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Novel Directional Gradient Descent Searches for Fast Block
Motion Estimation

Lai-Man Po, Ka-Ho Ng, Kwok-Wai Cheung, Ka-Man Wong, Yusuf Md. Salah Uddin, and Chi-Wang Ting

Abstract— Search point pattern-based fast block motion
estimation algorithms provide significant speedup for motion
estimation but usually suffer from being easily trapped in local
minima. This may lead to low robustness in prediction accuracy
particularly for video sequences with complex motions. This
problem is especially serious in one-at-a-time search (OTS) and
block-based gradient descent search (BBGDS), which provide
very high speedup ratio. A multipath search using more than
one search path has been proposed to improve the robustness of
BBGDS but the computational requirement is much increased.
To tackle this drawback, a novel directional gradient descent
search (DGDS) algorithm using multiple OTSs and gradient
descent searches on the error surface in eight directions is
proposed in this letter. The search point patterns in each stage
depend on the minima found in these eight directions, and
thus the global minimum can be traced more efficiently. In
addition, a fast version of the DGDS (FDGDS) algorithm is also
described to further improve the speed of DGDS. Experimental
results show that DGDS reduces computation load significantly
compared with the well-known fast block motion estimation
algorithms. Moreover, FDGDS can achieve faster speedup com-
pared with the UMHexagonS algorithm in H.264/AVC im-
plementation while maintaining very similar rate-distortion
performance.

Index Terms— Block matching, motion estimation, video
coding.

I. INTRODUCTION

BLOCK MATCHING motion estimation (BMME) is
widely adopted by video coding standards such as

MPEG-2, MPEG-4, and H.264/AVC, mainly due to its sim-
plicity and good distortion performance. Using BMME, a
video frame is divided into non-overlapping blocks of equal
size and the best matched block is determined from ref-
erence frames to that block in the current frame within a
predefined search window. Normally, this is performed by
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minimizing a block distortion measure (BDM), e.g., the sum
of absolute difference (SAD), between this pair of blocks.
The most straightforward method is the full search (FS),
which exhaustively evaluates all possible candidate blocks
within the search window. However, the computational com-
plexity of FS is very high. It has been estimated that FS
could consume up to 70% of the total computation of
the video encoding process. To tackle this problem, many
fast block matching algorithms (BMAs) [1]–[9] have been
proposed. These algorithms employ different search point
patterns to search for the best matched block. To further
speed up the motion estimation process, directional infor-
mation is used to reduce the number of search points re-
quired in a search pattern [10]. However, these algorithms
rely primarily on the unimodal error surface assumption,
which assumes that matching error monotonically decreases
toward the global minimum. In most real-world video se-
quences, local minimum points can spread over the search
window, especially for sequences with complex motion con-
tents. Thus these fast algorithms can be trapped by local
minima and cannot provide satisfactory motion estimation
results.

Search patterns switching algorithms [11], [12] were pro-
posed to solve the above problem by adaptively using dif-
ferent search patterns to achieve higher prediction accu-
racy. However, the performance of these algorithms depends
highly on the accuracy of the motion content estimators,
and some of these estimators are quite complex in practi-
cal implementation. Besides the initial search point pattern,
it is also found that the initial minimum distortion search
point for the next step is very important to lead to a good
search path. A hybrid unsymmetrical-cross multi-hexagon-
grid search (UMHexagonS) [13] that takes advantage of
many search point patterns has been adopted in H.264/AVC
reference software. This algorithm has good rate-distortion
performance, but its initial search step is still very intensive
computationally.

On the other hand, a multipath search (MPS) algorithm [14]
has been proposed. It uses more than one search path to
avoid following a wrong path misled by the initial minimum
distortion point. Basically, MPS is a multipath version of
block-based gradient descent search (BBGDS) [5], which
searches multiple descending gradient paths. For each of the
candidate paths, the compact square-shaped pattern of BBGDS
is used. Experimental results show that MPS can provide
robust motion estimation accuracy but its computational com-
plexity is high.

1051-8215/$26.00 © 2009 IEEE
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In this letter, we propose a novel directional gradi-
ent descent search (DGDS) algorithm which utilizes eight
directional gradient searches to minimize the chance of
following a wrong search path and being trapped in a
local minimum. A fast version of DGDS (FDGDS) is
also proposed. The rest of this letter is organized as fol-
lows. Section II reviews the basic concepts of 1-D and
2-D gradient descent searches. The details of DGDS and
FDGDS are described in Section III. Experimental results
and conclusions are presented in Section IV and Section V,
respectively.

II. CONVENTIONAL GRADIENT DECSENT

SEARCH ALGORITHMS

To explain the principles of the proposed DGDS, the
conventional 1-D and 2-D gradient descent search algorithms
(OTS and BBGD) and MPS (multipath version of BBGD) are
reviewed in this section.

A. One-at-a-Time Search (OTS)

The strategy of OTS is to keep searching along a particular
search direction until the minimum point along that direction
is found. The first OTS-based BMA [1] employs the OTS
strategy in horizontal and then vertical direction. An example
of the OTS search path is shown in Fig. 1. If, for example,
the current minimum BDM point is at position (0, 1) and the
upper-direction OTS is performed, then the point immediately
above it, i.e., point (0, 2), will be searched. If point (0, 2)
has lower distortion than (0, 1), point (0, 2) will be set as the
current minimum distortion point. Point (0, 3), which is above
point (0, 2), will then be searched. The search continues until
the minimum point is closeted between two higher values, or
until the search window boundary is reached. As OTS follows
the descending gradient path in a particular direction, it can be
considered as a 1-D gradient descent search in that direction.
This is an efficient searching strategy because it does not waste
effort in probing into unknown terrain of the error surface.
Moreover, it is also easy to be implemented in hardware,
and data access is efficient because a search point is always
adjacent to the previous search point. In summary, the OTS
performs 1-D gradient descent search on the error surface
twice. Although it uses fewer search points compared with
other fast BMAs, its prediction quality is low. This is because
a 1-D gradient descent search is insufficient to estimate the
global minimum position.

B. Block-Based Gradient Descent Search

BBGDS performs 2-D gradient descent search. An example
of BBGDS search path is shown in Fig. 2. The eight adjacent
points which BBGDS searches correspond to the eight direc-
tions. They cover all the possible directions from the search
center. In other words, BBGDS performs a small-scale 2-D
gradient descent search and then one-at-a-time moves toward
the global minimum following a descending gradient path.
BBGDS has a much better prediction quality in terms of PSNR
than OTS algorithm.
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Fig. 1. Example of OTS algorithm.
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Fig. 2. Example of BBGDS.
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Fig. 3. Example of MPS algorithm.

C. Multipath Search

BBGDS provides very high speed-up ratio in motion esti-
mation but it is easily trapped in the local minima causing low
robustness in prediction accuracy. One reason is that BBGDS
only uses one single minimum distortion point found in a
search step as the search center of the next step. Therefore,
while the steepest descending gradient path is considered,
other gradient descending paths will be ignored. Since the
steepest descending gradient path may lead to a local minimum
point instead of a global one, algorithms that consider all the
candidate paths should have better prediction quality. Based on
this idea, the MPS algorithm was proposed. Basically, MPS is
a BBGDS using multiple descending gradient paths. For each
of the candidate paths, the compact square-shaped search point
pattern of BBGDS is used. The algorithm converges when
there is no new descending gradient path found. Fig. 3 shows
an example of MPS. However, MPS is not efficient because it
uses many points to search all candidate descending gradient
paths. Experiments show that MPS can improve the robustness
of BBGDS but with significantly increased computational
requirement, especially for complex motion sequences.

III. DIRECTIONAL GRADIENT DESCENT SEARCH

The strategy of OTS is a 1-D gradient descent search
in a particular direction, and the conventional OTS motion
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Fig. 4. Eight directional searches of DGDS.

estimation algorithm performs OTS twice in the search win-
dow. A 2-D gradient descent search algorithm, e.g., BBGDS,
performs better than a 1-D search algorithm. MPS is a multiple
paths search algorithm for improving the performance of
BBGDS, but it is not very efficient in terms of computational
complexity. In this section, a novel 2-D gradient descent search
algorithm called directional gradient descent search (DGDS)
is proposed. It outperforms BBGDS by considering all de-
scending gradient paths while achieving lower computational
complexity than MPS by using OTS in eight directions.

A. DGDS Algorithm

DGDS independently searches eight directions, namely up-
per, lower, left, right, upper-left, upper-right, lower-left, and
lower-right directions, of the point with the current minimum
(CURRENT_MIN) distortion. These eight directions are shown
in Fig. 4 and each of the eight directional searches uses
the OTS strategy. In OTS, the point-by-point search along a
direction is continued if a newly searched point has lower
distortion than the previously searched point. Otherwise, the
search in that direction stops. The minimum distortion found
by each directional search is set as a directional minimum
(DIRECTIONAL_MIN). After a search round is completed,
the lowest distortion among the DIRECTIONAL_MINs is set
as CURRENT_MIN and the next search round starts at the
point with CURRENT_MIN. The proposed DGDS algorithm
can be summarized as follows.

DGDS Algorithm

Step 1: Calculate the BDM of the search window center
and set the value as CURRENT_MIN.

Step 2: For each of the eight directions of the point with
CURRENT_MIN (Fig. 4)

(a) perform point-by-point directional OTS;
(b) set the minimum BDM found in the current

direction as a DIRECTIONAL_MIN.

Step 3: If no point with DIRECTIONAL_MIN is found
(i.e., the current search center is still the minimum
point), go to Step 5; otherwise go to Step 4.

Step 4: DIRECTIONAL_MINs are compared. The lowest
one is set as CURRENT_MIN. This is the end
of a search round. Go to Step 2 with updated
CURRENT_MIN and its corresponding position.

Step 5: The algorithm is completed. Return with the final
motion vector (MV) pointing to the position with
CURRENT_MIN.

An example of zero motion vector (ZMV) return from DGDS
is shown in Fig. 5. As the search window center is the
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Fig. 5. Example of ZMV return from DGDS.

8 directional
searches

1
st 

search round

2 4

811

9

1012

13

15

1

3

5 6

7

14

16

CURRENT_MIN

Fig. 6. Example of DGDS in the first search round.
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Fig. 7. Example of DGDS in the second search round.
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Fig. 8. Example of DGDS converging in the third search round.
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TABLE I

PERFORMANCE COMPARISON OF FDGDS WITH OTHER ALGORITHMS

Akiyo News Coastguard Foreman Stefan

PSNR
no. of
search
points

PSNR
no. of
search
points

PSNR
no. of
search
points

PSNR
no. of
search
points

PSNR
no. of
search
points

FS 43.044 868.333 36.966 868.333 30.035 868.333 32.842 868.333 25.677 868.333

BBGDS 43.040 8.521 36.660 9.247 29.809 13.718 32.140 16.725 23.575 15.516

MPS 43.040 8.598 36.706 9.882 29.858 15.875 32.270 23.246 23.844 19.992

3SS 42.919 30.616 36.607 30.618 29.397 30.784 31.920 30.776 24.042 30.763

N3SS 43.014 15.912 36.584 16.422 29.372 19.344 32.033 21.973 23.423 23.198

4SS 42.939 23.240 36.699 23.539 29.756 26.015 31.998 26.289 24.619 25.942

HEXBS 42.817 10.342 36.546 10.665 29.785 13.043 31.420 13.709 23.932 13.873

DS 43.025 12.268 36.694 12.800 29.879 16.707 32.096 18.266 24.033 18.016

CDS 43.011 8.700 36.677 9.523 29.879 15.682 32.014 16.686 23.952 16.958

DGDS 43.040 8.550 36.722 9.422 29.868 14.281 32.304 18.246 23.913 15.891

FDGDS 43.040 8.512 36.710 9.099 29.865 12.394 32.264 15.299 23.911 13.195

PSNR degradation of

FDGDS over DGDS
0.000 −0.012 −0.003 −0.040 −0.002

Speed improvement of

FDGDS over DGDS
+0.44% +3.43% +13.22% +16.15% +16.96%

minimum point, there is no directional minimum point found
in the first round of Step 2. The resulting search point pattern
is equivalent to the 3 × 3 square search point pattern of
BBGDS. Thus, the DGDS can maintain a low computational
requirement for stationary blocks like BBGDS.

An example of the first search round of the proposed DGDS
is shown in Fig. 6 with six directional minimum points in
the upper, lower, left, right, upper-left, and lower-right
directions. The lowest directional minimum point is found in
the lower-right direction (point number 8), thus the second
round of DGDS is performed with this point as center, which
is shown in Fig. 7. In the second search round, there are
also six directional minimum points and the lowest distortion
among them is found in the right direction (point number 23).
It can be seen that the search point pattern in each round is
not fixed. It depends on where and how directional minimum
points are found. The strategy of performing eight directional
searches, however, is unchanged. An example of DGDS with
the final step occurring in the third search round is shown
in Fig. 8, which shows that the terminal round is the same
as performing a 3 × 3 square-shaped search pattern at the
current minimum point.

Since DGDS searches each candidate’s descending gradient
path, it performs better than BBGDS. In addition, it uses OTS
to search these paths and therefore it requires fewer search
points than MPS. From Table I, it can be seen that DGDS
has quality improvement in terms of PSNR over BBGDS. For
example, the PSNR of DGDS is 0.338 dB higher than that of
BBGDS for Stefan sequence. For sequence Foreman, DGDS
has 0.164 dB PSNR improvement over BBGDS. For other

test sequences, it also has slight PSNR improvements over
BBGDS. The number of search points DGDS uses is close
to that of BBGDS. That means the computational complexity
of DGDS is similar to that of BBGDS. DGDS also performs
better than MPS. For all test sequences, DGDS uses fewer
search points than MPS but achieves higher PSNR quality. For
sequences Coastguard, Foreman, and Stefan, DGDS is 10.04,
21.51, and 20.517% faster than MPS, respectively. For small
motion sequences, the speed improvements of DGDS over
MPS are less significant. Based on the results, it is obvious
that DGDS is a more efficient multiple path gradient descent
search algorithm than MPS.

B. Fast DGDS Using Relative Distortion Ratio

The speed of DGDS can be further increased. If a directional
minimum distortion point with a much lower distortion relative
to the current minimum distortion is found in one of the
eight directional searches, the remaining directional searches
can be skipped to speed up the algorithm. A new round
of search can start immediately at that directional minimum
distortion point. The relative distortion ratio (RDR) between
a directional minimum distortion DIRECTIONAL_MIN and a
current minimum distortion CURRENT_MIN is defined as

RDR = DIRECTIONAL_MIN

CURRENT_MIN
. (1)

If a directional search has RDR lower than a threshold
T , other directional searches could be skipped. The CUR-
RENT_MIN point will be set to this DIRECTIONAL_MIN
point and a new round of search will start from this center.
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TABLE II

PERFORMANCE OF FDGDS WITH DIFFERENT THRESHOLDS (T )

Akiyo News Coastguard Foreman Stefan

T PSNR
no. of
search
points

PSNR
no. of
search
points

PSNR
no. of
search
points

PSNR
no. of
search
points

PSNR
no. of
search
points

0.1 43.040 8.550 36.722 9.424 29.868 14.236 32.307 17.975 23.913 15.681

0.2 43.040 8.548 36.722 9.403 29.868 13.922 32.306 17.450 23.913 14.993

0.3 43.040 8.541 36.721 9.318 29.868 13.439 32.300 16.813 23.912 14.200

0.4 43.040 8.528 36.716 9.195 29.867 12.938 32.285 16.046 23.912 13.613

0.5 43.040 8.512 36.710 9.099 29.865 12.394 32.264 15.299 23.911 13.196

0.6 43.040 8.498 36.704 9.025 29.853 11.735 32.234 14.613 23.904 12.894

0.7 43.039 8.485 36.697 8.965 29.833 11.228 32.191 14.024 23.886 12.598

0.8 43.038 8.475 36.682 8.905 29.807 10.960 32.136 13.471 23.844 12.250

0.9 43.038 8.464 36.661 8.836 29.762 10.823 32.075 12.898 23.735 11.808

This DGDS with fast convergence is denoted as Fast DGDS
(FDGDS). The procedures of FDGDS are as follows.

FDGDS Algorithm

Step 1: Calculate the BDM of the search window center
and set the value as CURRENT_MIN.

Step 2: For each of the eight directions of the point with
CURRENT_MIN :
(a) perform point-by-point directional OTS;
(b) set the minimum BDM found in the current

direction as a DIRECTIONAL_MIN ;
(c) if DIRECTIONAL_MIN is found, calculate the

relative distortion ratio (RDR) for the current
direction using (1). If RDR < T , update CUR-
RENT_MIN with this DIRECTIONAL_MIN
and repeat Step 2 (i.e., skip the remaining
directional searches).

Step 3: If no point with DIRECTIONAL_MIN is found, go
to Step 5; Otherwise go to Step 4.

Step 4: DIRECTIONAL_MINs are compared. The lowest
one is set as CURRENT_MIN. This is the end
of a search round. Go to Step 2 with updated
CURRENT_MIN and its corresponding position.

Step 5: The algorithm is completed. Return the final MV
pointing to the position with the CURRENT_MIN.

The threshold T used in FDGDS controls the speed of
convergence of the algorithm. It is in the range of 0 to 1.
For example, if it is set at 0.5, that means that whenever
the RDR is lower than 0.5, other directional searches will
be skipped and a new round of search will be started. This
implies that the value of the directional minimum distortion is
less than 50% of the value of the current minimum distortion.
Although setting a higher threshold T will speed up the con-
vergence of the algorithm, it will also degrade the prediction
quality because it will lower the chance of finding the global
minimum point. The impacts of using different thresholds
can be found by experiment and is studied in the following
section.

IV. EXPERIMENTAL RESULTS

Simulations are conducted with the luminance components
of a number of popular test video sequences to evaluate the
proposed algorithms. SAD is used as the block distortion
measure and the block size is 16 × 16 pixels. The frame
structure is (IPPP…) and the search range is ±15 pixels.
Simulation results are expressed as the average number of
search points used per block and average PSNR per frame.

A. Evaluation of the Speedup by FDGDS Over DGDS

Experiment is conducted to select a threshold for FDGDS
in order to get performance similar to that of DGDS. Table II
tabulates the average PSNR per frame and the average number
of search points used per block of FDGDS using different
thresholds for fast convergence. The results show that the
number of search points together with the PSNR quality
decreases with increasing threshold T value. The higher the
threshold T , the faster the convergence and therefore the lower
the prediction quality as the algorithm uses fewer number of
search points. From Table II, it can be seen that T = 0.5 is a
good balance between speed and quality. Therefore T = 0.5
is chosen as the threshold value in FDGDS. The last two
rows of Table I show the comparison between DGDS and
FDGDS. It can be found that FDGDS has a maximum of
0.04 dB PSNR degradation over DGDS in Foreman. For
other sequences the quality degradation is very slight or there
is no degradation at all. However, FDGDS has significant
speedup over DGDS. For sequences Coastguard, Foreman,
and Stefan, FDGDS is 13.22, 16.15, and 16.96% faster than
DGDS, respectively. Therefore FDGDS performs even better
than DGDS.

B. Performance Comparison of FDGDS With Conventional
Algorithms

Table I also compares the performance of FDGDS with
three-step search (3SS) [2], new three-step search (N3SS) [3],
four-step search (4SS) [4], block-based gradient descent search
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TABLE III

PERFORMANCE COMPARISON IN H.264 REFERENCE SOFTWARE OF FDGDS WITH 3SS, BBGDS, AND UMHEXAGONS (QP = 28)

Akiyo News Coastguard

PSNR
(dB)

Bitrate
(kbits/s)

Run
time (s)

PSNR
(dB)

Bitrate
(kbits/s)

Run
time(s)

PSNR
(dB)

Bitrate
(kbits/s)

Run
time (s)

FS 40.00 404.33 371.86 38.35 698.41 373.35 34.45 1896.58 373.88

3SS 39.97 404.84 21.88 38.34 702.16 21.80 34.44 1899.68 22.12

BBGDS 39.97 404.45 11.65 38.34 699.30 12.02 35.45 1893.92 12.27

UMHexagonS 39.99 404.38 10.27 38.35 697.99 11.16 34.44 1892.34 17.43

FDGDS 39.97 404.47 8.79 38.34 698.9 8.98 34.44 1892.17 10.25

FDGDS speedup
over UMHexagonS

14.40% 19.49% 41.17%

Foreman Stefan Container

PSNR
(dB)

Bitrate
(kbits/s)

Run
time (s)

PSNR
(dB)

Bitrate
(kbits/s)

Run
time (s)

PSNR
(dB)

Bitrate
(kbits/s)

Run
time (s)

FS 36.69 877.49 370.63 35.22 2550.76 490.68 36.50 849.14 372.36

3SS 36.64 911.64 21.92 35.21 2572.02 22.31 36.49 849.10 21.81

BBGDS 36.65 892.93 12.03 35.20 2574.13 12.24 36.49 849.02 11.64

UMHexagonS 36.68 878.75 14.07 35.21 2553.82 15.92 36.49 851.35 11.54

FDGDS 36.64 892.80 9.96 35.21 2663.62 10.16 36.49 849.03 9.12

FDGDS speedup
over UMHexagonS

29.20% 36.19% 20.95%
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Fig. 9. Rate distortion comparison of FS, UMHexagonS, and FDGDS for
sequence Foreman.

(BBGDS), multipath search (MPS), hexagon-based search
(HEXBS) [7], diamond search (DS) [6], and cross-diamond
search (CDS) [8]. The performance of FS is also included as
reference. For sequences Akiyo, News, Coastguard, and Stefan,
FDGDS is the fastest algorithm among the algorithms. For
sequence Foreman, FDGDS is the second fastest algorithm.
For sequences with complex motion contents, FDGDS has a
substantial speedup over the other algorithms. For example for
sequence Stefan, FDGDS has a speedup of 49.14 and 22.19%
over 4SS and CDS, respectively. Comparing the matching
quality, FDGDS achieves the highest PSNR for sequences
Akiyo and News. It has the second highest PSNR for sequences
Coastguard and Foreman. From the results, it can be seen
that FDGDS has high prediction quality but with much lower
computational complexity compared with other algorithms.

C. Experimental Results in H.264 Reference Software

In H.264 reference software “JVT H.264/AVC Reference
Software Joint Model” (JM), some fast BMAs, e.g., the en-
hanced predictive zonal search (EPZS) [15], are implemented.
In our experiments, JM9.6 was used, and UMHexagonS [13] is
adopted as default fast inter-pixel motion estimation algorithm.
The UMHexagonS combines many techniques from different
motion estimation research fields. For example, it utilizes
techniques in motion vector prediction and early termination
researches. The proposed FDGDS algorithm is implemented
in JM9.6 to compare with UMHexagonS. The configurations
of the experiments are IPPPIPPP…frame structure, CAVLC,
Hadamard transform, and one reference frame. RD optimiza-
tion is turned off. Video sequences Akiyo, News, Coastguard,
Foreman, Stefan, and Container are tested and 100 frames
are used for each sequence. The sub-pixel motion search is
disabled so that the experimental results can clearly reflect the
performances of the algorithms. The reference software is run
on Linux kernel 2.6 on an Intel Pentium 4 machine. Table III
compares FDGDS with 3SS, BBGDS, and UMHexagonS,
using the Quantization Parameter value 28. The average PSNR
(dB) and bit rate (kbits/s) are used for video quality evaluation.
The computational complexity is measured in total motion
estimation time of JM9.6. It can be seen that FDGDS is much
faster than UMHexagonS. FDGDS also achieves nearly the
same PSNR and bit rate performance of UMHexagonS. Fig. 9.
shows the rate distortion comparison of FS, UMHexagonS, and
FDGDS for sequence Foreman. Quantization parameter (QP)
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values 16, 20, 24, 28, 32, and 36 are used to plot those curves.
From the graph, we can see that the rate distortion performance
of FDGDS is very close to that of FS and UMHexagonS.

V. CONCLUSION

Novel directional gradient descent search algorithms have
been proposed in this letter. The proposed DGDS is a 2-D
gradient descent search algorithm. It outperforms other fast
BMAs by considering all descending gradient paths while
maintaining lower computational complexity by using OTS
on eight directions. In addition, a fast DGDS (FDGDS) with
even better speedup is also proposed. Compared with other
fast BMAs, FDGDS provides higher prediction quality and
higher speed. It is also very robust as it works well in videos
with different motion contents.
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