technique, spatial coefficients parti-
tioning (SCP), which utilizes tree structured data organiza-
tion in partitioning wavelet coefficients in two sets of co-
efficients, is proposed. This partitioning technique can be
applied to the existing lossless image coder to improve the
coding performance. A lossless coder based on SCP is de-
scribed. Experimental results show that SCP coder outper-
forms the classical wavelet lossless coder and is competi-
tive with the current spatial domain lossless image coding.
Thus, SCP algorithm is suitable for applications demanding
progressive transmission of images at different resolutions,
from lossy to lossless.
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