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ABSTRACT

Multi-frame motion compensation improves the rate-distortion
performance substantially but introduces much higher loading to
the system. Without considenng temporal corrclations,
conventional single-frame block-matching algorithms can be
used to search multiple frames in a rather inefficient frame-by-
frame way. In order to exploit the motion characteristic in long-
term memory, a multi-frame extension of the well-known cross-
diamond scarch algorithm is proposed. Unlike thosc algorithms
that evenly scarch each reference frame, our algorithrn adopts a
novel recent-biased spiral-cross search pattern to sub-sample the
3-dimensional memory space as a whole. This approach
significantly boosts the efficiency of the block-matching process.
Two new techniques, stationary block tracking and multiple
searching paths, are employed to further improve the speed and
accuracy. As compared to full search, experimental results show
that our algorithm can reduce up to 99.5% complexity in terms
of scarching points while limiting the PSNR loss in 0.04dB.
Simulations also prove that our algorithm out-performs the
cross-diamond search and diamond search algorithms in speed
and accuracy.

Index terms—Motion estimation, multiple reference frames,
recent-biased scarch, 3-dimensional scarch, H.264.

1. INTRODUCTION
Motion-compensated prediction is a technique to improve
compression efficiency by referring pixels from reference
frame(s) to a current frame, and hence reducing residual
information, The process of finding the reference pixels is called
motion estimation. One commonly adopted approach for that is
block-matching algorithm in which frames are divided into a
number of blocks for matching. A best-matched block is
searched exhaustively by full search (FS} from reference frame(s)
within a search range or search window (w)} based on a block
distortion measure (BDM) such as mean absolute error (MAE),
sum of absolute differences (SAD) and other matching criterion.
The displacement of the best-matched block is then represented
by a motion vector.

The benefits of long-term memory motion compensated
prediction {LTMCP) [1] have been emphasized in recent years.
Consequently, this tool has been adopted by several recent
standards like H.263+ and H.264/MPEG-4 AVC [2]. As
continuously dropping the costs of semiconductors, notably
higher prediction gain can be achieved by estimating more
reference frames in the memory buffer. Nevertheless, an obvious
drawback is the complexity will increase proportionally. Extra
data are also needed to descnbe the reference indices. These
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make it becomes not feasible in most cases, such as low
bandwidth communication and real-time encoding, particularly
for software-based implementations. As a result, various
methods were suggested tackling these problems. In this paper,
we focus on solving the complexity problem. In general, the fast
algorithms of LTMCP can be classificd into 3 types: [} Partial
Distortion - sub-sampling pixels from blocks for faster block
distortion measurcment; 1) Searching Point Reduction - sub-
sampling blocks from the search range for faster search
convergence; 1) Frame Selection - sub-sampling frames from
the memory buffer to climinate unrclated references. Based on
real-world motion properties, type Il algorithms are usually
superior to others in terms of speed whercas their accuracy is
significantly similar. For that reason, they are widely used in
pre-existing video coding standards such as MPEG-1/2/4 and
H.261/263. Diamond search (DS} [3]{4], cross-diamond search
(CDS) [5] and adaptive rood pattern search (ARPS) {6] are some
more recent well-known algorithms of this type, but they are
proposed for single-frame motion estimation only. Directly
applying them to multiple frames cannot sufficicntly exploit the
temporal correlation in LTMCP. Unfortunately, seldom effort is
put on extending these algorithms. The idea of generalizing these
algorithms into N dimensions is first suggested in [7] that
different transformations such as brightness and time can be
regarded as an additional dimension. In thi§ paper, we realize
this idea by turning the cross-diamond search into 3-dimensional
(3D) algorithm for LTMCP. A comprehensive analysis of
motion vector distribution is conducted for multiple reference
frames to support our novel recent-biased search method. A
comparison of those non-modified methods are made to
demonstrate the efficiency of our algorithm.

Sequence (100 frames)

Format

MPEG-4 (A) CIF  Akiyo, Hall Monitor, Mother & Daughter
MPEG-4 (B) CIF  Silent

MPEG-4 (C) CIF  Stefan, Table

CIF (352x288) Sales

SIF (352x240) Football

Table 1. Image sequences uscd for analyses and simulations.

2. RECENT-BIASED & CENTER-BIASED MOTION
VECTOR DISTRIBUTION
The center-biased motion vector distribution has been leading
the development of fast block-matching motion estimation
algorithms for a long time. By inspecting the motion statistic, we
can find out a motion model which can roughly represent the
real-world motion behaviors. When motion estimation is shifted
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to multiple reference frames, it is necessary to creatc a new
mode] and review the old characteristics. To demonstrate that, an
analysis of global minimum motion vector distribution is
conducted on the 8 well-known sequences listed in Table I.
They contain various real-world motion contents, such as
zooming, panning, translation and slight movement. A FS
scheme with a search window [w|=16 is applied to 5 reference
frames to locate the "true” mation vectors. Blocks are matched at
a fixed 16x16 macroblock size.

In our experiment, 3 diffcrent shaped areas, square, diamond,
and cross, arc analyzed and shown in Fig.l. All of them are
located in the central 5x5 grid (radius |r=2) of the scarch
window. The results are tabulated in Table 2. Three motion
vector distribution characteristics are observed and summarized
as follow.

I. Motien vectors are biased to the center of the search window
and the temporal distance does not affect this property. By
comparing the amount of motion vectors in the central 5x5
region with the total amount of full range, we find that around
60% - 80% motion vectors are distributed in the central region
(more condensed when closer to the center (0,00). This behavior
also exists in all reference frames individually,

If. The cross pattern is mare effective to locate a significant
amount of motion vectors as compared to diamond and square
patterns. Duc to the influence of gravity, most real-world
motions are along a horizontal or vertical axis. From Table 2, we
find that the amounts of motion vectors found in the 3 portions
are very similar, 73.39% for cross, 76.08% for diamond and
79.31% for square. While the difference is relatively small, cross
portion can save much more searching points than others (Fig.1).
This effect also dominates individual reference frames.

I11. Motion vectors are biased to more recent reference frame. It
is clear that, for instance, translating objects would probably
leave the search range after a certain time interval. The results
show that, in general, the amount of motion vectors decreases
exponentially along the time. For the full range results, about
50% motion vectors are obtained from the most recent frame F(t-
1}, 20% from the second recent frame F(t-2), 10% from the third
recent frame F(t-3) and so on. That means the correlation
between reference frames and the coding frame is decrease by
time. This behavior is still obvious within the central 5x5 region.

3. RECENT-BIASED SEARCH
Based on the above observations, we propose a fast block-
matching algorithm to fit the motion statistic. In this session, the
search patterns adopted by our algorithm are described first, and
the details of our search scheme are presented later.

3.1. Search Patterns

As mentioned above, our algorithm is a 3D extension of the
cross-diamond search [5]). Four improved search patterns are
shown in Fig.2. In this illustration, the xy-plane lies along with
frames and the extra dimension z is the time axis.

To trace the motion in multiple frames, we need some search
patterns that are able to move across frames. In Fig. 2(a) and 2(b),
the visnalization and search-point configuration of these patterns
- Small 3-Dimensional Diamond (S3DD) and Large 3-

Dimensional Diamond (L3DD) are shown. Their shape is
symmetrical from any dimensions. A 3D diamond actually
consists of 3 flat diamonds lying on the center of xy-, yz-, and zx-
planes. The white spot in the figure indicates the center of the
patterns. As they can move across frames to reach the minimum
distortion point in the ncarby frames directly, they are more
effective to sub-sample the 3D space. This gives benefits over
the conventional framc-by-frame approach in which a new
search is started from the window center again for cach reference
frame.

n

Square portion (25 pts)

<&

Diamond portion (13 pts)

o4

Cross portion {9 pts)

-2 Q +2
Fig 1. Three different shaped portions within central 5x3 grid.

Motion Vector Distribution (%)
Ref. Frame Center  Cross  Diamond Square  Full Range

t-1 366 3789 3932 4152 52.73
-2 13.49 1544 16.00 1632 - -20.26
t-3 4.32 5.64 6.00 6.29 8.78
t-4 9.02 9.78 9.99 10.20 11.60
t-5 3.87 4.04 4.77 4.99 6.22

Total 6237 7339 7608 7931 100.00

Table 2. This table shows the average probability of finding the
global minimum metion vectors from different portions and
reference frames where (1) is the time of coding frame, (t-1) for
the previous frame and so on.

(a) Visualization

{b)
O +0 Small 3-Dimensional
Diamond (S3DD) (7 pts)

O +® Large 3-Dimensional
Diamond (L3DD) (19 pts)

O +0 Smoll Spiml-Cross
(88C) (17 pts}

O +@+0 Large Spiral-Cross
(LSC) (29 pts)

Fig. 2. 3D search patterns employed in our fast algorithm.
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To reduce the compiexity introduced by 3D search patterns, we
need a precise initial guess of possible search directions. Fig. 2(c)
shows the advanced cross patterns - Small Spiral-Cross (SSC)
and Large Spiral-Cross (LSC). These 2 patterns are formed
according to motion properties found in our previous analysis.
Differcnt sizes of center-biased crosses (ir/=0,1,2,3) arc chained
togcther to form a spiral-like shape. The larger side is on the
most recent reference frame, and vice versa. So, they are called
recent-biased spiral-cross. Because of the recent-biased property
(over 80% motion vectors in most recent 3 ref. frames), spiral-
cross is much more efficient than regular cross for locating the
search directions.

3.2. Recent-biased Search Scheme

Just like many other block-matching algorithms, our method also
assumes the block distortion error decreases monotonically
towards the global minimum, but we extend this idea to both
spatial and temporal domain. The main difference between the
recent-biased search (RBS) and other conventional block-
matching algorithms such as diamond scarch and cross-diamond
scarch is that our scope covers the information obtained from
several reference frames instead of just looking at the local
statistic. By fitting the motion model we found, the speed and
prediction accuracy of our algorithm can be boosted.

From our analysis in Table 2, we know that about 60% blocks
are stationary blocks (r=0). One can reduce the complexity
significantly by terminating the search in early stage if such
blocks are detected. Based on this idea, a novel technique named
stationary block tracking is proposed. It is incorporated with the
SSC pattern to determine the existence of stationary blocks. A
stationary block is found if the following equation is hold:

D= (M, (| +|M ()< Th M

i=l

where D is the diffusion factor; N is the number of samples; M; is
the i-th minimum block distortion measure (BDM) point of 8S8C;
M(x) is the x-coordinate of M relative to the search window in
which center is (0,0); and T4 is a threshold value. In our
experiments, we select N=5 and Th=0. In this case, 5 samples are
taken from the SSC where they are the Ist, 2nd, ... and 5th
minimum BDM points. Only if they all lie along the z-axis (i.e.
x=0, y=0), then equation (1) is hold and the block is assumed to
be stationary. It is very likely that non-stationary blocks would
have those samples diffused apart from the center and biased to
recent frames, and hence introduce a larger diffasion factor. A
negative threshold value simply means to disable this function.
Our detection technique makes use of the temporal correlation
from multi-frames. Here are the detailed steps of the RBS
scheme.

Step 1: (Small Spiral-cross Searching)

The center (white spot depicted in Fig.2} of the small spiral-
cross (SSC) pattern is aligned to the center of the search
window. The BDM values of totally 17 searching points over
5 reference frames are checked. Stationary block tracking is
applied (N=5, Th=0). If stationary block is found, set the
motion vector mv to the minimum BDM point and stop
searching. Otherwise, go to Step 2.

Step 2: (Large Spiral-cross Searching)
Again the large spiral-cross (LSC) pattern is aligned to the
center. A minimum BDM point is found from the 29
scarching points (i.e. check 12 points more).

Step 3: (Large 3-Dimensional Diamond Searching)
A new large 3-dimensional diamond (L3DD) pattern is
formed with the center located in the minimum BDM point
found from the previous step. If the new minimum BDM
point found from the L3DD is in the center of the pattern (i.e.
convergence), then go to Step 4. Otherwise, this step is
repeated.

Step 4: (Small 3-Dimensional Diamond Searching)
With the minimum BDM point found from the previous step
as the center, a small 3-dimensional diamond (S3DD) pattern
1s formed. Identify a minicnum BDM point from S3DD and it

© s the final my.

The RBS algorithm has 2 stages. The first stage is to locate the
possible direction and frame location. An early termination may
occur in Step | to make a minimum number of 17 searching
points. Step 2 enlarges the spiral-cross to capture more
information owing to diffusion of motions. The second stage is
to get close to the optimal point. A large sampling grid is uscd
recursively in Step 3 for this purposc. In case all surrounding
points have larger BDM than the center, it probably means we
reach a sub-optimal point, and so Step 4 converges the search.
Note that the center of our search patterns are restricted within
the scarch window, but part of the surrounding points may move
outside the window or beyond the frame buffer, then these
scarching points are ignored. Qur algorithm emphasizes the
speed performance, at the same time, maintains a reasonable
prediction gain for various motion contents.

:’;
.wagnvnw,q il A.avi;'..ﬁ.f e
T

-5 t-4 3 12

=1 Frames

Fig. 3. Example of multiple searching paths with p=3.

An optional amendment to our algorithm named mrdiiple
searching paths is also proposed. Since the data volume
increases with number of rcference frames, sub-sampling the
search range becomes casier to be trapped by a local optimal,
The purpose of this amendment is to increase the prediction gain
by initiating multiple searching paths. An example is shown in
Fig.3, three minimum BDM points, 4, B and C, are selected from
1.SC (Step 2) instead of ome. For each point, a normal 3-
dimensional diamond search routine (Step 3 & 4) is performed as
usual, As a result, 3 candidate points, 4’, B’ and C”, are obtained
eventually. Of course, the one with minimum BDM will be the
final mv. Sometimes, different starting points may lead to the
same destination. In this case, the complexity growth will be
very limited due to the overlap of searching paths. The number
of searching paths p is adjustable to make a tradeoff between
complexity and prediction gain.
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4, SIMULATION RESULTS

To demonstrate the performance of RBS, simulations using full
scarch (F8), diamond search (DS), cross-diamond search (CDS)
and RBS (¥=5, Th=0, p=6) arc performed on the luminance
component of the 8 sequences listed in Table 1. The maximum
search range is set to & 16 pixcls and the mean absolute error
(MAE) is used as the BDM function. The block size is fixed at
16x16. While the number of allowed reference frame is set to 5,
those single-frame algorithms will scarch the reference memory
frame by frame. Although the simulations are not donc within a
real system, the results could still show a relatively precise
performance comparison and valuable motion analysis. Since the
purpose of this paper is to demonstrate the effectivencss of our
motion model and the recent-biased search scheme, only PSNR
and searching points are considered. Other evaluations such as
cost of motion vector and reference indices are out of our scope,
but their corresponding schemes and analysis are already well
documented in [1][2].

The experimental results are tabulated in Table 3 by three testing
criterion - average PSNR per frame (PSNR), average searching
points per block (Pts) and speed improvement ratio {SIR). It
shows that the scarch-point complexity of RBS is always much
lower than other algorithms. In some particular sequences where
most of the motion is gentle and smooth, the SIR can be up to
100 ~ 200, for example, 193 for Akiye, 127 for Sales, 124 for
Silent and 114 for Hall Monitor. The amazing speed up ratio is
due to successfully terminating the scarch in early stage by our
stationary block tracking method. Besides, RBS has higher
PSNR gain as compared to DS and CDS for all sequences except
Akivo, in which RBS only has 0.02dB less than that of DS.

Undoubtedly, there must be some reduction of PSNR gain when |

comparing a lossy algorithm to FS. However, this reduction is
relatively small in RBS. For small motion sequences, Akiyo, Hall
Monitor, Mother & Daughter and Sales, the reduction is around
0 ~ 0.2dB, for medium motion sequence, Foothall and Silent,
around 0.4dB, and for large motion sequences, Stefan and Table,
around | ~ 1.6dB. Therefore, our RBS algorithm out-performs
DS and CDS in terms of accuracy and speed. Bt is excellent for
video-conferencing application, while for large motion video, a
satisfactory tradeoff between complexity and prediction gain can
also be made.

5. CONCLUSION
In this paper, a novel recent-biased search algorithm is proposed
together with an in-depth motion analysis in multiple reference
frames. Such an analysis will be very useful in developing multi-
frame motion estimation algorithms for various applications.
Simulations prove that no matter speed or accuracy our recent-
biased approach is better than using DS and CDS to evenly
search multiple frames. By exploiting the motion characteristics
in spatial and temporal domain simultaneously, up to 99.5%
computations can be saved while keeping similar PSNR gain as
compared to FS. This ultra-low complexity algorithm is highly

suitable for real-time video applications, particularly for

software-based implementations e_g. video conferencing. A more
realistic experiment on H.264 reference software will be carried
out on our next work.
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Akiyo Football

PSNR  Pts SIR PSNR  Pts SIR

FS 4339 492460 1.00 FS 2629 4868.52 1.00
DS 4337 6307 78.08 IDS 2586 9576 50.84
CDS 4334 4620 106.60CDS 2583 8845 55.04
RBS 43.35 2553 192.90 [RBS 2592 6537 7448

Hall Monitor Mother & Daughter

PSNR. Pts SIR PSNR  Pts SIR

FS  34.70 492460 [.00 |FS 4070 492460 1.00
DS 3459 6689 7362 DS 4052 7456 66.05
CDS 3456 51.25 96.09 [CDS 4049 6188 79.58
RBS 34.61 43.106 114.25 |RBS 40.52 58.61 84.02

Sales Silent

PSNR  Pts SIR PSNR_ Pts SIR

FS 3918 4924.60 1.00 [FS 3653 492460 1.00
DS 3914 6712 7337 DS 36.09 7497 65.68
CDS 39.13 5057 9739 [CDS 3602 6112 80.57

RBS 39.15 38.76 127.04 [RBS 36.15 3973 123.94
Stefan Table
PSNR  Pis SIR PSNR  Pts SIR

FS 2661 492460 1.00 FS 2932 492460 1.00
DS 2471 10451 47.12 DS 2823 107.64 45.75
CDS 24.63 10252 48.03 [CDS 28.12 107.01 46.02
RBS 24.98 86.00 57.26 [RBS 2838 81.53 60.40

Table 3. Comparison of differcnt algorithms on 8 sequences
using 100 frames.
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