
CENTER-BIASED FRAME SELECTION ALGORITHMS FOR FAST
MULTI-FRAME MOTION ESTIMATION IN H.264

Chi-Wang Ting 1, Lai-Man Po 1 and Chun-Ho Cheung 1,2

cwting@ee.cityu.edu.hk, eelmpo@cityu.edu.hk and terence@ieee.org

1 Department of Electronic Engineering, City University of Hong Kong, Hong Kong
2 Department of Information Technology, Hong Kong Institute of Technology, Hong Kong

ABSTRACT

The new upcoming video coding standard, H.264, allows motion
estimation performing on multiple reference frames. This new
feature improves the prediction accuracy of inter-coding blocks
significantly, but it is extremely computational intensive. Its
reference software adopts a full search scheme. The complexity
of multi-frame motion estimation increases linearly with the
number of used reference frames. However, the distortion gain
given by each reference frame varies with the motion content of
the video sequence, and it is not efficient to search through all
the candidate frames. In this paper, a novel center-biased frame
selection method is proposed to speed up the multi-frame motion
estimation process in H.264. We apply a center-biased frame
selection path to identify the ultimate reference frame from all
the candidates. Simulation results show that our proposed
method can save about 77% computations constantly while
keeping similar picture quality as compared to full search.

1. INTRODUCTION

H.264/MPEG-4 AVC [1] is the latest video coding standard
developed by the Joint Video Team (JVT) which is formed with
ITU-T Video Coding Experts Group (VCEG) and ISO/IEC
Motion Picture Experts Group (MPEG) in 2001.

This new standard significantly outperforms the existing
video coding standards. It saves half of the bit-rate when
compared with the H.263, and only uses about quarter of the bit-
rate for the MPEG-2. In other words, we can have 2 to 4 times
the video quality by renewing the current video codec while
keeping the same bandwidth requirements. It was suggested in [2]
that even a little improvement on the video compression
efficiency (e.g. 10%), would reduce 20 times of current Internet
backbone traffic. This means the new standard not only pursues
higher performance, but also raises new opportunities for various
bandwidth demanding video applications, especially for those
mobile devices that have only limited bandwidth in the wireless
network such as General Packet Radio Service (GPRS).

As the cost for processing power and memory is reduced,
more heavy coding strategies and complex codec can be
supported. The significant gain of compression efficiency in
H.264 is at the expense of increased computation and complexity.
For example, advanced intra/inter-prediction modes, tree-
structured macroblock partitioning, quarter-pixel motion
compensation and multiple reference frames motion estimation,
all these features help increase the compression efficiency, but
introduce tremendous loading to the system [1].

Format Sequence Name

CIF (352x288, 80 frames) Claire
 Miss America
 Sales

SIF (352x240, 80 frames) Football
 Garden
 Tennis

Table 1. Image sequences used for analyses and simulations.

In a hybrid-coding [3] video encoder, most of the
computation is spent on motion estimation. Hybrid-coding is the
basis of all video coding standards, in which intra-frame coding
and inter-frame coding are combined to reduce the spatial and
temporal redundancy. Motion estimation (ME) and motion
compensation (MC) are the two major techniques of inter-frame
coding for video compression. A good prediction can
substantially decrease the bit-rate. Nevertheless, these techniques
are computationally intensive. In the case of exhaustive search of
all candidate blocks, up to 80% computational power of an
encoder is consumed by motion estimation [4]. In H.264, motion
estimation is allowed searching on multiple reference frames to
further reduce the temporal redundancy. Certainly, the
computational load due to motion estimation will increase with
the number of reference frames, and the cost of motion
estimation will dominate the complexity of the video codec. This
is absolutely a challenging problem to implement the codec
without hardware aid, especially for mobile computing devices
that have limited computing power. Obviously, it indicates an
eager need for faster motion estimation strategy.

In this paper, we present a simple and effective method to
reduce the computational cost due to multi-frame motion
estimation without significant quality degradation. Instead of
checking all the blocks on each reference frame, we only search
on a center-biased path so that an ultimate frame can be selected
for final search. In Section 2, we will analyze the motion vector
probability (MVP) distribution in multiple reference frames. The
results encourage the formation of our method. In Section 3, our
algorithm will be described in detail. In Section 4, our simulation
results will be shown with some theoretical analysis on the gain.
Finally, a conclusion is given in Section 5.

 Average MVP distributions (%)
 Search window size

Ref. frame w=7 w=15 w=30
t-1 48.83 46.83 46.17
t-2 18.00 18.17 18.17
t-3 5.83 6.17 6.17
t-4 7.33 7.67 7.67
t-5 3.17 3.33 3.50
t-6 5.17 5.17 5.33
t-7 2.00 2.33 2.33
t-8 4.33 4.50 4.50
t-9 1.67 1.83 1.83
t-10 3.83 4.00 4.17
Total 100.00 100.00 100.00

Table 2. Average MVP distribution of six sequences on 10
reference frames with different search window sizes.

-7
0

7

t-1
t-2

t-3
t-4

t-5

0

20

40

60
MVP

distribution

 (%)

Reference frame

Fig. 1. Average local MVP distribution over search window size
± 7 for six sequences in five reference frames.

2. ANALYSIS AND OBSERVATIONS

Many block matching motion estimation algorithms are inspired
by the center-biased characteristic of motion vector distribution.
New three-step search [5], four-step search [6], diamond search
[7], and cross-diamond search [8] are some of the famous fast
blocking matching algorithms (BMA) that utilize this
characteristic. It reveals the fact that most real world sequences
containing motions that can be located near the center of search
window. As a result, these algorithms can substantially speed up
the searching process more than 10 to 20 times. Therefore, it is
interesting to analyze the motion vector probability distribution
among multiple reference frames.

Our experiments are conducted with six CIF/SIF format
images sequences shown in Table 1. Some video-conferencing-
like sequences such as “Claire”, “Miss America”, and “Sales”
contain smooth and gentle motions with static backgrounds,
while the other 3 sequences consist of zooming, panning, and
more vigorous motions. The image formats are CIF and SIF, and
their dimensions are 352x288 and 352x240. 80 frames are
analyzed with fixed 16x16 block size.

72-2-7

2

-2

7

-7

77.55%

73.64%

70.95%

Square-center-biased (SCB) portion

Diamond-center-biased (DCB) portion

Cross-center-biased (CCB) portion

Fig. 2. MVP distribution accumulated on five reference frames
with different center-biased characteristics.

First we analyze the impact of search window size on MVP
distribution in CIF/SIF image sequences. The average
distribution of the 6 sequences on 10 reference frames is shown
in Table 2. Three window sizes, 7, 15 and 30 are tested. The
result shows that increasing the window size tends to make more
MVs distribute from Ft-1 to other reference frames. There is
about 0.2%-2.7% variation on MVP. It indicates that window
sizes >7 virtually do not affect the MVP distribution for CIF/SIF
sequences.

In order to explore the average motion vector probability
distribution in frame-by-frame basis, the average local MVP
found in each reference frame is plotted in Fig. 1. In this figure,
the temporal distance does not influence the center-biased
property. The higher the peak is, the more condensed the motion
vectors are. This result shows that most motion vectors are still
distributed around the center of the search window even multiple
frames are referenced.

To further investigate the distribution characteristic, we
classify the stationary blocks and quasi-stationary blocks (radius
r = ± 1 or ± 2) into three regions, square-center-biased (SCB),
diamond-center-biased (DCB) and cross-center-biased (CCB) as
shown in Fig. 2. Among the five reference frames, 77.55%,
73.64% and 70.95% motion vectors are found in SCB, DCB and
CCB regions respectively. Obviously, the largest square area
contains highest amount of motion vectors. The statistic shows
that CCB portion has highest compactness in terms of number of
searching points, and it is effective to locate a large portion of
motion vectors. This multi-frame distribution result is similar to
that of single reference frame with about 4% loss in each portion.

From the experiment results, we also observe that motion
vectors tends to be concentrated in the previous frame, Ft-1, for
the sequences containing large and fast motions. This
phenomenon is reasonable. In small motion sequences, the
successive pictures are highly similar and correlated in temporal
domain. In contrast, there is much lesser temporal correlation in
large motion sequences, and it is supposed to decrease along
with the temporal distance. As a result, multiple reference frames
do not give significant improvement over single reference frame
for large motion video.

Small cross pattern (SCP)

Large cross pattern (LCP) Large square pattern (LSP)

Small square pattern (SSP)

Large diamond pattern (LDP)

Fig. 3. Five center-biased pattern being analyzed in forming our
proposed center-biased selection path.

3. PROPOSED SCHEME

In the design of H.264, the developers tend to improve the rate-
distortion performance at all costs. A bundle of computation is
input to the system for a little gain. For that reason, to design a
fast algorithm, it is essential to keep the gain while trading it for
the complexity.

In our analyses, we observed that the center-biased
characteristic is preserved in multiple reference frames. There is
a great tendency to find out the best-matched block from the
region near to the search window center. Approximately 78%
motion vectors can be found within the area of r = ± 2. Thus, we
choose a center-biased selection path that can dominate over the
other regions and in general give a relative high minimum hit
rate of frame selection.

On the other hand, we find that cross-shaped patterns are
more compact that they are favorable to cover a great portion of
motion vectors with the least searching effort. In order to give
maximum speed-up with minimum quality degradation, we draft
six kinds of selection path in our fast motion estimation scheme.
They are formed with the center-biased patterns shown in Fig. 3,
except the center selection (CS) path. The pattern used by CS
contains only one point in the center. The others are named
according to the corresponding patterns: small-cross selection
(SCS), large-cross selection (LCS), small-square selection (SSS),
large-square selection (LSS) and large-diamond selection (LDS).
Each selection path is the projection of its search pattern onto the
reference frames. For example, in case n reference frames are
allowed, our SCS path consists of n small-cross patterns in the
center of the search window for each frame.

The first step of our strategy is to search through all the
points in the selection path. The local minimum block distortion
measure (BDM) found in the selection path is used as the
indicator of the final reference frame. Here we assume that the
global minimum occurs in the same frame as the local minimum
of the selection path. This assumption follows the unimodal error
surface model where the error is assumed to decrease
monotonically towards the global minimum error, and it is
commonly used by many BMAs. Lastly, we can apply any single
frame ME methods to the selected frame in final search. For
simplicity, we directly apply full search (FS) to the selected
frame in our algorithm.

Sequences SFS CS SCS SSS LCS LDS LSS
* 70.12 91.95 95.97 96.64 96.86 92.78 91.78Claire
** 70.12 86.58 94.36 95.36 95.81 89.03 88.10
* 27.61 49.76 67.46 69.96 70.72 54.35 50.41MissA.
** 27.61 25.46 51.42 55.06 57.22 34.90 31.64
* 17.46 96.76 98.29 98.83 98.59 96.74 95.95Sales
** 17.46 89.95 95.41 96.56 96.10 91.79 90.84
* 79.32 73.91 78.82 79.06 82.75 53.10 52.34Garden
** 79.32 3.44 39.52 39.86 57.59 21.85 21.63
* 55.05 87.93 93.20 94.59 94.20 89.05 86.76Football
** 55.05 65.09 76.61 80.22 79.48 71.57 68.84
* 65.93 62.74 70.64 73.39 73.43 70.29 65.33Tennis
** 65.93 24.03 33.56 39.93 39.50 36.34 33.03
* 52.58 77.18 84.06 85.41 86.09 76.05 73.76Average
** 52.58 49.09 65.15 67.83 70.95 57.58 55.68

*: Hit Rate (%), **: Minimum Hit Rate (%)

Table 3. Average hit rate and minimum hit rate w.r.t. MFS for
80 frames.

4. SIMULATION RESULTS

Our algorithm is simulated using the luminance component of
the 6 sequences from frame 5 to 84 (total 80 frames). The
maximum block displacement is set to ± 7 pixels and the
number of allowed reference frame is set to 5. The block size is
fixed at 16x16. The performances of multi-frame full search
(MFS), single frame full search (SFS), CS, SCS, SSS, LCS, LDS,
and LSS are compared. SFS functions as the baseline
performance comparison for the others. The mean absolute error
(MAE) is used as the BDM function.

In Table 3, the average hit rate and minimum hit rate for 80
frames are listed. The hit rate is defined as the percentage of
successful detected frames with respect to MFS. The minimum
hit rate is the lower bound of our detection successful rate. For
those motion vectors fallen into our selection path, they must be
able to hit as a result of FS. From the table, we can see that the
performances of LCS and SSS are quite similar but LCS is
generally more robust to different motions. LCS has the highest
average hit rate (86.09%) of the 6 sequences. It always
outperforms the SFS, and is almost the best for individual
sequence. For small motion sequences like “Sales” and “Claire”,
LCS has very high hit rates of 98.59% and 96.86% respectively.

To compare the picture quality, we measure the average
MAE degradation per pixel with respect to MFS. The results are
shown in Table 4. We can also find that LCS and SSS have
similar performances in small motion sequences while LCS
performs better in large motion sequences. LCS has the lowest
average MAE degradation (0.187) of the 6 sequences. For small
motion sequences like “Claire”, “MissA”, and “Sales”, LCS has
extremely low degradation of 0.008, 0.037, and 0.011
respectively. The MAE per pixel is plotted against the frame
number in Fig. 5(a) and 5(b). The performance of our algorithm
is very close to MFS. In general, the degradations in small
motion sequences are negligible. This algorithm is very suitable
for video-conferencing applications.

Table 5 shows the complexity reduction with respect to
MFS. The theoretical values are calculated by the number of
necessary searching points. The more the reference frames are
allowed, the more the computations can be saved. Both LCS and

SSS can save about 77% computations constantly for 5 reference
frames.

One can find that the hit rate performance does not always
reflect the MAE performance. Although a relative high hit rate
can be obtained in large motion sequences, the MAE
performance is still unsatisfactory. This is because, for large
motion sequences, the penalty of fail detection is large. The
block distortion will be very large if a wrong frame is selected.
This can be improved by selecting sub-optimal frames from the
selection path, but trading for the searching speed.

5. CONCLUSION

In this paper, a novel frame selection method is proposed to
speed up the multi-frame motion estimation in H.264. Based on
the center-biased MVP distribution characteristic of real world
sequences, we apply a center-biased frame selection path to
efficiently locate an ultimate frame. Simulation results show that
our algorithm using LCS has up to 99% hit rate. It can reduce
about 77% computations while keeping the picture quality close
to MFS. It is highly suitable for real-time video-conferencing
applications.

0.75

0.85

0.95

1.05

1.15

1.25

5 15 25 35 45 55 65 75

Frame number

M
A

E
 p

er
 p

ix
el

SFS

MFS

SSS

LCS

(a)

0.9

1.4

1.9

2.4

2.9

3.4

5 15 25 35 45 55 65 75

Frame number.

M
A

E
 p

er
 p

ix
el SFS MFS

CS SCS

SSS LCS

(b)

Fig. 4. MAE per pixel against number of frame for (a) “Claire”
and (b) “Sales” over 80 frames.

 MAE degradation per pixel
Sequences SFS CS SCS SSS LCS LDS LSS
Claire 0.045 0.028 0.010 0.006 0.008 0.026 0.040
MissA. 0.163 0.091 0.042 0.037 0.037 0.084 0.104
Sales 1.339 0.029 0.013 0.009 0.011 0.024 0.035
Garden 0.412 1.275 0.629 0.623 0.444 1.556 1.563
Football 0.378 0.454 0.265 0.211 0.176 0.273 0.334
Tennis 0.492 1.068 0.656 0.541 0.449 0.468 0.559
Average 0.471 0.491 0.269 0.238 0.187 0.405 0.439

Table 4. Average MAE degradation per pixel w.r.t. MFS for 80
frames.

Complexity reduction (%)
No. of ref.

frame SFS CS SCS SSS LCS LDS LSS
5 80.00 79.64 78.22 76.80 76.80 76.80 76.80
10 90.00 89.82 89.11 88.40 88.40 88.40 88.40
15 93.33 93.21 92.74 92.27 92.27 92.27 92.27

Table 5. The theoretical complexity reduction w.r.t. MFS.

6. ACKNOWLEDGMENTS

The work described in this paper was substantially supported by
a grant from City University of Hong Kong, Hong Kong SAR,
China. [Project No.7001385]

7. REFERENCES

[1] Joint Video Team of ITU-T and ISO/IEC JTC 1, “Draft

ITU-T Recommendation and Final Draft International
Standard of Joint Video Specification (ITU-T Rec. H.264 |
ISO/IEC 14496-10 AVC)”, Joint Video Team (JVT) of
ISO/IEC MPEG and ITU-T VCEG, JVT-G050, Mar. 2003.

[2] B. Girod and M. Flierl, “Multi-frame motion-compensated
video compression for the digital set-top box”, in Proc.
IEEE ICIP, Sept. 2002.

[3] H. G. Musmann, P. Pirsh, and H. J. Grallert, “Advances in
picture coding”, Proc. IEEE, vol. 73, no. 4, pp. 523-548,
Apr 1985.

[4] P. Pirsch, N. Demassieux, and W. Gehrke, “VLSI
architectures for video compression – a survey”, Proc.
IEEE, vol. 83, no. 2, pp. 220-246, Feb 1995.

[5] R. Li, B. Zeng, and M. L. Liou, “A new three-step search
algorithm for block motion estimation”, IEEE Trans.
Circuits Syst. Video Technol., vol. 4, pp. 438-443, Aug
1994.

[6] L. M. Po and W. C. Ma, “A novel four-step search
algorithm for fast block motion estimation”, IEEE Trans.
Circuits Syst. Video Technol., vol. 6, pp. 313-317, Jun
1996.

[7] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A.
Kassim, “A novel unrestricted center-biased diamond
search algorithm for block motion estimation”, IEEE
Trans, Circuits Syst. Video Technol., vol. 8, no. 4, pp. 369-
377, Aug 1998.

[8] C. H. Cheung and L. M. Po, “A novel small-cross-
diamond search algorithm for fast video coding and
videoconferencing applications”, in Proc. IEEE ICIP, Sept.
2002.

