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ABSTRACT 
 
The new upcoming video coding standard, H.264, allows motion 
estimation performing on multiple reference frames. This new 
feature improves the prediction accuracy of inter-coding blocks 
significantly, but it is extremely computational intensive. Its 
reference software adopts a full search scheme. The complexity 
of multi-frame motion estimation increases linearly with the 
number of used reference frames. However, the distortion gain 
given by each reference frame varies with the motion content of 
the video sequence, and it is not efficient to search through all 
the candidate frames. In this paper, a novel center-biased frame 
selection method is proposed to speed up the multi-frame motion 
estimation process in H.264. We apply a center-biased frame 
selection path to identify the ultimate reference frame from all 
the candidates. Simulation results show that our proposed 
method can save about 77% computations constantly while 
keeping similar picture quality as compared to full search. 

 

1. INTRODUCTION 
 
H.264/MPEG-4 AVC [1] is the latest video coding standard 
developed by the Joint Video Team (JVT) which is formed with 
ITU-T Video Coding Experts Group (VCEG) and ISO/IEC 
Motion Picture Experts Group (MPEG) in 2001.  

This new standard significantly outperforms the existing 
video coding standards. It saves half of the bit-rate when 
compared with the H.263, and only uses about quarter of the bit-
rate for the MPEG-2. In other words, we can have 2 to 4 times 
the video quality by renewing the current video codec while 
keeping the same bandwidth requirements. It was suggested in [2] 
that even a little improvement on the video compression 
efficiency (e.g. 10%), would reduce 20 times of current Internet 
backbone traffic. This means the new standard not only pursues 
higher performance, but also raises new opportunities for various 
bandwidth demanding video applications, especially for those 
mobile devices that have only limited bandwidth in the wireless 
network such as General Packet Radio Service (GPRS). 

As the cost for processing power and memory is reduced, 
more heavy coding strategies and complex codec can be 
supported. The significant gain of compression efficiency in 
H.264 is at the expense of increased computation and complexity. 
For example, advanced intra/inter-prediction modes, tree-
structured macroblock partitioning, quarter-pixel motion 
compensation and multiple reference frames motion estimation, 
all these features help increase the compression efficiency, but 
introduce tremendous loading to the system [1]. 

 
 

Format Sequence Name 

CIF (352x288, 80 frames) Claire 
 Miss America 
 Sales 

SIF (352x240, 80 frames) Football 
 Garden 
 Tennis  
 
Table 1. Image sequences used for analyses and simulations. 
 
 

In a hybrid-coding [3] video encoder, most of the 
computation is spent on motion estimation. Hybrid-coding is the 
basis of all video coding standards, in which intra-frame coding 
and inter-frame coding are combined to reduce the spatial and 
temporal redundancy. Motion estimation (ME) and motion 
compensation (MC) are the two major techniques of inter-frame 
coding for video compression. A good prediction can 
substantially decrease the bit-rate. Nevertheless, these techniques 
are computationally intensive. In the case of exhaustive search of 
all candidate blocks, up to 80% computational power of an 
encoder is consumed by motion estimation [4]. In H.264, motion 
estimation is allowed searching on multiple reference frames to 
further reduce the temporal redundancy. Certainly, the 
computational load due to motion estimation will increase with 
the number of reference frames, and the cost of motion 
estimation will dominate the complexity of the video codec. This 
is absolutely a challenging problem to implement the codec 
without hardware aid, especially for mobile computing devices 
that have limited computing power. Obviously, it indicates an 
eager need for faster motion estimation strategy. 

In this paper, we present a simple and effective method to 
reduce the computational cost due to multi-frame motion 
estimation without significant quality degradation. Instead of 
checking all the blocks on each reference frame, we only search 
on a center-biased path so that an ultimate frame can be selected 
for final search. In Section 2, we will analyze the motion vector 
probability (MVP) distribution in multiple reference frames. The 
results encourage the formation of our method. In Section 3, our 
algorithm will be described in detail. In Section 4, our simulation 
results will be shown with some theoretical analysis on the gain. 
Finally, a conclusion is given in Section 5. 
 



  Average MVP distributions (%) 
 Search window size 

Ref. frame  w=7 w=15 w=30 
t-1 48.83 46.83 46.17 
t-2 18.00 18.17 18.17 
t-3 5.83 6.17 6.17 
t-4 7.33 7.67 7.67 
t-5 3.17 3.33 3.50 
t-6 5.17 5.17 5.33 
t-7 2.00 2.33 2.33 
t-8 4.33 4.50 4.50 
t-9 1.67 1.83 1.83 
t-10 3.83 4.00 4.17 
Total 100.00 100.00 100.00  

 
Table 2. Average MVP distribution of six sequences on 10 
reference frames with different search window sizes. 
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Fig. 1. Average local MVP distribution over search window size 
± 7 for six sequences in five reference frames. 
 

2. ANALYSIS AND OBSERVATIONS 
 
Many block matching motion estimation algorithms are inspired 
by the center-biased characteristic of motion vector distribution. 
New three-step search [5], four-step search [6], diamond search 
[7], and cross-diamond search [8] are some of the famous fast 
blocking matching algorithms (BMA) that utilize this 
characteristic. It reveals the fact that most real world sequences 
containing motions that can be located near the center of search 
window. As a result, these algorithms can substantially speed up 
the searching process more than 10 to 20 times. Therefore, it is 
interesting to analyze the motion vector probability distribution 
among multiple reference frames. 

Our experiments are conducted with six CIF/SIF format 
images sequences shown in Table 1. Some video-conferencing-
like sequences such as “Claire”, “Miss America”, and “Sales” 
contain smooth and gentle motions with static backgrounds, 
while the other 3 sequences consist of zooming, panning, and 
more vigorous motions. The image formats are CIF and SIF, and 
their dimensions are 352x288 and 352x240. 80 frames are 
analyzed with fixed 16x16 block size. 

72-2-7

2

-2

7

-7

77.55%

73.64%

70.95%

Square-center-biased (SCB) portion

Diamond-center-biased (DCB) portion

Cross-center-biased (CCB) portion

 
 
Fig. 2. MVP distribution accumulated on five reference frames 
with different center-biased characteristics.  
 

First we analyze the impact of search window size on MVP 
distribution in CIF/SIF image sequences. The average 
distribution of the 6 sequences on 10 reference frames is shown 
in Table 2. Three window sizes, 7, 15 and 30 are tested. The 
result shows that increasing the window size tends to make more 
MVs distribute from Ft-1 to other reference frames. There is 
about 0.2%-2.7% variation on MVP. It indicates that window 
sizes >7 virtually do not affect the MVP distribution for CIF/SIF 
sequences. 

In order to explore the average motion vector probability 
distribution in frame-by-frame basis, the average local MVP 
found in each reference frame is plotted in Fig. 1. In this figure, 
the temporal distance does not influence the center-biased 
property. The higher the peak is, the more condensed the motion 
vectors are. This result shows that most motion vectors are still 
distributed around the center of the search window even multiple 
frames are referenced. 

To further investigate the distribution characteristic, we 
classify the stationary blocks and quasi-stationary blocks (radius 
r = ± 1 or ± 2) into three regions, square-center-biased (SCB), 
diamond-center-biased (DCB) and cross-center-biased (CCB) as 
shown in Fig. 2. Among the five reference frames, 77.55%, 
73.64% and 70.95% motion vectors are found in SCB, DCB and 
CCB regions respectively. Obviously, the largest square area 
contains highest amount of motion vectors. The statistic shows 
that CCB portion has highest compactness in terms of number of 
searching points, and it is effective to locate a large portion of 
motion vectors. This multi-frame distribution result is similar to 
that of single reference frame with about 4% loss in each portion. 

From the experiment results, we also observe that motion 
vectors tends to be concentrated in the previous frame, Ft-1, for 
the sequences containing large and fast motions. This 
phenomenon is reasonable. In small motion sequences, the 
successive pictures are highly similar and correlated in temporal 
domain. In contrast, there is much lesser temporal correlation in 
large motion sequences, and it is supposed to decrease along 
with the temporal distance. As a result, multiple reference frames 
do not give significant improvement over single reference frame 
for large motion video. 
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Fig. 3. Five center-biased pattern being analyzed in forming our 
proposed center-biased selection path. 
 

3. PROPOSED SCHEME 
 
In the design of H.264, the developers tend to improve the rate-
distortion performance at all costs. A bundle of computation is 
input to the system for a little gain. For that reason, to design a 
fast algorithm, it is essential to keep the gain while trading it for 
the complexity. 

In our analyses, we observed that the center-biased 
characteristic is preserved in multiple reference frames. There is 
a great tendency to find out the best-matched block from the 
region near to the search window center. Approximately 78% 
motion vectors can be found within the area of r = ± 2. Thus, we 
choose a center-biased selection path that can dominate over the 
other regions and in general give a relative high minimum hit 
rate of frame selection. 

On the other hand, we find that cross-shaped patterns are 
more compact that they are favorable to cover a great portion of 
motion vectors with the least searching effort. In order to give 
maximum speed-up with minimum quality degradation, we draft 
six kinds of selection path in our fast motion estimation scheme. 
They are formed with the center-biased patterns shown in Fig. 3, 
except the center selection (CS) path. The pattern used by CS 
contains only one point in the center. The others are named 
according to the corresponding patterns: small-cross selection 
(SCS), large-cross selection (LCS), small-square selection (SSS), 
large-square selection (LSS) and large-diamond selection (LDS). 
Each selection path is the projection of its search pattern onto the 
reference frames. For example, in case n reference frames are 
allowed, our SCS path consists of n small-cross patterns in the 
center of the search window for each frame.  

The first step of our strategy is to search through all the 
points in the selection path. The local minimum block distortion 
measure (BDM) found in the selection path is used as the 
indicator of the final reference frame. Here we assume that the 
global minimum occurs in the same frame as the local minimum 
of the selection path. This assumption follows the unimodal error 
surface model where the error is assumed to decrease 
monotonically towards the global minimum error, and it is 
commonly used by many BMAs. Lastly, we can apply any single 
frame ME methods to the selected frame in final search. For 
simplicity, we directly apply full search (FS) to the selected 
frame in our algorithm.  
 

Sequences SFS CS SCS SSS LCS LDS LSS
* 70.12 91.95 95.97 96.64 96.86 92.78 91.78Claire 
** 70.12 86.58 94.36 95.36 95.81 89.03 88.10
* 27.61 49.76 67.46 69.96 70.72 54.35 50.41MissA.
** 27.61 25.46 51.42 55.06 57.22 34.90 31.64
* 17.46 96.76 98.29 98.83 98.59 96.74 95.95Sales 
** 17.46 89.95 95.41 96.56 96.10 91.79 90.84
* 79.32 73.91 78.82 79.06 82.75 53.10 52.34Garden
** 79.32 3.44 39.52 39.86 57.59 21.85 21.63
* 55.05 87.93 93.20 94.59 94.20 89.05 86.76Football
** 55.05 65.09 76.61 80.22 79.48 71.57 68.84
* 65.93 62.74 70.64 73.39 73.43 70.29 65.33Tennis
** 65.93 24.03 33.56 39.93 39.50 36.34 33.03
* 52.58 77.18 84.06 85.41 86.09 76.05 73.76Average
** 52.58 49.09 65.15 67.83 70.95 57.58 55.68

*: Hit Rate (%), **: Minimum Hit Rate (%) 
 
Table 3. Average hit rate and minimum hit rate w.r.t. MFS for 
80 frames.  
 

4. SIMULATION RESULTS 
 
Our algorithm is simulated using the luminance component of 
the 6 sequences from frame 5 to 84 (total 80 frames). The 
maximum block displacement is set to ± 7 pixels and the 
number of allowed reference frame is set to 5. The block size is 
fixed at 16x16. The performances of multi-frame full search 
(MFS), single frame full search (SFS), CS, SCS, SSS, LCS, LDS, 
and LSS are compared. SFS functions as the baseline 
performance comparison for the others. The mean absolute error 
(MAE) is used as the BDM function.  

In Table 3, the average hit rate and minimum hit rate for 80 
frames are listed. The hit rate is defined as the percentage of 
successful detected frames with respect to MFS. The minimum 
hit rate is the lower bound of our detection successful rate. For 
those motion vectors fallen into our selection path, they must be 
able to hit as a result of FS. From the table, we can see that the 
performances of LCS and SSS are quite similar but LCS is 
generally more robust to different motions. LCS has the highest 
average hit rate (86.09%) of the 6 sequences. It always 
outperforms the SFS, and is almost the best for individual 
sequence. For small motion sequences like “Sales” and “Claire”, 
LCS has very high hit rates of 98.59% and 96.86% respectively.  

To compare the picture quality, we measure the average 
MAE degradation per pixel with respect to MFS. The results are 
shown in Table 4. We can also find that LCS and SSS have 
similar performances in small motion sequences while LCS 
performs better in large motion sequences. LCS has the lowest 
average MAE degradation (0.187) of the 6 sequences. For small 
motion sequences like “Claire”, “MissA”, and “Sales”, LCS has 
extremely low degradation of 0.008, 0.037, and 0.011 
respectively. The MAE per pixel is plotted against the frame 
number in Fig. 5(a) and 5(b). The performance of our algorithm 
is very close to MFS. In general, the degradations in small 
motion sequences are negligible. This algorithm is very suitable 
for video-conferencing applications. 

Table 5 shows the complexity reduction with respect to 
MFS. The theoretical values are calculated by the number of 
necessary searching points. The more the reference frames are 
allowed, the more the computations can be saved. Both LCS and 



SSS can save about 77% computations constantly for 5 reference 
frames. 

One can find that the hit rate performance does not always 
reflect the MAE performance. Although a relative high hit rate 
can be obtained in large motion sequences, the MAE 
performance is still unsatisfactory. This is because, for large 
motion sequences, the penalty of fail detection is large. The 
block distortion will be very large if a wrong frame is selected. 
This can be improved by selecting sub-optimal frames from the 
selection path, but trading for the searching speed. 
 

5. CONCLUSION 
 
In this paper, a novel frame selection method is proposed to 
speed up the multi-frame motion estimation in H.264. Based on 
the center-biased MVP distribution characteristic of real world 
sequences, we apply a center-biased frame selection path to 
efficiently locate an ultimate frame. Simulation results show that 
our algorithm using LCS has up to 99% hit rate. It can reduce 
about 77% computations while keeping the picture quality close 
to MFS. It is highly suitable for real-time video-conferencing 
applications. 
 

0.75

0.85

0.95

1.05

1.15

1.25

5 15 25 35 45 55 65 75

Frame number

M
A

E
 p

er
 p

ix
el

SFS

MFS

SSS

LCS

(a) 
 

0.9

1.4

1.9

2.4

2.9

3.4

5 15 25 35 45 55 65 75

Frame number.

M
A

E
 p

er
 p

ix
el SFS MFS

CS SCS

SSS LCS

(b) 
 
Fig. 4. MAE per pixel against number of frame for (a) “Claire”
and (b) “Sales” over 80 frames. 

  MAE degradation per pixel 
Sequences SFS CS SCS SSS LCS LDS LSS
Claire 0.045 0.028 0.010 0.006 0.008 0.026 0.040
MissA. 0.163 0.091 0.042 0.037 0.037 0.084 0.104
Sales 1.339 0.029 0.013 0.009 0.011 0.024 0.035
Garden 0.412 1.275 0.629 0.623 0.444 1.556 1.563
Football 0.378 0.454 0.265 0.211 0.176 0.273 0.334
Tennis 0.492 1.068 0.656 0.541 0.449 0.468 0.559
Average 0.471 0.491 0.269 0.238 0.187 0.405 0.439 
 
Table 4. Average MAE degradation per pixel w.r.t. MFS for 80 
frames. 
 

Complexity reduction (%) 
No. of ref. 

frame SFS CS SCS SSS LCS LDS LSS
5 80.00 79.64 78.22 76.80 76.80 76.80 76.80
10 90.00 89.82 89.11 88.40 88.40 88.40 88.40
15 93.33 93.21 92.74 92.27 92.27 92.27 92.27 

 
Table 5. The theoretical complexity reduction w.r.t. MFS. 
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